1
|
Sroga GE, Vashishth D. In vivo glycation-interplay between oxidant and carbonyl stress in bone. JBMR Plus 2024; 8:ziae110. [PMID: 39386996 PMCID: PMC11458925 DOI: 10.1093/jbmrpl/ziae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 06/18/2024] [Accepted: 07/28/2024] [Indexed: 10/12/2024] Open
Abstract
Metabolic syndromes (eg, obesity, type 2 diabetes (T2D), atherosclerosis, and neurodegenerative diseases) and aging, they all have a strong component of carbonyl and reductive-oxidative (redox) stress. Reactive carbonyl (RCS) and oxidant (ROS) stress species are commonly generated as products or byproducts of cellular metabolism or are derived from the environment. RCS and ROS can play a dual role in living organisms. Some RCS and ROS function as signaling molecules, which control cellular defenses against biological and environmental assaults. However, due to their high reactivity, RCS and ROS inadvertently interact with different cellular and extracellular components, which can lead to the formation of undesired posttranslational modifications of bone matrix proteins. These are advanced glycation (AGEs) and glycoxidation (AGOEs) end products generated in vivo by non-enzymatic amino-carbonyl reactions. In this review, metabolic processes involved in generation of AGEs and AGOEs within and on protein surfaces including extracellular bone matrix are discussed from the perspective of cellular metabolism and biochemistry of certain metabolic syndromes. The impact of AGEs and AGOEs on some characteristics of mineral is also discussed. Different therapeutic approaches with the potential to prevent the formation of RCS, ROS, and the resulting formation of AGEs and AGOEs driven by these chemicals are also briefly reviewed. These are antioxidants, scavenging agents of reactive species, and newly emerging technologies for the development of synthetic detoxifying systems. Further research in the area of in vivo glycation and glycoxidation should lead to the development of diverse new strategies for halting the progression of metabolic complications before irreversible damage to body tissues materializes.
Collapse
Affiliation(s)
- Grażyna E Sroga
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Engineering and Precision Medicine, Rensselaer-Icahn School of Medicine at Mount Sinai, 619 West 54th Street, New York, NY 10019, United States
| |
Collapse
|
2
|
Britton M, Monahan GE, Murphy CG, Kearns SR, Devitt AT, Okwieka A, Jaisson S, Van Gulick L, Beljebbar A, Kerdjoudj H, Schiavi J, Vaughan TJ. An investigation of composition, morphology, mechanical properties, and microdamage accumulation of human type 2 diabetic bone. Bone 2024; 187:117190. [PMID: 38960297 DOI: 10.1016/j.bone.2024.117190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
This study investigates the biomechanics of type 2 diabetic bone fragility through a multiscale experimental strategy that considers structural, mechanical, and compositional components of ex vivo human trabecular and cortical bone. Human tissue samples were obtained from the femoral heads of patients undergoing total hip replacement. Mechanical testing was carried out on isolated trabecular cores using monotonic and cyclic compression loading and nanoindentation experiments, with bone microdamage analysed using micro-computed tomography (CT) imaging. Bone composition was evaluated using Raman spectroscopy, high-performance liquid chromatography, and fluorometric spectroscopy. It was found that human type 2 diabetic bone had altered mechanical, compositional, and morphological properties compared to non-type 2 diabetic bone. High-resolution micro-CT imaging showed that cores taken from the central trabecular region of the femoral head had higher bone mineral density (BMD), bone volume, trabecular thickness, and reduced trabecular separation. Type 2 diabetic bone also had enhanced macro-mechanical compressive properties under mechanical loading compared to non-diabetic controls, with significantly higher apparent modulus, yield stress, and pre-yield toughness evident, even when properties were normalised against the bone volume. Using nanoindentation, there were no significant differences in the tissue-level mechanical properties of cortical or trabecular bone in type 2 diabetic samples compared to controls. Through compositional analysis, higher levels of furosine were found in type 2 diabetic trabecular bone, and an increase in both furosine and carboxymethyl-lysine (an advanced glycation end-product) was found in cortical bone. Raman spectroscopy showed that type 2 diabetic bone had a higher mineral-to-matrix ratio, carbonate substitution, and reduced crystallinity compared to the controls. Together, this study shows that type 2 diabetes leads to distinct changes in both organic and mineral phases of the bone tissue matrix, but these changes did not coincide with any reduction in the micro- or macro-mechanical properties of the tissue under monotonic or cyclic loading.
Collapse
Affiliation(s)
- Marissa Britton
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Genna E Monahan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Colin G Murphy
- Department of Orthopaedics, Galway University Hospitals, Galway, Ireland
| | - Stephen R Kearns
- Department of Orthopaedics, Galway University Hospitals, Galway, Ireland
| | - Aiden T Devitt
- Department of Orthopaedics, Galway University Hospitals, Galway, Ireland
| | - Anaïs Okwieka
- University of Reims Champagne-Ardenne, CNRS, Extracellular Matrix and Cell Dynamics Unit (MEDyC) UMR, Reims, France
| | - Stéphane Jaisson
- University of Reims Champagne-Ardenne, CNRS, Extracellular Matrix and Cell Dynamics Unit (MEDyC) UMR, Reims, France
| | | | | | - Halima Kerdjoudj
- Biomatériaux et Inflammation en Site Osseux (BIOS), Université de Reims Champagne Ardenne, EA 4691 Reims, France
| | | | - Ted J Vaughan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland.
| |
Collapse
|
3
|
Gao Q, Jiang Y, Zhou D, Li G, Han Y, Yang J, Xu K, Jing Y, Bai L, Geng Z, Zhang H, Zhou G, Zhu M, Ji N, Han R, Zhang Y, Li Z, Wang C, Hu Y, Shen H, Wang G, Shi Z, Han Q, Chen X, Su J. Advanced glycation end products mediate biomineralization disorder in diabetic bone disease. Cell Rep Med 2024; 5:101694. [PMID: 39173634 PMCID: PMC11524989 DOI: 10.1016/j.xcrm.2024.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/04/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
Patients with diabetes often experience fragile fractures despite normal or higher bone mineral density (BMD), a phenomenon termed the diabetic bone paradox (DBP). The pathogenesis and therapeutics opinions for diabetic bone disease (DBD) are not fully explored. In this study, we utilize two preclinical diabetic models, the leptin receptor-deficient db/db mice (DB) mouse model and the streptozotocin-induced diabetes (STZ) mouse model. These models demonstrate higher BMD and lower mechanical strength, mirroring clinical observations in diabetic patients. Advanced glycation end products (AGEs) accumulate in diabetic bones, causing higher non-enzymatic crosslinking within collagen fibrils. This inhibits intrafibrillar mineralization and leads to disordered mineral deposition on collagen fibrils, ultimately reducing bone strength. Guanidines, inhibiting AGE formation, significantly improve the microstructure and biomechanical strength of diabetic bone and enhance bone fracture healing. Therefore, targeting AGEs may offer a strategy to regulate bone mineralization and microstructure, potentially preventing the onset of DBD.
Collapse
Affiliation(s)
- Qianmin Gao
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Yingying Jiang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China.
| | - Dongyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Yafei Han
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Jingzhi Yang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Guangyin Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Mengru Zhu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Ning Ji
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Ruina Han
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Yuanwei Zhang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Zuhao Li
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Chuandong Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Yan Hu
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Hao Shen
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Zhongmin Shi
- Department of Orthopedics, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Qinglin Han
- Orthopaedic Department, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China.
| | - Xiao Chen
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China.
| |
Collapse
|
4
|
Micheletti C, Shah FA. Bone hierarchical organization through the lens of materials science: Present opportunities and future challenges. Bone Rep 2024; 22:101783. [PMID: 39100913 PMCID: PMC11295937 DOI: 10.1016/j.bonr.2024.101783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 08/06/2024] Open
Abstract
Multiscale characterization is essential to better understand the hierarchical architecture of bone and an array of analytical methods contributes to exploring the various structural and compositional aspects. Incorporating X-ray tomography, X-ray scattering, vibrational spectroscopy, and atom probe tomography alongside electron microscopy provides a comprehensive approach, offering insights into the diverse levels of organization within bone. X-ray scattering techniques reveal information about collagen-mineral spatial relationships, while X-ray tomography captures 3D structural details, especially at the microscale. Electron microscopy, such as scanning and transmission electron microscopy, extends resolution to the nanoscale, showcasing intricate features such as collagen fibril organization. Additionally, atom probe tomography achieves sub-nanoscale resolution and high chemical sensitivity, enabling detailed examination of bone composition. Despite various technical challenges, a correlative approach allows for a comprehensive understanding of bone material properties. Real-time investigations through in situ and in operando approaches shed light on the dynamic processes in bone. Recently developed techniques such as liquid, in situ transmission electron microscopy provide insights into calcium phosphate formation and collagen mineralization. Mechanical models developed in the effort to link structure, composition, and function currently remain oversimplified but can be improved. In conclusion, correlative analytical platforms provide a holistic perspective of bone extracellular matrix and are essential for unraveling the intricate interplay between structure and composition within bone.
Collapse
Affiliation(s)
- Chiara Micheletti
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Furqan A. Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Liu Z, Gao J, Gong H. Spatiotemporal Characterization of Microstructure Morphology, Mechanical Properties and Bone Remodeling of Rat Tibia Under Uniaxial Compressive Overload Loading. Ann Biomed Eng 2024; 52:2388-2402. [PMID: 38744754 DOI: 10.1007/s10439-024-03531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Bone tissue is subjected to increased mechanical stress during high-intensity work. Inadequate bone remodeling reparability can result in the continuous accumulation of microdamage, leading to stress fractures. The aim of this work was to investigate the characteristics and repair mechanisms of tibial microdamage under several degrees of overload. Also, we aimed at better understanding the effects of overload on the multi-scale structure and mechanical properties of bone. Sixty 5-month female rats were divided into three groups with different time points. Micro-CT was used to evaluate the three-dimensional microstructure, and three-point bending, quasi-static fracture toughness and creep mechanical test were carried out to evaluate the mechanical properties. SEM was used to observe the morphological characteristics of fracture surfaces. Section staining was used to count the microdamage parameters and numbers of osteoblasts and osteoclasts. The microarchitectures of cancellous and cortical bones in the three overload groups showed different degrees of damage. Overload led to a messy crystal structure of cortical bone, with slender microcracks mixed in, and a large number of broken fibers of cancellous bone. The properties associated with the elastic plasticity, fracture toughness, and viscoelasticity of cortical bone reduced in three groups, with that corresponding to day 30 presenting the highest damage. The accumulation of microdamage mainly occurred in the first 14 days, that is, the crack density peaked on day 14. Peak-targeted bone remodeling of cortical and cancellous bones occurred mainly between days 14 and 30. The influence of overload mechanical environment on bone quality at different time points was deeply investigated, which is of great significance for the etiology and treatment of stress fractures.
Collapse
Affiliation(s)
- Zhehao Liu
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
- Department of Engineering Mechanics, College of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130022, People's Republic of China
| | - Jiazi Gao
- Department of Engineering Mechanics, College of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130022, People's Republic of China
| | - He Gong
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China.
- Department of Engineering Mechanics, College of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130022, People's Republic of China.
| |
Collapse
|
6
|
Iranmanesh F, Dapaah DY, Nyman JS, Willett TL. An improved linear systems model of hydrothermal isometric tension testing to aid in assessing bone collagen quality: Effects of ribation and type-2 diabetes. Bone 2024; 186:117139. [PMID: 38823567 DOI: 10.1016/j.bone.2024.117139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
This study sought to further develop and validate a previously proposed physics-based model that maps denaturation kinetics from differential scanning calorimetry (DSC) to the isometric tension generated during hydrothermal isometric tension (HIT) testing of collagenous tissues. The primary objectives of this study were to verify and validate two physics-based model parameters: α, which indicates the amount of instantaneous isometric tension developed per unit of collagen denaturation, and β, which captures the proportionality between temperature and the generated isometric tension post denaturation initiation. These parameters were used as measures of bone collagen quality, employing data from HIT and DSC testing of human bone collagen from two previous studies. Additionally, given the physical basis of the model, the study aimed to further validate Max.Slope, the rate of change in isometric tensile stress with change in temperature, as an independent measure of collagen network connectivity. Max.Slope has previously been positively correlated with measures of cortical bone fracture resistance. Towards this verification and validation, the hypotheses were a) that α would correlate strongly with HIT denaturation temperature, Td, and the enthalpy of melting (ΔH) from DSC, and b) that β would correlate positively and strongly with Max.Slope. The model was employed in the analysis of HIT-DSC data from the testing of demineralized bone collagen isolated from cadaveric human femurs in two prior studies. In one study, data were collected from HIT-DSC testing of cortical bone collagen from 74 donors. Among them, 38 had a history of type 2 diabetes +/- chronic kidney disease, while the remaining 36 had no history of T2D again with or without CKD. Cortical bone specimens were extracted from the lateral mid-shaft. The second study involved 15 donor femora, with four cortical bone specimens extracted from each. Of these four, two specimens underwent a 4-week incubation in 0.1 M ribose at 37 °C to induce non-enzymatic ribation and advanced glycation endproducts, while the other two served as non-ribated controls. The examination involved investigating correlations between the model parameters α and β and various measures, such as Max.Slope, Td, ΔH, age, and duration of type 2 diabetes. The results revealed positive correlations between the model parameter β and Max.Slope (r = 0.55-0.58). The parameter α was found to be associated with Td, but also sensitive to the shape of the HIT curve around Td resulting in difficulties with variability and interpretation. As a result, while both hypotheses are confirmed, Max.Slope and β are better indicators of bone collagen quality because they are measures of the connectivity or, more generally, the integrity of the bone collagen network.
