1
|
Hsu CY, Abdulrahim MN, Mustafa MA, Omar TM, Balto F, Pineda I, Khudair TT, Ubaid M, Ali MS. The multifaceted role of PCSK9 in cancer pathogenesis, tumor immunity, and immunotherapy. Med Oncol 2024; 41:202. [PMID: 39008137 DOI: 10.1007/s12032-024-02435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), a well-known regulator of cholesterol metabolism and cardiovascular diseases, has recently garnered attention for its emerging involvement in cancer biology. The multifunctional nature of PCSK9 extends beyond lipid regulation and encompasses a wide range of cellular processes that can influence cancer progression. Studies have revealed that PCSK9 can modulate signaling pathways, such as PI3K/Akt, MAPK, and Wnt/β-catenin, thereby influencing cellular proliferation, survival, and angiogenesis. Additionally, the interplay between PCSK9 and cholesterol homeostasis may impact membrane dynamics and cellular migration, further influencing tumor aggressiveness. The central role of the immune system in monitoring and controlling cancer is increasingly recognized. Recent research has demonstrated the ability of PCSK9 to modulate immune responses through interactions with immune cells and components of the tumor microenvironment. This includes effects on dendritic cell maturation, T cell activation, and cytokine production, suggesting a role in shaping antitumor immune responses. Moreover, the potential influence of PCSK9 on immune checkpoints such as PD1/PD-L1 lends an additional layer of complexity to its immunomodulatory functions. The growing interest in cancer immunotherapy has prompted exploration into the potential of targeting PCSK9 for therapeutic benefits. Preclinical studies have demonstrated synergistic effects between PCSK9 inhibitors and established immunotherapies, offering a novel avenue for combination treatments. The strategic manipulation of PCSK9 to enhance tumor immunity and improve therapeutic outcomes presents an exciting area for further investigations. Understanding the mechanisms by which PCSK9 influences cancer biology and immunity holds promise for the development of novel immunotherapeutic approaches. This review aims to provide a comprehensive analysis of the intricate connections between PCSK9, cancer pathogenesis, tumor immunity, and the potential implications for immunotherapeutic interventions.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan.
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, 85004, USA.
| | | | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Baghdad, Iraq
- Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Samarra, Iraq
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | - Franklin Balto
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Indira Pineda
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Teeba Thamer Khudair
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
2
|
Macvanin MT, Gluvic ZM, Klisic AN, Manojlovic MS, Suri JS, Rizzo M, Isenovic ER. The Link between miRNAs and PCKS9 in Atherosclerosis. Curr Med Chem 2024; 31:6926-6956. [PMID: 37990898 DOI: 10.2174/0109298673262124231102042914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 11/23/2023]
Abstract
Cardiovascular disease (CDV) represents the major cause of death globally. Atherosclerosis, as the primary cause of CVD, is a chronic immune-inflammatory disorder with complex multifactorial pathophysiology encompassing oxidative stress, enhanced immune-inflammatory cascade, endothelial dysfunction, and thrombosis. An initiating event in atherosclerosis is the subendothelial accumulation of low-density lipoprotein (LDL), followed by the localization of macrophages to fatty deposits on blood vessel walls, forming lipid-laden macrophages (foam cells) that secrete compounds involved in plaque formation. Given the fact that foam cells are one of the key culprits that underlie the pathophysiology of atherosclerosis, special attention has been paid to the investigation of the efficient therapeutic approach to overcome the dysregulation of metabolism of cholesterol in macrophages, decrease the foam cell formation and/or to force its degradation. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory serine proteinase that has emerged as a significant regulator of the lipid metabolism pathway. PCSK9 activation leads to the degradation of LDL receptors (LDLRs), increasing LDL cholesterol (LDL-C) levels in the circulation. PCSK9 pathway dysregulation has been identified as one of the mechanisms involved in atherosclerosis. In addition, microRNAs (miRNAs) are investigated as important epigenetic factors in the pathophysiology of atherosclerosis and dysregulation of lipid metabolism. This review article summarizes the recent findings connecting the role of PCSK9 in atherosclerosis and the involvement of various miRNAs in regulating the expression of PCSK9-related genes. We also discuss PCSK9 pathway-targeting therapeutic interventions based on PCSK9 inhibition, and miRNA levels manipulation by therapeutic agents.
