1
|
Zhong L, Tan X, Yang W, Li P, Ye L, Luo Q, Hou H. Bioactive matters based on natural product for cardiovascular diseases. SMART MATERIALS IN MEDICINE 2024; 5:542-565. [DOI: 10.1016/j.smaim.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Clay KJ, Shenvi RA. The original caretakers of salvinorin A and recognizing Indigenous contributions to science. Nat Chem 2024; 16:1735-1736. [PMID: 39438762 DOI: 10.1038/s41557-024-01659-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Affiliation(s)
- Khalyd J Clay
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
- Department of Molecular and Cell Biology, Scripps Research, La Jolla, CA, USA.
- Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA, USA.
| | - Ryan A Shenvi
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
- Department of Molecular and Cell Biology, Scripps Research, La Jolla, CA, USA.
- Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
3
|
Ford SA, Ness RW, Kwon M, Ro DK, Phillips MA. A chromosome level reference genome of Diviner's sage (Salvia divinorum) provides insight into salvinorin A biosynthesis. BMC PLANT BIOLOGY 2024; 24:914. [PMID: 39350001 PMCID: PMC11443658 DOI: 10.1186/s12870-024-05633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Diviner's sage (Salvia divinorum; Lamiaceae) is the source of the powerful hallucinogen salvinorin A (SalA). This neoclerodane diterpenoid is an agonist of the human Κ-opioid receptor with potential medical applications in the treatment of chronic pain, addiction, and post-traumatic stress disorder. Only two steps of the approximately twelve step biosynthetic sequence leading to SalA have been resolved to date. RESULTS To facilitate pathway elucidation in this ethnomedicinal plant species, here we report a chromosome level genome assembly. A high-quality genome sequence was assembled with an N50 value of 41.4 Mb and a BUSCO completeness score of 98.4%. The diploid (2n = 22) genome of ~ 541 Mb is comparable in size and ploidy to most other members of this genus. Two diterpene biosynthetic gene clusters were identified and are highly enriched in previously unidentified cytochrome P450s as well as crotonolide G synthase, which forms the dihydrofuran ring early in the SalA pathway. Coding sequences for other enzyme classes with likely involvement in downstream steps of the SalA pathway (BAHD acyl transferases, alcohol dehydrogenases, and O-methyl transferases) were scattered throughout the genome with no clear indication of clustering. Differential gene expression analysis suggests that most of these genes are not inducible by methyl jasmonate treatment. CONCLUSIONS This genome sequence and associated gene annotation are among the highest resolution in Salvia, a genus well known for the medicinal properties of its members. Here we have identified the cohort of genes responsible for the remaining steps in the SalA pathway. This genome sequence and associated candidate genes will facilitate the elucidation of SalA biosynthesis and enable an exploration of its full clinical potential.
Collapse
Affiliation(s)
- Scott A Ford
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Rob W Ness
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.
- Department of Biology, University of Toronto - Mississauga, Mississauga, ON, L5L 1C6, Canada.
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.
| | - Moonhyuk Kwon
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Present Address: Division of Applied Life Science (BK21 Four), ABC-RLRC, RIMA, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Michael A Phillips
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.
- Department of Biology, University of Toronto - Mississauga, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
4
|
Puls K, Olivé-Marti AL, Hongnak S, Lamp D, Spetea M, Wolber G. Discovery of Novel, Selective, and Nonbasic Agonists for the Kappa-Opioid Receptor Determined by Salvinorin A-Based Virtual Screening. J Med Chem 2024; 67:13788-13801. [PMID: 39088801 PMCID: PMC11345774 DOI: 10.1021/acs.jmedchem.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/03/2024]
Abstract
Modulating the kappa-opioid receptor (KOR) is a promising strategy for treating various human diseases. KOR agonists show potential for treating pain, pruritus, and epilepsy, while KOR antagonists show potential for treating depression, anxiety, and addiction. The diterpenoid Salvinorin A (SalA), a secondary metabolite of Salvia divinorum, is a potent and selective KOR agonist. Unlike typical opioids, SalA lacks a basic nitrogen, which encouraged us to search for nonbasic KOR ligands. Through structure-based virtual screening using 3D pharmacophore models based on the binding mode of SalA, we identified novel, nonbasic, potent, and selective KOR agonists. In vitro studies confirmed two virtual hits, SalA-VS-07 and SalA-VS-08, as highly selective for the KOR and showing G protein-biased KOR agonist activity. Both KOR ligands share a novel spiro-moiety and a nonbasic scaffold. Our findings provide novel starting points for developing therapeutics aimed at treating pain and other conditions in which KOR is a central player.
Collapse
Affiliation(s)
- Kristina Puls
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195 Berlin, Germany
| | - Aina-Leonor Olivé-Marti
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Siriwat Hongnak
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - David Lamp
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Mariana Spetea
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Gerhard Wolber
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195 Berlin, Germany
| |
Collapse
|
5
|
Lin B, Liu T, Luo T. Gold-catalyzed cyclization and cycloaddition in natural product synthesis. Nat Prod Rep 2024; 41:1091-1112. [PMID: 38456472 DOI: 10.1039/d3np00056g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Covering: 2016 to mid 2023Transition metal catalysis, known for its remarkable capacity to expedite the assembly of molecular complexity from readily available starting materials in a single operation, occupies a central position in contemporary chemical synthesis. Within this landscape, gold-catalyzed reactions present a novel and versatile paradigm, offering robust frameworks for accessing diverse structural motifs. In this review, we highlighted a curated selection of publications in the past 8 years, focusing on the deployment of homogeneous gold catalysis in the ring-forming step for the total synthesis of natural products. These investigations are categorized based on the specific ring formations they engender, accentuating the prevailing gold-catalyzed methodologies applied to surmount intricate challenges in natural products synthesis.
Collapse
Affiliation(s)
- Boxu Lin
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Tianran Liu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
6
|
Che T, Roth BL. Molecular basis of opioid receptor signaling. Cell 2023; 186:5203-5219. [PMID: 37995655 PMCID: PMC10710086 DOI: 10.1016/j.cell.2023.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Opioids are used for pain management despite the side effects that contribute to the opioid crisis. The pursuit of non-addictive opioid analgesics remains unattained due to the unresolved intricacies of opioid actions, receptor signaling cascades, and neuronal plasticity. Advancements in structural, molecular, and computational tools illuminate the dynamic interplay between opioids and opioid receptors, as well as the molecular determinants of signaling pathways, which are potentially interlinked with pharmacological responses. Here, we review the molecular basis of opioid receptor signaling with a focus on the structures of opioid receptors bound to endogenous peptides or pharmacological agents. These insights unveil specific interactions that dictate ligand selectivity and likely their distinctive pharmacological profiles. Biochemical analysis further unveils molecular features governing opioid receptor signaling. Simultaneously, the synergy between computational biology and medicinal chemistry continues to expedite the discovery of novel chemotypes with the promise of yielding more efficacious and safer opioid compounds.
Collapse
Affiliation(s)
- Tao Che
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill 27599, NC, USA.
| |
Collapse
|
7
|
Zhang ZM, Zhang J, Cai Q. Enantioselective and collective total synthesis of pentacyclic 19- nor-clerodanes. Chem Sci 2023; 14:12598-12605. [PMID: 38020367 PMCID: PMC10646913 DOI: 10.1039/d3sc04335e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
We report herein the collective asymmetric total synthesis of seven pentacyclic 19-nor-clerodane diterpenoids, namely (+)-teucvin (+)-cracroson A, (+)-cracroson E, (+)-montanin A, (+)-teucvisin C, (+)-teucrin A, and (+)-2-hydroxyteuscorolide. An ytterbium-catalyzed asymmetric inverse-electron-demand Diels-Alder reaction of 4-methyl-2-pyrone with a chiral C5-substituted cyclohexa-1,3-dienol silyl ether is the key feature of the synthesis, which provides the common cis-decalin intermediate with five continuous stereocenters in excellent yield and stereoselectivity. From this diversifiable intermediate, the total synthesis of (+)-teucvin and (+)-2-hydroxyteuscorolide was realized in thirteen and eighteen steps, respectively. From (+)-teucvin, five other pentacyclic 19-nor-clerodanes were divergently and concisely generated through late-stage oxidation state adjustments.