Collapse
Affiliation(s)
- Faezeh Iranmanesh
- Composite Biomaterials System Lab, System Design Engineering Department, University of Waterloo, Ontario, Canada
| | - Daniel Y Dapaah
- Composite Biomaterials System Lab, System Design Engineering Department, University of Waterloo, Ontario, Canada
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, United States of America; United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, United States of America
| | - Thomas L Willett
- Composite Biomaterials System Lab, System Design Engineering Department, University of Waterloo, Ontario, Canada.
| |
Collapse
|
7
|
Uppuganti S, Creecy A, Fernandes D, Garrett K, Donovan K, Ahmed R, Voziyan P, Rendina-Ruedy E, Nyman JS. Bone Fragility in High Fat Diet-induced Obesity is Partially Independent of Type 2 Diabetes in Mice. Calcif Tissue Int 2024; 115:298-314. [PMID: 39012489 PMCID: PMC11333511 DOI: 10.1007/s00223-024-01252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
Obesity and type 2 diabetes (T2D) are risk factors for fragility fractures. It is unknown whether this elevated risk is due to a diet favoring obesity or the diabetes that often occurs with obesity. Therefore, we hypothesized that the fracture resistance of bone is lower in mice fed with a high fat diet (45% kcal; HFD) than in mice that fed on a similar, control diet (10% kcal; LFD), regardless of whether the mice developed overt T2D. Sixteen-week-old, male NON/ShiLtJ mice (resistant to T2D) and age-matched, male NONcNZO10/LtJ (prone to T2D) received a control LFD or HFD for 21 weeks. HFD increased the bodyweight to a greater extent in the ShiLtJ mice compared to the NZO10 mice, while blood glucose levels were significantly higher in NZO10 than in ShiLtJ mice. As such, the glycated hemoglobin A1c (HbA1c) levels exceeded 10% in NZO10 mice, but it remained below 6% in ShiLtJ mice. Diet did not affect HbA1c. HFD lowered trabecular number and bone volume fraction of the distal femur metaphysis (micro-computed tomography or μCT) in both strains. For the femur mid-diaphysis, HFD significantly reduced the yield moment (mechanical testing by three-point bending) in both strains but did not affect cross-sectional bone area, cortical thickness, nor cortical tissue mineral density (μCT). Furthermore, the effect of diet on yield moment was independent of the structural resistance of the femur mid-diaphysis suggesting a negative effect of HFD on characteristics of the bone matrix. However, neither Raman spectroscopy nor assays of advanced glycation end-products identified how HFD affected the matrix. HFD also lowered the resistance of cortical bone to crack growth in only the diabetic NZO10 mice (fracture toughness testing of other femur), while HFD reduced the ultimate force of the L6 vertebra in both strains (compression testing). In conclusion, the HFD-related decrease in bone strength can occur in mice resistant and prone to diabetes indicating that a diet high in fat deleteriously affects bone without necessarily causing hyperglycemia.
Collapse
Affiliation(s)
- Sasidhar Uppuganti
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Medical Center East, South Tower, 1215 21st Ave. S., Suite 4200, Nashville, TN, 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave., Nashville, TN, 37212, USA
| | - Amy Creecy
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 550 N. University Blvd, Indianapolis, IN, 46202, USA
| | - Daniel Fernandes
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37232, USA
| | - Kate Garrett
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Medical Center East, South Tower, 1215 21st Ave. S., Suite 4200, Nashville, TN, 37232, USA
| | - Kara Donovan
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37232, USA
| | - Rafay Ahmed
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Medical Center East, South Tower, 1215 21st Ave. S., Suite 4200, Nashville, TN, 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave., Nashville, TN, 37212, USA
| | - Paul Voziyan
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Medical Center East, South Tower, 1215 21st Ave. S., Suite 4200, Nashville, TN, 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave., Nashville, TN, 37212, USA
| | - Elizabeth Rendina-Ruedy
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave., Nashville, TN, 37212, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 2215 Garland Ave., Nashville, TN, 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Medical Center East, South Tower, 1215 21st Ave. S., Suite 4200, Nashville, TN, 37232, USA.
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave., Nashville, TN, 37212, USA.
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37232, USA.
- United States Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24th Ave. S., Nashville, TN, 37212, USA.
| |
Collapse
|
8
|
Elnunu IS, Redmond JN, Obata Y, Woolley W, Kammer DS, Acevedo C. Increased AGE Cross-Linking Reduces the Mechanical Properties of Osteons. JOM (WARRENDALE, PA. : 1989) 2024; 76:5692-5702. [PMID: 39318440 PMCID: PMC11417058 DOI: 10.1007/s11837-024-06716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/10/2024] [Indexed: 09/26/2024]
Abstract
The osteon is the primary structural component of bone, contributing significantly to its unique toughness and strength. Despite extensive research on osteonal structure, the properties of osteons have not been fully investigated, particularly within the context of bone fragility diseases like type 2 diabetes mellitus (T2DM). This study aims to isolate osteons from bovine bone, simulate the effects of increased advanced glycation end-products (AGEs) in T2DM through ribosylation, and evaluate the mechanical properties of isolated osteons. Osteons extracted from the posterior section of bovine femur mid-diaphysis were processed to achieve a sub-millimeter scale for microscale imaging. Subsequently, synchrotron radiation micro-computed tomography was employed to precisely localize and isolate the osteon internally. While comparable elastic properties were observed between control and ribosylated osteons, the presence of AGEs led to decreased strain to failure. Young's modulus was quantified (9.9 ± 4.9 GPa and 8.7 ± 3 GPa, respectively), aligning closely with existing literature. This study presents a novel method for the extraction and isolation of osteons from bone and shows the detrimental effect of AGEs at the osteonal level. Supplementary Information The online version contains supplementary material available at 10.1007/s11837-024-06716-x.
Collapse
Affiliation(s)
- Ihsan S Elnunu
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112 USA
| | - Jessica N Redmond
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112 USA
| | - Yoshihiro Obata
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112 USA
- Department of Mechanical and Aerospace Engineering, University of California San Diego, Engineers Ln, San Diego, CA 92161 USA
| | - William Woolley
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112 USA
- Department of Mechanical and Aerospace Engineering, University of California San Diego, Engineers Ln, San Diego, CA 92161 USA
| | - David S Kammer
- Institute for Building Materials, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland
| | - Claire Acevedo
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112 USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112 USA
- Department of Mechanical and Aerospace Engineering, University of California San Diego, Engineers Ln, San Diego, CA 92161 USA
| |
Collapse
|
9
|
Kolahi Azar H, Gharibshahian M, Rostami M, Mansouri V, Sabouri L, Beheshtizadeh N, Rezaei N. The progressive trend of modeling and drug screening systems of breast cancer bone metastasis. J Biol Eng 2024; 18:14. [PMID: 38317174 PMCID: PMC10845631 DOI: 10.1186/s13036-024-00408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Bone metastasis is considered as a considerable challenge for breast cancer patients. Various in vitro and in vivo models have been developed to examine this occurrence. In vitro models are employed to simulate the intricate tumor microenvironment, investigate the interplay between cells and their adjacent microenvironment, and evaluate the effectiveness of therapeutic interventions for tumors. The endeavor to replicate the latency period of bone metastasis in animal models has presented a challenge, primarily due to the necessity of primary tumor removal and the presence of multiple potential metastatic sites.The utilization of novel bone metastasis models, including three-dimensional (3D) models, has been proposed as a promising approach to overcome the constraints associated with conventional 2D and animal models. However, existing 3D models are limited by various factors, such as irregular cellular proliferation, autofluorescence, and changes in genetic and epigenetic expression. The imperative for the advancement of future applications of 3D models lies in their standardization and automation. The utilization of artificial intelligence exhibits the capability to predict cellular behavior through the examination of substrate materials' chemical composition, geometry, and mechanical performance. The implementation of these algorithms possesses the capability to predict the progression and proliferation of cancer. This paper reviewed the mechanisms of bone metastasis following primary breast cancer. Current models of breast cancer bone metastasis, along with their challenges, as well as the future perspectives of using these models for translational drug development, were discussed.
Collapse
Affiliation(s)
- Hanieh Kolahi Azar
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maliheh Gharibshahian
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Leila Sabouri
- Department of Tissue Engineering and Applied Cell Sciences, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
10
|
Rubin MR, Dhaliwal R. Role of advanced glycation endproducts in bone fragility in type 1 diabetes. Bone 2024; 178:116928. [PMID: 37802378 DOI: 10.1016/j.bone.2023.116928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
The excess fracture risk observed in adults with type 1 diabetes (T1D) is inexplicable in the presence of only modest reductions in areal bone mineral density (BMD). Accumulation of advanced glycation endproducts (AGEs) in bone has been invoked as one explanation for the increased bone fragility in diabetes. The evidence linking AGEs and fractures in individuals with T1D is sparse, although the association has been observed in individuals with type 2 diabetes. Recent data show that in T1D, AGEs as measured by skin intrinsic fluorescence, are a risk factor for lower BMD. Further research in T1D is needed to ascertain whether there is a causal relationship between fractures and AGEs. If confirmed, this would pave the way for finding interventions that can slow AGE accumulation and thus reduce fractures in T1D.
Collapse
Affiliation(s)
- Mishaela R Rubin
- Metabolic Bone Disease Unit, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, United States of America
| | - Ruban Dhaliwal
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, United States of America.
| |
Collapse
|
11
|
Snow T, Woolley W, Acevedo C, Kingstedt OT. Effect of in vitro ribosylation on the dynamic fracture behavior of mature bovine cortical bone. J Mech Behav Biomed Mater 2023; 148:106171. [PMID: 37890344 DOI: 10.1016/j.jmbbm.2023.106171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/01/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
In this study, the fracture behavior of ribosylated bovine cortical bone is investigated under loading conditions simulating a fall event. Single edge notched specimens, separated into a control group (n = 11) and a ribosylated group (n = 8), were extracted from the mid-diaphysis of a single bovine femur harvested from a mature cow. A seven-day ribosylation process results in the accumulation of Advanced-Glycation End Products (AGEs) cross-links and AGE adducts. Specimens were subjected to symmetric three point bending (opening mode) and an impact velocity of 1.6 m/s using a drop tower. Near-crack displacement fields up to fracture initiation are determined from high-speed images post-processed using digital image correlation. A constrained over-deterministic least squares regression and orthotropic material linear elastic fracture mechanics theory are used to extract the in-plane critical stress intensity factors at fracture initiation (i.e., fracture initiation toughness values). Statistically significant differences were not observed when comparing the in-plane fracture initiation toughness values (p≥0.96) or energy release rate (p=0.90) between the control and seven-day ribosylated groups. The intrinsic variability of bone may require high sample numbers in order to achieve an adequately powered experiment when assessing dynamic fracture behavior. While there are no detectable differences due to the ribosylation treatment investigated, this is likely due to the limited sample sizes utilized.
Collapse
Affiliation(s)
- Tanner Snow
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - William Woolley
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA; Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Claire Acevedo
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA; Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, 92093, USA.
| | - Owen T Kingstedt
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
12
|
Kamml J, Acevedo C, Kammer DS. Advanced-Glycation Endproducts: How cross-linking properties affect the collagen fibril behavior. J Mech Behav Biomed Mater 2023; 148:106198. [PMID: 37890341 PMCID: PMC11519298 DOI: 10.1016/j.jmbbm.2023.106198] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Advanced-Glycation-Endproducts (AGEs) are known to be a major cause of impaired tissue material properties. In collagen fibrils, which constitute a major building component of human tissue, these AGEs appear as fibrillar cross-links. It has been shown that when AGEs accumulate in collagen fibrils, a process often caused by diabetes and aging, the mechanical properties of the collagen fibril are altered. However, current knowledge about the mechanical properties of different types of AGEs, and their quantity in collagen fibrils is limited owing to the scarcity of available experimental data. Consequently, the precise relationship between the nano-scale cross-link properties, which differ from type to type, their density in collagen fibrils, and the mechanical properties of the collagen fibrils at larger scales remains poorly understood. In our study, we use coarse-grained molecular dynamics simulations and perform destructive tensile tests on collagen fibrils to evaluate the effect of different cross-link densities and their mechanical properties on collagen fibril deformation and fracture behavior. We observe that the collagen fibril stiffens at high strain levels when either the AGEs density or the loading energy capacity of AGEs are increased. Based on our results, we demonstrate that this stiffening is caused by a mechanism that favors energy absorption via stretching rather than inter-molecular sliding. Hence, in these cross-linked collagen fibrils, the absorbed energy is stored rather than dissipated through friction, resulting in brittle fracture upon fibrillar failure. Further, by varying multiple AGEs nano-scale parameters, we show that the AGEs loading energy capacity is, aside from their density in the fibril, the unique factor determining the effect of different types of AGEs on the mechanical behavior of collagen fibrils. Our results show that knowing AGEs properties is crucial for a better understanding of the nano-scale origin of impaired tissue behavior. We further suggest that future experimental investigations should focus on the quantification of the loading energy capacity of AGEs as a key property for their influence on collagen fibrils.
Collapse
Affiliation(s)
- Julia Kamml
- Institute for Building Materials, ETH Zurich, Switzerland
| | - Claire Acevedo
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
| | - David S Kammer
- Institute for Building Materials, ETH Zurich, Switzerland.
| |
Collapse
|
13
|
Aurégan JC, Bosser C, Bachy-Razzouk M, Bensidhoum M, Hoc T. In Vivo Assessment of Skin Surface Pattern: Exploring Its Potential as an Indicator of Bone Biomechanical Properties. Bioengineering (Basel) 2023; 10:1338. [PMID: 38135929 PMCID: PMC10741173 DOI: 10.3390/bioengineering10121338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
The mechanical properties of bone tissue are the result of a complex process involving collagen-crystal interactions. The mineral density of the bone tissue is correlated with bone strength, whereas the characteristics of collagen are often associated with the ductility and toughness of the bone. From a clinical perspective, bone mineral density alone does not satisfactorily explain skeletal fragility. However, reliable in vivo markers of collagen quality that can be easily used in clinical practice are not available. Hence, the objective of the present study is to examine the relationship between skin surface morphology and changes in the mechanical properties of the bone. An experimental study was conducted on healthy children (n = 11), children with osteogenesis imperfecta (n = 13), and women over 60 years of age (n = 22). For each patient, the skin characteristic length (SCL) of the forearm skin surface was measured. The SCL quantifies the geometric patterns formed by wrinkles on the skin's surface, both in terms of size and elongation. The greater the SCL, the more deficient was the organic collagen matrix. In addition, the bone volume fraction and mechanical properties of the explanted femoral head were determined for the elderly female group. The mean SCL values of the healthy children group were significantly lower than those of the elderly women and osteogenesis imperfecta groups. For the aged women group, no significant differences were indicated in the elastic mechanical parameters, whereas bone toughness and ductility decreased significantly as the SCL increased. In conclusion, in bone collagen pathology or bone aging, the SCL is significantly impaired. This in vivo skin surface parameter can be a non-invasive tool to improve the estimation of bone matrix quality and to identify subjects at high risk of bone fracture.
Collapse
Affiliation(s)
- Jean-Charles Aurégan
- B3OA, UMR CNRS 7052, Inserm U1271 Université de Paris, 10 avenue de Verdun, 75010 Paris, France; (J.-C.A.); (M.B.-R.); (M.B.)
- Orthopedics Department, Université Paris-Saclay, AP-HP, Hôpital Antoine Béclère, 157, Rue de la Porte-de-Trivaux, 92140 Clamart, France
| | - Catherine Bosser
- HealthDataSciences, 45, Chemin du Barthélémy, 69260 Charbonnières-les-Bains, France
| | - Manon Bachy-Razzouk
- B3OA, UMR CNRS 7052, Inserm U1271 Université de Paris, 10 avenue de Verdun, 75010 Paris, France; (J.-C.A.); (M.B.-R.); (M.B.)
