1
|
Adawy HA, Tawfik SS, Elgazar AA, Selim KB, Goda FE. Design, synthesis, and in vitro and in vivo biological evaluation of triazolopyrimidine hybrids as multitarget directed anticancer agents. RSC Adv 2024; 14:35239-35254. [PMID: 39512645 PMCID: PMC11542607 DOI: 10.1039/d4ra06704e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
In response to the urgent need for new anti-proliferative agents, four novel series of triazolopyrimidine compounds (7a-e, 9a-d, 11a-f, and 13a-e) were synthesized and evaluated for in vitro anticancer efficacy against HCT116, HeLa, and MCF-7 cell lines. Compound 13c emerged as the most potent, with IC50 values of 6.10, 10.33, and 2.42 μM respectively, while 11e and 7c also showed strong activity. In multi-target suppression tests, 13c exhibited the highest inhibition against EGFR, TOP-II, HER-2, and ARO (IC50: 0.087, 31.56, 0.078, and 0.156 μM, respectively). Flow cytometry revealed 13c's ability to suppress the S-phase cell population in MCF-7 cells. In vivo studies of 13c demonstrated significant tumor growth inhibition, comparable to the positive control. Molecular docking studies supported the experimental findings, confirming the binding of the novel motifs to the target enzymes' active sites. This comprehensive evaluation highlights the potential of these triazolopyrimidine compounds, particularly 13c, as promising anticancer agents, warranting further investigation.
Collapse
Affiliation(s)
- Heba A Adawy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Samar S Tawfik
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Abdullah A Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University Kafr El Sheikh Egypt
| | - Khalid B Selim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Fatma E Goda
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| |
Collapse
|
2
|
Salomatina OV, Kornienko TE, Zakharenko AL, Komarova NI, Achara C, Reynisson J, Salakhutdinov NF, Lavrik OI, Volcho KP. New Dual Inhibitors of Tyrosyl-DNA Phosphodiesterase 1 and 2 Based on Deoxycholic Acid: Design, Synthesis, Cytotoxicity, and Molecular Modeling. Molecules 2024; 29:581. [PMID: 38338326 PMCID: PMC10856758 DOI: 10.3390/molecules29030581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Deoxycholic acid derivatives containing various heterocyclic functional groups at C-3 on the steroid scaffold were designed and synthesized as promising dual tyrosyl-DNA phosphodiesterase 1 and 2 (TDP1 and TDP2) inhibitors, which are potential targets to potentiate topoisomerase poison antitumor therapy. The methyl esters of DCA derivatives with benzothiazole or benzimidazole moieties at C-3 demonstrated promising inhibitory activity in vitro against TDP1 with IC50 values in the submicromolar range. Furthermore, methyl esters 4d-e, as well as their acid counterparts 3d-e, inhibited the phosphodiesterase activity of both TDP1 and TDP2. The combinations of compounds 3d-e and 4d-e with low-toxic concentrations of antitumor drugs topotecan and etoposide showed significantly greater cytotoxicity than the compounds alone. The docking of the derivatives into the binding sites of TDP1 and TDP2 predicted plausible binding modes of the DCA derivatives.
Collapse
Affiliation(s)
- Oksana V. Salomatina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent’ev Ave., Novosibirsk 630090, Russia; (O.V.S.); (N.I.K.); (N.F.S.)
| | - Tatyana E. Kornienko
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8, Lavrent’ev Ave., Novosibirsk 630090, Russia; (T.E.K.); (A.L.Z.); (O.I.L.)
| | - Alexandra L. Zakharenko
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8, Lavrent’ev Ave., Novosibirsk 630090, Russia; (T.E.K.); (A.L.Z.); (O.I.L.)
| | - Nina I. Komarova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent’ev Ave., Novosibirsk 630090, Russia; (O.V.S.); (N.I.K.); (N.F.S.)
| | - Chigozie Achara
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK; (C.A.); (J.R.)