Collapse
Affiliation(s)
- Zhi-Mao Zhang
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis, Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Junliang Zhang
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis, Fudan University 220 Handan Rd. Shanghai 200433 China
| | - Quan Cai
- Department of Chemistry and Research Center for Molecular Recognition and Synthesis, Fudan University 220 Handan Rd. Shanghai 200433 China
| |
Collapse
|
8
|
Wang W, Feng S, Wei Y, Wang H, Li Y. Diastereoselective Ring Expansion of Cyclic Ketones Enabled by HAT-Initiated Radical Cascade. Org Lett 2023; 25:8022-8026. [PMID: 37889896 DOI: 10.1021/acs.orglett.3c03236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Herein we disclose an iron-catalyzed method for stereoselective synthesis of multisubstituted cyclic ketones containing a synthetically challenging quaternary carbon from readily accessible β-vinyl keto esters in good yields. This cascade reaction is initiated by a hydrogen atom transfer (HAT) process, after which a Dowd-Beckwith-type ring-expansion reaction occurs. This strategic transformation offers access to synthetically valuable cyclic ketones bearing two contiguous stereocenters, including quaternary stereocenters, which hold paramount significance within the realm of synthetic chemistry.
Collapse
Affiliation(s)
- Wenxue Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shouyang Feng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yansheng Wei
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hongyu Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yun Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
9
|
Qiu T, Li Y, Wu H, Yang H, Peng Z, Du Z, Wu Q, Wang H, Shen Y, Huang L. Tandem duplication and sub-functionalization of clerodane diterpene synthase originate the blooming of clerodane diterpenoids in Scutellaria barbata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:375-388. [PMID: 37395679 DOI: 10.1111/tpj.16377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Scutellaria barbata is a traditional Chinese herb medicine and a major source of bioactive clerodane diterpenoids. However, barely clerodanes have been isolated from the closely related S. baicalensis. Here we assembled a chromosome-level genome of S. barbata and identified three class II clerodane diterpene synthases (SbarKPS1, SbarKPS2 and SbaiKPS1) from these two organisms. Using in vitro and in vivo assays, SbarKPS1 was characterized as a monofunctional (-)-kolavenyl diphosphate synthases ((-)-KPS), while SbarKPS2 and SbaiKPS1 produced major neo-cleroda-4(18),13E-dienyl diphosphate with small amount of (-)-KPP. SbarKPS1 and SbarKPS2 shared a high protein sequence identity and formed a tandem gene pair, indicating tandem duplication and sub-functionalization probably led to the evolution of monofunctional (-)-KPS in S. barbata. Additionally, SbarKPS1 and SbarKPS2 were primarily expressed in the leaves and flowers of S. barbata, which was consistent with the distribution of major clerodane diterpenoids scutebarbatine A and B. In contrast, SbaiKPS1 was barely expressed in any tissue of S. baicalensis. We further explored the downstream class I diTPS by functional characterizing of SbarKSL3 and SbarKSL4. Unfortunately, no dephosphorylated product was detected in the coupled assays with SbarKSL3/KSL4 and four class II diTPSs (SbarKPS1, SbarKPS2, SbarCPS2 and SbarCPS4) when a phosphatase inhibitor cocktail was included. Co-expression of SbarKSL3/KSL4 with class II diTPSs in yeast cells did not increase the yield of the corresponding dephosphorylated products, either. Together, these findings elucidated the involvement of two class II diTPSs in clerodane biosynthesis in S. barbata, while the class I diTPS is likely not responsible for the subsequent dephosphorylation step.
Collapse
Affiliation(s)
- Ting Qiu
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - YangYan Li
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Haisheng Wu
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hui Yang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ziqiu Peng
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zuying Du
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qingwen Wu
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hongbin Wang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yanting Shen
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lili Huang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
10
|
Gómez-Suárez A, Neumann CN. Stereochemistry in All Its Shapes and Forms: The 56 th Bürgenstock Conference. Angew Chem Int Ed Engl 2023; 62:e202309468. [PMID: 37590448 DOI: 10.1002/anie.202309468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 08/19/2023]
Abstract
Acknowledging the crucial role of stereochemistry in fields as diverse as total synthesis, synthetic methodology, spectroscopy, and the study of the origin of life, the 56th SCS Conference on Stereochemistry, better known as the BÃ1/4rgenstock Conference, brought together a diverse range of chemistry expertise in Brunnen, Switzerland.
Collapse
Affiliation(s)
- Adrián Gómez-Suárez
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany
| | - Constanze N Neumann
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
11
|
Hill S, Dao N, Dang VQ, Stahl EL, Bohn LM, Shenvi RA. A Route to Potent, Selective, and Biased Salvinorin Chemical Space. ACS CENTRAL SCIENCE 2023; 9:1567-1574. [PMID: 37637743 PMCID: PMC10450872 DOI: 10.1021/acscentsci.3c00616] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Indexed: 08/29/2023]
Abstract
The salvinorins serve as templates for next generation analgesics, antipruritics, and dissociative hallucinogens via selective and potent agonism of the kappa-opioid receptor (KOR). In contrast to most opioids, the salvinorins lack basic amines and bind with high affinity and selectivity via complex polyoxygenated scaffolds that have frustrated deep-seated modification by synthesis. Here we describe a short asymmetric synthesis that relies on a sterically confined organocatalyst to dissociate acidity from reactivity and effect Robinson annulation of an unactivated nucleophile/unstable electrophile pair. Combined with a cobalt-catalyzed polarized diene-alkyne cycloaddition, the route allows divergent access to a focused library of salvinorins. We appraise the synthesis by its generation of multiple analogs that exceed the potency, selectivity, stability, and functional bias of salvinorin A itself.
Collapse
Affiliation(s)
- Sarah
J. Hill
- Department
of Chemistry, Scripps Research, La Jolla, California 92037, United States
- Graduate
School of Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| | - Nathan Dao
- Department
of Chemistry, Scripps Research, La Jolla, California 92037, United States
- Graduate
School of Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| | - Vuong Q. Dang
- Department
of Molecular Medicine, The Herbert Wertheim
UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
| | - Edward L. Stahl
- Department
of Molecular Medicine, The Herbert Wertheim
UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
| | - Laura M. Bohn
- Department
of Molecular Medicine, The Herbert Wertheim
UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
| | - Ryan A. Shenvi
- Department
of Chemistry, Scripps Research, La Jolla, California 92037, United States
- Graduate
School of Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
12
|
Akins NS, Salahuddin MF, Pandey P, Kim SJ, Mahdi F, Khan MIH, Moss EM, Worth CJ, Keane MM, Chittiboyina AG, Doerksen RJ, Paris JJ, Le HV. Alleviation of Cocaine Withdrawal and Pertinent Interactions between Salvinorin-Based Antagonists and Kappa Opioid Receptor. ACS Chem Neurosci 2023; 14:958-976. [PMID: 36795782 DOI: 10.1021/acschemneuro.2c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
The kappa opioid receptor (KOR) is involved in the regulation of both the reward and mood processes. Recent reports find that the use of drugs of abuse increases the production of dynorphin and the overall activation of KOR. Long-acting KOR antagonists, such as norbinaltorphimine (nor-BNI), JDTic, and 5'-guanidinonaltrindole (GNTI), have been shown to stop depressive and anxiety-related disorders, which are the common side effects of withdrawal that can lead to a relapse in drug use. Unfortunately, these prototypical KOR antagonists are known to induce selective KOR antagonism that is delayed by hours and extremely prolonged, and their use in humans comes with serious safety concerns because they possess a large window for potential drug-drug interactions. Furthermore, their persistent pharmacodynamic activities can hinder the ability to reverse unanticipated side effects immediately. Herein, we report our studies of the lead selective, salvinorin-based KOR antagonist (1) as well as nor-BNI on C57BL/6N male mice for spontaneous cocaine withdrawal. Assessment of pharmacokinetics showed that 1 is a short-acting compound with an average half-life of 3.75 h across different compartments (brain, spinal cord, liver, and plasma). Both 1 (5 mg/kg) and nor-BNI (5 mg/kg) were shown to reduce spontaneous withdrawal behavior in mice, with 1 producing additional anti-anxiety-like behavior in a light-dark transition test (however, no mood-related effects of 1 or nor-BNI were observed at the current dosing in an elevated plus maze or a tail suspension test). Our results support the study of selective, short-acting KOR antagonists for the treatment of psychostimulant withdrawal and the associated negative mood states that contribute to relapse. Furthermore, we identified pertinent interactions between 1 and KOR via computational studies, including induced-fit docking, mutagenesis, and molecular dynamics simulations, to gain insight into the design of future selective, potent, and short-acting salvinorin-based KOR antagonists.