- Orthopedics Department, Sorbonne Université, AP-HP, Hôpital Trousseau, 26, Avenue du Docteur-Arnold-Netter, 75012 Paris, France
| | - Morad Bensidhoum
- B3OA, UMR CNRS 7052, Inserm U1271 Université de Paris, 10 avenue de Verdun, 75010 Paris, France; (J.-C.A.); (M.B.-R.); (M.B.)
| | - Thierry Hoc
- B3OA, UMR CNRS 7052, Inserm U1271 Université de Paris, 10 avenue de Verdun, 75010 Paris, France; (J.-C.A.); (M.B.-R.); (M.B.)
- Mechanical Department, École Centrale de Lyon, MSGMGC, 36, Avenue Guy-de-Collongue, 69134 Ecully, France
| |
Collapse
|
14
|
Wang B, Vashishth D. Advanced glycation and glycoxidation end products in bone. Bone 2023; 176:116880. [PMID: 37579812 PMCID: PMC10529863 DOI: 10.1016/j.bone.2023.116880] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/21/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Hyperglycemia and oxidative stress, enhanced in diabetes and aging, result in excessive accumulation of advanced glycation and glycoxidation end products (AGEs/AGOEs) in bone. AGEs/AGOES are considered to be "the missing link" in explaining increased skeletal fragility with diabetes, aging, and osteoporosis where increased fracture risk cannot be solely explained by bone mass and/or fall incidences. AGEs/AGOEs disrupt bone turnover and deteriorate bone quality through alterations of organic matrix (collagen and non-collagenous proteins), mineral, and water content. AGEs and AGOEs are also associated with bone fragility in other conditions such as Alzheimer's disease, circadian rhythm disruption, and cancer. This review explains how AGEs and AGOEs accumulate in bone and impact bone quality and bone fracture, and how AGES/AGOEs are being targeted in preclinical and clinical investigations for inhibition or removal, and for prediction and management of diabetic, osteoporotic and insufficiency fractures.
Collapse
Affiliation(s)
- Bowen Wang
- Shirley Ann Jackson Ph.D. Center of Biotechnology and Interdisciplinary Studies, Troy, NY 12180, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Deepak Vashishth
- Shirley Ann Jackson Ph.D. Center of Biotechnology and Interdisciplinary Studies, Troy, NY 12180, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Rensselaer - Icahn School of Medicine at Mount Sinai Center for Engineering and Precision Medicine, New York, NY 10019, USA.
| |
Collapse
|
15
|
Qian W, Gamsjaeger S, Paschalis EP, Graeff-Armas LA, Bare SP, Turner JA, Lappe JM, Recker RR, Akhter MP. Bone intrinsic material and compositional properties in postmenopausal women diagnosed with long-term Type-1 diabetes. Bone 2023; 174:116832. [PMID: 37385427 PMCID: PMC11302406 DOI: 10.1016/j.bone.2023.116832] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
The incidence of diabetes mellitus and the associated complications are growing worldwide, affecting the patients' quality of life and exerting a considerable burden on health systems. Yet, the increase in fracture risk in type 1 diabetes (T1D) patients is not fully captured by bone mineral density (BMD), leading to the hypothesis that alterations in bone quality are responsible for the increased risk. Material/compositional properties are important aspects of bone quality, yet information on human bone material/compositional properties in T1D is rather sparse. The purpose of the present study is to measure both the intrinsic material behaviour by nanoindentation, and material compositional properties by Raman spectroscopy as a function of tissue age and microanatomical location (cement lines) in bone tissue from iliac crest biopsies from postmenopausal women diagnosed with long-term T1D (N = 8), and appropriate sex-, age-, BMD- and clinically-matched controls (postmenopausal women; N = 5). The results suggest elevation of advanced glycation endproducts (AGE) content in the T1D and show significant differences in mineral maturity / crystallinity (MMC) and glycosaminoglycan (GAG) content between the T1D and control groups. Furthermore, both hardness and modulus by nanoindentation are greater in T1D. These data suggest a significant deterioration of material strength properties (toughness) and compositional properties in T1D compared with controls.
Collapse
Affiliation(s)
- Wen Qian
- University of Nebraska, Lincoln, NE, USA
| | | | | | | | - Sue P Bare
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA
| | | | - Joan M Lappe
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA
| | - Robert R Recker
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA
| | | |
Collapse
|
16
|
Shevroja E, Reginster JY, Lamy O, Al-Daghri N, Chandran M, Demoux-Baiada AL, Kohlmeier L, Lecart MP, Messina D, Camargos BM, Payer J, Tuzun S, Veronese N, Cooper C, McCloskey EV, Harvey NC. Update on the clinical use of trabecular bone score (TBS) in the management of osteoporosis: results of an expert group meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO), and the International Osteoporosis Foundation (IOF) under the auspices of WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging. Osteoporos Int 2023; 34:1501-1529. [PMID: 37393412 PMCID: PMC10427549 DOI: 10.1007/s00198-023-06817-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/31/2023] [Indexed: 07/03/2023]
Abstract
PURPOSE Trabecular bone score (TBS) is a grey-level textural measurement acquired from dual-energy X-ray absorptiometry lumbar spine images and is a validated index of bone microarchitecture. In 2015, a Working Group of the European Society on Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) published a review of the TBS literature, concluding that TBS predicts hip and major osteoporotic fracture, at least partly independent of bone mineral density (BMD) and clinical risk factors. It was also concluded that TBS is potentially amenable to change as a result of pharmacological therapy. Further evidence on the utility of TBS has since accumulated in both primary and secondary osteoporosis, and the introduction of FRAX and BMD T-score adjustment for TBS has accelerated adoption. This position paper therefore presents a review of the updated scientific literature and provides expert consensus statements and corresponding operational guidelines for the use of TBS. METHODS An Expert Working Group was convened by the ESCEO and a systematic review of the evidence undertaken, with defined search strategies for four key topics with respect to the potential use of TBS: (1) fracture prediction in men and women; (2) initiating and monitoring treatment in postmenopausal osteoporosis; (3) fracture prediction in secondary osteoporosis; and (4) treatment monitoring in secondary osteoporosis. Statements to guide the clinical use of TBS were derived from the review and graded by consensus using the Grades of Recommendation, Assessment, Development and Evaluation (GRADE) approach. RESULTS A total of 96 articles were reviewed and included data on the use of TBS for fracture prediction in men and women, from over 20 countries. The updated evidence shows that TBS enhances fracture risk prediction in both primary and secondary osteoporosis, and can, when taken with BMD and clinical risk factors, inform treatment initiation and the choice of antiosteoporosis treatment. Evidence also indicates that TBS provides useful adjunctive information in monitoring treatment with long-term denosumab and anabolic agents. All expert consensus statements were voted as strongly recommended. CONCLUSION The addition of TBS assessment to FRAX and/or BMD enhances fracture risk prediction in primary and secondary osteoporosis, adding useful information for treatment decision-making and monitoring. The expert consensus statements provided in this paper can be used to guide the integration of TBS in clinical practice for the assessment and management of osteoporosis. An example of an operational approach is provided in the appendix. This position paper presents an up-to-date review of the evidence base, synthesised through expert consensus statements, which informs the implementation of Trabecular Bone Score in clinical practice.
Collapse
Affiliation(s)
- Enisa Shevroja
- Interdisciplinary Center for Bone Diseases, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Jean-Yves Reginster
- World Health Organization Collaborating Center for Epidemiology of Musculoskeletal Health and Aging, Liège, Belgium
- Department of Public Health, Epidemiology and Health Economics, University of Liège, CHU Sart Tilman B23, 4000 Liège, Belgium
| | - Olivier Lamy
- Interdisciplinary Center for Bone Diseases, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Nasser Al-Daghri
- Biochemistry Department, College of Science, King Saud University, 11451 Riyadh, Kingdom of Saudi Arabia
| | - Manju Chandran
- Osteoporosis and Bone Metabolism Unit, Department of Endocrinology, Singapore General Hospital, ACADEMIA, 20, College Road, Singapore, 169856 Singapore
| | | | - Lynn Kohlmeier
- Spokane Strides for Strong Bones, Medical Director, West Coast Bone Health CME TeleECHO, Spokane, WA USA
| | | | - Daniel Messina
- IRO Medical Research Center, Buenos Aires and Rheumatology Section, Cosme Argerich, Buenos Aires, Argentina
| | - Bruno Muzzi Camargos
- Rede Materdei de Saúde - Hospital Santo Agostinho - Densitometry Unit Coordinator, Belo Horizonte, Brazil
| | - Juraj Payer
- 5th Department of Internal Medicine, Comenius University Faculty of Medicine, University Hospital, Bratislava, Slovakia
- Ružinovská 6, 82101 Bratislava, Slovakia
| | - Sansin Tuzun
- Department of Physical Medicine and Rehabilitation, Cerrahpaşa School of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Nicola Veronese
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, SO16 6YD UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Eugene V. McCloskey
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK
- MRC Versus Arthritis Centre for Integrated Research in Musculoskeletal Ageing, Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
| | - Nicholas C. Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, SO16 6YD UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
17
|
Kamml J, Acevedo C, Kammer DS. Advanced-Glycation Endproducts: How cross-linking properties affect the collagen fibril behavior. ARXIV 2023:arXiv:2308.05514v1. [PMID: 37608934 PMCID: PMC10441443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Advanced-Glycation-Endproducts (AGEs) are known to be a major cause of impaired tissue material properties. In collagen fibrils, which constitute a major building component of human tissue, these AGEs appear as fibrillar cross-links. It has been shown that when AGEs accumulate in collagen fibrils, a process often caused by diabetes and aging, the mechanical properties of the collagen fibril are altered. However, current knowledge about the mechanical properties of different types of AGEs, and their quantity in collagen fibrils is limited owing to the scarcity of available experimental data. Consequently, the precise relationship between the nano-scale cross-link properties, which differ from type to type, their density in collagen fibrils, and the mechanical properties of the collagen fibrils at larger scales remains poorly understood. In our study, we use coarse-grained molecular dynamics simulations and perform destructive tensile tests on collagen fibrils to evaluate the effect of different cross-link densities and their mechanical properties on collagen fibril deformation and fracture behavior. We observe that the collagen fibril stiffens at high strain levels when either the AGEs density or the loading energy capacity of AGEs are increased. Based on our results, we demonstrate that this stiffening is caused by a mechanism that favors energy absorption via stretching rather than inter-molecular sliding. Hence, in these cross-linked collagen fibrils, the absorbed energy is stored rather than dissipated through friction, resulting in brittle fracture upon fibrillar failure. Further, by varying multiple AGEs nano-scale parameters, we show that the AGEs loading energy capacity is, aside from their density in the fibril, the unique factor determining the effect of different types of AGEs on the mechanical behavior of collagen fibrils. Our results show that knowing AGEs properties is crucial for a better understanding of the nano-scale origin of impaired tissue behavior. We further suggest that future experimental investigations should focus on the quantification of the loading energy capacity of AGEs as a key property for their influence on collagen fibrils.
Collapse
Affiliation(s)
- Julia Kamml
- Institute for Building Materials, ETH Zurich, Switzerland
| | - Claire Acevedo
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | | |
Collapse
|
18
|
Vahidi G, Moody M, Welhaven HD, Davidson L, Rezaee T, Behzad R, Karim L, Roggenbeck BA, Walk ST, Martin SA, June RK, Heveran CM. Germ-Free C57BL/6 Mice Have Increased Bone Mass and Altered Matrix Properties but Not Decreased Bone Fracture Resistance. J Bone Miner Res 2023; 38:1154-1174. [PMID: 37221143 PMCID: PMC10530360 DOI: 10.1002/jbmr.4835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
The gut microbiome impacts bone mass, which implies a disruption to bone homeostasis. However, it is not yet clear how the gut microbiome affects the regulation of bone mass and bone quality. We hypothesized that germ-free (GF) mice have increased bone mass and decreased bone toughness compared with conventionally housed mice. We tested this hypothesis using adult (20- to 21-week-old) C57BL/6J GF and conventionally raised female and male mice (n = 6-10/group). Trabecular microarchitecture and cortical geometry were measured from micro-CT of the femur distal metaphysis and cortical midshaft. Whole-femur strength and estimated material properties were measured using three-point bending and notched fracture toughness. Bone matrix properties were measured for the cortical femur by quantitative back-scattered electron imaging and nanoindentation, and, for the humerus, by Raman spectroscopy and fluorescent advanced glycation end product (fAGE) assay. Shifts in cortical tissue metabolism were measured from the contralateral humerus. GF mice had reduced bone resorption, increased trabecular bone microarchitecture, increased tissue strength and decreased whole-bone strength that was not explained by differences in bone size, increased tissue mineralization and fAGEs, and altered collagen structure that did not decrease fracture toughness. We observed several sex differences in GF mice, most notably for bone tissue metabolism. Male GF mice had a greater signature of amino acid metabolism, and female GF mice had a greater signature of lipid metabolism, exceeding the metabolic sex differences of the conventional mice. Together, these data demonstrate that the GF state in C57BL/6J mice alters bone mass and matrix properties but does not decrease bone fracture resistance. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Ghazal Vahidi
- Department of Mechanical & Industrial Engineering; Montana State University, Bozeman MT 59717
| | - Maya Moody
- Department of Chemistry & Biochemistry; Montana State University, Bozeman MT 59717
| | - Hope D. Welhaven
- Department of Chemistry & Biochemistry; Montana State University, Bozeman MT 59717
| | - Leah Davidson
- Department of Chemical and Biological Engineering; University of Idaho, Moscow ID 83844
| | - Taraneh Rezaee
- Department of Bioengineering; University of Massachusetts, Dartmouth, MA 02747
| | - Ramina Behzad
- Department of Bioengineering; University of Massachusetts, Dartmouth, MA 02747
| | - Lamya Karim
- Department of Bioengineering; University of Massachusetts, Dartmouth, MA 02747
| | - Barbara A. Roggenbeck
- Department of Microbiology & Cell Biology, Montana State University; Bozeman MT 59717
| | - Seth T. Walk
- Department of Microbiology & Cell Biology, Montana State University; Bozeman MT 59717
| | - Stephan A. Martin
- Translational Biomarkers Core Laboratory; Center for American Indian and Rural Health Equity; Montana State University, Bozeman MT 59717
| | - Ronald K. June
- Department of Mechanical & Industrial Engineering; Montana State University, Bozeman MT 59717
| | - Chelsea M. Heveran
- Department of Mechanical & Industrial Engineering; Montana State University, Bozeman MT 59717
| |
Collapse
|
19
|
Haffer H, Muellner M, Chiapparelli E, Dodo Y, Zhu J, Han YX, Donnelly E, Tan ET, Shue J, Sama AA, Cammisa FP, Girardi FP, Hughes AP. Osteosarcopenia in the Spine Beyond Bone Mineral Density: Association Between Paraspinal Muscle Impairment and Advanced Glycation Endproducts. Spine (Phila Pa 1976) 2023; 48:984-993. [PMID: 37036285 PMCID: PMC10330153 DOI: 10.1097/brs.0000000000004683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/31/2023] [Indexed: 04/11/2023]
Abstract
STUDY DESIGN Prospective cross-sectional study. OBJECTIVE To determine if an accumulation of advanced glycation endproducts (AGEs) is associated with impaired paraspinal muscle composition. BACKGROUND Impaired bone integrity and muscle function are described as osteosarcopenia. Osteosarcopenia is associated with falls, fragility fractures, and reduced quality of life. Bone integrity is influenced by bone quantity (bone mineral density) and quality (microarchitecture and collagen). The accumulation of AGEs stiffens collagen fibers and increases bone fragility. The relationship between paraspinal muscle composition and bone collagen properties has not been evaluated. METHODS Intraoperative bone biopsies from the posterior superior iliac spine were obtained and evaluated with multiphoton microscopy for fluorescent AGE cross-link density (fAGEs). Preoperative magnetic resonance imaging measurements at level L4 included the musculus (m.) psoas and combined m. multifidus and m. erector spinae (posterior paraspinal musculature, PPM). Muscle segmentation on axial images (cross-sectional area, CSA) and calculation of a pixel intensity threshold method to differentiate muscle (functional cross-sectional area, fCSA) and intramuscular fat (FAT). Quantitative computed tomography was performed at the lumbar spine. Univariate and multivariable regression models were used to investigate associations between fAGEs and paraspinal musculature. RESULTS One hundred seven prospectively enrolled patients (50.5% female, age 60.7 y, BMI 28.9 kg/m 2 ) were analyzed. In all, 41.1% and 15.0% of the patients demonstrated osteopenia and osteoporosis, respectively. Univariate linear regression analysis demonstrated a significant association between cortical fAGEs and CSA in the psoas (ρ=0.220, P =0.039) but not in the PPM. Trabecular fAGEs revealed no significant associations to PPM or psoas musculature. In the multivariable analysis, higher cortical fAGEs were associated with increased FAT (β=1.556; P =0.002) and CSA (β=1.305; P =0.005) in the PPM after adjusting for covariates. CONCLUSION This is the first investigation demonstrating that an accumulation of nonenzymatic collagen cross-linking product fAGEs in cortical bone is associated with increased intramuscular fat in the lumbar paraspinal musculature.