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK; (C.A.); (J.R.)
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent’ev Ave., Novosibirsk 630090, Russia; (O.V.S.); (N.I.K.); (N.F.S.)
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8, Lavrent’ev Ave., Novosibirsk 630090, Russia; (T.E.K.); (A.L.Z.); (O.I.L.)
| | - Konstantin P. Volcho
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent’ev Ave., Novosibirsk 630090, Russia; (O.V.S.); (N.I.K.); (N.F.S.)
| |
Collapse
|
3
|
Abdelkhalek AS, Attia MS, Kamal MA. Triazolopyrimidine Derivatives: An Updated Review on Recent Advances in Synthesis, Biological Activities and Drug Delivery Aspects. Curr Med Chem 2024; 31:1896-1919. [PMID: 36852819 DOI: 10.2174/0929867330666230228120416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 03/01/2023]
Abstract
Molecules containing triazolopyrimidine core showed diverse biological activities, including anti-Alzheimer's, anti-diabetes, anti-cancer, anti-microbial, anti-tuberculosis, anti-viral, anti-malarial, anti-inflammatory, anti-parkinsonism, and anti-glaucoma activities. Triazolopyrimidines have 8 isomeric structures, including the most stable 1,2,4-triazolo[1,5- a] pyrimidine ones. Triazolopyrimidines were obtained by using various chemical reactions, including a) 1,2,4-triazole nucleus annulation to pyrimidine, b) pyrimidines annulation to 1,2,4-triazole structure, c) 1,2,4-triazolo[l,5-a] pyrimidines rearrangement, and d) pyrimidotetrazine rearrangement. This review discusses synthetic methods, recent pharmacological actions and drug delivery perspectives of triazolopyrimidines.
Collapse
Affiliation(s)
- Ahmed S Abdelkhalek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed S Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mohammad A Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Bangladesh
- Novel Global Community Educational Foundation, Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia
| |
Collapse
|
4
|
Dai XJ, Xue LP, Ji SK, Zhou Y, Gao Y, Zheng YC, Liu HM, Liu HM. Triazole-fused pyrimidines in target-based anticancer drug discovery. Eur J Med Chem 2023; 249:115101. [PMID: 36724635 DOI: 10.1016/j.ejmech.2023.115101] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
In recent decades, the development of targeted drugs has featured prominently in the treatment of cancer, which is among the major causes of mortality globally. Triazole-fused pyrimidines, a widely-used class of heterocycles in medicinal chemistry, have attracted considerable interest as potential anticancer agents that target various cancer-associated targets in recent years, demonstrating them as valuable templates for discovering novel anticancer candidates. The current review concentrates on the latest advancements of triazole-pyrimidines as target-based anticancer agents, including works published between 2007 and the present (2007-2022). The structure-activity relationships (SARs) and multiple pathways are also reviewed to shed light on the development of more effective and biotargeted anticancer candidates.