Collapse
Affiliation(s)
- Nicholas S Akins
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Mohammed F Salahuddin
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Pankaj Pandey
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Seong Jong Kim
- Natural Products Utilization Research Unit, United States Department of Agriculture, Agricultural Research Service, University, Mississippi 38677, United States
| | - Fakhri Mahdi
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Md Imdadul H Khan
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Emaya M Moss
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Charlie J Worth
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Madeline M Keane
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Amar G Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Robert J Doerksen
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States.,Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Jason J Paris
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States.,Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Hoang V Le
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States.,Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
13
|
Puls K, Wolber G. Solving an Old Puzzle: Elucidation and Evaluation of the Binding Mode of Salvinorin A at the Kappa Opioid Receptor. Molecules 2023; 28:718. [PMID: 36677775 PMCID: PMC9861206 DOI: 10.3390/molecules28020718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 01/13/2023] Open
Abstract
The natural product Salvinorin A (SalA) was the first nitrogen-lacking agonist discovered for the opioid receptors and exhibits high selectivity for the kappa opioid receptor (KOR) turning SalA into a promising analgesic to overcome the current opioid crisis. Since SalA's suffers from poor pharmacokinetic properties, particularly the absence of gastrointestinal bioavailability, fast metabolic inactivation, and subsequent short duration of action, the rational design of new tailored analogs with improved clinical usability is highly desired. Despite being known for decades, the binding mode of SalA within the KOR remains elusive as several conflicting binding modes of SalA were proposed hindering the rational design of new analgesics. In this study, we rationally determined the binding mode of SalA to the active state KOR by in silico experiments (docking, molecular dynamics simulations, dynophores) in the context of all available mutagenesis studies and structure-activity relationship (SAR) data. To the best of our knowledge, this is the first comprehensive evaluation of SalA's binding mode since the determination of the active state KOR crystal structure. SalA binds above the morphinan binding site with its furan pointing toward the intracellular core while the C2-acetoxy group is oriented toward the extracellular loop 2 (ECL2). SalA is solely stabilized within the binding pocket by hydrogen bonds (C210ECL2, Y3127.35, Y3137.36) and hydrophobic contacts (V1182.63, I1393.33, I2946.55, I3167.39). With the disruption of this interaction pattern or the establishment of additional interactions within the binding site, we were able to rationalize the experimental data for selected analogs. We surmise the C2-substituent interactions as important for SalA and its analogs to be experimentally active, albeit with moderate frequency within MD simulations of SalA. We further identified the non-conserved residues 2.63, 7.35, and 7.36 responsible for the KOR subtype selectivity of SalA. We are confident that the elucidation of the SalA binding mode will promote the understanding of KOR activation and facilitate the development of novel analgesics that are urgently needed.
Collapse
Affiliation(s)
| | - Gerhard Wolber
- Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| |
Collapse
|
14
|
Santino F, Gentilucci L. Design of κ-Opioid Receptor Agonists for the Development of Potential Treatments of Pain with Reduced Side Effects. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010346. [PMID: 36615540 PMCID: PMC9822356 DOI: 10.3390/molecules28010346] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
The κ-opioid receptor (KOR) has recently emerged as an alternative therapeutic target for the development of pain medications, without deleterious side effects associated with the μ-opioid receptor (MOR). However, modulation of KOR is currently under investigation for the treatment of depression, mood disorders, psychiatric comorbidity, and specific drug addictions. However, KOR agonists also trigger adverse effects including sedation, dysphoria, and hallucinations. In this respect, there is currently much debate on alternative paradigms. Recent effort has been devoted in search of biased ligands capable of selectively activating favorable signaling over signaling associated with unwanted side effects. On the other hand, the use of partial agonists is expected to allow the analgesia to be produced at dosages lower than those required to produce the adverse effects. More empirically, the unwanted central effects can be also avoided by using peripherally restricted agonists. In this review, we discuss the more recent trends in the design of KOR-selective, biased or partial, and finally, peripherally acting agonists. Special emphasis is given on the discussion of the most recent approaches for controlling functional selectivity of KOR-specific ligands.
Collapse
|
15
|
Cano GH, Dean J, Abreu SP, Rodríguez AH, Abbasi C, Hinson M, Lucke-Wold B. Key Characteristics and Development of Psychoceuticals: A Review. Int J Mol Sci 2022; 23:ijms232415777. [PMID: 36555419 PMCID: PMC9779201 DOI: 10.3390/ijms232415777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Psychoceuticals have brought benefits to the pharmacotherapeutic management of central nervous system (CNS) illnesses since the 19th century. However, these drugs have potential side effects or lack high response rates. This review covers twenty drugs' biochemical mechanisms, benefits, risks, and clinical trial reports. For this study, medications from seven psychoceutical organizations were reviewed and evaluated. Nineteen drugs were chosen from the organizations, and one was selected from the literature. The databases used for the search were Pubmed, Google Scholar, and NIH clinical trials. In addition, information from the organizations' websites and other sources, such as news reports, were also used. From the list of drugs, the most common targets were serotonergic, opioid, and N-methyl-D-aspartate (NMDA) receptors. These drugs have shown promise in psychiatric illnesses such as substance abuse, post-traumatic stress disorder (PTSD), anxiety, depression, and neurological conditions, such as Parkinson's disease, traumatic brain injury, and neuroinflammation. Some of these drugs, however, are still early in development, so their therapeutic significance cannot be determined. These twenty drugs have promising benefits, but their clinical usage and efficacy must still be explored.
Collapse
Affiliation(s)
- Genaro Herrera Cano
- University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Jordan Dean
- University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Samuel Padilla Abreu
- University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | | | - Cyrena Abbasi
- University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Madison Hinson
- Wake Forest University School of Medicine, 475 Vine St, Winston-Salem, NC 27101, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
- Correspondence:
| |
Collapse
|
16
|
Halang M, Maier ME. Formal Total Synthesis of Salvinorin A. ChemistryOpen 2022; 11:e202200015. [PMID: 35218166 PMCID: PMC9535499 DOI: 10.1002/open.202200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
The generation of the quaternary stereocenter at the C9 position of salvinorin A precursors by the Claisen rearrangement was investigated. The required allyl alcohol was prepared from a Wieland-Miescher ketone using a known γ-hydroxylation, reduction of the enone double bond, cyanohydrin formation, and elimination, yielding an unsaturated nitrile. A two-step reduction led to the required allyl alcohol. The subsequent Johnson-Claisen rearrangement provided a mixture of two diastereomeric 1,4-unsaturated esters in a ratio of around 2.6 : 1. The major isomer could be converted to a key intermediate of the Hagiwara synthesis of salvinorin A.
Collapse
Affiliation(s)
- Marc Halang
- Institut für Organische ChemieEberhard Karls Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Martin E. Maier
- Institut für Organische ChemieEberhard Karls Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| |
Collapse
|
17
|
Khan MIH, Sawyer BJ, Akins NS, Le HV. A systematic review on the kappa opioid receptor and its ligands: New directions for the treatment of pain, anxiety, depression, and drug abuse. Eur J Med Chem 2022; 243:114785. [PMID: 36179400 DOI: 10.1016/j.ejmech.2022.114785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022]
Abstract
Kappa opioid receptor (KOR) is a member of the opioid receptor system, the G protein-coupled receptors that are expressed throughout the peripheral and central nervous systems and play crucial roles in the modulation of antinociception and a variety of behavioral states like anxiety, depression, and drug abuse. KOR agonists are known to produce potent analgesic effects and have been used clinically for the treatment of pain, while KOR antagonists have shown efficacy in the treatment of anxiety and depression. This review summarizes the history, design strategy, discovery, and development of KOR ligands. KOR agonists are classified as non-biased, G protein-biased, and β-arrestin recruitment-biased, according to their degrees of bias. The mechanisms and associated effects of the G protein signaling pathway and β-arrestin recruitment signaling pathway are also discussed. Meanwhile, KOR antagonists are classified as long-acting and short-acting, based on their half-lives. In addition, we have special sections for mixed KOR agonists and selective peripheral KOR agonists. The mechanisms of action and pharmacokinetic, pharmacodynamic, and behavioral studies for each of these categories are also discussed in this review.