Collapse
Affiliation(s)
- Henryk Haffer
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilian Muellner
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Erika Chiapparelli
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Yusuke Dodo
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Jiaqi Zhu
- Department of Epidemiology and Biostatistics, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Yi Xin Han
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
- Musculoskeletal Integrity Program, Research Institute, Hospital for Special Surgery, Weill Cornell Medicine New York City, NY, USA
| | - Ek T. Tan
- Department of Radiology and Imaging, Hospital for Special Surgery, New York City, NY, USA
| | - Jennifer Shue
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Andrew A. Sama
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Frank P. Cammisa
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Federico P. Girardi
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Alexander P. Hughes
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| |
Collapse
|
20
|
Arora D, Taylor EA, King KB, Donnelly E. Increased tissue modulus and hardness in the TallyHO mouse model of early onset type 2 diabetes mellitus. PLoS One 2023; 18:e0287825. [PMID: 37418415 PMCID: PMC10328374 DOI: 10.1371/journal.pone.0287825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 06/14/2023] [Indexed: 07/09/2023] Open
Abstract
Individuals with type 2 diabetes mellitus (T2DM) have a higher fracture risk compared to those without T2DM despite having higher bone mineral density (BMD). Thus, T2DM may alter other aspects of resistance to fracture beyond BMD such as bone geometry, microarchitecture, and tissue material properties. We characterized the skeletal phenotype and assessed the effects of hyperglycemia on bone tissue mechanical and compositional properties in the TallyHO mouse model of early-onset T2DM using nanoindentation and Raman spectroscopy. Femurs and tibias were harvested from male TallyHO and C57Bl/6J mice at 26 weeks of age. The minimum moment of inertia assessed by micro-computed tomography was smaller (-26%) and cortical porosity was greater (+490%) in TallyHO femora compared to controls. In three-point bending tests to failure, the femoral ultimate moment and stiffness did not differ but post-yield displacement was lower (-35%) in the TallyHO mice relative to that in C57Bl/6J age-matched controls after adjusting for body mass. The cortical bone in the tibia of TallyHO mice was stiffer and harder, as indicated by greater mean tissue nanoindentation modulus (+22%) and hardness (+22%) compared to controls. Raman spectroscopic mineral:matrix ratio and crystallinity were greater in TallyHO tibiae than in C57Bl/6J tibiae (mineral:matrix +10%, p < 0.05; crystallinity +0.41%, p < 0.10). Our regression model indicated that greater values of crystallinity and collagen maturity were associated with reduced ductility observed in the femora of the TallyHO mice. The maintenance of structural stiffness and strength of TallyHO mouse femora despite reduced geometric resistance to bending could potentially be explained by increased tissue modulus and hardness, as observed at the tibia. Finally, with worsening glycemic control, tissue hardness and crystallinity increased, and bone ductility decreased in TallyHO mice. Our study suggests that these material factors may be sentinels of bone embrittlement in adolescents with T2DM.
Collapse
Affiliation(s)
- Daksh Arora
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, United States of America
| | - Erik A. Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
| | - Karen B. King
- Department of Orthopedics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, United States of America
- Research Institute, Hospital for Special Surgery, New York, New York, United States of America
| |
Collapse
|
21
|
Kamml J, Ke CY, Acevedo C, Kammer DS. The influence of AGEs and enzymatic cross-links on the mechanical properties of collagen fibrils. J Mech Behav Biomed Mater 2023; 143:105870. [PMID: 37156073 PMCID: PMC11522032 DOI: 10.1016/j.jmbbm.2023.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Collagen, one of the main building blocks for various tissues, derives its mechanical properties directly from its structure of cross-linked tropocollagen molecules. The cross-links are considered to be a key component of collagen fibrils as they can change the fibrillar behavior in various ways. For instance, enzymatic cross-links (ECLs), one particular type of cross-links, are known for stabilizing the structure of the fibril and improving material properties, while cross-linking AGEs (Advanced-Glycation Endproducts) have been shown to accumulate and impair the mechanical properties of collageneous tissues. However, the reasons for whether and how a given type of cross-link improves or impairs the material properties remain unknown, and the exact relationship between the cross-link properties and density, and the fibrillar behavior is still not well understood. Here, we use coarse-grained steered molecular models to evaluate the effect of AGEs and ECLs cross-links content on the deformation and failure properties of collagen fibrils. Our simulations show that the collagen fibrils stiffen at high strain levels when the AGEs content exceeds a critical value. In addition, the strength of the fibril increases with AGEs accumulation. By analyzing the forces within the different types of cross-links (AGEs and ECLs) as well as their failure, we demonstrate that a change of deformation mechanism is at the origin of these observations. A high AGEs content reinforces force transfer through AGEs cross-links rather than through friction between sliding tropocollagen molecules, which leads to failure by breaking of bonds within the tropocollagen molecules. We show that this failure mechanism, which is associated with lower energy dissipation, results in more abrupt failure of the collagen fibril. Our results provide a direct and causal link between increased AGEs content, inhibited intra-fibrillar sliding, increased stiffness, and abrupt fibril fracture. Therefore, they explain the mechanical origin of bone brittleness as commonly observed in elderly and diabetic populations. Our findings contribute to a better understanding of the mechanisms underlying impaired tissue behavior due to elevated AGEs content and could enable targeted measures regarding the reduction of specific collagen cross-linking levels.
Collapse
Affiliation(s)
- Julia Kamml
- Institute for Building Materials, ETH Zurich, Switzerland
| | - Chun-Yu Ke
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA
| | - Claire Acevedo
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - David S Kammer
- Institute for Building Materials, ETH Zurich, Switzerland.
| |
Collapse
|
22
|
Emerzian SR, Wu T, Vaidya R, Tang SY, Abergel RJ, Keaveny TM. Relative Effects of Radiation-Induced Changes in Bone Mass, Structure, and Tissue Material on Vertebral Strength in a Rat Model. J Bone Miner Res 2023; 38:1032-1042. [PMID: 37191221 PMCID: PMC10524463 DOI: 10.1002/jbmr.4828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/06/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
The observed increased risk of fracture after cancer radiation therapy is presumably due to a radiation-induced reduction in whole-bone strength. However, the mechanisms for impaired strength remain unclear, as the increased fracture risk is not fully explained by changes in bone mass. To provide insight, a small animal model was used to determine how much of this whole-bone weakening effect for the spine is attributable to changes in bone mass, structure, and material properties of the bone tissue and their relative effects. Further, because women have a greater risk of fracture after radiation therapy than men, we investigated if sex had a significant influence on bone's response to irradiation. Fractionated in vivo irradiation (10 × 3 Gy) or sham irradiation (0 Gy) was administered daily to the lumbar spine in twenty-seven 17-week-old Sprague-Dawley rats (n = 6-7/sex/group). Twelve weeks after final treatment, animals were euthanized, and lumbar vertebrae (L4 and L5 ) were isolated. Using a combination of biomechanical testing, micro-CT-based finite element analysis, and statistical regression analysis, we separated out the effect of mass, structural, and tissue material changes on vertebral strength. Compared with the sham group (mean ± SD strength = 420 ± 88 N), the mean strength of the irradiated group was lower by 28% (117 N/420 N, p < 0.0001). Overall, the response of treatment did not differ with sex. By combining results from both general linear regression and finite element analyses, we calculated that mean changes in bone mass, structure, and material properties of the bone tissue accounted for 56% (66 N/117 N), 20% (23 N/117 N), and 24% (28 N/117 N), respectively, of the overall change in strength. As such, these results provide insight into why an elevated clinical fracture risk for patients undergoing radiation therapy is not well explained by changes in bone mass alone. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Shannon R. Emerzian
- Department of Mechanical Engineering, University of
California, Berkeley, California, USA
| | - Tongge Wu
- Department of Mechanical Engineering, University of
California, Berkeley, California, USA
| | - Rachana Vaidya
- Department of Orthopaedic Surgery, Washington University,
St. Louis, Missouri, USA
| | - Simon Y. Tang
- Department of Orthopaedic Surgery, Washington University,
St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington
University, St. Louis, Missouri, USA
- Department of Material Science & Mechanical
Engineering, Washington University, St. Louis, Missouri, USA
| | - Rebecca J. Abergel
- Department of Nuclear Engineering, University of
California, Berkeley, California, USA
| | - Tony M. Keaveny
- Department of Mechanical Engineering, University of
California, Berkeley, California, USA
- Department of Bioengineering, University of California,
Berkeley, California, USA
| |
Collapse
|
23
|
ROSENBERG JL, WOOLLEY W, ELNUNU I, KAMML J, KAMMER DS, ACEVEDO C. Effect of non-enzymatic glycation on collagen nanoscale mechanisms in diabetic and age-related bone fragility. BIOCELL 2023; 47:1651-1659. [PMID: 37693278 PMCID: PMC10486207 DOI: 10.32604/biocell.2023.028014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/20/2023] [Indexed: 09/12/2023]
Abstract
Age and diabetes have long been known to induce an oxidative reaction between glucose and collagen, leading to the accumulation of advanced glycation end-products (AGEs) cross-links in collagenous tissues. More recently, AGEs content has been related to loss of bone quality, independent of bone mass, and increased fracture risk with aging and diabetes. Loss of bone quality is mostly attributed to changes in material properties, structural organization, or cellular remodeling. Though all these factors play a role in bone fragility disease, some common recurring patterns can be found between diabetic and age-related bone fragility. The main pattern we will discuss in this viewpoint is the increase of fibrillar collagen stiffness and loss of collagen-induced plasticity with AGE accumulation. This study focused on recent related experimental studies and discusses the correlation between fluorescent AGEs content at the molecular and fibrillar scales, collagen deformation mechanisms at the nanoscale, and resistance to bone fracture at the macroscale.
Collapse
Affiliation(s)
- James L. ROSENBERG
- Department of Mechanical Engineering, University of Utah, Salt Lake City, 84112, USA
| | - William WOOLLEY
- Department of Mechanical Engineering, University of Utah, Salt Lake City, 84112, USA
| | - Ihsan ELNUNU
- Department of Mechanical Engineering, University of Utah, Salt Lake City, 84112, USA
| | - Julia KAMML
- Institute for Building Materials, ETH Zurich, Zurich, Switzerland
| | - David S. KAMMER
- Institute for Building Materials, ETH Zurich, Zurich, Switzerland
| | - Claire ACEVEDO
- Department of Mechanical Engineering, University of Utah, Salt Lake City, 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, 84112, USA
| |
Collapse
|
24
|
Mehta D, Sihota P, Tikoo K, Kumar S, Kumar N. Type 2 diabetes alters the viscoelastic behavior and macromolecular composition of vertebra. Bone Rep 2023; 18:101680. [PMID: 37187573 PMCID: PMC10176031 DOI: 10.1016/j.bonr.2023.101680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/01/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Type 2 diabetes (T2D) affects the functional behavior of vertebra bone by altering its structural and mechanical properties. The vertebral bones are responsible to carry the body weight and it remains under prolonged constant load which results to viscoelastic deformation. The effect of T2D on the viscoelastic behavior of vertebral bone is not well explored yet. In this study, the effects of T2D on the creep and stress relaxation behavior of vertebral bone are investigated. Also, this study established a correlation between T2D associated alteration in macromolecular structure and viscoelastic behavior of vertebra. In this study T2D female rat SD model was used. The obtained results demonstrated a significant reduction in the amount of creep strain (p ≤ 0.05) and stress relaxation (p ≤ 0.01) in T2D specimens than the control. Also, the creep rate was found significantly lower in T2D specimens. On the other hand, molecular structural parameters such as mineral-to-matrix ratio (control vs T2D: 2.93 ± 0.78 vs 3.72 ± 0.53; p = 0.02), and non-enzymatic cross link ratio (NE-xL) (control vs T2D: 1.53 ± 0.07 vs 3.84 ± 0.20; p = 0.01) were found significantly altered in T2D specimens. Pearson linear correlation tests show a significant correlation; between creep rate and NE-xL (r = -0.94, p < 0.01), and between stress relaxation and NE-xL (r = -0.946, p < 0.01). Overall this study explored the understanding about the disease associated alteration in viscoelastic response of vertebra and its correlation with macromolecular composition which can help to understand the disease related impaired functioning of the vertebrae body.
