1
|
Ravoor J, Thangavel M, Elsen S R. Comprehensive Review on Design and Manufacturing of Bio-scaffolds for Bone Reconstruction. ACS APPLIED BIO MATERIALS 2021; 4:8129-8158. [PMID: 35005929 DOI: 10.1021/acsabm.1c00949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bio-scaffolds are synthetic entities widely employed in bone and soft-tissue regeneration applications. These bio-scaffolds are applied to the defect site to provide support and favor cell attachment and growth, thereby enhancing the regeneration of the defective site. The progressive research in bio-scaffold fabrication has led to identification of biocompatible and mechanically stable materials. The difficulties in obtaining grafts and expenditure incurred in the transplantation procedures have also been overcome by the implantation of bio-scaffolds. Drugs, cells, growth factors, and biomolecules can be embedded with bio-scaffolds to provide localized treatments. The right choice of materials and fabrication approaches can help in developing bio-scaffolds with required properties. This review mostly focuses on the available materials and bio-scaffold techniques for bone and soft-tissue regeneration application. The first part of this review gives insight into the various classes of biomaterials involved in bio-scaffold fabrication followed by design and simulation techniques. The latter discusses the various additive, subtractive, hybrid, and other improved techniques involved in the development of bio-scaffolds for bone regeneration applications. Techniques involving multimaterial printing and multidimensional printing have also been briefly discussed.
Collapse
Affiliation(s)
- Jishita Ravoor
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Mahendran Thangavel
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Renold Elsen S
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
2
|
Additive Manufacturing and Characterization of Metal Particulate Reinforced Polylactic Acid (PLA) Polymer Composites. Polymers (Basel) 2021; 13:polym13203545. [PMID: 34685302 PMCID: PMC8537213 DOI: 10.3390/polym13203545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Affordable commercial desktop 3-D printers and filaments have introduced additive manufacturing to all disciplines of science and engineering. With rapid innovations in 3-D printing technology and new filament materials, material vendors are offering specialty multifunctional metal-reinforced polymers with unique properties. Studies are necessary to understand the effects of filament composition, metal reinforcements, and print parameters on microstructure and mechanical behavior. In this study, densities, metal vol%, metal cross-sectional area %, and microstructure of various metal-reinforced Polylactic Acid (PLA) filaments were characterized by multiple methods. Comparisons are made between polymer microstructures before and after printing, and the effect of printing on the metal-polymer interface adhesion has been demonstrated. Tensile response and fracture toughness as a function of metal vol% and print height was determined. Tensile and fracture toughness tests show that PLA filaments containing approximately 36 vol% of bronze or copper particles significantly reduce mechanical properties. The mechanical response of PLA with 12 and 18 vol% of magnetic iron and stainless steel particles, respectively, is similar to that of pure PLA with a slight decrease in ultimate tensile strength and fracture toughness. These results show the potential for tailoring the concentration of metal reinforcements to provide multi-functionality without sacrificing mechanical properties.
Collapse
|
3
|
|
4
|
Laurent A, Hirt-Burri N, Scaletta C, Michetti M, de Buys Roessingh AS, Raffoul W, Applegate LA. Holistic Approach of Swiss Fetal Progenitor Cell Banking: Optimizing Safe and Sustainable Substrates for Regenerative Medicine and Biotechnology. Front Bioeng Biotechnol 2020; 8:557758. [PMID: 33195124 PMCID: PMC7644790 DOI: 10.3389/fbioe.2020.557758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Safety, quality, and regulatory-driven iterative optimization of therapeutic cell source selection has constituted the core developmental bedrock for primary fetal progenitor cell (FPC) therapy in Switzerland throughout three decades. Customized Fetal Transplantation Programs were pragmatically devised as straightforward workflows for tissue procurement, traceability maximization, safety, consistency, and robustness of cultured progeny cellular materials. Whole-cell bioprocessing standardization has provided plethoric insights into the adequate conjugation of modern biotechnological advances with current restraining legislative, ethical, and regulatory frameworks. Pioneer translational advances in cutaneous and musculoskeletal regenerative medicine continuously demonstrate the therapeutic potential of FPCs. Extensive technical and clinical hindsight was gathered by managing pediatric burns and geriatric ulcers in Switzerland. Concomitant industrial transposition of dermal FPC banking, following good manufacturing practices, demonstrated the extensive potential of their therapeutic value. Furthermore, in extenso, exponential revalorization of Swiss FPC technology may be achieved via the renewal of integrative model frameworks. Consideration of both longitudinal and transversal aspects of simultaneous fetal tissue differential processing allows for a better understanding of the quasi-infinite expansion potential within multi-tiered primary FPC banking. Multiple fetal tissues (e.g., skin, cartilage, tendon, muscle, bone, lung) may be simultaneously harvested and processed for adherent cell cultures, establishing a unique model for sustainable therapeutic cellular material supply chains. Here, we integrated fundamental, preclinical, clinical, and industrial developments embodying the scientific advances supported by Swiss FPC banking and we focused on advances made to date for FPCs that may be derived from a single organ donation. A renewed model of single organ donation bioprocessing is proposed, achieving sustained standards and potential production of billions of affordable and efficient therapeutic doses. Thereby, the aim is to validate the core therapeutic value proposition, to increase awareness and use of standardized protocols for translational regenerative medicine, potentially impacting millions of patients suffering from cutaneous and musculoskeletal diseases. Alternative applications of FPC banking include biopharmaceutical therapeutic product manufacturing, thereby indirectly and synergistically enhancing the power of modern therapeutic armamentariums. It is hypothesized that a single qualifying fetal organ donation is sufficient to sustain decades of scientific, medical, and industrial developments, as technological optimization and standardization enable high efficiency.