Collapse
Affiliation(s)
- Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran M Gluvic
- Department of Endocrinology and Diabetes, School of Medicine, University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra N Klisic
- Faculty of Medicine, Center for Laboratory Diagnostic, Primary Health Care Center, University of Montenegro, Podgorica, Montenegro
| | - Mia S Manojlovic
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, Athero- Point™, Roseville, CA95661, USA
| | - Manfredi Rizzo
- Department of Health Promotion, School of Medicine, Mother and Child Care and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Abdelwahed KS, Siddique AB, Ebrahim HY, Qusa MH, Mudhish EA, Rad AH, Zerfaoui M, Abd Elmageed ZY, El Sayed KA. Pseurotin A Validation as a Metastatic Castration-Resistant Prostate Cancer Recurrence-Suppressing Lead via PCSK9-LDLR Axis Modulation. Mar Drugs 2023; 21:215. [PMID: 37103355 PMCID: PMC10144979 DOI: 10.3390/md21040215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) cells can de novo biosynthesize their own cholesterol and overexpress proprotein convertase subtilisin/kexin type 9 (PCSK9). PCSK9 proved to contribute to mCRPC cell motility since PCSK9 knockdown (KD) in mCRPC CWR-R1ca cells led to notable reductions in cell migration and colony formation. Human tissue microarray results proved a higher immunohistoscore in patients ≥ 65 years old, and PCSK9 proved to be expressed higher at an early Gleason score of ≤7. The fermentation product pseurotin A (PS) suppressed PCSK9 expression, protein-protein interactions with LDLR, and breast and prostate cancer recurrences. PS suppressed migration and colony formation of the CWR-R1ca cells. The progression and metastasis of the CWR-R1ca-Luc cells subcutaneously (sc) xenografted into male nude mice fed a high-fat diet (HFD, 11% fat content) showed nearly 2-fold tumor volume, metastasis, serum cholesterol, low-density lipoprotein cholesterol (LDL-C), prostate-specific antigen (PSA), and PCSK9 levels versus mice fed a regular chow diet. Daily oral PS 10 mg/kg treatments prevented the locoregional and distant tumor recurrence of CWR-R1ca-Luc engrafted into nude mice after primary tumor surgical excision. PS-treated mice showed a significant reduction in serum cholesterol, LDL-C, PCSK9, and PSA levels. These results comprehensively validate PS as an mCRPC recurrence-suppressive lead by modulating the PCSK9-LDLR axis.
Collapse
Affiliation(s)
- Khaldoun S. Abdelwahed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Abu Bakar Siddique
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Hassan Y. Ebrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Mohammed H. Qusa
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Ethar A. Mudhish
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Ashkan H. Rad
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Mourad Zerfaoui
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Zakaria Y. Abd Elmageed
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana at Monroe, Monroe, LA 71203, USA
| | - Khalid A. El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| |
Collapse
|
4
|
Mahmoudi A, Butler AE, Banach M, Jamialahmadi T, Sahebkar A. Identification of Potent Small-Molecule PCSK9 Inhibitors Based on Quantitative Structure-Activity Relationship, Pharmacophore Modeling, and Molecular Docking Procedure. Curr Probl Cardiol 2023; 48:101660. [PMID: 36841313 DOI: 10.1016/j.cpcardiol.2023.101660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023]
Abstract
The leading cause of atherosclerotic cardiovascular disease (ASCVD) is elevated low-density lipoprotein cholesterol (LDL-C). Proprotein convertase subtilisin/kexin type 9 (PCSK9) attaches to the domain of LDL receptor (LDLR), diminishing LDL-C influx and LDLR cell surface presentation in hepatocytes, resulting in higher circulating LDL-C levels. PCSK9 dysfunction has been linked to lower levels of plasma LDLC and a decreased risk of coronary heart disease (CHD). Herein, using virtual screening tools, we aimed to identify a potent small-molecule PCSK9 inhibitor in compounds that are currently being studied in clinical trials. We first performed chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET) filtering of 9800 clinical trial compounds obtained from the ZINC 15 database using Lipinski's rule of 5 and achieved 3853 compounds. Two-dimensional (2D) quantitative structure-activity relationship (QSAR) was initiated by computing molecular descriptors and selecting important descriptors of 23 PCSK9 inhibitors. Multivariate calibration was performed with the partial least square regression (PLS) method with 18 compounds for training to design the QSAR model and 5 compounds for the test set to assess the model. The best latent variables (LV) (LV=6) with the lowest value of Root-Mean-Square Error of Cross-Validation (RMSECV) of 0.48 