Collapse
Affiliation(s)
- Deepak Mehta
- Department of Mechanical Engineering Indian Institute of Technology Ropar, India
| | - Praveer Sihota
- Department of Mechanical Engineering Indian Institute of Technology Ropar, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Mohali, India
| | - Sachin Kumar
- Department of Mechanical Engineering Indian Institute of Technology Ropar, India
| | - Navin Kumar
- Department of Mechanical Engineering Indian Institute of Technology Ropar, India
| |
Collapse
|
25
|
Haffer H, Chiapparelli E, Muellner M, Moser M, Dodo Y, Reisener MJ, Adl Amini D, Salzmann SN, Zhu J, Han YX, Donnelly E, Shue J, Sama AA, Cammisa FP, Girardi FP, Hughes AP. Bone collagen quality in lumbar fusion patients: the association between volumetric bone mineral density and advanced glycation endproducts. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:1678-1687. [PMID: 36922425 PMCID: PMC10623215 DOI: 10.1007/s00586-023-07589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/06/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE The sole determination of volumetric bone mineral density (vBMD) is insufficient to evaluate overall bone integrity. The accumulation of advanced glycation endproducts (AGEs) stiffens and embrittles collagen fibers. Despite the important role of AGEs in bone aging, the relationship between AGEs and vBMD is poorly understood. We hypothesized that an accumulation of AGEs, a marker of impaired bone quality, is related to decreased vBMD. METHODS Prospectively collected data of 127 patients undergoing lumbar fusion were analyzed. Quantitative computed tomography (QCT) measurements were performed at the lumbar spine. Intraoperative bone biopsies were obtained and analyzed with confocal fluorescence microscopy for fluorescent AGEs, both trabecular and cortical. Spearman's correlation coefficients were calculated to examine relationships between vBMD and fAGEs, stratified by sex. Multivariable linear regression analysis with adjustments for age, sex, body mass index (BMI), race, diabetes mellitus and HbA1c was used to investigate associations between vBMD and fAGEs. RESULTS One-hundred and twenty-seven patients (51.2% female, 61.2 years, BMI of 28.7 kg/m2) with 107 bone biopsies were included in the final analysis, excluding patients on anti-osteoporotic drug therapy. In the univariate analysis, cortical fAGEs increased with decreasing vBMD at (r = -0.301; p = 0.030), but only in men. In the multivariable analysis, trabecular fAGEs increased with decreasing vBMD after adjusting for age, sex, BMI, race, diabetes mellitus and HbA1c (β = 0.99;95%CI=(0.994,1.000); p = 0.04). CONCLUSION QCT-derived vBMD measurements were found to be inversely associated with trabecular fAGEs. Our results enhance the understanding of bone integrity by suggesting that spine surgery patients with decreased bone quantity may also have poorer bone quality.
Collapse
Affiliation(s)
- Henryk Haffer
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Erika Chiapparelli
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Maximilian Muellner
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Manuel Moser
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
- Department of Spine Surgery, Lucerne Cantonal Hospital, Lucerne, Switzerland
| | - Yusuke Dodo
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Marie-Jacqueline Reisener
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dominik Adl Amini
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stephan N Salzmann
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Jiaqi Zhu
- Department of Epidemiology and Biostatistics, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Yi Xin Han
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
- Musculoskeletal Integrity Program, Research Institute, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Jennifer Shue
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Andrew A Sama
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Frank P Cammisa
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Federico P Girardi
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Alexander P Hughes
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA.
| |
Collapse
|
26
|
Cavati G, Pirrotta F, Merlotti D, Ceccarelli E, Calabrese M, Gennari L, Mingiano C. Role of Advanced Glycation End-Products and Oxidative Stress in Type-2-Diabetes-Induced Bone Fragility and Implications on Fracture Risk Stratification. Antioxidants (Basel) 2023; 12:antiox12040928. [PMID: 37107303 PMCID: PMC10135862 DOI: 10.3390/antiox12040928] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Type 2 diabetes (T2D) and osteoporosis (OP) are major causes of morbidity and mortality that have arelevant health and economic burden. Recent epidemiological evidence suggests that both of these disorders are often associated with each other and that T2D patients have an increased risk of fracture, making bone an additional target of diabetes. As occurs for other diabetic complications, the increased accumulation of advanced glycation end-products (AGEs) and oxidative stress represent the major mechanisms explaining bone fragility in T2D. Both of these conditions directly and indirectly (through the promotion of microvascular complications) impair the structural ductility of bone and negatively affect bone turnover, leading to impaired bone quality, rather than decreased bone density. This makes diabetes-induced bone fragility remarkably different from other forms of OP and represents a major challenge for fracture risk stratification, since either the measurement of BMD or the use of common diagnostic algorithms for OP have a poor predictive value. We review and discuss the role of AGEs and oxidative stress on the pathophysiology of bone fragility in T2D, providing some indications on how to improve fracture risk prediction in T2D patients.
Collapse
Affiliation(s)
- Guido Cavati
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Filippo Pirrotta
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Daniela Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Elena Ceccarelli
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Marco Calabrese
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Christian Mingiano
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
27
|
Unal M, Uppuganti S, Dapaah DY, Ahmed R, Pennings JS, Willett TL, Voziyan P, Nyman JS. Effect of ribose incubation on physical, chemical, and mechanical properties of human cortical bone. J Mech Behav Biomed Mater 2023; 140:105731. [PMID: 36827936 PMCID: PMC10068591 DOI: 10.1016/j.jmbbm.2023.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/27/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023]
Abstract
Raman spectroscopy (RS) is sensitive to the accumulation of advanced glycation end-products (AGEs), and it measures matrix-sensitive properties that correlate with the fracture toughness of human cortical bone. However, it is unclear whether sugar-mediated accumulation of AGEs affects the fracture toughness of human cortical bone in a manner that is consistent with the negative correlations between amide I sub-peak ratios and fracture toughness. Upon machining 64 single-edge notched beam (SENB) specimens from cadaveric femurs (8 male and 7 female donors between 46 years and 61 years of age), pairs of SENB specimens were incubated in 15 mL of phosphate buffered saline with or without 0.1 M ribose for 4 weeks at 37 °C. After acquiring 10 Raman spectra per bone specimen (n = 32 per incubation group), paired SENB specimens were loaded in three-point bending at a quasi-static or a high loading rate approximating 10-4 s-1 or 10-2 s-1, respectively (n = 16 per incubation group per loading rate). While 2 amide I sub-peak ratios, I1670/I1640 and I1670/I1610, decreased by 3-5% with a 100% increase in AGE content, as confirmed by fluorescence measurements, the ribose incubation to accumulate AGEs in bone did not affect linear elastic (KIc) nor non-linear elastic (KJc) measurements of bone's ability to resist crack growth. Moreover, AGE accumulation did not affect the change in these properties when the loading rate changed. Increasing the loading rate increased KIc but decreased KJc. Ribose incubation did not affect mineral-related RS properties such as mineral-to-matrix ratios, Type B carbonate substitutions, and crystallinity. It did however increase the thermal stability of demineralized bone (differential scanning calorimetry), without affecting the network connectivity of the organic matrix (i.e., maximum slope during a hydrothermal isometric tension test of demineralized bone). In conclusion, RS is sensitive to AGE accumulation via the amide I band (plus the hydroxyproline-to-proline ratio), but the increase in AGE content due to ribose incubation was not sufficient to affect the fracture toughness of human cortical bone.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Bioengineering, Karamanoglu Mehmetbey University, Karaman, 70200, Turkey; Department of Biophysics, Faculty of Medicine, Karamanoglu Mehmetbey University, Karaman, 70200, Turkey
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S, Suite 4200, Nashville, TN, 37232, USA; Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave, Nashville, TN, 37212, USA
| | - Daniel Y Dapaah
- Biomedical Engineering Program, Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Rafay Ahmed
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S, Suite 4200, Nashville, TN, 37232, USA; Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave, Nashville, TN, 37212, USA
| | - Jacquelyn S Pennings
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S, Suite 4200, Nashville, TN, 37232, USA; Vanderbilt Center for Musculoskeletal Research, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 1200, Nashville, TN, 37203, USA
| | - Thomas L Willett
- Biomedical Engineering Program, Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Paul Voziyan
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S, Suite 4200, Nashville, TN, 37232, USA; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, 1611 21st Ave. S, Nashville, TN, 37212, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S, Suite 4200, Nashville, TN, 37232, USA; Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave, Nashville, TN, 37212, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24th Ave. S, Nashville, TN, 37212, USA; Vanderbilt Center for Musculoskeletal Research, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 1200, Nashville, TN, 37203, USA.
| |
Collapse
|
28
|
Liu CJ, Yang X, Wang SH, Wu XT, Mao Y, Shi JW, Fan YB, Sun LW. Preventing Disused Bone Loss through Inhibition of Advanced Glycation End Products. Int J Mol Sci 2023; 24:ijms24054953. [PMID: 36902384 PMCID: PMC10003672 DOI: 10.3390/ijms24054953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Bone loss occurs in astronauts during long-term space flight, but the mechanisms are still unclear. We previously showed that advanced glycation end products (AGEs) were involved in microgravity-induced osteoporosis. Here, we investigated the improvement effects of blocking AGEs formation on microgravity-induced bone loss by using the AGEs formation inhibitor, irbesartan. To achieve this objective, we used a tail-suspended (TS) rat model to simulate microgravity and treated the TS rats with 50 mg/kg/day irbesartan, as well as the fluorochrome biomarkers injected into rats to label dynamic bone formation. To assess the accumulation of AGEs, pentosidine (PEN), non-enzymatic cross-links (NE-xLR), and fluorescent AGEs (fAGEs) were identified in the bone; 8-hydroxydeoxyguanosine (8-OHdG) was analyzed for the reactive oxygen species (ROS) level in the bone. Meanwhile, bone mechanical properties, bone microstructure, and dynamic bone histomorphometry were tested for bone quality assessment, and Osterix and TRAP were immunofluorescences stained for the activities of osteoblastic and osteoclastic cells. Results showed AGEs increased significantly and 8-OHdG expression in bone showed an upward trend in TS rat hindlimbs. The bone quality (bone microstructure and mechanical properties) and bone formation process (dynamic bone formation and osteoblastic cells activities) were inhibited after tail-suspension, and showed a correlation with AGEs, suggesting the elevated AGEs contributed to the disused bone loss. After being treated with irbesartan, the increased AGEs and 8-OHdG expression were significantly inhibited, suggesting irbesartan may reduce ROS to inhibit dicarbonyl compounds, thus suppressing AGEs production after tail-suspension. The inhibition of AGEs can partially alter the bone remodeling process and improve bone quality. Both AGEs accumulation and bone alterations almost occurred in trabecular bone but not in cortical bone, suggesting AGEs effects on bone remodeling under microgravity are dependent on the biological milieu.
Collapse
Affiliation(s)
| | - Xiao Yang
- Correspondence: (X.Y.); (L.-W.S.); Tel.: +86-13811922096 (X.Y.); Fax: +86-10-82339349 (L.-W.S.)
| | | | | | | | | | | | - Lian-Wen Sun
- Correspondence: (X.Y.); (L.-W.S.); Tel.: +86-13811922096 (X.Y.); Fax: +86-10-82339349 (L.-W.S.)
| |
Collapse
|
29
|
Bailey S, Poundarik AA, Sroga GE, Vashishth D. Structural role of osteocalcin and its modification in bone fracture. APPLIED PHYSICS REVIEWS 2023; 10:011410. [PMID: 36915902 PMCID: PMC9999293 DOI: 10.1063/5.0102897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Osteocalcin (OC), an abundant non-collagenous protein in bone extracellular matrix, plays a vital role in both its biological and mechanical function. OC undergoes post-translational modification, such as glycation; however, it remains unknown whether glycation of OC affects bone's resistance to fracture. Here, for the first time, we demonstrate the formation of pentosidine, an advanced glycation end-product (AGE) cross-link on mouse OC analyzed by ultra-performance liquid chromatography. Next, we establish that the presence of OC in mouse bone matrix is associated with lower interlamellar separation (distance) and thicker bridges spanning the lamellae, both of which are critical for maintaining bone's structural integrity. Furthermore, to determine the impact of modification of OC by glycation on bone toughness, we glycated bone samples in vitro from wild-type (WT) and osteocalcin deficient (Oc-/-) mice, and compared the differences in total fluorescent AGEs and fracture toughness between the Oc -/- glycated and control mouse bones and the WT glycated and control mouse bones. We determined that glycation resulted in significantly higher AGEs in WT compared to Oc-/- mouse bones (delta-WT > delta-OC, p = 0.025). This observed change corresponded to a significant decrease in fracture toughness between WT and Oc-/- mice (delta-WT vs delta-OC, p = 0.018). Thus, we propose a molecular deformation and fracture mechanics model that corroborates our experimental findings and provides evidence to support a 37%-90% loss in energy dissipation of OC due to formation of pentosidine cross-link by glycation. We anticipate that our study will aid in elucidating the effects of a major non-collagenous bone matrix protein, osteocalcin, and its modifications on bone fragility and help identify potential therapeutic targets for maintaining skeletal health.
Collapse
Affiliation(s)
| | | | - Grazyna E. Sroga
- Department of Biomedical Engineering, Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Deepak Vashishth
- Department of Biomedical Engineering, Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| |
Collapse
|
30
|
Lekkala S, Sacher SE, Taylor EA, Williams RM, Moseley KF, Donnelly E. Increased Advanced Glycation Endproducts, Stiffness, and Hardness in Iliac Crest Bone From Postmenopausal Women With Type 2 Diabetes Mellitus on Insulin. J Bone Miner Res 2023; 38:261-277. [PMID: 36478472 PMCID: PMC9898222 DOI: 10.1002/jbmr.4757] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Individuals with type 2 diabetes mellitus (T2DM) have a greater risk of bone fracture compared with those with normal glucose tolerance (NGT). In contrast, individuals with impaired glucose tolerance (IGT) have a lower or similar risk of fracture. Our objective was to understand how progressive glycemic derangement affects advanced glycation endproduct (AGE) content, composition, and mechanical properties of iliac bone from postmenopausal women with NGT (n = 35, age = 65 ± 7 years, HbA1c = 5.8% ± 0.3%), IGT (n = 26, age = 64 ± 5 years, HbA1c = 6.0% ± 0.4%), and T2DM on insulin (n = 25, age = 64 ± 6 years, HbA1c = 9.1% ± 2.2%). AGEs were assessed in all samples using high-performance liquid chromatography to measure pentosidine and in NGT/T2DM samples using multiphoton microscopy to spatially resolve the density of fluorescent AGEs (fAGEs). A subset of samples (n = 14 NGT, n = 14 T2DM) was analyzed with nanoindentation and Raman microscopy. Bone tissue from the T2DM group had greater concentrations of (i) pentosidine versus IGT (cortical +24%, p = 0.087; trabecular +35%, p = 0.007) and versus NGT (cortical +40%, p = 0.003; trabecular +35%, p = 0.004) and (ii) fAGE cross-link density versus NGT (cortical +71%, p < 0.001; trabecular +44%, p < 0.001). Bone pentosidine content in the IGT group was lower than in the T2DM group and did not differ from the NGT group, indicating that the greater AGE content observed in T2DM occurs with progressive diabetes. Individuals with T2DM on metformin had lower cortical bone pentosidine compared with individuals not on metformin (-35%, p = 0.017). Cortical bone from the T2DM group was stiffer (+9%, p = 0.021) and harder (+8%, p = 0.039) versus the NGT group. Bone tissue AGEs, which embrittle bone, increased with worsening glycemic control assessed by HbA1c (Pen: R2 = 0.28, p < 0.001; fAGE density: R2 = 0.30, p < 0.001). These relationships suggest a potential mechanism by which bone fragility may increase despite greater tissue stiffness and hardness in individuals with T2DM; our results suggest that it occurs in the transition from IGT to overt T2DM. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Sashank Lekkala
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
| | - Sara E. Sacher
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
| | - Erik A. Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
| | | | - Kendall F. Moseley
- Division of Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
- Research Division, Hospital for Special Surgery, New York, NY
| |
Collapse
|
31
|
Britton M, Parle E, Vaughan TJ. An investigation on the effects of in vitro induced advanced glycation end-products on cortical bone fracture mechanics at fall-related loading rates. J Mech Behav Biomed Mater 2023; 138:105619. [PMID: 36525877 DOI: 10.1016/j.jmbbm.2022.105619] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
It has been suggested that adverse changes in bone quality due to the accumulation of advanced glycation end-products (AGEs) may play a role in the increased skeletal fragility. These non-enzymatic glycation mediated crosslinks are caused due to the presence of sugars in the extracellular space and can be induced in-vitro. AGEs exist naturally in bone, but with diseases such as type-2 diabetes, they are found at higher levels. While previous studies have examined the relationships between AGE accumulation and some mechanical properties, there is a lack of understanding of how AGE accumulation affects the fracture mechanics behaviour of bone tissue at fall-related loading rates. The objective of this study was to investigate the relationship between AGE accumulation and the fracture mechanics of cortical bone tissue. An in vitro glycation model was used to simulate diabetic conditions in twenty anatomically adjacent pairs of bone from a single bovine femur, which reduced the possibility of inter-specimen variability. Mechanical characterisation was carried out using 3-point bend, fracture toughness and nanoindentation testing, while bone composition was analysed by quantifying the accumulation of fluorescent AGEs. Under three-point bend testing, it was found that the yield stress, ultimate flexural strength, and secant modulus of the glycated samples were significantly higher than the controls. Furthermore, fracture toughness testing showed that the critical fracture toughness was increased by 16% in glycated samples compared to controls. These results provide no evidence that AGEs alone play a role in bone fragility at fall-related loading rates, with AGE accumulation actually found to enhance several pre- and post-yield properties of the tissue.