Collapse
Affiliation(s)
- Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
- Tec-Pharma SA, Bercher, Switzerland
- LAM Biotechnologies SA, Épalinges, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Murielle Michetti
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Anthony S. de Buys Roessingh
- Children and Adolescent Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Wassim Raffoul
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
- Oxford Suzhou Center for Advanced Research, Science and Technology Co., Ltd., Oxford University, Suzhou, China
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Negishi J, Funamoto S, Hashimoto Y, Yanagisawa K. PLA-Collagen Composite Scaffold Fabrication by Vacuum Pressure Impregnation. Tissue Eng Part C Methods 2020; 25:742-747. [PMID: 31760880 DOI: 10.1089/ten.tec.2019.0226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Composite scaffolds are made by various methods, such as copolymerization, freeze gelation, and thermally induced phase separation, which can compound materials with different properties using solvents and heat. However, it is difficult to compound solvents and heat-sensitive materials such as natural polymers. In this study, we investigated a vacuum pressure impregnation (VPI) method for creating a composite of natural polymers. A collagen solution could not be introduced into a poly (l-lactide) (PLA) porous material using an immersing treatment, but it is possible using the VPI method. The resulting PLA-collagen composite scaffold had greater water adsorption and degradation than a PLA scaffold. These results indicate that VPI may be a promising method for creating composites of natural materials. Impact Statement This is the development of a method for introducing cells into a completed porous material in a short time. This technology is expected to be applied to tissue regeneration and 3D culture.
Collapse
Affiliation(s)
- Jun Negishi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Seiichi Funamoto
- Division of Acellular Tissue and Regenerative Medical Materials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihide Hashimoto
- Department of Material-based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kotaro Yanagisawa
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| |
Collapse
|
6
|
Advanced liposome-loaded scaffolds for therapeutic and tissue engineering applications. Biomaterials 2020; 232:119706. [DOI: 10.1016/j.biomaterials.2019.119706] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/30/2019] [Accepted: 12/18/2019] [Indexed: 01/02/2023]
|
7
|
Verma P, Verma V. Concepts of tissue engineering. Anim Biotechnol 2020. [DOI: 10.1016/b978-0-12-811710-1.00013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Luo W, Cheng L, Yuan C, Wu Z, Yuan G, Hou M, Chen JY, Luo C, Li W. Preparation, characterization and evaluation of cellulose nanocrystal/poly(lactic acid) in situ nanocomposite scaffolds for tissue engineering. Int J Biol Macromol 2019; 134:469-479. [PMID: 31078594 DOI: 10.1016/j.ijbiomac.2019.05.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/26/2019] [Accepted: 05/08/2019] [Indexed: 12/23/2022]
Abstract
Cellulose nanocrystal (CNC)/poly(lactic acid) (PLA) in situ nanocomposite scaffolds were fabricated by in situ polymerization of lactic acid and CNC which was directly utilized as aqueous suspension, followed by a process of thermally induced phase separation. The CNC/PLA in situ nanocomposite porous scaffolds were characterized by mechanical test, protein adsorption, hemolysis test, in vitro degradation measurement, TEM, FTIR, SEM and WAXD. Compared to the PLA scaffold, the CNC/PLA in situ nanocomposite scaffolds showed a greatly increased compression modulus, an improved hemocompatibility and protein adsorption capacity. The inclusion of CNCs boosted the in vitro degradation of the in situ nanocomposite porous scaffolds and facilitated the deposition of Ca2+, CO32-, PO43- ions in simulated body fluid. Furthermore, cell cultures were carried out on the CNC/PLA in situ nanocomposite porous scaffolds. In comparison with the PLA scaffold, the in situ nanocomposite scaffolds improved cell attachment and enhanced cell proliferation, denoting low cytotoxicity and good cytocompatibility. It can therefore be concluded that such scaffolds with excellent mechanical property, biocompatibility, biomineralization capacity and bioactivity hold great potential for bone tissue engineering.