and leave-one-out cross-validation correlation coefficient (R2CV) = 0.83 were obtained for the QSAR model. The low RMSEC (0.21) with high R²cal (0.966) indicates the probability of fit between the experimental data and the calibration model. Using QSAR analysis of 3853 compounds, 2635 had a pIC50<1 and were considered for pharmacophore screening. The PHASE module (a complete package for pharmacophore modeling) designed the pharmacophore hypothesis through multiple ligands. The top 14 compounds (pIC50>1) were defined as active, whereas 9 (pIC50<1) were considered as an inactive set. Three five-point pharmacophore hypotheses achieved the highest score: DHHRR1, DHHRR2, and DHRRR1. The highest and best model with survival scores (5.365) was DHHRR1, comprising 1 hydrogen donor (D), 2 hydrophobic groups (H), and 2 rings of aromatic (R) features. We selected the molecules with a higher 1.5 fitness score (257 compounds) in pharmacophore screening (DHHRR1) for molecular docking screening. Molecular docking indicates that ZINC000051951669, with a binding affinity: of -13.2 kcal/mol and 2 H-bonds, has the highest binding to the PCSK9 protein. ZINC000011726230 with energy binding: -11.4 kcal/mol and 3 H-bonds, ZINC000068248147 with binding affinity: -10.7 kcal/mol and 1 H-bond, ZINC000029134440 with a binding affinity: -10.6 kcal/mol and 4 H-bonds were ranked next, respectively. To conclude, the archived molecules identified as inhibitory PCSK9 candidates, and especially ZINC000051951669 may therefore significantly inhibit PCSK9 and should be considered in the newly designed trials.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL) Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland; Department of Cardiology and Congenital Diseases of Adults, Polish Mother's Memorial Hospital Research institute (PMMHRI), Lodz, Poland; Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Lucero D, Wolska A, Aligabi Z, Turecamo S, Remaley AT. Lipoprotein Assessment in the twenty-first Century. Endocrinol Metab Clin North Am 2022; 51:459-481. [PMID: 35963624 PMCID: PMC9382697 DOI: 10.1016/j.ecl.2022.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on decades of both basic science and epidemiologic research, there is overwhelming evidence for the causal relationship between high levels of cholesterol, especially low-density lipoprotein cholesterol and cardiovascular disease. Risk evaluation and monitoring the response to lipid-lowering therapies are heavily dependent on the accurate assessment of plasma lipoproteins in the clinical laboratory. This article provides an update of lipoprotein metabolism as it relates to atherosclerosis and how diagnostic measures of lipids and lipoproteins can serve as markers of cardiovascular risk, with a focus on recent advances in cardiovascular risk marker testing.
Collapse
Affiliation(s)
- Diego Lucero
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5D09, Bethesda, MD 20892, USA.
| | - Anna Wolska
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute. National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5N323, Bethesda, MD 20892, USA
| | - Zahra Aligabi
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5D09, Bethesda, MD 20892, USA
| | - Sarah Turecamo
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute. National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5N323, Bethesda, MD 20892, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5D09, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Identification and evaluation of a lipid-lowering small compound in preclinical models and in a Phase I trial. Cell Metab 2022; 34:667-680.e6. [PMID: 35427476 DOI: 10.1016/j.cmet.2022.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/12/2021] [Accepted: 03/16/2022] [Indexed: 12/13/2022]
Abstract
Developing non-statin-based small compounds to battle the global epidemic of hyperlipidemia remains challenging. Here, we report the discovery of DC371739, an indole-containing tetrahydroisoquinoline compound with promising lipid-lowering effects, both in vitro and in vivo, and with good tolerability in a Phase I clinical trial (NCT04927221). DC371739 significantly reduced the plasma levels of total cholesterol, low-density lipoprotein cholesterol, and triglycerides simultaneously in several animal models and showed preliminary positive results in the Phase I trial. Mechanistically, DC371739 acts in a distinct manner from other known lipid-lowering reagents. We show that it physically binds HNF-1α, impeding the transcription of both PCSK9 and ANGPTL3, two genes that are known to contribute to hypercholesterolemia and dyslipidemia. Moreover, the distinct mechanism of action of DC371739 allows its combination with atorvastatin treatment to additively improve dyslipidemia, while providing a potential alternative therapeutic strategy for individuals with statin intolerance.