Collapse
Affiliation(s)
- Marissa Britton
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Eoin Parle
- Department of Mechanical & Industrial Engineering, Atlantic Technological University, Galway, Ireland
| | - Ted J Vaughan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland.
| |
Collapse
|
32
|
Kamml J, Ke CY, Acevedo C, Kammer DS. The influence of AGEs and enzymatic cross-links on the mechanical properties of collagen fibrils. ARXIV 2023:arXiv:2301.13010v1. [PMID: 36776815 PMCID: PMC9915749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Cross-links are considered to be a key component of collagen fibrils as they can change the fibrillar behavior in various ways. Advanced-Glycation Endproducts (AGEs), one particular type of cross-links, have been shown to accumulate and impair the mechanical properties of collageneous tissues, whereas enzymatic cross-links (ECLs) are known for stabilizing the structure of the fibril. However, the reasons for whether a given type of cross-link improves or impairs the material properties remain unknown. Here, we use coarse-grained steered molecular models to evaluate the effect of AGEs and ECLs cross-links content on the deformation and failure properties of collagen fibrils. Our simulations show that the collagen fibrils stiffen at high strain levels when the AGEs content exceeds a critical value. In addition, the strength of the fibril increases with AGEs accumulation. By analyzing the forces within the different types of cross-links (AGEs and ECLs) as well as their failure, we demonstrate that a change of deformation mechanism is at the origin of these observations. A high AGEs content reinforces force transfer through AGEs cross-links rather than through friction between sliding tropocollagen molecules. We show that this failure mechanism, which is associated with lower energy dissipation, results in more abrupt failure of the collagen fibril. Our results provide a direct and causal link between increased AGEs content, inhibited intra-fibrillar sliding, increased stiffness, and abrupt fibril fracture. Therefore, they explain the mechanical origin of bone brittleness as commonly observed in elderly and diabetic populations. Our findings contribute to a better understanding of the mechanisms underlying impaired tissue behaviour due to elevated AGEs content and could enable targeted measures regarding the reduction of specific collagen cross-linking levels.
Collapse
Affiliation(s)
- Julia Kamml
- Institute for Building Materials, ETH Zurich, Switzerland
| | - Chun-Yu Ke
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA
| | - Claire Acevedo
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | | |
Collapse
|
33
|
LLabre JE, Gil C, Amatya N, Lagalwar S, Possidente B, Vashishth D. Degradation of Bone Quality in a Transgenic Mouse Model of Alzheimer's Disease. J Bone Miner Res 2022; 37:2548-2565. [PMID: 36250342 PMCID: PMC9772191 DOI: 10.1002/jbmr.4723] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) patients present with symptoms such as impairment of insulin signaling, chronic inflammation, and oxidative stress. Furthermore, there are comorbidities associated with AD progression. For example, osteoporosis is common with AD wherein patients exhibit reduced mineralization and a risk for fragility fractures. However, there is a lack of understanding on the effects of AD on bone beyond loss of bone density. To this end, we investigated the effects of AD on bone quality using the 5XFAD transgenic mouse model in which 12-month-old 5XFAD mice showed accumulation of amyloid-beta (Aβ42) compared with wild-type (WT) littermates (n = 10/group; 50% female, 50% male). Here, we observed changes in cortical bone but not in cancellous bone quality. Both bone mass and bone quality, measured in femoral samples using imaging (micro-CT, confocal Raman spectroscopy, X-ray diffraction [XRD]), mechanical (fracture tests), and chemical analyses (biochemical assays), were altered in the 5XFAD mice compared with WT. Micro-CT results showed 5XFAD mice had lower volumetric bone mineral density (BMD) and increased endocortical bone loss. XRD results showed decreased mineralization with smaller mineral crystals. Bone matrix compositional properties, from Raman, showed decreased crystallinity along with higher accumulation of glycoxidation products and glycation products, measured biochemically. 5XFAD mice also demonstrated loss of initiation and maximum toughness. We observed that carboxymethyl-lysine (CML) and mineralization correlated with initiation toughness, whereas crystal size and pentosidine (PEN) correlated with maximum toughness, suggesting bone matrix changes predominated by advanced glycation end products (AGEs) and altered/poor mineral quality explained loss of fracture toughness. Our findings highlight two pathways to skeletal fragility in AD through alteration of bone quality: (i) accumulation of AGEs; and (ii) loss of crystallinity, decreased crystal size, and loss of mineralization. We observed that the accumulation of amyloidosis in brain correlated with an increase in several AGEs, consistent with a mechanistic link between elevated Aβ42 levels in the brain and AGE accumulation in bone. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Joan E. LLabre
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Cristianel Gil
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| | - Neha Amatya
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| | - Sarita Lagalwar
- Neuroscience Program, Skidmore College, Saratoga Springs, NY, USA
| | | | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
34
|
Vaidya R, Rezaee T, Edwards T, Bender R, Vickneswaran A, Chalivendra V, Karim L. Accumulation of fluorescent advanced glycation end products and carboxymethyl-lysine in human cortical and trabecular bone. Bone Rep 2022; 17:101634. [DOI: 10.1016/j.bonr.2022.101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
|
35
|
Willett TL, Voziyan P, Nyman JS. Causative or associative: A critical review of the role of advanced glycation end-products in bone fragility. Bone 2022; 163:116485. [PMID: 35798196 PMCID: PMC10062699 DOI: 10.1016/j.bone.2022.116485] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
Abstract
The accumulation of advanced glycation end-products (AGEs) in the organic matrix of bone with aging and chronic disease such as diabetes is thought to increase fracture risk independently of bone mass. However, to date, there has not been a clinical trial to determine whether inhibiting the accumulation of AGEs is effective in preventing low-energy, fragility fractures. Moreover, unlike with cardiovascular or kidney disease, there are also no pre-clinical studies demonstrating that AGE inhibitors or breakers can prevent the age- or diabetes-related decrease in the ability of bone to resist fracture. In this review, we critically examine the case for a long-standing hypothesis that AGE accumulation in bone tissue degrades the toughening mechanisms by which bone resists fracture. Prior research into the role of AGEs in bone has primarily measured pentosidine, an AGE crosslink, or bulk fluorescence of hydrolysates of bone. While significant correlations exist between these measurements and mechanical properties of bone, multiple AGEs are both non-fluorescent and non-crosslinking. Since clinical studies are equivocal on whether circulating pentosidine is an indicator of elevated fracture risk, there needs to be a more complete understanding of the different types of AGEs including non-crosslinking adducts and multiple non-enzymatic crosslinks in bone extracellular matrix and their specific contributions to hindering fracture resistance (biophysical and biological). By doing so, effective strategies to target AGE accumulation in bone with minimal side effects could be investigated in pre-clinical and clinical studies that aim to prevent fragility fractures in conditions that bone mass is not the underlying culprit.
Collapse
Affiliation(s)
- Thomas L Willett
- Biomedical Engineering Program, Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada.
| | - Paul Voziyan
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
36
|
Sroga GE, Stephen S, Wang B, Vashishth D. Techniques for advanced glycation end product measurements for diabetic bone disease: pitfalls and future directions. Curr Opin Endocrinol Diabetes Obes 2022; 29:333-342. [PMID: 35777968 PMCID: PMC9348815 DOI: 10.1097/med.0000000000000736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Multiple biochemical and biophysical approaches have been broadly used for detection and quantitation of posttranslational protein modifications associated with diabetic bone, yet these techniques present a variety of challenges. In this review, we discuss recent advancements and complementary roles of analytical (UPLC/UPLC-MS/MS and ELISA) and biophysical (Raman and FTIR) techniques used for characterization of glycation products, measured from bone matrix and serum, and provide recommendations regarding the selection of a technique for specific study of diabetic bone. RECENT FINDINGS Hyperglycemia and oxidative stress in diabetes contribute to the formation of a large subgroup of advanced glycation end products (AGEs) known as glycoxidation end products (AGOEs). AGEs/AGOEs have various adverse effects on bone health. Commonly, accumulation of AGEs/AGOEs leads to increased bone fragility. For example, recent studies show that carboxymethyllysine (CML) and pentosidine (PEN) are formed in bone at higher levels in certain diseases and metabolic conditions, in particular, in diabetes and aging. Detection and quantitation of AGEs/AGOEs in rare and/or precious samples is feasible because of a number of technological advancements of the past decade. SUMMARY Recent technological advancements have led to a significant improvement of several key analytical biochemistry and biophysics techniques used for detection and characterization of AGEs/AGOEs in bone and serum. Their principles and applications to skeletal tissue studies as well as limitations are discussed in this review.
Collapse
Affiliation(s)
- Grażyna E. Sroga
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Samuel Stephen
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Bowen Wang
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
37
|
Chavassieux P, Chapurlat R. Interest of Bone Histomorphometry in Bone Pathophysiology Investigation: Foundation, Present, and Future. Front Endocrinol (Lausanne) 2022; 13:907914. [PMID: 35966102 PMCID: PMC9368205 DOI: 10.3389/fendo.2022.907914] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the development of non-invasive methods, bone histomorphometry remains the only method to analyze bone at the tissue and cell levels. Quantitative analysis of transiliac bone sections requires strict methodologic conditions but since its foundation more 60 years ago, this methodology has progressed. Our purpose was to review the evolution of bone histomorphometry over the years and its contribution to the knowledge of bone tissue metabolism under normal and pathological conditions and the understanding of the action mechanisms of therapeutic drugs in humans. The two main applications of bone histomorphometry are the diagnosis of bone diseases and research. It is warranted for the diagnosis of mineralization defects as in osteomalacia, of other causes of osteoporosis as bone mastocytosis, or the classification of renal osteodystrophy. Bone biopsies are required in clinical trials to evaluate the safety and mechanism of action of new therapeutic agents and were applied to anti-osteoporotic agents such as bisphosphonates and denosumab, an anti-RANKL, which induces a marked reduction of the bone turnover with a consequent elongation of the mineralization period. In contrast, an increased bone turnover with an extension of the formation site is observed with teriparatide. Romosozumab, an anti-sclerostin, has a dual effect with an early increased formation and reduced resorption. Bone histomorphometric studies allow us to understand the mechanism of coupling between formation and resorption and to evaluate the respective role of bone modeling and remodeling. The adaptation of new image analysis techniques will help bone biopsy analysis in the future.
Collapse
|
38
|
Gouldin AG, Brown ME, Puetzer JL. An inducible model for unraveling the effects of advanced glycation end-product accumulation in aging connective tissues. Connect Tissue Res 2022; 63:406-424. [PMID: 34706612 DOI: 10.1080/03008207.2021.1991333] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE In connective tissues there is a clear link between increasing age and degeneration. Advanced glycation end-products (AGEs) are believed to play a central role. AGEs are sugar-induced non-enzymatic crosslinks which accumulate in collagen with age and diabetes, altering tissue mechanics and cellular function. Despite ample correlative evidence linking collagen glycation to tissue degeneration, little is known how AGEs impact cell-matrix interactions, limiting therapeutic options. One reason for this limited understanding is that AGEs are typically induced using high concentrations of ribose which decrease cell viability, making it impossible to investigate cell-matrix interactions. The objective of this study was to develop a system to trigger AGE accumulation while maintaining cell viability. MATERIALS AND METHODS Using cell-seeded high density collagen gels, we investigated the effect of two systems for AGE induction, ribose at low concentrations (30, 100, and 200 mM) over 15 days of culture and riboflavin (0.25 and 0.75 mM) induced with blue light for 40 seconds (riboflavin-465 nm). RESULTS We found ribose and riboflavin-465 nm treatment produces fluorescent AGE quantities which match and/or exceed human fluorescent AGE levels for various tissues, ages, and diseases, without affecting cell viability or metabolism. Interestingly, a 40 second treatment of riboflavin-465 nm produced similar levels of fluorescent AGEs as 3 days of 100 mM ribose treatment. CONCLUSIONS Riboflavin-465 nm is a promising method to trigger AGEs on demand in vivo or in vitro without impacting cell viability and offers potential for unraveling the mechanism of AGEs in age and diabetes related tissue damage.