Collapse
Affiliation(s)
- Weihua Luo
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; School of Human Ecology, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Lianghao Cheng
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Caixia Yuan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiping Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Guangming Yuan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Mingxi Hou
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jonathan Y Chen
- School of Human Ecology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chunyi Luo
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Li
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
9
|
Hausherr TC, Nuss K, Thein E, Krähenbühl S, Applegate LA, Pioletti DP. Effect of temporal onsets of mechanical loading on bone formation inside a tissue engineering scaffold combined with cell therapy. Bone Rep 2018; 8:173-179. [PMID: 29955636 PMCID: PMC6020271 DOI: 10.1016/j.bonr.2018.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/28/2022] Open
Abstract
Several approaches to combine bone substitutes with biomolecules, cells or mechanical loading have been explored as an alternative to the limitation and risk-related bone auto- and allo-grafts. In particular, human bone progenitor cells seeded in porous poly(L-lactic acid)/tricalcium phosphate scaffolds have shown promising results. Furthermore, the application of mechanical loading has long been known to be a key player in the regulation of bone architecture and mechanical properties. Several in vivo studies have pointed out the importance of its temporal offset. When an early mechanical loading was applied a few days after scaffold implantation, it was ineffective on bone formation, whereas a delayed mechanical loading of several weeks was beneficial for bone tissue regeneration. No information is reported to date on the effectiveness of applying a mechanical loading in vivo on cell-seeded scaffold with respect to bone formation in a bone site. In our study, we were interested in human bone progenitor cells due to their low immunogenicity, sensitivity to mechanical loading and capacity to differentiate into osteogenic human bone progenitor cells. The latest capacity allowed us to test two different bone cell fates originating from the same cell type. Therefore, the general aim of this study was to assess the outcome on bone formation when human bone progenitor cells or pre-differentiated osteogenic human bone progenitor cells are combined with early and delayed mechanical loading inside bone tissue engineering scaffolds. Scaffolds without cells, named cell-free scaffold, were used as control. Surprisingly, we found that (1) the optimal solution for bone formation is the combination of cell-free scaffolds and delayed mechanical loading and that (2) the timing of the mechanical application is crucial and dependent on the cell type inside the implanted scaffolds. Bone substitutes can contain osteogenic cells or be mechanically stimulated. Both approaches are simultaneously tested in vivo. The combination of cell-free scaffolds and delayed mechanical loading was optimal. The timing of the mechanical application was crucial and dependent on the seeded cell type.
Collapse
Affiliation(s)
- T C Hausherr
- Laboratory of Biomechanical Orthopedics, Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | - K Nuss
- Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zürich, Switzerland
| | - E Thein
- Orthopedic and Traumatology Department, University Hospital of Lausanne (CHUV), Switzerland
| | - S Krähenbühl
- Regenerative Therapy Unit, Plastic and Reconstructive Surgery, University Hospital of Lausanne (CHUV), Switzerland
| | - L A Applegate
- Regenerative Therapy Unit, Plastic and Reconstructive Surgery, University Hospital of Lausanne (CHUV), Switzerland
| | - D P Pioletti
- Laboratory of Biomechanical Orthopedics, Ecole Polytechnique Fédérale de Lausanne, Switzerland
| |
Collapse
|
10
|
Gong B, Cui S, Zhao Y, Sun Y, Ding Q. Strain-controlled fatigue behaviors of porous PLA-based scaffolds by 3D-printing technology. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:2196-2204. [DOI: 10.1080/09205063.2017.1388993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Baoming Gong
- Department of Materials Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin, China
| | - Shaohua Cui
- Department of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Yun Zhao
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Yongtao Sun
- Department of Mechanics, Tianjin University, Tianjin, China
| | - Qian Ding
- Department of Mechanics, Tianjin University, Tianjin, China
| |
Collapse
|
11
|
Effect of Co-incubation with Mesenchymal Stromal Cells in Cultural Medium on Structure and Mechanical Properties of Polylactide-Based Scaffolds. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-017-0429-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Bayer IS. Thermomechanical Properties of Polylactic Acid-Graphene Composites: A State-of-the-Art Review for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E748. [PMID: 28773109 PMCID: PMC5551791 DOI: 10.3390/ma10070748] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 01/18/2023]
Abstract
Due to its biodegradable and bioabsorbable characteristics polylactic acid (PLA) has attracted considerable attention for numerous biomedical applications. Moreover, a number of tissue engineering problems for function restoration of impaired tissues have been addressed by using PLA and its copolymers due to their biocompatibility and distinctive mechanical properties. Recent studies on various stereocomplex formation between enantiomeric PLA, poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) indicated that stereocomplexation enhances the mechanical properties as well as the thermal- and hydrolysis-resistance of PLA polymers. On the other hand, biomedical application of graphene is a relatively new front with significant potential. Many recent reports have indicated that understanding of graphene-cell (or tissue, organ) interactions; particularly the cellular uptake mechanisms are still challenging. Therefore, use of graphene or graphene oxide properly embedded in suitable PLA matrices can positively impact and accelerate the growth, differentiation, and proliferation of stem cells, conceivably minimizing concerns over cytotoxicity of graphene. As such, PLA-graphene composites hold great promise in tissue engineering, regenerative medicine, and in other biomedical fields. However, since PLA is classified as a hard bio-polyester prone to hydrolysis, understanding and engineering of thermo-mechanical properties of PLA-graphene composites are very crucial for such cutting-edge applications. Hence, this review aims to present an overview of current advances in the preparation and applications of PLA-graphene composites and their properties with focus on various biomedical uses such as scaffolds, drug delivery, cancer therapy, and biological imaging, together with a brief discussion on the challenges and perspectives for future research in this field.