Collapse
|
7
|
Ahamad S, Mathew S, Khan WA, Mohanan K. Development of small-molecule PCSK9 inhibitors for the treatment of hypercholesterolemia. Drug Discov Today 2022; 27:1332-1349. [PMID: 35121175 DOI: 10.1016/j.drudis.2022.01.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/28/2021] [Accepted: 01/26/2022] [Indexed: 12/23/2022]
Abstract
When secreted into the circulation, proprotein convertase subtilisin kexin type 9 (PCSK9) blocks the low-density lipoprotein receptors (LDL-R) and, as a consequence, low-density lipoprotein cholesterol (LDL-C) levels increase. Therefore, PCSK9 has emerged as a potential therapeutic target for lowering LDL-C levels and preventing atherosclerosis. The US Food and Drug Administration (FDA) has approved two monoclonal antibodies (mAbs) against PCSK9, but the expensive manufacturing process limits their use. Subsequently, there have been tremendous efforts to develop cost-effective small molecules specific to PCSK9 over the past few years. These small molecules are promising therapeutics that act by preventing the synthesis of PCSK9, its secretion from cells, or the PCSK9-LDRL interaction. In this review, we summarize recent developments in the discovery of small-molecule PCSK9 inhibitors, focusing on their design, therapeutic effects, specific targets, and mechanisms of action.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002 UP, India.
| | - Shintu Mathew
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Lucknow, 226031 UP, India
| | - Waqas A Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002 UP, India
| | - Kishor Mohanan
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Lucknow, 226031 UP, India.
| |
Collapse
|
8
|
Harbour V, Casillas C, Siddiqui Z, Sarkar B, Sanyal S, Nguyen P, Kim KK, Roy A, Iglesias-Montoro P, Patel S, Podlaski F, Tolias P, Windsor W, Kumar V. Regulation of Lipoprotein Homeostasis by Self-Assembling Peptides. ACS APPLIED BIO MATERIALS 2020; 3:8978-8988. [PMID: 35019574 PMCID: PMC10790182 DOI: 10.1021/acsabm.0c01229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High levels of serum low-density lipoprotein (LDL) cholesterol contribute to atherosclerosis, a key risk factor of cardiovascular diseases. PCSK9 is a circulatory enzyme that downregulates expression of hepatic LDL receptors, concomitantly increasing serum LDL-C. This work investigates a small, self-assembling peptide, EPep2-8, as a peptide inhibitor of PCSK9. EPep2-8 is a multidomain peptide comprising a self-assembling domain, E2, conjugated to a bioactive domain, Pep2-8, previously shown to inhibit PCSK9. The E2 domain facilitates self-assembly of EPep2-8 into long, nanofibrous polymers with an underlying supramolecular β-sheet secondary structure. Intermolecular interactions between nanofibers drive EPep2-8 to form a thixotropic and cytocompatible hydrogel in aqueous and charge-neutral solutions. These properties enable EPep2-8 to be delivered as an in situ depot for regulation of lipoprotein homeostasis. In surface plasmon resonance studies, EPep2-8 bound specifically to PCSK9 with an apparent, noncovalent, and irreversible dissociation, significantly improving the binding affinity of Pep2-8 alone (KD = 667 ± 48 nM). Increased binding affinity of EPep2-8 is primarily due to the superstoichiometric interaction of the peptide with PCSK9. Promisingly, EPep2-8 retains bioactivity in vitro, engendering dose-dependent uptake of LDL-C in hepatocytes. This mechanism of self-assembly on a target site may be a simple method to improve the affinity of peptide inhibitors.
Collapse
Affiliation(s)
- Victoria Harbour
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Candice Casillas
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Biplab Sarkar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Sreya Sanyal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Peter Nguyen
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Ka Kyung Kim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Abhishek Roy
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Patricia Iglesias-Montoro
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Saloni Patel
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Frank Podlaski
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Peter Tolias
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - William Windsor
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Vivek Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, New Jersey 07103, United States
| |
Collapse
|
9
|
From methylene bridged diindole to carbonyl linked benzimidazoleindole: Development of potent and metabolically stable PCSK9 modulators. Eur J Med Chem 2020; 206:112678. [PMID: 32823006 DOI: 10.1016/j.ejmech.2020.112678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 12/29/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a recently validated therapeutic target for lowering low-density lipoprotein cholesterol (LDL-C). Through phenotypic screening, we previously discovered a class of small-molecules with a 2,3'-diindolymethane (DIM) skeleton that can decrease the expression of PCSK9. But these compounds have low potency and low metabolically stability. After performing structure-activity relationship (SAR) optimization by nitrogen scan, deuterium substitution and fluorine scan, we identified a series of much more potent and metabolically stable PCSK9 modulators. A preliminary in vivo pharmacokinetic study was performed for representative analogues difluorodiindolyketone (DFDIK) 12 and difluorobenzoimidazolylindolylketone (DFBIIK-1) 13. The in vitro metabolic stability correlate well with the in vivo data. The most potent compound 21 has the EC50 of 0.15 nM. Our SAR studies also indicated that the NH on the indole ring of 21 can tolerate more function groups, which may facilitate the mechanism of action studies and also allow further improvement of the pharmacological properties.