Collapse
Affiliation(s)
- Xing-Jie Dai
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Lei-Peng Xue
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Shi-Kun Ji
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Ying Zhou
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Ya Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Hui-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| |
Collapse
|
5
|
Rational design, synthesis and biological evaluation of novel 2-(substituted amino)-[1,2,4]triazolo[1,5-a]pyrimidines as novel tubulin polymerization inhibitors. Eur J Med Chem 2022; 244:114864. [DOI: 10.1016/j.ejmech.2022.114864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/20/2022]
|
6
|
Discovery, enantioselective synthesis of myrtucommulone E analogues as tyrosyl-DNA phosphodiesterase 2 inhibitors and their biological activities. Eur J Med Chem 2022; 238:114445. [DOI: 10.1016/j.ejmech.2022.114445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022]
|
7
|
Synthesis of tetracyclic thienotriazolopyridines based on hydrazine derivatives of fused pyridinethiones. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3503-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Zhang Y, He XZ, Yang H, Liu HY, An LK. Robustadial A and B from Eucalyptus globulus Labill. and their anticancer activity as selective tyrosyl-DNA phosphodiesterase 2 inhibitors. Phytother Res 2021; 35:5282-5289. [PMID: 34314073 DOI: 10.1002/ptr.7207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 11/07/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 2 (TDP2) is a recently discovered DNA repair enzyme that can repair topoisomerase 2-mediated DNA damage, resulting in cancer cell resistance. In this study, two compounds, robustadial A and B, were isolated from a fraction of the ethyl acetate extract of Eucalyptus globulus Labill. fruits based on TDP2 inhibition screening. The biological experiments indicated that robustadial A and B have TDP2 inhibitory activity with EC50 values of 17 and 42 μM, respectively, but no tyrosyl-DNA phosphodiesterase 1 inhibition at 100 μM. Robustadial A showed significant synergistic effects with the anticancer drug etoposide in four human cancer cell lines, non-small cell lung cancer cell line (A549), prostate cancer cell line (DU145), breast cancer cell line (MCF-7), colorectal adenocarcinoma cell line (HCT-116), and chicken lymphoma cell line (DT40), and chicken lymphoma cell line complementation with human TDP2 (DT40 hTDP2) with combination index values ranging from 0.21 to 0.74. This work will facilitate future efforts for the development of robustadial A-based TDP2 selective inhibitors.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Zhi He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hao Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hai-Yang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| |
Collapse
|
9
|
The synthesis of furoquinolinedione and isoxazoloquinolinedione derivatives as selective Tyrosyl-DNA phosphodiesterase 2 (TDP2) inhibitors. Bioorg Chem 2021; 111:104881. [PMID: 33839584 PMCID: PMC9893515 DOI: 10.1016/j.bioorg.2021.104881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 02/04/2023]
Abstract
Based on our previous study on the development of the furoquinolinedione and isoxazoloquinolinedione TDP2 inhibitors, the further structure-activity relationship (SAR) was studied in this work. A series of furoquinolinedione and isoxazoloquinolinedione derivatives were synthesized and tested for enzyme inhibitions. Enzyme-based assays indicated that isoxazoloquinolinedione derivatives selectively showed high TDP2 inhibitory activity at sub-micromolar range, as well as furoquinolinedione derivatives at low micromolar range. The most potent 3-(3,4-dimethoxyphenyl)isoxazolo[4,5-g]quinoline-4,9-dione (70) showed TDP2 inhibitory activity with IC50 of 0.46 ± 0.15 μM. This work will facilitate future efforts for the discovery of isoxazoloquinolinedione TDP2 selective inhibitors.
Collapse
|
10
|
Pismataro MC, Felicetti T, Bertagnin C, Nizi MG, Bonomini A, Barreca ML, Cecchetti V, Jochmans D, De Jonghe S, Neyts J, Loregian A, Tabarrini O, Massari S. 1,2,4-Triazolo[1,5-a]pyrimidines: Efficient one-step synthesis and functionalization as influenza polymerase PA-PB1 interaction disruptors. Eur J Med Chem 2021; 221:113494. [PMID: 33962311 DOI: 10.1016/j.ejmech.2021.113494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/30/2021] [Accepted: 04/18/2021] [Indexed: 11/18/2022]
Abstract
In the search for new anti-influenza virus (IV) compounds, we have identified the 1,2,4-triazolo[1,5-a]pyrimidine (TZP) as a very suitable scaffold to obtain compounds able to disrupt IV RNA-dependent RNA polymerase (RdRP) PA-PB1 subunits heterodimerization. In this work, in order to acquire further SAR insights for this class of compounds and identify more potent derivatives, we designed and synthesized additional series of analogues to investigate the role of the substituents around the TZP core. To this aim, we developed four facile and efficient one-step procedures for the synthesis of 5-phenyl-, 6-phenyl- and 7-phenyl-2-amino-[1,2,4]triazolo[1,5-a]pyrimidines, and 2-amino-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol. Two analogues having the ethyl carboxylate moiety at the C-2 position of the TZP were also prepared in good yields. Then, the scaffolds herein synthesized and two previous scaffolds were functionalized and evaluated for their anti-IAV activity, leading to the identification of compound 22 that showed both anti-PA-PB1 (IC50 = 19.5 μM) and anti-IAV activity (EC50 = 16 μM) at non-toxic concentrations, thus resulting among the most active TZP derivatives reported to date by us. A selection of the synthesized compounds, along with a set of in-house available analogues, was also tested against SARS-CoV-2. The most promising compound 49 from this series displayed an EC50 value of 34.47 μM, highlighting the potential of the TPZ scaffold in the search for anti-CoV agents.