Collapse
Affiliation(s)
- Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, 16163 Genoa, Italy.
| |
Collapse
|
13
|
Tajbakhsh S, Hajiali F. A comprehensive study on the fabrication and properties of biocomposites of poly(lactic acid)/ceramics for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:897-912. [DOI: 10.1016/j.msec.2016.09.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/27/2016] [Accepted: 09/06/2016] [Indexed: 12/22/2022]
|
14
|
Hausherr TC, Nuss K, Thein E, Applegate LA, Pioletti DP. Human Bone Progenitor Cells for Clinical Application: What Kind of Immune Reaction Does Fetal Xenograft Tissue Trigger in Immunocompetent Rats? Cell Transplant 2016; 26:879-890. [PMID: 27938479 DOI: 10.3727/096368916x693789] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The potential of human fetal bone cells for successful bone regeneration has been shown in vivo. In particular, it has been demonstrated that the seeding of these cells in porous poly-(l-lactic acid)/β-tricalcium phosphate scaffolds improved the bone formation compared to cell-free scaffolds in skulls of rats. However, even if the outcome is an improvement of bone formation, a thorough analysis concerning any immune responses, due to the implantation of a xenograft tissue, is not known. As the immune response and skeletal system relationship may contribute to either the success or failure of an implant, we were interested in evaluating the presence of any immune cells and specific reactions of human fetal cells (also called human bone progenitor cells) once implanted in femoral condyles of rats. For this purpose, (1) cell-free scaffolds, (2) human bone progenitor cells, or (3) osteogenic human bone progenitor cells within scaffolds were implanted over 3, 7, 14 days, and 12 weeks. The key finding is that human bone progenitor cells and osteogenic human bone progenitor cells do not trigger any particular specific immune reactions in immunocompetent rats but are noted to delay some bone formation.
Collapse
|
15
|
|
16
|
Kim H, Lee J. Strategies to Maximize the Potential of Marine Biomaterials as a Platform for Cell Therapy. Mar Drugs 2016; 14:E29. [PMID: 26821034 PMCID: PMC4771982 DOI: 10.3390/md14020029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 01/31/2023] Open
Abstract
Marine biopolymers have been explored as a promising cell therapy system for efficient cell delivery and tissue engineering. However, the marine biomaterial-based systems themselves have exhibited limited performance in terms of maintenance of cell viability and functions, promotion of cell proliferation and differentiation as well as cell delivery efficiency. Thus, numerous novel strategies have been devised to improve cell therapy outcomes. The strategies include optimization of physical and biochemical properties, provision of stimuli-responsive functions, and design of platforms for efficient cell delivery and tissue engineering. These approaches have demonstrated substantial improvement of therapeutic outcomes in a variety of research settings. In this review, therefore, research progress made with marine biomaterials as a platform for cell therapy is reported along with current research directions to further advance cell therapies as a tool to cure incurable diseases.
Collapse
Affiliation(s)
- Hyeongmin Kim
- Pharmaceutical Formulation Design Laboratory, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea.
- Bio-Integration Research Center for Nutra-Pharmaceutical Epigenetics, Chung-Ang University, Seoul 156-756, Korea.
| | - Jaehwi Lee
- Pharmaceutical Formulation Design Laboratory, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea.
- Bio-Integration Research Center for Nutra-Pharmaceutical Epigenetics, Chung-Ang University, Seoul 156-756, Korea.
| |
Collapse
|
17
|
Gothard D, Cheung K, Kanczler JM, Wilson DI, Oreffo ROC. Regionally-derived cell populations and skeletal stem cells from human foetal femora exhibit specific osteochondral and multi-lineage differentiation capacity in vitro and ex vivo. Stem Cell Res Ther 2015; 6:251. [PMID: 26684339 PMCID: PMC4683700 DOI: 10.1186/s13287-015-0247-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 11/25/2014] [Accepted: 11/25/2015] [Indexed: 01/08/2023] Open
Abstract
Background Adult skeletal stem cells (SSCs) often exhibit limited in vitro expansion with undesirable phenotypic changes and loss of differentiation capacity. Foetal tissues offer an alternative cell source, providing SSCs which exhibit desirable differentiation capacity over prolonged periods, ideal for extensive in vitro and ex vivo investigation of fundamental bone biology and skeletal development. Methods We have examined the derivation of distinct cell populations from human foetal femora. Regionally isolated populations including epiphyseal and diaphyseal cells were carefully dissected. Expression of the SSC marker Stro-1 was also found in human foetal femora over a range of developmental stages and subsequently utilised for immuno-selection. Results Regional populations exhibited chondrogenic (epiphyseal) and osteogenic (diaphyseal) phenotypes following in vitro and ex vivo characterisation and molecular analysis, indicative of native SSC maturation during skeletal development. However, each population exhibited potential for induced multi-lineage differentiation towards bone (bone nodule formation), cartilage (proteoglycan and mucopolysaccharide deposition) and fat (lipid deposition), suggesting the presence of a shared stem cell sub-population. This shared sub-population may be comprised of Stro-1+ cells, which were later identified and immuno-selected from whole foetal femora exhibiting multi-lineage differentiation capacity in vitro and ex vivo. Conclusions Distinct populations were isolated from human foetal femora expressing osteochondral differentiation capacity. Stro-1 immuno-selected SSCs were isolated from whole femora expressing desirable multi-lineage differentiation capacity over prolonged in vitro expansion, superior to their adult-derived counterparts, providing a valuable cell source with which to study bone biology and skeletal development. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0247-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Gothard
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, School of Medicine, Institute of DevelopmentalSciences, Mail Point 887, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK.
| | - Kelvin Cheung
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, School of Medicine, Institute of DevelopmentalSciences, Mail Point 887, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK.
| | - Janos M Kanczler
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, School of Medicine, Institute of DevelopmentalSciences, Mail Point 887, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK.
| | - David I Wilson
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, School of Medicine, Institute of Developmental Sciences, Mail Point 887, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK. .,University Hospital Southampton NHS Foundation Trust, Tremona Road, SO16 6YD, Southampton, UK.