Collapse
|
10
|
Hu B, Boakye‐Yiadom KO, Yu W, Yuan Z, Ho W, Xu X, Zhang X. Nanomedicine Approaches for Advanced Diagnosis and Treatment of Atherosclerosis and Related Ischemic Diseases. Adv Healthc Mater 2020; 9:e2000336. [PMID: 32597562 DOI: 10.1002/adhm.202000336] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/30/2020] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVDs) remain one of the major causes of mortality worldwide. In response to this and other worldwide health epidemics, nanomedicine has emerged as a rapidly evolving discipline that involves the development of innovative nanomaterials and nanotechnologies and their applications in therapy and diagnosis. Nanomedicine presents unique advantages over conventional medicines due to the superior properties intrinsic to nanoscopic therapies. Once used mainly for cancer therapies, recently, tremendous progress has been made in nanomedicine that has led to an overall improvement in the treatment and diagnosis of CVDs. This review elucidates the pathophysiology and potential targets of atherosclerosis and associated ischemic diseases. It may be fruitful to pursue future work in the nanomedicine-mediated treatment of CVDs based on these targets. A comprehensive overview is then provided featuring the latest preclinical and clinical outcomes in cardiovascular imaging, biomarker detection, tissue engineering, and nanoscale delivery, with specific emphasis on nanoparticles, nanostructured scaffolds, and nanosensors. Finally, the challenges and opportunities regarding the future development and clinical translation of nanomedicine in related fields are discussed. Overall, this review aims to provide a deep and thorough understanding of the design, application, and future development of nanomedicine for atherosclerosis and related ischemic diseases.
Collapse
Affiliation(s)
- Bin Hu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Kofi Oti Boakye‐Yiadom
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Wei Yu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Zi‐Wei Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - William Ho
- Department of Chemical and Materials EngineeringNew Jersey Institute of Technology Newark NJ 07102 USA
| | - Xiaoyang Xu
- Department of Chemical and Materials EngineeringNew Jersey Institute of Technology Newark NJ 07102 USA
| | - Xue‐Qing Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
11
|
Marais AD, Blom DJ, Raal FJ. Homozygous familial hypercholesterolemia and its treatment by inclisiran. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1784721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- A David Marais
- Chemical Pathology Division of the Department of Pathology, University of Cape Town Health Science Faculty, Cape Town, South Africa
| | - Dirk J Blom
- Lipidology Division of the Department of Medicine and Hatter Institute for Cardiovascular Research in Africa, University of Cape Town Health Science Faculty, Cape Town, South Africa
| | - Frederick J Raal
- Endocrinology, Department of Medicine, University of Witwatersrand Health Science Faculty, Johannesburg, South Africa
| |
Collapse
|
12
|
Pseurotin A as a novel suppressor of hormone dependent breast cancer progression and recurrence by inhibiting PCSK9 secretion and interaction with LDL receptor. Pharmacol Res 2020; 158:104847. [PMID: 32438039 DOI: 10.1016/j.phrs.2020.104847] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022]
Abstract
Hypercholesterolemia has been documented to drive hormone-dependent breast cancer (BC) progression and resistance to hormonal therapy. Proprotein convertase subtilisin/kexin type-9 (PCSK9) regulates cholesterol metabolism through binding to LDL receptor (LDLR) and targeting the receptor for lysosomal degradation. Inhibition of PCSK9 is an established strategy to treat hypercholesterolemia. Pseurotin A (PS) is a unique spiro-heterocyclic γ-lactam alkaloid isolated from the fungus Aspergillus fumigatus. Preliminary studies indicated that PS lowered PCSK9 secretion in cultured HepG2 hepatocellular carcinoma cells, with an IC50 value of 1.20 μM. Docking studies suggested the ability of PS to bind at the PCSK9 narrow interface pocket that accommodates LDLR. Surface plasmon resonance (SPR) showed PS ability to inhibit the PCSK9-LDLR interaction at a concentration range of 10-150 μM. PS showed in vitro dose-dependent reduction of PCSK9, along with increased LDLR levels in hormone-dependent BT-474 and T47D breast cancer (BC) cell lines. In vivo, daily oral 10 mg/kg PS suppressed the progression of the hormone-dependent BT-474 BC cells in orthotopic nude mouse xenograft model. Immunohistochemistry (IHC) investigation of BT-474 breast tumor tissue proved the PS ability to reduce PCSK9 expression. PS also effectively suppressed BT-474 BC cells locoregional recurrence after primary tumor surgical excision. Western blot analysis showed decreased PCSK9 expression in liver tissues of PS-treated mice compared to vehicle-treated control group. PS treatment significantly reduced PCSK9 expression and normalized LDLR levels in collected primary and recurrent breast tumors at the study end. PS-treated mice showed reduced plasma cholesterol and 17β-estradiol levels. Inhibition of tumor recurrence was associated with significant reductions in plasma level of the human BC recurrence marker CA 15-3 in treated mice at the study end. Histopathological examination of various PS-treated mice organs indicated lack of metastatic tumor cells and any pathological changes. The results of this study provide the first evidence for the suppression of the hormone-dependent breast tumor progression and recurrence by targeting the PCSK9-LDLR axis. PS is a novel first-in-class PCSK9-targeting lead appropriate for the use to control hormone-dependent BC progression and recurrence.