Collapse
Affiliation(s)
- Md Imdadul H Khan
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Benjamin J Sawyer
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Nicholas S Akins
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Hoang V Le
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
18
|
Cichon J, Liu R, Le HV. Therapeutic Potential of Salvinorin A and Its Analogues in Various Neurological Disorders. TRANSLATIONAL PERIOPERATIVE AND PAIN MEDICINE 2022; 9:452-457. [PMID: 35959414 PMCID: PMC9364973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Joseph Cichon
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hoang V. Le
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, USA
| |
Collapse
|
19
|
Leconte C, Mongeau R, Noble F. Traumatic Stress-Induced Vulnerability to Addiction: Critical Role of the Dynorphin/Kappa Opioid Receptor System. Front Pharmacol 2022; 13:856672. [PMID: 35571111 PMCID: PMC9091501 DOI: 10.3389/fphar.2022.856672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Substance use disorders (SUD) may emerge from an individual’s attempt to limit negative affective states and symptoms linked to stress. Indeed, SUD is highly comorbid with chronic stress, traumatic stress, or post-traumatic stress disorder (PTSD), and treatments approved for each pathology individually often failed to have a therapeutic efficiency in such comorbid patients. The kappa-opioid receptor (KOR) and its endogenous ligand dynorphin (DYN), seem to play a key role in the occurrence of this comorbidity. The DYN/KOR function is increased either in traumatic stress or during drug use, dependence acquisition and DYN is released during stress. The behavioural effects of stress related to the DYN/KOR system include anxiety, dissociative and depressive symptoms, as well as increased conditioned fear response. Furthermore, the DYN/KOR system is implicated in negative reinforcement after the euphoric effects of a drug of abuse ends. During chronic drug consumption DYN/KOR functions increase and facilitate tolerance and dependence. The drug-seeking behaviour induced by KOR activation can be retrieved either during the development of an addictive behaviour, or during relapse after withdrawal. DYN is known to be one of the most powerful negative modulators of dopamine signalling, notably in brain structures implicated in both reward and fear circuitries. KOR are also acting as inhibitory heteroreceptors on serotonin neurons. Moreover, the DYN/KOR system cross-regulate with corticotropin-releasing factor in the brain. The sexual dimorphism of the DYN/KOR system could be the cause of the gender differences observed in patients with SUD or/and traumatic stress-related pathologies. This review underlies experimental and clinical results emphasizing the DYN/KOR system as common mechanisms shared by SUD or/and traumatic stress-related pathologies, and suggests KOR antagonist as a new pharmacological strategy to treat this comorbidity.
Collapse
|
20
|
Zhang JS, Xu DF, Wang YY, Ma RF, Zhang H. Clerodane furanoditerpenoids from the stems of Tinospora sinensis. Arch Pharm Res 2022; 45:328-339. [PMID: 35478401 DOI: 10.1007/s12272-022-01383-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/21/2022] [Indexed: 11/02/2022]
Abstract
One new clerodane-type furanoditerpenoid tinosinoid A (1) and nine new nor-clerodane analogs tinosinoids B-J (2-10) have been isolated from the stems of Tinospora sinensis. The structures of the new compounds with absolute configurations have been elucidated by spectroscopic means, including MS, NMR and ECD techniques, as well as chemical correlation. Compound 1 is a rare sulfur-containing clerodane diterpenoid incorporating a 2-mercaptoethanol unit via a thioether bond, while compounds 4/5 and 9 represent two pairs of unusual equilibrium regioisomers through an interesting intramolecular transesterification. Our bioassays established that 1 and 8 displayed moderate antiproliferative effects against two human tumor cell lines, and 9 and 10 showed significant α-glucosidase inhibitory activities. A kinetics study revealed that compound 10 was a noncompetitive α-glucosidase inhibitor, and its possible binding mode to the enzyme was further probed by molecular docking experiments.
Collapse
Affiliation(s)
- Jun-Sheng Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - De-Feng Xu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Yin-Yin Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Ren-Fen Ma
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
21
|
Akins N, Mishra N, Harris H, Dudhipala N, Kim SJ, Keasling A, Majumdar S, Zjawiony J, Paris J, Ashpole N, Le H. 6,5‐Fused Ring, C2‐Salvinorin Ester, Dual Kappa and Mu Opioid Receptor Agonists as Analgesics Devoid of Anxiogenic Effects. ChemMedChem 2022; 17:e202100684. [PMID: 35043597 PMCID: PMC9015904 DOI: 10.1002/cmdc.202100684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/18/2022] [Indexed: 11/10/2022]
Abstract
Current common analgesics are mediated through the mu or kappa opioid receptor agonism. Unfortunately, selective mu or kappa receptor agonists often cause harmful side effects. However, ligands exhibiting dual agonism to the opioid receptors, such as to mu and kappa, or to mu and delta, have been suggested to temper undesirable adverse effects while retaining analgesic activity. Herein we report an introduction of various 6,5-fused rings to C2 of the salvinorin scaffold via an ester linker. In vitro studies showed that many of these compounds have dual agonism on kappa and mu opioid receptors. In vivo studies on the lead dual kappa and mu opioid receptor agonist demonstrated supraspinal thermal analgesic activity while avoiding anxiogenic effects in male mice, thus providing further strong evidence in support of the therapeutic advantages of dual opioid receptor agonists over selective opioid receptor agonists.
Collapse
Affiliation(s)
- Nicholas Akins
- University of Mississippi School of Pharmacy BioMolecular Sciences UNITED STATES
| | - Nisha Mishra
- University of Mississippi School of Pharmacy BioMolecular Sciences UNITED STATES
| | - Hannah Harris
- University of Mississippi School of Pharmacy BioMolecular Sciences UNITED STATES
| | - Narendar Dudhipala
- University of Mississippi School of Pharmacy Research Institutes of Pharmaceutical Sciences UNITED STATES
| | - Seong Jong Kim
- United States Department of Agriculture Natural Products Utilization Research Unit UNITED STATES
| | - Adam Keasling
- University of Mississippi School of Pharmacy BioMolecular Sciences UNITED STATES
| | - Soumyajit Majumdar
- University of Mississippi School of Pharmacy Pharmaceutics and Drug Delivery UNITED STATES
| | - Jordan Zjawiony
- University of Mississippi School of Pharmacy BioMolecular Sciences UNITED STATES
| | - Jason Paris
- University of Mississippi School of Pharmacy BioMolecular Sciences UNITED STATES
| | - Nicole Ashpole
- University of Mississippi School of Pharmacy BioMolecular Sciences UNITED STATES
| | - Hoang Le
- University of Mississippi Department of BioMolecular Sciences, School of Pharmacy 419 Faser Hall 38677 University UNITED STATES
| |
Collapse
|
22
|
Smith MT, Kong D, Kuo A, Imam MZ, Williams CM. Analgesic Opioid Ligand Discovery Based on Nonmorphinan Scaffolds Derived from Natural Sources. J Med Chem 2022; 65:1612-1661. [PMID: 34995453 DOI: 10.1021/acs.jmedchem.0c01915] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Strong opioid analgesics, including morphine, are the mainstays for treating moderate to severe acute pain and alleviating chronic cancer pain. However, opioid-related adverse effects, including nausea or vomiting, sedation, respiratory depression, constipation, pruritus (itch), analgesic tolerance, and addiction and abuse liability, are problematic. In addition, the use of opioids to relieve chronic noncancer pain is controversial due to the "opioid crisis" characterized by opioid misuse or abuse and escalating unintentional death rates due to respiratory depression. Hence, considerable research internationally has been aimed at the "Holy Grail" of the opioid analgesic field, namely the discovery of novel and safer opioid analgesics with improved opioid-related adverse effects. In this Perspective, medicinal chemistry strategies are addressed, where structurally diverse nonmorphinan-based opioid ligands derived from natural sources were deployed as lead molecules. The current state of play, clinical or experimental status, and novel opioid ligand discovery approaches are elaborated in the context of retaining analgesia with improved safety and reduced adverse effects, especially addiction liability.
Collapse
|
23
|
Ko MC, Husbands SM. Pleiotropic Effects of Kappa Opioid Receptor-Related Ligands in Non-human Primates. Handb Exp Pharmacol 2022; 271:435-452. [PMID: 33274403 PMCID: PMC8175454 DOI: 10.1007/164_2020_419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The kappa opioid receptor (KOR)-related ligands have been demonstrated in preclinical studies for several therapeutic potentials. This chapter highlights (1) how non-human primates (NHP) studies facilitate the research and development of ligands targeting the KOR, (2) effects of the endogenous opioid peptide, dynorphin A-(1-17), and its analogs in NHP, and (3) pleiotropic effects and therapeutic applications of KOR-related ligands. In particular, synthetic ligands targeting the KOR have been extensively studied in NHP in three therapeutic areas, i.e., the treatment for itch, pain, and substance use disorders. As the KORs are widely expressed in the peripheral and central nervous systems, pleiotropic effects of KOR-related ligands, such as discriminative stimulus effects, neuroendocrine effects (e.g., prolactin release and stimulation of hypothalamic-pituitary-adrenal axis), and diuresis, in NHP are discussed. Centrally acting KOR agonists are known to produce adverse effects including dysphoria, hallucination, and sedation. Nonetheless, with strategic advances in medicinal chemistry, three classes of KOR-related agonists, i.e., peripherally restricted KOR agonists, mixed KOR/mu opioid receptor partial agonists, and G protein-biased KOR agonists, warrant additional NHP studies to improve our understanding of their functional efficacy, selectivity, and tolerability. Pharmacological studies in NHP which carry high translational significance will facilitate future development of KOR-based medications.