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, School of Medicine, Institute of DevelopmentalSciences, Mail Point 887, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK.
| |
Collapse
|
18
|
Baker KC, Maerz T, Saad H, Shaheen P, Kannan RM. In vivo bone formation by and inflammatory response to resorbable polymer-nanoclay constructs. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015. [DOI: 10.1016/j.nano.2015.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Mottaghitalab F, Hosseinkhani H, Shokrgozar MA, Mao C, Yang M, Farokhi M. Silk as a potential candidate for bone tissue engineering. J Control Release 2015; 215:112-28. [DOI: 10.1016/j.jconrel.2015.07.031] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 02/07/2023]
|
20
|
Therapeutic possibility of human fetal cartilage-derived progenitor cells in rat arthritis model. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-015-0441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
21
|
Ding M, Henriksen SS, Wendt D, Overgaard S. An automated perfusion bioreactor for the streamlined production of engineered osteogenic grafts. J Biomed Mater Res B Appl Biomater 2015; 104:532-7. [PMID: 25952142 DOI: 10.1002/jbm.b.33407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/29/2015] [Accepted: 02/26/2015] [Indexed: 11/08/2022]
Abstract
A computer-controlled perfusion bioreactor was developed for the streamlined production of engineered osteogenic grafts. This system automated the required bioprocesses, from the initial filling of the system through the phases of cell seeding and prolonged cell/tissue culture. Flow through chemo-optic micro-sensors allowed to non-invasively monitor the levels of oxygen and pH in the perfused culture medium throughout the culture period. To validate its performance, freshly isolated ovine bone marrow stromal cells were directly seeded on porous scaffold granules (hydroxyapatite/β-tricalcium-phosphate/poly-lactic acid), bypassing the phase of monolayer cell expansion in flasks. Either 10 or 20 days after culture, engineered cell-granule grafts were implanted in an ectopic mouse model to quantify new bone formation. After four weeks of implantation, histomorphometry showed more bone in bioreactor-generated grafts than cell-free granule controls, while bone formation did not show significant differences between 10 days and 20 days of incubation. The implanted granules without cells had no bone formation. This novel perfusion bioreactor has revealed the capability of activation larger viable bone graft material, even after shorter incubation time of graft material. This study has demonstrated the feasibility of engineering osteogenic grafts in an automated bioreactor system, laying the foundation for a safe, regulatory-compliant, and cost-effective manufacturing process.
Collapse
Affiliation(s)
- Ming Ding
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery and Traumatology, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, DK-5000, Odense C, Denmark
| | - Susan S Henriksen
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery and Traumatology, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, DK-5000, Odense C, Denmark
| | - David Wendt
- Departments of Surgery and of Biomedicine, University Hospital Basel, Hebelstrasse 20, ZLF, Room 405, 4031, Basel, Switzerland
| | - Søren Overgaard
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery and Traumatology, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, DK-5000, Odense C, Denmark
| |
Collapse
|
22
|
Hashemi ZS, Moghadam MF, Soleimani M. Comparison of TGFbR2 down-regulation in expanded HSCs on MBA/DBM scaffolds coated by UCB stromal cells. In Vitro Cell Dev Biol Anim 2014; 51:495-506. [DOI: 10.1007/s11626-014-9854-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 11/30/2014] [Indexed: 01/27/2023]
|
23
|
Zuo Q, Cui W, Liu F, Wang Q, Chen Z, Fan W. Utilizing tissue-engineered cartilage or BMNC-PLGA composites to fill empty spaces during autologous osteochondral mosaicplasty in porcine knees. J Tissue Eng Regen Med 2014; 10:916-926. [PMID: 24616348 DOI: 10.1002/term.1872] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 04/01/2013] [Accepted: 01/07/2014] [Indexed: 11/11/2022]
Abstract
The potential empty spaces between cylindrical plugs remaining after autologous osteochondral mosaicplasty rely on fibrous repair, which may constrain the quality and integrity of the repair. Thus, the empty spaces should be repaired, and how to fill the empty spaces is still a problem. In the present study, a standardized full-thickness defect (diameter, 6 mm) was created in the weight-bearing area of each medial femoral condyle in both knees of 18 miniature pigs. The 36 knees were randomly assigned to four groups with nine in each group. The defects were initially repaired by autologous osteochondral mosaicplasty. Simultaneously, any empty spaces between the multiple plugs were filled with cell-free poly(lactide-co-glycolide) (PLGA) scaffolds (the scaffold group), tissue-engineered cartilage (the TE group) or bone marrow mononuclear cell (BMNC)-PLGA composites (the composite group). The empty spaces were left untreated as control (the control group). Six months after surgery, the repair results were assessed via macroscopic observation, histological evaluation, magnetic resonance imaging, biomechanical assessment and glycosaminoglycan content. The results demonstrated that mosaicplasty combined with the treatment of the empty spaces could improve cartilage regeneration. The filling of empty spaces by tissue-engineered cartilage produced the best result in all the four groups. Meanwhile, utilizing BMNC-PLGA composites achieved a similar repair result. Considering the cost-effective, time-saving and convenient performance, the BMNC-PLGA composite could be an alternative option to fill the empty spaces combined with mosaicplasty. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Qiang Zuo
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weiding Cui
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Liu
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Wang
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhefeng Chen
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weimin Fan
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Mi HY, Jing X, Salick MR, Peng XF, Turng LS. A novel thermoplastic polyurethane scaffold fabrication method based on injection foaming with water and supercritical carbon dioxide as coblowing agents. POLYM ENG SCI 2014. [DOI: 10.1002/pen.23852] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hao-Yang Mi
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology; Guangzhou 510640 China
- Department of Mechanical Engineering; University of Wisconsin-Madison; Madison WI 53706
- Wisconsin Institutes for Discovery, University of Wisconsin-Madison; Madison WI 53715
| | - Xin Jing
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology; Guangzhou 510640 China
- Department of Mechanical Engineering; University of Wisconsin-Madison; Madison WI 53706
- Wisconsin Institutes for Discovery, University of Wisconsin-Madison; Madison WI 53715
| | - Max R. Salick
- Wisconsin Institutes for Discovery, University of Wisconsin-Madison; Madison WI 53715
- Department of Engineering Physics; University of Wisconsin-Madison; Madison WI 53706
| | - Xiang-Fang Peng
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology; Guangzhou 510640 China
| | - Lih-Sheng Turng
- Department of Mechanical Engineering; University of Wisconsin-Madison; Madison WI 53706
- Wisconsin Institutes for Discovery, University of Wisconsin-Madison; Madison WI 53715
| |
Collapse
|
25
|
Tammaro L, Vittoria V, Wyrwa R, Weisser J, Beer B, Thein S, Schnabelrauch M. Fabrication and characterization of electrospun polylactide/β-tricalcium phosphate hybrid meshes for potential applications in hard tissue repair. ACTA ACUST UNITED AC 2014. [DOI: 10.1515/bnm-2014-0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Khan W, Challa VGS, Langer R, Domb AJ. Biodegradable Polymers for Focal Delivery Systems. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2014. [DOI: 10.1007/978-1-4614-9434-8_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Concepts of Tissue Engineering. Anim Biotechnol 2014. [DOI: 10.1016/b978-0-12-416002-6.00013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
28
|
|
29
|
Mi HY, Salick MR, Jing X, Jacques BR, Crone WC, Peng XF, Turng LS. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:4767-76. [PMID: 24094186 PMCID: PMC4554542 DOI: 10.1016/j.msec.2013.07.037] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 06/17/2013] [Accepted: 07/25/2013] [Indexed: 11/19/2022]
Abstract
Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are two kinds of biocompatible and biodegradable polymers that can be used in biomedical applications. PLA has rigid mechanical properties while TPU possesses flexible mechanical properties. Blended TPU/PLA tissue engineering scaffolds at different ratios for tunable properties were fabricated via twin screw extrusion and microcellular injection molding techniques for the first time. Multiple test methods were used to characterize these materials. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of the two components in the blends; differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) confirmed the immiscibility between the TPU and PLA. Scanning electron microscopy (SEM) images verified that, at the composition ratios studied, PLA was dispersed as spheres or islands inside the TPU matrix and that this phase morphology further influenced the scaffold's microstructure and surface roughness. The blends exhibited a large range of mechanical properties that covered several human tissue requirements. 3T3 fibroblast cell culture showed that the scaffolds supported cell proliferation and migration properly. Most importantly, this study demonstrated the feasibility of mass producing biocompatible PLA/TPU scaffolds with tunable microstructures, surface roughnesses, and mechanical properties that have the potential to be used as artificial scaffolds in multiple tissue engineering applications.