Collapse
|
13
|
Chen B, Shi X, Cui Y, Hou A, Zhao P. A Review of PCSK9 Inhibitors and their Effects on Cardiovascular Diseases. Curr Top Med Chem 2019; 19:1790-1817. [PMID: 31400268 DOI: 10.2174/1568026619666190809094203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/07/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cardiovascular diseases remain the leading cause of morbidity and mortality in the world, with elevated Low-Density Lipoprotein-Cholesterol (LDL-C) levels as the major risk factor. Lower levels of LDL-C can effectively reduce the risk of cardiovascular diseases. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an important role in regulating the degradation of hepatic LDL receptors that remove LDL-C from the circulation. PCSK9 inhibitors are a new class of agents that are becoming increasingly important in the treatment to reduce LDL-C levels. Two PCSK9 inhibitors, alirocumab and evolocumab, have been approved to treat hypercholesterolemia and are available in the United States and the European Union. Through the inhibition of PCSK9 and increased recycling of LDL receptors, serum LDL-C levels can be significantly reduced. OBJECTIVE This review will describe the chemistry, pharmacokinetics, and pharmacodynamics of PCSK9 inhibitors and their clinical effects.
Collapse
Affiliation(s)
- Bo Chen
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 20092, China
| | - Xin Shi
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 20092, China
| | - Yanping Cui
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 20092, China
| | - Aiping Hou
- Department of Pediatric, Shidong Hospital, Shanghai 20092, China
| | - Pengjun Zhao
- Department of Pediatric, Shidong Hospital, Shanghai 20092, China
| |
Collapse
|
14
|
Wu C, Xi C, Tong J, Zhao J, Jiang H, Wang J, Wang Y, Liu H. Design, synthesis, and biological evaluation of novel tetrahydroprotoberberine derivatives (THPBs) as proprotein convertase subtilisin/kexin type 9 (PCSK9) modulators for the treatment of hyperlipidemia. Acta Pharm Sin B 2019; 9:1216-1230. [PMID: 31867167 PMCID: PMC6900552 DOI: 10.1016/j.apsb.2019.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 01/24/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) modulators may attenuate PCSK9-induced low-density lipoprotein receptor (LDLR) degradation in lysosome and promote the clearance of circulating low-density lipoprotein cholesterol (LDL-C). A novel series of tetrahydroprotoberberine derivatives (THPBs) were designed, synthesized, and evaluated as PCSK9 modulators for the treatment of hyperlipidemia. Among them, eight compounds exhibited excellent activities in downregulating hepatic PCSK9 expression better than berberine in HepG2 cells. In addition, five compounds 15, 18, 22, (R)-22, and (S)-22 showed better performance in the low-density lipoprotein, labeled with 1,1′-dioctadecyl-3,3,3′,3′-tetramethyl-indocarbocyanine perchlorate (DiI-LDL) uptake assay, compared with berberine at the same concentration. Compound 22, selected for in vivo evaluation, demonstrated significant reductions of total cholesterol (TC) and LDL-C in hyperlipidemic hamsters with a good pharmacokinetic profile. Further exploring of the lipid-lowering mechanism showed that compound 22 promoted hepatic LDLR expression in a dose-dependent manner in HepG2 cells. Additional results of human ether-à-go-go related gene (hERG) inhibition assay indicated the potential druggability for compound 22, which is a promising lead compound for the development of PCSK9 modulator for the treatment of hyperlipidemia.