Collapse
Affiliation(s)
- Maria Chiara Pismataro
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123, Perugia, Italy
| | - Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123, Perugia, Italy
| | - Chiara Bertagnin
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121, Padua, Italy
| | - Maria Giulia Nizi
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123, Perugia, Italy
| | - Anna Bonomini
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121, Padua, Italy
| | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123, Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123, Perugia, Italy
| | - Dirk Jochmans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, Box 1043, 3000, Leuven, Belgium
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, Box 1043, 3000, Leuven, Belgium
| | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, Box 1043, 3000, Leuven, Belgium
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121, Padua, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123, Perugia, Italy
| | - Serena Massari
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123, Perugia, Italy.
| |
Collapse
|
11
|
Vorob′ev AY, Borodkin GI, Andreev RV, Shubin VG. 1,3-Dipolar cycloaddition of cyanopyridines to heterocyclic N-imines: experimental and theoretical study. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-02905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Mittersteiner M, Andrade VP, Bonacorso HG, Martins MAP, Zanatta N. The Wonderful World of β‐Enamino Diketones Chemistry. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mateus Mittersteiner
- Núcleo de Química de Heterociclos (NUQUIMHE) Departmento de Química Universidade Federal de Santa Maria 97105‐900 Santa Maria RS Brazil
| | - Valquiria P. Andrade
- Núcleo de Química de Heterociclos (NUQUIMHE) Departmento de Química Universidade Federal de Santa Maria 97105‐900 Santa Maria RS Brazil
| | - Helio G. Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE) Departmento de Química Universidade Federal de Santa Maria 97105‐900 Santa Maria RS Brazil
| | - Marcos A. P. Martins
- Núcleo de Química de Heterociclos (NUQUIMHE) Departmento de Química Universidade Federal de Santa Maria 97105‐900 Santa Maria RS Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE) Departmento de Química Universidade Federal de Santa Maria 97105‐900 Santa Maria RS Brazil
| |
Collapse
|
13
|
Pinheiro S, Pinheiro EMC, Muri EMF, Pessôa JC, Cadorini MA, Greco SJ. Biological activities of [1,2,4]triazolo[1,5-a]pyrimidines and analogs. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02609-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Obydennov KL, Kalinina TA, Vysokova OA, Slepukhin PA, Pozdina VA, Ulitko MV, Glukhareva TV. The different modes of chiral [1,2,3]triazolo[5,1-b][1,3,4]thiadiazines: crystal packing, conformation investigation and cellular activity. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2020; 76:795-809. [PMID: 32756043 DOI: 10.1107/s2053229620009328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 07/08/2020] [Indexed: 11/11/2022]
Abstract
The crystal structures of four new chiral [1,2,3]triazolo[5,1-b][1,3,4]thiadiazines are described, namely, ethyl 5'-benzoyl-5'H,7'H-spiro[cyclohexane-1,6'-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine]-3'-carboxylate, C19H22N4O3S, ethyl 5'-(4-methoxybenzoyl)-5'H,7'H-spiro[cyclohexane-1,6'-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine]-3'-carboxylate, C20H24N4O4S, ethyl 6,6-dimethyl-5-(4-methylbenzoyl)-6,7-dihydro-5H-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine-3-carboxylate, C17H20N4O3S, and ethyl 5-benzoyl-6-(4-methoxyphenyl)-6,7-dihydro-5H-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine-3-carboxylate, C21H20N4O4S. The crystallographic data and cell activities of these four compounds and of the