Collapse
Affiliation(s)
- Hao-Yang Mi
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou, China
- Department of Mechanical Engineering, University of Wisconsin–Madison, WI, USA
| | - Max R. Salick
- Department of Engineering Physics, University of Wisconsin–Madison, WI, USA
| | - Xin Jing
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou, China
- Department of Mechanical Engineering, University of Wisconsin–Madison, WI, USA
| | | | - Wendy C. Crone
- Department of Engineering Physics, University of Wisconsin–Madison, WI, USA
| | - Xiang-Fang Peng
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou, China
| | - Lih-Sheng Turng
- Department of Mechanical Engineering, University of Wisconsin–Madison, WI, USA
| |
Collapse
|
30
|
Pioletti DP. Integration of mechanotransduction concepts in bone tissue engineering. Comput Methods Biomech Biomed Engin 2013; 16:1050-5. [DOI: 10.1080/10255842.2013.780602] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Krauss Juillerat F, Borcard F, Staedler D, Scaletta C, Applegate LA, Comas H, Gauckler LJ, Gerber-Lemaire S, Juillerat-Jeanneret L, Gonzenbach UT. Functionalization of microstructured open-porous bioceramic scaffolds with human fetal bone cells. Bioconjug Chem 2012; 23:2278-90. [PMID: 23116053 DOI: 10.1021/bc300407x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bone substitute materials allowing trans-scaffold migration and in-scaffold survival of human bone-derived cells are mandatory for development of cell-engineered permanent implants to repair bone defects. In this study, we evaluated the influence on human bone-derived cells of the material composition and microstructure of foam scaffolds of calcium aluminate. The scaffolds were prepared using a direct foaming method allowing wide-range tailoring of the microstructure for pore size and pore openings. Human fetal osteoblasts (osteo-progenitors) attached to the scaffolds, migrated across the entire bioceramic depending on the scaffold pore size, colonized, and survived in the porous material for at least 6 weeks. The long-term biocompatibility of the scaffold material for human bone-derived cells was evidenced by in-scaffold determination of cell metabolic activity using a modified MTT assay, a repeated WST-1 assay, and scanning electron microscopy. Finally, we demonstrated that the osteo-progenitors can be covalently bound to the scaffolds using biocompatible click chemistry, thus enhancing the rapid adhesion of the cells to the scaffolds. Therefore, the different microstructures of the foams influenced the migratory potential of the cells, but not cell viability. Scaffolds allow covalent biocompatible chemical binding of the cells to the materials, either localized or widespread integration of the scaffolds for cell-engineered implants.
Collapse
|
32
|
Vozzi G, Corallo C, Daraio C. Pressure-activated microsyringe composite scaffold of poly(L-lactic acid) and carbon nanotubes for bone tissue engineering. J Appl Polym Sci 2012. [DOI: 10.1002/app.38235] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Ding M, Røjskjaer J, Cheng L, Theilgaard N, Overgaard S. The effects of a novel-reinforced bone substitute and Colloss®E on bone defect healing in sheep. J Biomed Mater Res B Appl Biomater 2012; 100:1826-35. [PMID: 22807474 DOI: 10.1002/jbm.b.32750] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/23/2012] [Accepted: 04/15/2012] [Indexed: 11/06/2022]
Abstract
Hydroxyappatite-β-tricalciumphosphate (HA/β-TCP) was reinforced with poly(D,L)-lactic acid (PDLLA) to overcome its weak mechanical properties. Two substitutes with porosities of 77% and 81% HA/β-TCP reinforced with 12 wt % PDLLA were tested in compression. The effects of allograft, substitute (HA/β-TCP-PDLLA), Colloss®E, and combination of substitute with Colloss®E on bone formation in vivo were evaluated. Cylindrical critical size defects were created at distal femoral condyles bilaterally in sheep. Titanium implant with concentric gap filling with one of the four materials was inserted. After 9 weeks, the sheep were sacrificed. Implants with surrounding bone were harvested and sectioned into two parts: one for microcomputed tomography scanning and push-out test, and one for histomorphometry. The 77% HA/β-TCP reinforced with PDLLA had similar mechanical properties to human cancellous bone and was significantly stronger than the HA/β-TCP without PDLLA. Microarchitecture of gap mass was significantly changed after implantation for all groups. Allograft had stronger shear mechanical properties than the other three groups, whereas there were no significant differences between the other three groups. Significant new bone formation could be seen in vivo in all four groups and there were no significant differences between them. The PDLLA-reinforced substitute seems to be good alternative substitute material for bone healing in sheep. Further investigations should be performed to validate this novel substitute material.
Collapse
Affiliation(s)
- Ming Ding
- Department of Orthopaedics and Traumatology, Odense University Hospital, University of Southern Denmark, 5000 Odense C, Denmark.
| | | | | | | | | |
Collapse
|
34
|
Zhou H, Lawrence JG, Bhaduri SB. Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: a review. Acta Biomater 2012; 8:1999-2016. [PMID: 22342596 DOI: 10.1016/j.actbio.2012.01.031] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/14/2011] [Accepted: 01/25/2012] [Indexed: 01/20/2023]
Abstract
For several decades, composites made of polylactic acid-calcium phosphates (PLA-CaP) and polylactic acid-co-glycolic acid-calcium phosphates (PLGA-CaP) have seen widespread uses in orthopedic applications. This paper reviews the fabrication aspects of these composites, following the ubiquitous materials science approach by studying "processing-structure-property" correlations. Various fabrication processes such as microencapsulation, phase separation, electrospinning, supercritical gas foaming, etc., are reviewed, with specific examples of their applications in fabricating these composites. The effect of the incorporation of CaP materials on the mechanical and biological performance of PLA/PLGA is addressed. In addition, this paper describes the state of the art on challenges and innovations concerning CaP dispersion, incorporation of biomolecules/stem cells and long-term degradation of the composites.