Collapse
Affiliation(s)
- Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
24
|
Abstract
A concise enantioselective total synthesis of the neoclerodane diterpene (-)-salvinorin A is reported. The stereogenic center at C-12 was installed by catalytic asymmetric propargylation with excellent enantioselectivity, and the remaining six stereogenic centers were set up highly diastereoselectively under substrate control. As for our previous synthesis of racemic salvinorin A, two intramolecular Diels-Alder reactions were applied to generate the tricyclic core. A chemoselective Mitsunobu inversion of a syn 1,2-diol allowed for further streamlining of the original reaction sequence by two steps. Overall, (-)-salvinorin A was synthesized in only 16 steps starting from 3-furaldehyde with 1.4 % total yield. Furthermore, an alternative intramolecular Diels-Alder strategy employing a 2-bromo-1,3-diene moiety was investigated.
Collapse
Affiliation(s)
- Patrick Zimdars
- Fakultät Chemie und LebensmittelchemieOrganische Chemie ITechnische Universität DresdenBergstraße 6601069DresdenGermany
| | - Yuzhou Wang
- Fakultät Chemie und LebensmittelchemieOrganische Chemie ITechnische Universität DresdenBergstraße 6601069DresdenGermany
| | - Peter Metz
- Fakultät Chemie und LebensmittelchemieOrganische Chemie ITechnische Universität DresdenBergstraße 6601069DresdenGermany
| |
Collapse
|
25
|
Chakraborty S, Majumdar S. Natural Products for the Treatment of Pain: Chemistry and Pharmacology of Salvinorin A, Mitragynine, and Collybolide. Biochemistry 2021; 60:1381-1400. [PMID: 32930582 PMCID: PMC7982354 DOI: 10.1021/acs.biochem.0c00629] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pain remains a very pervasive problem throughout medicine. Classical pain management is achieved through the use of opiates belonging to the mu opioid receptor (MOR) class, which have significant side effects that hinder their utility. Pharmacologists have been trying to develop opioids devoid of side effects since the isolation of morphine from papaver somniferum, more commonly known as opium by Sertürner in 1804. The natural products salvinorin A, mitragynine, and collybolide represent three nonmorphinan natural product-based targets, which are potent selective agonists of opioid receptors, and emerging next-generation analgesics. In this work, we review the phytochemistry and medicinal chemistry efforts on these templates and their effects on affinity, selectivity, analgesic actions, and a myriad of other opioid-receptor-related behavioral effects.
Collapse
Affiliation(s)
- Soumen Chakraborty
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, United States; Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, United States; Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
26
|
Zaidi SA, Katritch V. Structural Characterization of KOR Inactive and Active States for 3D Pharmacology and Drug Discovery. Handb Exp Pharmacol 2021; 271:41-64. [PMID: 33945028 DOI: 10.1007/164_2021_461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The structure of the human kappa opioid receptor (KOR) in complex with the long-acting antagonist JDTic was solved crystallographically in 2012 and, along with structures of other opioid receptors, revolutionized our understanding of opioid system function and pharmacology. More recently, active state KOR structure was also determined, giving important insights into activation mechanisms of the receptor. In this review, we will discuss how the understanding of atomistic structures of KOR established a key platform for deciphering details of subtype and functional selectivity of KOR-targeting ligands and for discovery of new chemical probes with potentially beneficial pharmacological profiles.
Collapse
Affiliation(s)
- Saheem A Zaidi
- Department of Quantitative and Computational Biology, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA. .,Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
27
|
Poth KM, Texakalidis P, Boulis NM. Chemogenetics: Beyond Lesions and Electrodes. Neurosurgery 2021; 89:185-195. [PMID: 33913505 PMCID: PMC8279839 DOI: 10.1093/neuros/nyab147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/26/2021] [Indexed: 01/14/2023] Open
Abstract
The field of chemogenetics has rapidly expanded over the last decade, and engineered receptors are currently utilized in the lab to better understand molecular interactions in the nervous system. We propose that chemogenetic receptors can be used for far more than investigational purposes. The potential benefit of adding chemogenetic neuromodulation to the current neurosurgical toolkit is substantial. There are several conditions currently treated surgically, electrically, and pharmacologically in clinic, and this review highlights how chemogenetic neuromodulation could improve patient outcomes over current neurosurgical techniques. We aim to emphasize the need to take these techniques from bench to bedside.
Collapse
Affiliation(s)
- Kelly M Poth
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
28
|
Nur-E-Alam M, Parveen I, Wilkinson B, Ahmed S, Hafizur RM, Bari A, Woodman TJ, Threadgill MD, Al-Rehaily AJ. A neoclerodane orthoester and other new neoclerodane diterpenoids from Teucrium yemense chemistry and effect on secretion of insulin. Sci Rep 2021; 11:8074. [PMID: 33850244 PMCID: PMC8044157 DOI: 10.1038/s41598-021-87513-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/25/2021] [Indexed: 11/09/2022] Open
Abstract
Teucrium yemense, a medicinal plant commonly grown in Saudi Arabia and Yemen, is traditionally used to treat infections, kidney diseases, rheumatism, and diabetes. Extraction of the dried aerial parts of the plant with methanol, followed by further extraction with butanol and chromatography, gave twenty novel neoclerodanes. Their structures, relative configurations and some conformations were determined by MS and 1-D and 2-D NMR techniques. Most were fairly conventional but one contained an unusual stable orthoester, one had its (C-16)-(C-13)-(C-14)-(C-15) (tetrahydro)furan unit present as a succinic anhydride and one had a rearranged carbon skeleton resulting from ring-contraction to give a central octahydroindene bicyclic core, rather than the usual decalin. Mechanisms are proposed for the biosynthetic formation of the orthoester and for the ring-contraction. Four novel neoclerodanes increased the glucose-triggered release of insulin from isolated murine pancreatic islets by more than the standard drug tolbutamide, showing that they are potential leads for the development of new anti-diabetic drugs.
Collapse
Affiliation(s)
- Mohammad Nur-E-Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box. 2457, Riyadh, 11451, Kingdom of Saudi Arabia.
| | - Ifat Parveen
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | | | - Sarfaraz Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box. 2457, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Rahman M Hafizur
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box. 2457, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Timothy J Woodman
- Drug and Target Discovery, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Michael D Threadgill
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DA, UK
- Drug and Target Discovery, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Adnan J Al-Rehaily
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box. 2457, Riyadh, 11451, Kingdom of Saudi Arabia
| |
Collapse
|
29
|
Abstract
Retrosynthetic analysis emerged in the 1960s as a teaching tool with profound implications. Its educational value can be appreciated by a glance at total synthesis manuscripts over 50 years later, most of which contain a retrosynthesis on page one. Its vision extended to computer language-a pioneering idea in the 20th century that continues to expand the frontiers today. The same principles that guide a student to evaluate, expand, and refine a series of bond dissections can be programmed, so that computer assistance can perform the same tasks but at faster speeds.The slow step in the synthesis of complex structures, however, is seldom route design. Compression of molecular information into close proximity (Cm/Å3) requires exploration and empiricism, a close connection between theory and experiment. Here, retrosynthetic analysis guides the choice of experiment, so that the most simplifying-but often least assured-disconnection is prioritized: a high-risk, high reward strategy. The reimagining of total synthesis in a future era of retrosynthetic software may involve, counterintuitively, target design, as discussed here.Compared to the 1960s, retrosynthetic analysis in the 21st century finds itself among computers of unimaginable power and a biology that is increasingly molecular. Put together, the logic of retrosynthesis, the insight of structural biology, and the predictions of computation have inspired us to imagine an integration of the three. The synthetic target is treated as dynamic-a constellation of related structures-in order to find the nearest congener with the closest affinity but the shortest synthetic route. Such an approach merges synthetic design with structural design toward the goal of improved access for improved function.In this Account, we detail the evolution of our program from its inception in traditional natural product (NP) total synthesis to its current expression through the lens of chemical informatics: a view of NPs as aggregates of molecular parameters that define single points in a chemical space. Early work on synthesis and biological annotation of apparent metal pool binders and nonselective covalent electrophiles (asmarine alkaloids, isocyanoterpenes, Nuphar dimers) gave way to NPs with well-defined protein targets. The plant metabolite salvinorin A (SalA) potently and selectively agonizes the κ-opioid receptor (KOR), rapidly penetrates the brain, and represents an important lead for next-generation analgesics and antipruritics. To synthesize and diversify this lead, we adopted what we now call a dynamic approach. Deletion of a central methyl group stabilized the SalA scaffold, opened quick synthetic access, and retained high potency and selectivity. The generality of this idea was then tested against another neuroactive class. As an alternative hypothesis to TrkB channels, we proposed that the so-called "neurotrophic" Illicium terpenes may bind to γ-aminobutyric acid (GABA)-gated ion channels to cause weak, chronic excitation. Syntheses of (-)-jiadifenolide, 3,6-dideoxy-10-hydroxypseudoanisatin, (-)-11-O-debenzoyltashironin, (-)-bilobalide, and (-)-picrotoxinin (PXN) allowed this hypothesis to be probed more broadly. Feedback from protein structure and synthetic reconnaissance led to a dynamic retrosynthesis of PXN and the identification of 5MePXN, a moderate GABAAR antagonist with greater aqueous stability available in eight steps from dimethylcarvone. We expect this dynamic approach to synthetic target analysis to become more feasible in the coming years and hope the next generation of scientists finds this approach helpful to address problems at the frontier of chemistry and biology.