Collapse
Key Words
- ADH, autosomal dominant hypercholesterolemia
- AUC, area under the plasma concentration−time curve
- BBR, berberine
- CHD, coronary heart disease
- CL, clearance
- CVDs, cardiovascular diseases
- Cmax, maximum concentration
- DiI-LDL, low-density lipoprotein, labeled with 1,1′-dioctadecyl-3,3,3′,3′-tetramethyl-indocarbocyanine perchlorate
- F, oral bioavailability
- FDA, food and drug administration
- HFD, high-fat diet
- Hyperlipidemia hamster
- LDL-C, low-density lipoprotein-cholesterol
- LDLR, low-density lipoprotein receptor
- Lipid-lowering
- Low-density lipoprotein cholesterol
- Low-density lipoprotein receptor
- MRT, mean residence time
- PCSK9
- PCSK9 expression
- PCSK9, proprotein convertase subtilisin/kexin type 9
- PK, pharmacokinetic
- POCl3, phosphoryl trichloride
- TC, total cholesterol
- THPBs, tetrahydroprotoberberine derivatives
- Tetrahydroprotoberberine derivatives
- Total cholesterol
- hERG, human ether-à-go-go related gene
- mAbs, monoclonal antibodies
- t1/2, half-life
Collapse
Affiliation(s)
- Chenglin Wu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Cong Xi
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhua Tong
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhao
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Wang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding authors. Tel.: +86 21 50807042 (Hong Liu); +86 21 50806733 (Yiping Wang); +86 21 50806600 5418 (Jiang Wang).
| | - Yiping Wang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding authors. Tel.: +86 21 50807042 (Hong Liu); +86 21 50806733 (Yiping Wang); +86 21 50806600 5418 (Jiang Wang).
| | - Hong Liu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding authors. Tel.: +86 21 50807042 (Hong Liu); +86 21 50806733 (Yiping Wang); +86 21 50806600 5418 (Jiang Wang).
| |
Collapse
|
15
|
Winston-McPherson GN, Xie H, Yang K, Li X, Shu D, Tang W. Discovery of 2,3'-diindolylmethanes as a novel class of PCSK9 modulators. Bioorg Med Chem Lett 2019; 29:2345-2348. [PMID: 31227343 DOI: 10.1016/j.bmcl.2019.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/20/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes the degradation of low density lipoprotein receptor (LDLR). Anti-PCSK9 agents have been approved for the treatment of hypercholesterolemia. We recently discovered a series of small-molecule PCSK9 modulators that contains a relatively small pharmacophore of 2,3'-diindolylmethane with molecular weights around only 250. These molecules can significantly lower the amount of PCSK9 protein in a cell-based phenotypic assay. Our SAR studies yielded compound 16 with a IC50-value of 200 nM. No obvious cytotoxicity was observed at concentrations below 50 µM.
Collapse
Affiliation(s)
| | - Haibo Xie
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States
| | - Ka Yang
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States
| | - Xiaoxun Li
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States
| | - Dongxu Shu
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States; Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706, United States
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, United States; Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706, United States.
| |
Collapse
|
16
|
Lammi C, Sgrignani J, Arnoldi A, Lesma G, Spatti C, Silvani A, Grazioso G. Computationally Driven Structure Optimization, Synthesis, and Biological Evaluation of Imidazole-Based Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) Inhibitors. J Med Chem 2019; 62:6163-6174. [DOI: 10.1021/acs.jmedchem.9b00402] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Carmen Lammi
- Dipartimento di Scienze Farmaceutiche, Universitá degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Jacopo Sgrignani
- Istituto di Ricerca in Biomedicina (IRB), Universitá della Svizzera Italiana (USI), Via V. Vela 6, CH-6500 Bellinzona, Switzerland
| | - Anna Arnoldi
- Dipartimento di Scienze Farmaceutiche, Universitá degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Giordano Lesma
- Dipartimento di Chimica, Universitá degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Claudia Spatti
- Dipartimento di Chimica, Universitá degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Alessandra Silvani
- Dipartimento di Chimica, Universitá degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche, Universitá degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
17
|
Abstract
Cardiovascular disease is the major cause of death globally, with hypercholesterolemia being an important risk factor. The PCSK9 represents an attractive therapeutic target for hypercholesterolemia treatment and is currently in the spotlight of the scientific community. After autocatalytic activation in the hepatocyte endoplasmic reticulum, this convertase binds to the LDLR and channels it to the degradation pathway. This review gives an overview on the latest developments in the inhibition of PCSK9, including disruption of the protein-protein interaction (PPI) between PCSK9 and LDLR by peptidomimetics, adnectins and monoclonal antibodies and the suppression of PCSK9 expression by small molecules, siRNA and genome editing techniques. In addition, we discuss alternative approaches, such as anti-PCSK9 active vaccination and heparin mimetics.