Collapse
Affiliation(s)
- Austin G Gouldin
- Departments of Biomedical Engineering; Orthopaedic Surgery, Virginia Commonwealth University, Richmond, Virginia, United States
| | - M Ethan Brown
- Departments of Biomedical Engineering; Orthopaedic Surgery, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Jennifer L Puetzer
- Departments of Biomedical Engineering; Orthopaedic Surgery, Virginia Commonwealth University, Richmond, Virginia, United States
| |
Collapse
|
39
|
Teissier T, Temkin V, Pollak RD, Cox LS. Crosstalk Between Senescent Bone Cells and the Bone Tissue Microenvironment Influences Bone Fragility During Chronological Age and in Diabetes. Front Physiol 2022; 13:812157. [PMID: 35388291 PMCID: PMC8978545 DOI: 10.3389/fphys.2022.812157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/27/2022] [Indexed: 01/10/2023] Open
Abstract
Bone is a complex organ serving roles in skeletal support and movement, and is a source of blood cells including adaptive and innate immune cells. Structural and functional integrity is maintained through a balance between bone synthesis and bone degradation, dependent in part on mechanical loading but also on signaling and influences of the tissue microenvironment. Bone structure and the extracellular bone milieu change with age, predisposing to osteoporosis and increased fracture risk, and this is exacerbated in patients with diabetes. Such changes can include loss of bone mineral density, deterioration in micro-architecture, as well as decreased bone flexibility, through alteration of proteinaceous bone support structures, and accumulation of senescent cells. Senescence is a state of proliferation arrest accompanied by marked morphological and metabolic changes. It is driven by cellular stress and serves an important acute tumor suppressive mechanism when followed by immune-mediated senescent cell clearance. However, aging and pathological conditions including diabetes are associated with accumulation of senescent cells that generate a pro-inflammatory and tissue-destructive secretome (the SASP). The SASP impinges on the tissue microenvironment with detrimental local and systemic consequences; senescent cells are thought to contribute to the multimorbidity associated with advanced chronological age. Here, we assess factors that promote bone fragility, in the context both of chronological aging and accelerated aging in progeroid syndromes and in diabetes, including senescence-dependent alterations in the bone tissue microenvironment, and glycation changes to the tissue microenvironment that stimulate RAGE signaling, a process that is accelerated in diabetic patients. Finally, we discuss therapeutic interventions targeting RAGE signaling and cell senescence that show promise in improving bone health in older people and those living with diabetes.
Collapse
Affiliation(s)
- Thibault Teissier
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Vladislav Temkin
- Division of Medicine, Department of Endocrinology and Metabolism, The Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rivka Dresner Pollak
- Division of Medicine, Department of Endocrinology and Metabolism, The Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
40
|
LLabre JE, Sroga GE, Tice MJL, Vashishth D. Induction and rescue of skeletal fragility in a high-fat diet mouse model of type 2 diabetes: An in vivo and in vitro approach. Bone 2022; 156:116302. [PMID: 34952229 PMCID: PMC8792372 DOI: 10.1016/j.bone.2021.116302] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/12/2023]
Abstract
Poor bone quality is associated with Type 2 Diabetes (T2D), with patients having a higher risk of fracture despite normal to high bone mineral density (BMD). Diabetes contributes to modifications of the mineral and organic matrix of bone. Hyperglycemia has been linked to the formation of advanced glycation end-products (AGEs) which increase the risk for skeletal fragility fractures. To this end, we investigated diabetes-induced skeletal fragility using a high-fat diet (HFD) mouse model and evaluated the efficacy of phenacyl thiazolium chloride (PTC) for in vitro removal of glycation products to rescue bone toughness. Ten-week-old C57BL/6 J male mice (n = 6/group) were fed a HFD or low-fat diet (LFD) for 22 weeks. Mice given a HFD developed T2D and increased body mass compared to LFD-fed mice. MicroCT results showed that diabetic mice had altered microarchitecture and increased mineralization as determined by volumetric BMD and increased mineral crystal size as determined by X-ray Diffraction (XRD). Diabetic mice demonstrated loss of initiation and maximum toughness, which represent estimates of the stress intensity factor at a notch tip using yield force and ultimate force, respectively. Diabetic mice also showed higher accumulation of AGEs measured by biochemical assay (total fAGEs) and confocal Raman spectroscopy (Pentosidine (PEN), Carboxymethyl-lysine (CML)). Regression analyses confirmed the association between increased glycoxidation (CML, PEN) and loss of fracture toughness. Within the diabetic group, CML was the most significant predictor of initiation toughness while PEN predicted maximum toughness as determined by stepwise linear regression (i.e., stepAIC). Contralateral femora from HFD group were harvested and treated with PTC in vitro. PTC-treated samples showed total fAGEs decreased by 41.2%. PTC treatment partially restored bone toughness as, compared to T2D controls, maximum toughness increased by 35%. Collectively, our results demonstrate that matrix modifications in diet-induced T2D, particularly AGEs, induce bone fragility and their removal from bone matrix partially rescues T2D associated bone fragility.
Collapse
Affiliation(s)
- Joan E LLabre
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Grażyna E Sroga
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Matthew J L Tice
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
41
|
Lintz M, Walk RE, Tang SY, Bonassar LJ. The degenerative impact of hyperglycemia on the structure and mechanics of developing murine intervertebral discs. JOR Spine 2022; 5:e1191. [PMID: 35386755 PMCID: PMC8966876 DOI: 10.1002/jsp2.1191] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/30/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Diabetes has long been implicated as a major risk factor for intervertebral disc (IVD) degeneration, interfering with molecular signaling and matrix biochemistry, which ultimately aggravates the progression of the disease. Glucose content has been previously shown to influence structural and compositional changes in engineered discs in vitro, impeding fiber formation and mechanical stability. Methods In this study, we investigated the impact of diabetic hyperglycemia on young IVDs by assessing biochemical composition, collagen fiber architecture, and mechanical behavior of discs harvested from 3- to 4-month-old db/db mouse caudal spines. Results We found that discs taken from diabetic mice with elevated blood glucose levels demonstrated an increase in total glycosaminoglycan and collagen content, but comparable advanced glycation end products (AGE) levels to wild-type discs. Diabetic discs also contained ill-defined boundaries between the nucleus pulposus and annulus fibrosus, with the latter showing a disorganized and unaligned collagen fiber network at this same boundary. Conclusions These compositional and structural changes had a detrimental effect on function, as the diabetic discs were twice as stiff as their wild-type counterparts and demonstrated a significant resistance to deformation. These results indicate that diabetes may predispose the young disc to DDD later in life by altering patterns of extracellular matrix deposition, fiber formation, and motion segment mechanics independently of AGE accumulation.
Collapse
Affiliation(s)
- Marianne Lintz
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNew YorkUSA
| | - Remy E. Walk
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Simon Y. Tang
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
- Department of Mechanical Engineering and Materials ScienceWashington University in St. LouisSt. LouisMissouriUSA
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Lawrence J. Bonassar
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNew YorkUSA
- Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
42
|
Wang AN, Carlos J, Fraser GM, McGuire JJ. Zucker Diabetic Sprague Dawley rat (ZDSD): type 2 diabetes translational research model. Exp Physiol 2022; 107:265-282. [PMID: 35178802 PMCID: PMC9314054 DOI: 10.1113/ep089947] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
New Findings What is the topic of this review? The Zucker Diabetic‐Sprague Dawley (ZDSD) rat is in the early adoption phase of use by researchers in the fields of diabetes, including prediabetes, obesity and metabolic syndrome. It is essential that physiology researchers choose preclinical models that model human type 2 diabetes appropriately and are aware of the limitations on experimental design. What advances does it highlight? Our review of the scientific literature finds that although sex, age and diets contribute to variability, the ZDSD phenotype and disease progression model the characteristics of humans who have prediabetes and diabetes, including co‐morbidities.
Abstract Type 2 diabetes (T2D) is a prevalent disease and a significant concern for global population health. For persons with T2D, clinical treatments target not only the characteristics of hyperglycaemia and insulin resistance, but also co‐morbidities, such as obesity, cardiovascular and renal disease, neuropathies and skeletal bone conditions. The Zucker Diabetic‐Sprague Dawley (ZDSD) rat is a rodent model developed for experimental studies of T2D. We reviewed the scientific literature to highlight the characteristics of T2D development and the associated phenotypes, such as metabolic syndrome, cardiovascular complications and bone and skeletal pathologies in ZDSD rats. We found that ZDSD phenotype characteristics are independent of leptin receptor signalling. The ZDSD rat develops prediabetes, then progresses to overt diabetes that is accelerated by introduction of a timed high‐fat diet. In male ZDSD rats, glycated haemoglobin (HbA1c) increases at a constant rate from 7 to >30 weeks of age. Diabetic ZDSD rats are moderately hypertensive compared with other rat strains. Diabetes in ZDSD rats leads to endothelial dysfunction in specific vasculatures, impaired wound healing, decreased systolic and diastolic cardiac function, neuropathy and nephropathy. Changes to bone composition and the skeleton increase the risk of bone fractures. Zucker Diabetic‐Sprague Dawley rats have not yet achieved widespread use by researchers. We highlight sex‐related differences in the ZDSD phenotype and gaps in knowledge for future studies. Overall, scientific data support the premise that the phenotype and disease progression in ZDSD rats models the characteristics in humans. We conclude that ZDSD rats are an advantageous model to advance understanding and discovery of treatments for T2D through preclinical research.
Collapse
Affiliation(s)
- Andrea N Wang
- Departments of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Joselia Carlos
- Departments of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Graham M Fraser
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland, Canada
| | - John J McGuire
- Departments of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
43
|
Phimphilai M, Pothacharoen P, Chattipakorn N, Kongtawelert P. Receptors of Advanced Glycation End Product (RAGE) Suppression Associated With a Preserved Osteogenic Differentiation in Patients With Prediabetes. Front Endocrinol (Lausanne) 2022; 13:799872. [PMID: 35237235 PMCID: PMC8882829 DOI: 10.3389/fendo.2022.799872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/18/2022] [Indexed: 11/18/2022] Open
Abstract
Type 2 diabetes is widely documented for osteogenic differentiation defect and impaired bone quality, which is related to the skeletal accumulation of advanced glycation end products (AGEs). Prediabetes is a condition in which hyperglycemia is lower than the threshold for the diagnosis of diabetes. Prediabetic animal models consistently demonstrate impaired osteogenic differentiation and deteriorated bone microarchitecture. However, no evidence shows defects in osteoblast development and skeletal effects of AGEs in prediabetic individuals. Therefore, it remains to be elucidated whether impaired osteogenic differentiation ability and altered cellular response to AGEs occur in patients with prediabetes. This cross-sectional study included 28 patients with prediabetes as defined by impaired fasting glucose criteria, fasting plasma glucose (FPG) between 100-125 mg/dl and 17 age-matched normoglycemic controls to elucidate osteogenic differentiation and AGER expression in the PBMC derived from those individuals. The PBMC-isolated from both groups showed similar rates of expression of osteoblast-specific genes, namely, ALPL, BGLAP, COL1A1, and RUNX2/PPAR (89.3% and 88.2%, p = 1.000), and showed comparable levels of expression of those genes. By using age- and pentosidine-matched normoglycemic individuals as references, the PBMC-isolated from prediabetic patients demonstrated lower expression of both AGER and BAX/BCL2. The expression of AGER and BAX/BCL2 significantly correlated to each other (r = 0.986, p <0.0001). The multivariate analysis demonstrated that serum pentosidine is an independent risk factor for AGER expression. With logistic regression analysis, the area under the ROC curve (AUC) for serum pentosidine at the cut-off level of 2.1 ng/ml and FPG at 100 mg/dl, which is a cut-off point for prediabetes, was significantly higher for predicting AGER expression than that of serum pentosidine alone (0.803 vs 0.688, p = 0.048), indicating that serum pentosidine was a good predictor of AGER expression in prediabetic individuals. In conclusion, this study demonstrated a preserved osteogenic differentiation in the PBMC derived from prediabetic individuals. In addition, those PBMC with preserved osteogenic differentiation potential showed the suppression of both cellular RAGE and apoptotic-related signals. Serum pentosidine was an independent risk factor for cellular RAGE expression and is conceivably a good predictor for AGER suppression in prediabetic individuals.
Collapse
Affiliation(s)
- Mattabhorn Phimphilai
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- *Correspondence: Mattabhorn Phimphilai,
| | - Peraphan Pothacharoen
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prachya Kongtawelert
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
44
|
Gao L, Liu C, Hu P, Wang N, Bao X, Wang B, Wang K, Li Y, Xue P. The role of advanced glycation end products in fracture risk assessment in postmenopausal type 2 diabetic patients. Front Endocrinol (Lausanne) 2022; 13:1013397. [PMID: 36578954 PMCID: PMC9790927 DOI: 10.3389/fendo.2022.1013397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The objective of this study was to analyze the quantitative association between advanced glycation end products (AGEs) and adjusted FRAX by rheumatoid arthritis (FRAX-RA) in postmenopausal type 2 diabetic (T2D) patients. The optimal cutoff value of AGEs was also explored, which was aimed at demonstrating the potential value of AGEs on evaluating osteoporotic fracture risk in postmenopausal T2D patients. METHODS We conducted a cross-sectional study including 366 postmenopausal participants (180 T2D patients [DM group] and 186 non-T2D individuals [NDM group]). All the subjects in each group were divided into three subgroups according to BMD. Physical examination, dual-energy x-ray absorptiometry (DXA), and serum indicators (including serum AGEs, glycemic parameters, bone turnover markers and inflammation factors) were examined. The relationship between FRAX-RA, serum laboratory variables, and AGEs were explored. The optimal cutoff value of AGEs to predict the risk of osteoporotic fracture was also investigated. RESULTS Adjusting the FRAX values with rheumatoid arthritis (RA) of T2D patients reached a significantly increased MOF-RA and an increasing trend of HF-RA. AGEs level was higher in the DM group compared to the NDMs, and was positively correlated with MOF-RA (r=0.682, P<0.001) and HF-RA (r=0.677, P<0.001). The receiver operating characteristic curve analysis revealed that the area under the curve was 0.804 (P<0.001), and the optimal AGEs cut-off value was 4.156mmol/L. Subgroup analysis for T2D patients revealed an increase in TGF-β, IL-6 and SCTX in the osteoporosis group, while a decreased PINP in the osteoporosis group compared to the other two subgroups. AGEs were positively associated with FBG, HbA1c, HOMA-IR, S-CTX, IL-6 and TGF-β in T2D patients, and negatively associated with PINP. CONCLUSIONS RA-adjusted FRAX is a relevant clinical tool in evaluating fracture risk of postmenopausal T2D patients. Our study analyzed the relationship between AGEs and FRAX-RA, and explored the threshold value of AGEs for predicting fracture risk in postmenopausal T2D patients. AGEs were also associated with serum bone turnover markers and inflammation factors, indicating that the increasing level of AGEs in postmenopausal T2D patients accelerated the expression of inflammatory factors, which led to bone metabolism disorders and a higher risk of osteoporotic fractures.