Collapse
Affiliation(s)
- Stone Woo
- Department of Chemistry, Scripps Research, 10550 North Torrey Lines Road, La Jolla, California 92037, United States
| | - Ryan A Shenvi
- Department of Chemistry, Scripps Research, 10550 North Torrey Lines Road, La Jolla, California 92037, United States
| |
Collapse
|
30
|
Pharmacokinetics and Pharmacodynamics of Salvinorin A and Salvia divinorum: Clinical and Forensic Aspects. Pharmaceuticals (Basel) 2021; 14:ph14020116. [PMID: 33546518 PMCID: PMC7913753 DOI: 10.3390/ph14020116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/13/2023] Open
Abstract
Salvia divinorum Epling and Játiva is a perennial mint from the Lamiaceae family, endemic to Mexico, predominantly from the state of Oaxaca. Due to its psychoactive properties, S. divinorum had been used for centuries by Mazatecans for divinatory, religious, and medicinal purposes. In recent years, its use for recreational purposes, especially among adolescents and young adults, has progressively increased. The main bioactive compound underlying the hallucinogenic effects, salvinorin A, is a non-nitrogenous diterpenoid with high affinity and selectivity for the κ-opioid receptor. The aim of this work is to comprehensively review and discuss the toxicokinetics and toxicodynamics of S. divinorum and salvinorin A, highlighting their psychological, physiological, and toxic effects. Potential therapeutic applications and forensic aspects are also covered in this review. The leaves of S. divinorum can be chewed, drunk as an infusion, smoked, or vaporised. Absorption of salvinorin A occurs through the oral mucosa or the respiratory tract, being rapidly broken down in the gastrointestinal system to its major inactive metabolite, salvinorin B, when swallowed. Salvinorin A is rapidly distributed, with accumulation in the brain, and quickly eliminated. Its pharmacokinetic parameters parallel well with the short-lived psychoactive and physiological effects. No reports on toxicity or serious adverse outcomes were found. A variety of therapeutic applications have been proposed for S. divinorum which includes the treatment of chronic pain, gastrointestinal and mood disorders, neurological diseases, and treatment of drug dependence. Notwithstanding, there is still limited knowledge regarding the pharmacology and toxicology features of S. divinorum and salvinorin A, and this is needed due to its widespread use. Additionally, the clinical acceptance of salvinorin A has been hampered, especially due to the psychotropic side effects and misuse, turning the scientific community to the development of analogues with better pharmacological profiles.
Collapse
|
31
|
Spetea M, Schmidhammer H. Kappa Opioid Receptor Ligands and Pharmacology: Diphenethylamines, a Class of Structurally Distinct, Selective Kappa Opioid Ligands. Handb Exp Pharmacol 2021; 271:163-195. [PMID: 33454858 DOI: 10.1007/164_2020_431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The kappa opioid receptor (KOR), a G protein-coupled receptor, and its endogenous ligands, the dynorphins, are prominent members of the opioid neuromodulatory system. The endogenous kappa opioid system is expressed in the central and peripheral nervous systems, and has a key role in modulating pain in central and peripheral neuronal circuits and a wide array of physiological functions and neuropsychiatric behaviors (e.g., stress, reward, emotion, motivation, cognition, epileptic seizures, itch, and diuresis). We review the latest advances in pharmacology of the KOR, chemical developments on KOR ligands with advances and challenges, and therapeutic and potential applications of KOR ligands. Diverse discovery strategies of KOR ligands targeting natural, naturally derived, and synthetic compounds with different scaffolds, as small molecules or peptides, with short or long-acting pharmacokinetics, and central or peripheral site of action, are discussed. These research efforts led to ligands with distinct pharmacological properties, as agonists, partial agonists, biased agonists, and antagonists. Differential modulation of KOR signaling represents a promising strategy for developing pharmacotherapies for several human diseases, either by activating (treatment of pain, pruritus, and epilepsy) or blocking (treatment of depression, anxiety, and addiction) the receptor. We focus on the recent chemical and pharmacological advances on diphenethylamines, a new class of structurally distinct, selective KOR ligands. Design strategies and investigations to define structure-activity relationships together with in vivo pharmacology of diphenethylamines as agonists, biased agonists, and antagonists and their potential use as therapeutics are discussed.
Collapse
Affiliation(s)
- Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria.
| | - Helmut Schmidhammer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
32
|
Konrath EL, Arbo MD, Arbo BD, Hort MA, Elisabetsky E, Leal MB. Plants with Anti-Addictive Potential. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:185-215. [PMID: 33861445 DOI: 10.1007/978-3-030-64872-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Drug addiction is prevalent among individuals of modern society, being a major cause of disability and premature loss of life. Although the drug addiction have profound social, economical and health impact in the world population, its management remains a challenge as available pharmacological treatments remains ineffective for most people. The limited efficacy and adverse effects have led to a search for alternative therapies to treat drug addiction. In this context, natural products are an important source for new chemical substances with a potential therapeutic applicability. Therefore, this chapter will present data obtained after an extensive literature search regarding the use of medicinal plants as a pharmacological alternative for drug addiction treatment.
Collapse
Affiliation(s)
- Eduardo Luis Konrath
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcelo Dutra Arbo
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruno Dutra Arbo
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Mariana Appel Hort
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Elaine Elisabetsky
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Mirna Bainy Leal
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
33
|
Hill SJ, Brion AUCM, Shenvi RA. Chemical syntheses of the salvinorin chemotype of KOR agonist. Nat Prod Rep 2020; 37:1478-1496. [PMID: 32808003 DOI: 10.1039/d0np00028k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2000 to 2020 The hallucinogenic diterpene salvinorin A potently and selectively agonizes the human kappa-opioid receptor (KOR). Its unique attributes-lack of a basic nitrogen, rapid brain penetrance, short half-life-combined with the potential of KOR as an emerging target for analgesics have stimulated extensive medicinal chemistry based on semi-synthesis from extracts of Salvia divinorum. Total synthesis efforts have delivered multiple, orthogonal routes to salvinorin A, its congeners and related analogs with the goal of optimizing its activity towards multiple functional endpoints. Here we review total syntheses of the salvinorin chemotype and discuss outstanding problems that synthesis can address in the future.
Collapse
Affiliation(s)
- Sarah J Hill
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | - Aurélien U C M Brion
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | - Ryan A Shenvi
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| |
Collapse
|
34
|
Hernández-Alvarado RB, Madariaga-Mazón A, Ortega A, Martinez-Mayorga K. DARK Classics in Chemical Neuroscience: Salvinorin A. ACS Chem Neurosci 2020; 11:3979-3992. [PMID: 33164503 DOI: 10.1021/acschemneuro.0c00608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Salvinorin A is the main bioactive compound in Salvia divinorum, an endemic plant with ancestral use by the inhabitants of the Mazateca mountain range (Sierra Mazateca) in Oaxaca, México. The main use of la pastora, as locally known, is in spiritual rites due to its extraordinary hallucinogenic effects. Being the first known nonalkaloidal opioid-mediated psychotropic molecule, salvinorin A set new research areas in neuroscience. The absence of a protonated amine group, common to all previously known opioids, results in a fast metabolism with the concomitant fast elimination and swift loss of activity. The worldwide spread and psychotropic effects of salvinorin A account for its misuse and classification as a drug of abuse. Consequently, salvinorin A and Salvia divinorum are now banned in many countries. Several synthetic efforts have been focused on the improvement of physicochemical and biological properties of salvinorin A: from total synthesis to hundreds of analogues. In this Review, we discuss the impact of salvinorin A in chemistry and neuroscience covering the historical relevance, isolation from natural sources, synthetic efforts, and pharmacological and safety profiles. Altogether, the chemistry behind and the taboo that encloses salvinorin A makes it one of the most exquisite naturally occurring drugs.