Collapse
|
18
|
Small molecules as inhibitors of PCSK9: Current status and future challenges. Eur J Med Chem 2018; 162:212-233. [PMID: 30448414 DOI: 10.1016/j.ejmech.2018.11.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/13/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an important role in regulating lipoprotein metabolism by binding to low-density lipoprotein receptors (LDLRs), leading to their degradation. LDL cholesterol (LDL-C) lowering drugs that operate through the inhibition of PCSK9 are being pursued for the management of hypercholesterolemia and reducing its associated atherosclerotic cardiovascular disease (CVD) risk. Two PCSK9-blocking monoclonal antibodies (mAbs), alirocumab and evolocumab, were approved in 2015. However, the high costs of PCSK9 antibody drugs impede their prior authorization practices and reduce their long-term adherence. Given the potential of small-molecule drugs, the development of small-molecule PCSK9 inhibitors has attracted considerable attention. This article provides an overview of the recent development of small-molecule PCSK9 inhibitors disclosed in the literature and patent applications, and different approaches that have been pursued to modulate the functional activity of PCSK9 using small molecules are described. Challenges and potential strategies in developing small-molecule PCSK9 inhibitors are also discussed.
Collapse
|
19
|
Chorba JS, Galvan AM, Shokat KM. A High-Throughput Luciferase Assay to Evaluate Proteolysis of the Single-Turnover Protease PCSK9. J Vis Exp 2018. [PMID: 30222160 DOI: 10.3791/58265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a single-turnover protease which regulates serum low-density lipoprotein (LDL) levels and, consequently, cardiovascular disease. Although PCSK9 proteolysis is required for its full hypercholesterolemic effect, the evaluation of its proteolytic function is challenging: PCSK9 is only known to cleave itself, undergoes only a single turnover, and after proteolysis, retains its substrate in its active site as an auto-inhibitor. The methods presented here describe an assay which overcomes these challenges. The assay focuses on intermolecular proteolysis in a cell-based context and links successful cleavage to the secreted luciferase activity, which can be easily read out in the conditioned medium. Via sequential steps of mutagenesis, transient transfection, and a luciferase readout, the assay can probe PCSK9 proteolysis under conditions of either genetic or molecular perturbation in a high-throughput manner. This system is well suited for both the biochemical evaluation of clinically discovered missense single-nucleotide polymorphisms (SNPs), as well as for the screening of small-molecule inhibitors of PCSK9 proteolysis.
Collapse
Affiliation(s)
- John S Chorba
- Division of Cardiology, Department of Medicine, Zuckerberg San Francisco General and University of California San Francisco;
| | - Adri M Galvan
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California San Francisco
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California San Francisco
| |
Collapse
|
20
|
Londregan AT, Wei L, Xiao J, Lintner NG, Petersen D, Dullea RG, McClure KF, Bolt MW, Warmus JS, Coffey SB, Limberakis C, Genovino J, Thuma BA, Hesp KD, Aspnes GE, Reidich B, Salatto CT, Chabot JR, Cate JHD, Liras S, Piotrowski DW. Small Molecule Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitors: Hit to Lead Optimization of Systemic Agents. J Med Chem 2018; 61:5704-5718. [DOI: 10.1021/acs.jmedchem.8b00650] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Liuqing Wei
- Pfizer Medicinal Chemistry, Groton, Connecticut 06340, United States
| | - Jun Xiao
- Pfizer Medicinal Chemistry, Groton, Connecticut 06340, United States
| | - Nathanael G. Lintner
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Donna Petersen
- Primary Pharmacology Group, Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Robert G. Dullea
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Kim F. McClure
- Pfizer Medicinal Chemistry, Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Michael W. Bolt
- Drug Safety Research & Development, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| | - Joseph S. Warmus
- Pfizer Medicinal Chemistry, Groton, Connecticut 06340, United States
| | - Steven B. Coffey
- Pfizer Medicinal Chemistry, Groton, Connecticut 06340, United States
| | - Chris Limberakis
- Pfizer Medicinal Chemistry, Groton, Connecticut 06340, United States
| | - Julien Genovino
- Pfizer Medicinal Chemistry, Groton, Connecticut 06340, United States
| | - Benjamin A. Thuma
- Pfizer Medicinal Chemistry, Groton, Connecticut 06340, United States
| | - Kevin D. Hesp
- Pfizer Medicinal Chemistry, Groton, Connecticut 06340, United States
| | - Gary E. Aspnes
- Pfizer Medicinal Chemistry, Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Benjamin Reidich
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Christopher T. Salatto
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Jeffrey R. Chabot
- Pfizer Pharmacokinetics, Dynamics and Metabolism Modeling and Simulation, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Jamie H. D. Cate
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
- QB3 Institute, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Spiros Liras
- Pfizer Medicinal Chemistry, Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | | |
Collapse
|