Collapse
Affiliation(s)
- Liu Gao
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Orthopedic Biomechanics of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chang Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Orthopedic Biomechanics of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Pan Hu
- Trauma Medicine Center, Peking University People’s Hospital, Beijing, China
- National Center for Trauma Medicine, Peking University People's Hospital, Beijing, China
| | - Na Wang
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Orthopedic Biomechanics of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoxue Bao
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Orthopedic Biomechanics of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bin Wang
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Orthopedic Biomechanics of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ke Wang
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Orthopedic Biomechanics of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yukun Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Orthopedic Biomechanics of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Peng Xue, ; Yukun Li,
| | - Peng Xue
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Orthopedic Biomechanics of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Peng Xue, ; Yukun Li,
| |
Collapse
|
45
|
Schmidt FN, Hahn M, Stockhausen KE, Rolvien T, Schmidt C, Knopp T, Schulze C, Püschel K, Amling M, Busse B. Influence of X-rays and gamma-rays on the mechanical performance of human bone factoring out intraindividual bone structure and composition indices. Mater Today Bio 2021; 13:100169. [PMID: 34927043 PMCID: PMC8649390 DOI: 10.1016/j.mtbio.2021.100169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/01/2022] Open
Abstract
Doses of irradiation above 25 kGy are known to cause irreversible mechanical decay in bone tissue. However, the impact of irradiation doses absorbed in a clinical setting on the mechanical properties of bone remains unclear. In daily clinical practice and research, patients and specimens are exposed to irradiation due to diagnostic imaging tools, with doses ranging from milligray to Gray. The aim of this study was to investigate the influence of irradiation at these doses ranges on the mechanical performance of bone independent of inter-individual bone quality indices. Therefore, cortical bone specimens (n = 10 per group) from a selected organ donor were irradiated at doses of milligray, Gray and kilogray (graft tissue sterilization) at five different irradiation doses. Three-point bending was performed to assess mechanical properties in the study groups. Our results show a severe reduction in mechanical performance (work to fracture: 50.29 ± 11.49 Nmm in control, 14.73 ± 1.84 Nmm at 31.2 kGy p ≤ 0.05) at high irradiation doses of 31.2 kGy, which correspond to graft tissue sterilization or synchrotron imaging. In contrast, no reduction in mechanical properties were detected for doses below 30 Gy. These findings are further supported by fracture surface texture imaging (i.e. more brittle fracture textures above 31.2 kGy). Our findings show that high radiation doses (≥31.2 kGy) severely alter the mechanical properties of bone. Thus, irradiation of this order of magnitude should be taken into account when mechanical analyses are planned after irradiation. However, doses of 30 Gy and below, which are common for clinical and experimental imaging (e.g., radiation therapy, DVT imaging, CT imaging, HR-pQCT imaging, DXA measurements, etc.), do not alter the mechanical bending-behavior of bone.
Collapse
Affiliation(s)
- Felix N. Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), Forum Medical Technology Health Hamburg (FMTHH), Martinistrasse 52, 20246, Hamburg, Germany
| | - Michael Hahn
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
| | - Kilian E. Stockhausen
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Constantin Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Tobias Knopp
- Interdisciplinary Competence Center for Interface Research (ICCIR), Forum Medical Technology Health Hamburg (FMTHH), Martinistrasse 52, 20246, Hamburg, Germany
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Lottestrasse 55, 22529, Hamburg, Germany
| | - Christian Schulze
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, Falkenried 94, 20251, Hamburg, Germany
| | - Klaus Püschel
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), Forum Medical Technology Health Hamburg (FMTHH), Martinistrasse 52, 20246, Hamburg, Germany
- Corresponding author. Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany.
| |
Collapse
|
46
|
Human Achilles tendon mechanical behavior is more strongly related to collagen disorganization than advanced glycation end-products content. Sci Rep 2021; 11:24147. [PMID: 34921194 PMCID: PMC8683434 DOI: 10.1038/s41598-021-03574-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetes is associated with impaired tendon homeostasis and subsequent tendon dysfunction, but the mechanisms underlying these associations is unclear. Advanced glycation end-products (AGEs) accumulate with diabetes and have been suggested to alter tendon function. In vivo imaging in humans has suggested collagen disorganization is more frequent in individuals with diabetes, which could also impair tendon mechanical function. The purpose of this study was to examine relationships between tendon tensile mechanics in human Achilles tendon with accumulation of advanced glycation end-products and collagen disorganization. Achilles tendon specimens (n = 16) were collected from individuals undergoing lower extremity amputation or from autopsy. Tendons were tensile tested with simultaneous quantitative polarized light imaging to assess collagen organization, after which AGEs content was assessed using a fluorescence assay. Moderate to strong relationships were observed between measures of collagen organization and tendon tensile mechanics (range of correlation coefficients: 0.570-0.727), whereas no statistically significant relationships were observed between AGEs content and mechanical parameters (range of correlation coefficients: 0.020-0.210). Results suggest that the relationship between AGEs content and tendon tensile mechanics may be masked by multifactorial collagen disorganization at larger length scales (i.e., the fascicle level).
Collapse
|
47
|
Pendleton MM, Emerzian SR, Sadoughi S, Li A, Liu JW, Tang SY, O'Connell GD, Sibonga JD, Alwood JS, Keaveny TM. Relations Between Bone Quantity, Microarchitecture, and Collagen Cross-links on Mechanics Following In Vivo Irradiation in Mice. JBMR Plus 2021; 5:e10545. [PMID: 34761148 PMCID: PMC8567491 DOI: 10.1002/jbm4.10545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/20/2021] [Indexed: 01/22/2023] Open
Abstract
Humans are exposed to ionizing radiation via spaceflight or cancer radiotherapy, and exposure from radiotherapy is known to increase risk of skeletal fractures. Although irradiation can reduce trabecular bone mass, alter trabecular microarchitecture, and increase collagen cross‐linking, the relative contributions of these effects to any loss of mechanical integrity remain unclear. To provide insight, while addressing both the monotonic strength and cyclic‐loading fatigue life, we conducted total‐body, acute, gamma‐irradiation experiments on skeletally mature (17‐week‐old) C57BL/6J male mice (n = 84). Mice were administered doses of either 0 Gy (sham), 1 Gy (motivated by cumulative exposures from a Mars mission), or 5 Gy (motivated by clinical therapy regimens) with retrieval of the lumbar vertebrae at either a short‐term (11‐day) or long‐term (12‐week) time point after exposure. Micro‐computed tomography was used to assess trabecular and cortical quantity and architecture, biochemical composition assays were used to assess collagen quality, and mechanical testing was performed to evaluate vertebral compressive strength and fatigue life. At 11 days post‐exposure, 5 Gy irradiation significantly reduced trabecular mass (p < 0.001), altered microarchitecture (eg, connectivity density p < 0.001), and increased collagen cross‐links (p < 0.001). Despite these changes, vertebral strength (p = 0.745) and fatigue life (p = 0.332) remained unaltered. At 12 weeks after 5 Gy exposure, the trends in trabecular bone persisted; in addition, regardless of irradiation, cortical thickness (p < 0.01) and fatigue life (p < 0.01) decreased. These results demonstrate that the highly significant effects of 5 Gy total‐body irradiation on the trabecular bone morphology and collagen cross‐links did not translate into detectable effects on vertebral mechanics. The only mechanical deficits observed were associated with aging. Together, these vertebral results suggest that for spaceflight, irradiation alone will likely not alter failure properties, and for radiotherapy, more investigations that include post‐exposure time as a positive control and testing of both failure modalities are needed to determine the cause of increased fracture risk. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Megan M Pendleton
- Department of Mechanical Engineering University of California Berkeley CA USA
| | - Shannon R Emerzian
- Department of Mechanical Engineering University of California Berkeley CA USA
| | - Saghi Sadoughi
- Department of Mechanical Engineering University of California Berkeley CA USA
| | - Alfred Li
- Endocrine Research Unit University of California and Veteran Affairs Medical Center San Francisco CA USA
| | - Jennifer W Liu
- Department of Orthopaedic Surgery Washington University St. Louis MO USA
| | - Simon Y Tang
- Department of Orthopaedic Surgery Washington University St. Louis MO USA.,Department of Biomedical Engineering Washington University St. Louis MO USA.,Department of Mechanical Engineering and Materials Science Washington University St. Louis MO USA
| | - Grace D O'Connell
- Department of Mechanical Engineering University of California Berkeley CA USA.,Department of Orthopaedic Surgery University of California San Francisco CA USA
| | - Jean D Sibonga
- Biomedical Research and Environmental Sciences Division NASA Johnson Space Center Houston TX USA
| | - Joshua S Alwood
- Space Biosciences Division NASA Ames Research Center Moffett Field CA USA
| | - Tony M Keaveny
- Department of Mechanical Engineering University of California Berkeley CA USA.,Department of Bioengineering University of California Berkeley CA USA
| |
Collapse
|
48
|
Karim L, Kwaczala A, Vashishth D, Judex S. Dose-dependent effects of pharmaceutical treatments on bone matrix properties in ovariectomized rats. Bone Rep 2021; 15:101137. [PMID: 34660852 PMCID: PMC8503587 DOI: 10.1016/j.bonr.2021.101137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 01/22/2023] Open
Abstract
As both anabolic and anti-catabolic osteoporosis drugs affect bone formation and resorption processes, they may contribute to bone's overall mechanical behavior by altering the quality of the bone matrix. We used an ovariectomized rat model and a novel fracture mechanics approach to investigate whether treatment with an anabolic (parathyroid hormone) or anti-catabolic (alendronate) osteoporosis drugs will alter the organic and mineral matrix components and consequently cortical bone fracture toughness. Ovariectomized (at 5 months age) rats were treated with either parathyroid hormone or alendronate at low and high doses for 6 months (age 6–12 months). Specifically, treatment groups included untreated ovariectomized controls (n = 9), high-dose alendronate (n = 10), low-dose alendronate (n = 9), high-dose parathyroid hormone (n = 10), and low-dose parathyroid hormone (n = 9). After euthanasia, cortical microbeams from the lateral quadrant were extracted, notched, and tested in 3-point bending to measure fracture toughness. Portions of the bone were used to measure changes in the 1) organic matrix through quantification of advanced glycation end-products (AGEs) and non-collagenous proteins, and 2) mineral matrix through assessment of mineral crystallinity. Compared to the ovariectomized group, rats treated with high doses of parathyroid hormone and alendronate had significantly increased cortical bone fracture toughness, which corresponded primarily to increased non-collagenous proteins while there was no change in AGEs. Additionally, low-dose PTH treatment increased matrix crystallinity and decreased AGE levels. In summary, ovariectomized rats treated with pharmaceutical drugs had increased non-collagenous matrix proteins and improved fracture toughness compared to controls. Further investigation is required for different doses and longer treatment periods. Alendronate increases non-collagenous proteins and improves fracture toughness. Parathyroid hormone also increases collagen maturity and mineral crystallinity. Both treatments minimize accumulation of advanced glycation end-products.
Collapse
Affiliation(s)
- Lamya Karim
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Andrea Kwaczala
- Department of Biomedical Engineering, Western New England University, Springfield, MA, USA
| | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
49
|
LLabre JE, Trujillo R, Sroga GE, Figueiro MG, Vashishth D. Circadian rhythm disruption with high-fat diet impairs glycemic control and bone quality. FASEB J 2021; 35:e21786. [PMID: 34411349 PMCID: PMC8534979 DOI: 10.1096/fj.202100610rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/11/2022]
Abstract
Biological functions, including glycemic control and bone metabolism, are highly influenced by the body's internal clock. Circadian rhythms are biological rhythms that run with a period close to 24 hours and receive input from environmental stimuli, such as the light/dark cycle. We investigated the effects of circadian rhythm disruption (CRD), through alteration of the light/dark schedule, on glycemic control and bone quality of mice. Ten-week-old male mice (C57/BL6, n = 48) were given a low-fat diet (LFD) or a high-fat diet (HFD) and kept on a dayshift or altered schedule (RSS3) for 22 weeks. Mice were divided into four experimental groups (n = 12/group): Dayshift/LFD, Dayshift/HFD, RSS3/LFD, and RSS3/HFD. CRD in growing mice fed a HFD resulted in a diabetic state, with a 36.2% increase in fasting glucose levels compared to the Dayshift/LFD group. Micro-CT scans of femora revealed a reduction in inner and outer surface expansion for mice on a HFD and altered light schedule. Cancellous bone demonstrated deterioration of bone quality as trabecular number and thickness decreased while trabecular separation increased. While HFD increased cortical bone mineral density, its combination with CRD reduced this phenomenon. The growth of mineral crystals, determined by small angle X-ray scattering, showed HFD led to smaller crystals. Considering modifications of the organic matrix, regardless of diet, CRD exacerbated the accumulation of fluorescent advanced glycation end-products (fAGEs) in collagen. Strength testing of tibiae showed that CRD mitigated the higher strength in the HFD group and increased brittleness indicated by lower post-yield deflection and work-to-fracture. Consistent with accumulation of fAGEs, various measures of toughness were lowered with CRD, but combination of CRD with HFD protected against this decrease. Differences between strength and toughness results represent different contributions of structural and material properties of bone to energy dissipation. Collectively, these results demonstrate that combination of CRD with HFD impairs glycemic control and have complex effects on bone quality.
Collapse
Affiliation(s)
- Joan E. LLabre
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Ruben Trujillo
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Chemical Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Grażyna E. Sroga
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
50
|
Moseley KF, Du Z, Sacher SE, Ferguson VL, Donnelly E. Advanced glycation endproducts and bone quality: practical implications for people with type 2 diabetes. Curr Opin Endocrinol Diabetes Obes 2021; 28:360-370. [PMID: 34183538 DOI: 10.1097/med.0000000000000641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Individuals with type 2 diabetes (T2D) are at increased risk of fracture, often despite normal bone density. This observation suggests deficits in bone quality in the setting of abnormal glucose homeostasis. The goal of this article is to review recent developments in our understanding of how advanced glycation end products (AGEs) are incorporated into the skeleton with resultant deleterious effects on bone health and structural integrity in patients with T2D. RECENT FINDINGS The adverse effects of skeletal AGE accumulation on bone remodeling and the ability of the bone to deform and absorb energy prior to fracture have been demonstrated both at the bench as well as in small human studies; however, questions remain as to how these findings might be better explored in large, population-based investigations. SUMMARY Hyperglycemia drives systemic, circulating AGE formation with subsequent accumulation in the bone tissue. In those with T2D, studies suggest that AGEs diminish fracture resistance, though larger clinical studies are needed to better define the direct role of longstanding AGE accumulation on bone strength in humans as well as to motivate potential interventions to reverse or disrupt skeletal AGE deposition with the goal of fracture prevention.
Collapse
Affiliation(s)
- Kendall F Moseley
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, Johns Hopkins University, Baltimore, Maryland
| | - Zexu Du
- Department of Materials Science and Engineering, Cornell University, Ithaca
| | - Sara E Sacher
- Department of Materials Science and Engineering, Cornell University, Ithaca
| | - Virginia L Ferguson
- Department of Mechanical Engineering, UCB 427
- Biomedical Engineering Program, UCB 422, University of Colorado, Boulder, Colorado, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca
- Research Division, Hospital for Special Surgery, New York, New York
| |
Collapse
|