Collapse
Affiliation(s)
- R. Bruno Hernández-Alvarado
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México, 04510 México
| | - Abraham Madariaga-Mazón
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México, 04510 México
| | - Alfredo Ortega
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México, 04510 México
| | - Karina Martinez-Mayorga
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México, 04510 México
| |
Collapse
|
35
|
Schmidhammer H, Erli F, Guerrieri E, Spetea M. Development of Diphenethylamines as Selective Kappa Opioid Receptor Ligands and Their Pharmacological Activities. Molecules 2020; 25:E5092. [PMID: 33147885 PMCID: PMC7663249 DOI: 10.3390/molecules25215092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/01/2023] Open
Abstract
Among the opioid receptors, the kappa opioid receptor (KOR) has been gaining substantial attention as a promising molecular target for the treatment of numerous human disorders, including pain, pruritus, affective disorders (i.e., depression and anxiety), drug addiction, and neurological diseases (i.e., epilepsy). Particularly, the knowledge that activation of the KOR, opposite to the mu opioid receptor (MOR), does not produce euphoria or leads to respiratory depression or overdose, has stimulated the interest in discovering ligands targeting the KOR as novel pharmacotherapeutics. However, the KOR mediates the negative side effects of dysphoria/aversion, sedation, and psychotomimesis, with the therapeutic promise of biased agonism (i.e., selective activation of beneficial over deleterious signaling pathways) for designing safer KOR therapeutics without the liabilities of conventional KOR agonists. In this review, the development of new KOR ligands from the class of diphenethylamines is presented. Specifically, we describe the design strategies, synthesis, and pharmacological activities of differently substituted diphenethylamines, where structure-activity relationships have been extensively studied. Ligands with distinct profiles as potent and selective agonists, G protein-biased agonists, and selective antagonists, and their potential use as therapeutic agents (i.e., pain treatment) and research tools are described.
Collapse
MESH Headings
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/therapeutic use
- Humans
- Ligands
- Pain/drug therapy
- Pain/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/chemistry
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Helmut Schmidhammer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (F.E.); (E.G.)
| | | | | | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (F.E.); (E.G.)
| |
Collapse
|
36
|
Wu ZC, Boger DL. The quest for supernatural products: the impact of total synthesis in complex natural products medicinal chemistry. Nat Prod Rep 2020; 37:1511-1531. [PMID: 33169762 PMCID: PMC7678878 DOI: 10.1039/d0np00060d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Covering: 2000 up to 2020This review presents select recent advances in the medicinal chemistry of complex natural products that are prepared by total synthesis. The underlying studies highlight enabling divergent synthetic strategies and methods that permit the systematic medicinal chemistry studies of key analogues bearing deep-seated structural changes not readily accessible by semisynthetic or biosynthetic means. Select and recent examples are detailed where the key structural changes are designed to improve defined properties or to overcome an intrinsic limitation of the natural product itself. In the examples presented, the synthetic efforts provided supernatural products, a term first introduced by our colleague Ryan Shenvi (Synlett, 2016, 27, 1145-1164), with properties superseding the parent natural product. The design principles and approaches for creating the supernatural products are highlighted with an emphasis on the properties addressed that include those that improve activity or potency, increase selectivity, enhance durability, broaden the spectrum of activity, improve chemical or metabolic stability, overcome limiting physical properties, add mechanisms of action, enhance PK properties, overcome drug resistance, and/or improve in vivo efficacy. Some such improvements may be regarded by some as iterative enhancements whereas others, we believe, truly live up to their characterization as supernatural products. Most such efforts are also accompanied by advances in synthetic organic chemistry, inspiring the development of new synthetic methodology and providing supernatural products with improved synthetic accessibility.
Collapse
Affiliation(s)
- Zhi-Chen Wu
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
37
|
Rivera-Chávez J, Bustos-Brito C, Aguilar-Ramírez E, Martínez-Otero D, Rosales-Vázquez LD, Dorazco-González A, Cano-Sánchez P. Hydroxy- neo-Clerodanes and 5,10- seco- neo-Clerodanes from Salvia decora. JOURNAL OF NATURAL PRODUCTS 2020; 83:2212-2220. [PMID: 32597650 DOI: 10.1021/acs.jnatprod.0c00313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Preliminary analysis of the mass spectrometric (MS) and NMR spectroscopic data of the primary fractions from the biologically active extract of Salvia decora revealed spectra that are characteristic for neo-clerodane-type diterpenoids. MS-guided isolation of the bioactive fractions led to the isolation of three new chemical entities, including two hydroxy-neo-clerodanes (1 and 2) and one acylated 5,10-seco-neo-clerodane (3), along with three known diterpenoids (4-6), ursolic acid (7), and eupatorin (8). The structures of the new compounds were established by analysis of the 1D and 2D NMR and MS data, whereas their absolute configuration was deduced using a combination of experimental and theoretical ECD data and confirmed by X-ray crystallography (1 and 4). Furthermore, compounds 1, 3, 4, and 6-8 were evaluated as hPTP1B1-400 (human protein tyrosine phosphatase) inhibitors, where 7 showed the best activity, with an IC50 value in the lower μM range. Additionally, compound 7 was evaluated as an α-glucosidase inhibitor. The affinity constant of the 7-hPTP1B1-400 complex was determined by quenching fluorescence experiments (ka = 1.3 × 104 M-1), while the stoichiometry ratio (1:1 protein-ligand) was determined by a continuous variation method.
Collapse
Affiliation(s)
- José Rivera-Chávez
- Departamento de Productos Naturales, Instituto de Quı́mica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Celia Bustos-Brito
- Departamento de Productos Naturales, Instituto de Quı́mica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Enrique Aguilar-Ramírez
- Departamento de Productos Naturales, Instituto de Quı́mica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Diego Martínez-Otero
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco, Toluca, 50200, Mexico
| | - Luis D Rosales-Vázquez
- Departamento de Quı́mica Inorgánica, Instituto de Quı́mica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Alejandro Dorazco-González
- Departamento de Quı́mica Inorgánica, Instituto de Quı́mica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Patricia Cano-Sánchez
- Departamento de Quı́mica de Biomacromoléculas, Instituto de Quı́mica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| |
Collapse
|
38
|
Li W, Wang RM, Pan YH, Zhao YY, Yuan FY, Huang D, Tang GH, Bi HC, Yin S. Crotonpenoids A and B, Two Highly Modified Clerodane Diterpenoids with a Tricyclo[7.2.1.02,7]dodecane Core from Croton yanhuii: Isolation, Structural Elucidation, and Biomimetic Semisynthesis. Org Lett 2020; 22:4435-4439. [DOI: 10.1021/acs.orglett.0c01443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Rui-Min Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Yue-Hua Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Ying-Yuan Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Fang-Yu Yuan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Dong Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Hui-Chang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People’s Republic of China
| |
Collapse
|
39
|
Gonçalves ECD, Baldasso GM, Bicca MA, Paes RS, Capasso R, Dutra RC. Terpenoids, Cannabimimetic Ligands, beyond the Cannabis Plant. Molecules 2020; 25:E1567. [PMID: 32235333 PMCID: PMC7181184 DOI: 10.3390/molecules25071567] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Medicinal use of Cannabis sativa L. has an extensive history and it was essential in the discovery of phytocannabinoids, including the Cannabis major psychoactive compound-Δ9-tetrahydrocannabinol (Δ9-THC)-as well as the G-protein-coupled cannabinoid receptors (CBR), named cannabinoid receptor type-1 (CB1R) and cannabinoid receptor type-2 (CB2R), both part of the now known endocannabinoid system (ECS). Cannabinoids is a vast term that defines several compounds that have been characterized in three categories: (i) endogenous, (ii) synthetic, and (iii) phytocannabinoids, and are able to modulate the CBR and ECS. Particularly, phytocannabinoids are natural terpenoids or phenolic compounds derived from Cannabis sativa. However, these terpenoids and phenolic compounds can also be derived from other plants (non-cannabinoids) and still induce cannabinoid-like properties. Cannabimimetic ligands, beyond the Cannabis plant, can act as CBR agonists or antagonists, or ECS enzyme inhibitors, besides being able of playing a role in immune-mediated inflammatory and infectious diseases, neuroinflammatory, neurological, and neurodegenerative diseases, as well as in cancer, and autoimmunity by itself. In this review, we summarize and critically highlight past, present, and future progress on the understanding of the role of cannabinoid-like molecules, mainly terpenes, as prospective therapeutics for different pathological conditions.