structures of three previously reported similar compounds, namely, ethyl 5'-(4-methylbenzoyl)-5'H,7'H-spiro[cyclopentane-1,6'-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine]-3'-carboxylate, C19H22N4O3S, ethyl 5'-(4-methoxybenzoyl)-5'H,7'H-spiro[cyclopentane-1,6'-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine]-3'-carboxylate, C19H22N4O4S, and ethyl 6-methyl-5-(4-methylbenzoyl)-6-phenyl-6,7-dihydro-5H-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine-3-carboxylate, C22H22N4O3S, are contrasted and compared. For both crystallization and an MTT assay, racemic mixtures of the corresponding [1,2,3]triazolo[5,1-b][1,3,4]thiadiazines were used. The main manner of molecular packing in these compounds is the organization of either enantiomeric pairs or dimers. In both cases, the formation of two three-centre hydrogen bonds can be detected resulting from intramolecular N-H...O and intermolecular N-H...O or N-H...N interactions. Molecules of different enantiomeric forms can also form chains through N-H...O hydrogen bonds or form layers between which only weak hydrophobic contacts exist. Unlike other [1,2,3]triazolo[5,1-b][1,3,4]thiadiazines, ethyl 5'-benzoyl-5'H,7'H-spiro[cyclohexane-1,6'-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine]-3'-carboxylate contains molecules of only the (R)-enantiomer; moreover, the N-H group does not participate in any significant intermolecular interactions. Molecular mechanics methods (force field OPLS3e) and the DFT B3LYP/6-31G+(d,p) method show that the compound forming enantiomeric pairs via weak N-H...N hydrogen bonds is subject to greater distortion of the geometry under the influence of the intermolecular interactions in the crystal. For intramolecular N-H...O and S...O interactions, an analysis of the noncovalent interactions (NCIs) was carried out. The cellular activities of the compounds were tested by evaluating their antiproliferative effect against two normal human cell lines and two cancer cell lines in terms of half-maximum inhibitory concentration (IC50). Some derivatives have been found to be very effective in inhibiting the growth of Hela cells at nanomolar and submicromolar concentrations with minimal cytotoxicity in relation to normal cells.
Collapse
Affiliation(s)
- Konstantin L'vovich Obydennov
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Street, Yekaterinburg 620002, Russian Federation
| | - Tatiana Andreevna Kalinina
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Street, Yekaterinburg 620002, Russian Federation
| | - Olga Alexandrovna Vysokova
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Street, Yekaterinburg 620002, Russian Federation
| | - Pavel Alexandrovich Slepukhin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences (UB RAS), 22 Sofia Kovalevskaya Street, Yekaterinburg 620990, Russian Federation
| | - Varvara Alexandrovna Pozdina
- Institute Natural Sciences and Mathematics, Ural Federal University, Kuibysheva str. 48a, Yekaterinburg 620000, Russian Federation
| | - Maria Valer'evna Ulitko
- Institute Natural Sciences and Mathematics, Ural Federal University, Kuibysheva str. 48a, Yekaterinburg 620000, Russian Federation
| | | |
Collapse
|
15
|
Novel variants of the multicomponent reaction for the synthesis of 1,2,4-triazolo[1,5-а]pyrimidines and pyrido[3,4-е][1,2,4]triazolo[1,5-а]pyrimidines. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02773-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Kamal R, Kumar R, Kumar V, Bhardwaj JK, Saraf P, Kumar A, Pandit K, Kaur S, Chetti P, Beura S. Diacetoxy iodobenzene mediated regioselective synthesis and characterization of novel [1,2,4]triazolo[4,3-a]pyrimidines: apoptosis inducer, antiproliferative activities and molecular docking studies. J Biomol Struct Dyn 2020; 39:4398-4414. [PMID: 32552396 DOI: 10.1080/07391102.2020.1777900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Prompt and regioselective synthesis of eleven novel [1,2,4]triazolo[4,3-a]pyrimidines 2a-2k, via intramolecular oxidative-cyclization of 2-(2-arylidenehydrazinyl)-4-methyl-6-phenylpyrimidine derivatives 1a-1k has been demonstrated here using diacetoxy iodobenzene (DIB) as inexpensive and ecofriendly hypervalent iodine(III) reagent in CH2Cl2 at room temperature. Regiochemistry of final product has been established by developing single crystal and studied X-ray crystallographic data for two derivatives 2c and 2h without any ambiguity. These prominent [1,2,4]triazolo[4,3-a]pyrimidines were evaluated for human osteosarcoma bone cancer (MG-63) and breast cancer (MCF-7) cell lines using MTT assay to find potent antiproliferative agent and also on testicular germ cells to find potent apoptotic inducing activities. All compounds show significant cytotoxicity, particularly 3-(2,4-dichlorophenyl)-5-methyl-7-phenyl-[1,2,4]triazolo[4,3-a]pyrimidine (2g) was found significant apoptotic inducing molecule, as well as the most potent cytotoxic agent against bone cancer (MG-63) and breast cancer (MCF-7) cell lines with GI50 value 148.96 µM and 114.3 µM respectively. Molecular docking studies has been carried out to see the molecular interactions of synthesized compounds with the protein thymidylate synthase (PBD ID: 2G8D).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Ravinder Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Vipan Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | | | - Priyanka Saraf
- Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Ajay Kumar
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kritika Pandit
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Satwinderjeet Kaur
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Prabhakar Chetti
- Department of Chemistry, National Institute of Technology (NIT), Kurukshetra, Haryana, India
| | - Satyajit Beura
- Department of Chemistry, National Institute of Technology (NIT), Kurukshetra, Haryana, India
| |
Collapse
|
17
|
Kankanala J, Ribeiro CJA, Kiselev E, Ravji A, Williams J, Xie J, Aihara H, Pommier Y, Wang Z. Novel Deazaflavin Analogues Potently Inhibited Tyrosyl DNA Phosphodiesterase 2 (TDP2) and Strongly Sensitized Cancer Cells toward Treatment with Topoisomerase II (TOP2) Poison Etoposide. J Med Chem 2019; 62:4669-4682. [PMID: 30998359 DOI: 10.1021/acs.jmedchem.9b00274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Topoisomerase II (TOP2) poisons as anticancer drugs work by trapping TOP2 cleavage complexes (TOP2cc) to generate DNA damage. Repair of such damage by tyrosyl DNA phosphodiesterase 2 (TDP2) could render cancer cells resistant to TOP2 poisons. Inhibiting TDP2, thus, represents an attractive mechanism-based chemosensitization approach. Currently known TDP2 inhibitors lack cellular potency and/or permeability. We report herein two novel subtypes of the deazaflavin TDP2 inhibitor core. By introducing an additional phenyl ring to the N-10 phenyl ring (subtype 11) or to the N-3 site of the deazaflavin scaffold (subtype 12), we have generated novel analogues with considerably improved biochemical potency and/or permeability. Importantly, many analogues of both subtypes, particularly compounds 11a, 11e, 12a, 12b, and 12h, exhibited much stronger cancer cell sensitizing effect than the best previous analogue 4a toward the treatment with etoposide, suggesting that these analogues could serve as effective cellular probes.
Collapse
Affiliation(s)
| | | | - Evgeny Kiselev
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Azhar Ravji
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , Maryland 20892 , United States
| | | | | | | | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , Maryland 20892 , United States
| | | |
Collapse
|