Collapse
Affiliation(s)
- Elaine C. D. Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
- Graduate Program of Neuroscience, Center of Biological Sciences, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Gabriela M. Baldasso
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
| | - Maíra A. Bicca
- Neurosurgery Department, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA;
| | - Rodrigo S. Paes
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80,055 Portici, Italy
| | - Rafael C. Dutra
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
- Graduate Program of Neuroscience, Center of Biological Sciences, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
40
|
Mascarenhas CJ, Liu R, Barr GA. Effects of plant-derived analgesic compounds sinomenine and salvinorin A in infant rats. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:174-180. [PMID: 31992510 DOI: 10.1016/j.joim.2020.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/03/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Premature and ill neonates undergo painful but medically necessary procedures while hospitalized. Although opiate drugs are administered as analgesics, problems associated with their side effects, tolerance, and potential dependence necessitate research into alternative pain-relieving medications. Here we test two plant-derived compounds in infant rats: sinomenine, which targets the Mas-related G-protein-coupled receptor member X2 opioid receptor; and salvinorin A, which is a κ opioid receptor agonist. In adult animals both sinomenine and salvinorin A are analgesic, but neither has been tested in infants. METHODS We used the formalin and thermal plantar tests in rats 7 and 21 days of age (PN7 and PN21) for behavioral signs of pain. In addition, brain sections were stained using Fos immunohistochemistry to examine patterns of brain activation in the midbrain periaqueductal gray and the paraventricular nucleus of the hypothalamus. RESULTS Sinomenine was analgesic in both the formalin and thermal tests on animals 21 days of age. At PN7 only the highest dose elevated response latencies in the thermal test and there were no effects of sinomenine in the formalin test. Analysis of Fos expression in the sinomenine-treated animals showed no drug effect, in contrast to the behavioral results. Salvinorin A was analgesic in the formalin test only at the highest dose at 21 days of age but not in the thermal test at either age. CONCLUSION The increased modest effectiveness of sinomenine in older animals and the minimum salvinorin A drug effect suggest that the compounds act on sites that develop during the preweaning period (sinomenine) or after weaning (salvinorin A).
Collapse
Affiliation(s)
- Conrad J Mascarenhas
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gordon A Barr
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
Abstract
Total syntheses of clerodane diterpenoids have been reviewed from the literature since 2000.
Collapse
Affiliation(s)
- Hisahiro Hagiwara
- Graduate School of Science and Technology, Niigata University, Nishiku, Niigata, Japan
| |
Collapse
|
42
|
Coffeen U, Pellicer F. Salvia divinorum: from recreational hallucinogenic use to analgesic and anti-inflammatory action. J Pain Res 2019; 12:1069-1076. [PMID: 30962708 PMCID: PMC6434906 DOI: 10.2147/jpr.s188619] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Salvia divinorum is a herbal plant native to the southwest region of Mexico. Traditional preparations of this plant have been used in illness treatments that converge with inflammatory conditions and pain. Currently, S. divinorum extracts have become popular in several countries as a recreational drug due to its hallucinogenic effects. Its main active component is a diterpene named salvinorin A (SA), a potent naturally occurring hallucinogen with a great affinity to the κ opioid receptors and with allosteric modulation of cannabinoid type 1 receptors. Recent biochemical research has revealed the mechanism of action of the anti-inflammatory and analgesic effect of SA at the cellular and molecular level. Nevertheless, because of their short-lasting and hallucinogenic effect, the research has focused on discovering a new analogue of SA that is able to induce analgesia and reduce inflammation with a long-lasting effect but without the hallucinatory component. In this review, we explore the role of S. divinorum, SA and its analogues. We focus mainly on their analgesic and anti-inflammatory roles but also mention their psychoactive properties.
Collapse
Affiliation(s)
- Ulises Coffeen
- Research in Neurosciences, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, México,
| | - Francisco Pellicer
- Research in Neurosciences, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, México,
| |
Collapse
|
43
|
Zjawiony JK, Machado AS, Menegatti R, Ghedini PC, Costa EA, Pedrino GR, Lukas SE, Franco OL, Silva ON, Fajemiroye JO. Cutting-Edge Search for Safer Opioid Pain Relief: Retrospective Review of Salvinorin A and Its Analogs. Front Psychiatry 2019; 10:157. [PMID: 30971961 PMCID: PMC6445891 DOI: 10.3389/fpsyt.2019.00157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 03/04/2019] [Indexed: 12/21/2022] Open
Abstract
Over the years, pain has contributed to low life quality, poor health, and economic loss. Opioids are very effective analgesic drugs for treating mild, moderate, or severe pain. Therapeutic application of opioids has been limited by short and long-term side effects. These side effects and opioid-overuse crisis has intensified interest in the search for new molecular targets and drugs. The present review focuses on salvinorin A and its analogs with the aim of exploring their structural and pharmacological profiles as clues for the development of safer analgesics. Ethnopharmacological reports and growing preclinical data have demonstrated the antinociceptive effect of salvinorin A and some of its analogs. The pharmacology of analogs modified at C-2 dominates the literature when compared to the ones from other positions. The distinctive binding affinity of these analogs seems to correlate with their chemical structure and in vivo antinociceptive effects. The high susceptibility of salvinorin A to chemical modification makes it an important pharmacological tool for cellular probing and developing analogs with promising analgesic effects. Additional research is still needed to draw reliable conclusions on the therapeutic potential of salvinorin A and its analogs.
Collapse
Affiliation(s)
- Jordan K Zjawiony
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, United States
| | - Antônio S Machado
- Laboratory of Medicinal Pharmaceutical Chemistry, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Ricardo Menegatti
- Laboratory of Medicinal Pharmaceutical Chemistry, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Paulo C Ghedini
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Brazil
| | - Elson A Costa
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Brazil
| | - Gustavo R Pedrino
- Department of Physiology, Universidade Federal de Goiás, Goiânia, Brazil
| | - Scott E Lukas
- McLean Imaging Center, Harvard Medical School, McLean Hospital, Belmont, MA, United States
| | - Octávio L Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,Programa de Pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
| | - Osmar N Silva
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - James O Fajemiroye
- Department of Physiology, Universidade Federal de Goiás, Goiânia, Brazil.,Centro Universitário de Anápolis, Unievangélica, Anápolis, Brazil
| |
Collapse
|
44
|
Abstract
Drug use and the associated overdose deaths have been a serious public health threat in the United States and the world. While traditional drugs of abuse such as cocaine remain popular, recreational use of newer synthetic drugs has continued to increase, but the prevalence of use is likely underestimated. In this review, epidemiology, chemistry, pharmacophysiology, clinical effects, laboratory detection, and clinical treatment are discussed for newly emerging drugs of abuse in the following classes: (1) opioids (e.g., fentanyl, fentanyl analogues, and mitragynine), (2) cannabinoids [THC and its analogues, alkylindole (e.g., JWH-018, JWH-073), cyclohexylphenol (e.g., CP-47,497), and indazole carboxamide (e.g., FUB-AMB, ADB-FUBINACA)], (3) stimulants and hallucinogens [β-keto amphetamines (e.g., methcathinone, methylone), pyrrolidinophenones (e.g., α-PVP, MDPV), and dimethoxyphenethylamine ("2C" and "NBOMe")], (4) dissociative agents (e.g., 3-MeO-PCP, methoxetamine, 2-oxo-PCE), and (5) sedative-hypnotics (e.g., gabapentin, baclofen, clonazolam, etizolam). It is critically important to coordinate hospital, medical examiner, and law enforcement personnel with laboratory services to respond to these emerging threats.
Collapse
Affiliation(s)
- Kenichi Tamama
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Clinical Laboratories, University of Pittsburgh Medical Center Presbyterian Hospital, Pittsburgh, PA, USA. .,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA. .,Clinical Laboratory, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA.
| | - Michael J Lynch
- Division of Medical Toxicology, Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Pittsburgh Poison Center, Pittsburgh, PA, USA.
| |
Collapse
|
45
|
Pelot KA, Hagelthorn DM, Hong YJ, Tantillo DJ, Zerbe P. Diterpene Synthase‐Catalyzed Biosynthesis of Distinct Clerodane Stereoisomers. Chembiochem 2018; 20:111-117. [DOI: 10.1002/cbic.201800580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Kyle A. Pelot
- Department of Plant Biology University of California Davis One Shields Avenue Davis CA 95616 USA
| | - David M. Hagelthorn
- Department of Plant Biology University of California Davis One Shields Avenue Davis CA 95616 USA
| | - Young J. Hong
- Department of Chemistry University of California Davis One Shields Avenue Davis CA 95616 USA
| | - Dean J. Tantillo
- Department of Chemistry University of California Davis One Shields Avenue Davis CA 95616 USA
| | - Philipp Zerbe
- Department of Plant Biology University of California Davis One Shields Avenue Davis CA 95616 USA
| |
Collapse
|
46
|
Wang Y, Metz P. Total Synthesis of the Neoclerodane Diterpene Salvinorin A via an Intramolecular Diels-Alder Strategy. Org Lett 2018; 20:3418-3421. [PMID: 29787286 DOI: 10.1021/acs.orglett.8b01357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A concise total synthesis of the neoclerodane diterpene salvinorin A from 3-furaldehyde is reported using two highly diastereoselective intramolecular Diels-Alder reactions (IMDA) as the key transformations.
Collapse
Affiliation(s)
- Yuzhou Wang
- Fakultät Chemie und Lebensmittelchemie, Organische Chemie I , Technische Universität Dresden , Bergstrasse 66 , 01069 Dresden , Germany
| | - Peter Metz
- Fakultät Chemie und Lebensmittelchemie, Organische Chemie I , Technische Universität Dresden , Bergstrasse 66 , 01069 Dresden , Germany
| |
Collapse
|