Collapse
|
35
|
Bombonato-Prado KF, Wimmers Ferreira MR, Rosa AL, de Oliveira PT, Jahno VD, da Silva JB, Ligabue R, Einloft S. Human Alveolar Bone-Derived Cell-Culture Behaviour on Biodegradable Poly(L-lactic Acid). JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 20:167-79. [DOI: 10.1163/156856209x404479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Karina Fittipaldi Bombonato-Prado
- a Department of Morphology, Stomatology and Physiology, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Av. do Café, s/n, 14040-904, Ribeirão Preto, SP, Brazil
| | - Maidy Redher Wimmers Ferreira
- b Department of Morphology, Stomatology and Physiology, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Av. do Café, s/n, 14040-904, Ribeirão Preto, SP, Brazil
| | - Adalberto Luiz Rosa
- c Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Av. do Café, s/n, 14040-904, Ribeirão Preto, SP, Brazil
| | - Paulo Tambasco de Oliveira
- d Department of Morphology, Stomatology and Physiology, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Av. do Café, s/n, 14040-904, Ribeirão Preto, SP, Brazil
| | | | | | | | | |
Collapse
|
36
|
Roshan-Ghias A, Lambers FM, Gholam-Rezaee M, Müller R, Pioletti DP. In vivo loading increases mechanical properties of scaffold by affecting bone formation and bone resorption rates. Bone 2011; 49:1357-64. [PMID: 21958844 DOI: 10.1016/j.bone.2011.09.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/20/2011] [Accepted: 09/09/2011] [Indexed: 01/04/2023]
Abstract
A successful bone tissue engineering strategy entails producing bone-scaffold constructs with adequate mechanical properties. Apart from the mechanical properties of the scaffold itself, the forming bone inside the scaffold also adds to the strength of the construct. In this study, we investigated the role of in vivo cyclic loading on mechanical properties of a bone scaffold. We implanted PLA/β-TCP scaffolds in the distal femur of six rats, applied external cyclic loading on the right leg, and kept the left leg as a control. We monitored bone formation at 7 time points over 35 weeks using time-lapsed micro-computed tomography (CT) imaging. The images were then used to construct micro-finite element models of bone-scaffold constructs, with which we estimated the stiffness for each sample at all time points. We found that loading increased the stiffness by 60% at 35 weeks. The increase of stiffness was correlated to an increase in bone volume fraction of 18% in the loaded scaffold compared to control scaffold. These changes in volume fraction and related stiffness in the bone scaffold are regulated by two independent processes, bone formation and bone resorption. Using time-lapsed micro-CT imaging and a newly-developed longitudinal image registration technique, we observed that mechanical stimulation increases the bone formation rate during 4-10 weeks, and decreases the bone resorption rate during 9-18 weeks post-operatively. For the first time, we report that in vivo cyclic loading increases mechanical properties of the scaffold by increasing the bone formation rate and decreasing the bone resorption rate.
Collapse
|
37
|
Garzón-Alvarado DA, Velasco MA, Narváez-Tovar CA. Modeling porous scaffold microstructure by a reaction-diffusion system and its degradation by hydrolysis. Comput Biol Med 2011; 42:147-55. [PMID: 22136697 DOI: 10.1016/j.compbiomed.2011.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 11/10/2011] [Accepted: 11/14/2011] [Indexed: 12/18/2022]
Abstract
One of the most important areas of Tissue Engineering is the research about bone regeneration and the replacement of its function. To meet this requirement, scaffolds have been developed to allow the cell migration, the growth of bone tissue, the transport of growth factors and nutrients and the renovation of the mechanical properties of bone. Scaffolds are made of different biomaterials and manufactured using various techniques that, in some cases, do not allow full control over the size and orientation of the pores that characterize the scaffold microstructure. From this perspective, we propose a novel hypothesis that a reaction-diffusion system can be used to design the geometrical specifications of the bone matrix. The validation of this hypothesis is performed by simulations of the reaction-diffusion system in a representative tridimensional unit cell, coupled with a model of scaffold degradation by hydrolysis. The results show the possibility that a Reaction-Diffusion system can control features such as the percentage of porosity, trabecular size, orientation, and interconnectivity of pores.
Collapse
Affiliation(s)
- Diego A Garzón-Alvarado
- Engineering Modeling and Numerical Methods Group, Universidad Nacional de Colombia, Carretera 30 No. 45-03, Bogotá, Colombia.
| | | | | |
Collapse
|
38
|
Vancomycin containing PLLA/β-TCP controls MRSA in vitro. Clin Orthop Relat Res 2011; 469:3222-8. [PMID: 21918801 PMCID: PMC3183185 DOI: 10.1007/s11999-011-2082-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 08/31/2011] [Indexed: 01/31/2023]
Abstract
BACKGROUND Osteomyelitis caused by Methicillin-resistant Staphylococcus aureus (MRSA) often requires surgery and prolonged systemic antibiotic treatment. Local antibiotic delivery systems of bioceramics or polymers have been developed to treat osteomyelitis. A disadvantage of biodegradable polymers is the initial burst of antibiotics into the environment; one advantage of bioceramics is its osteoconductivity. We therefore developed a vancomycin-containing poly-l-lactic acid/β-tricalcium phosphate (PLLA/β-TCP) composite to control antibiotic release and stimulate bone formation. QUESTIONS/PURPOSES We (1) characterized these composites, (2) assessed vancomycin release in inhibitory doses, and (3) determined whether they would permit cell adhesion, proliferation, and mineralization in vitro. METHODS We molded 250 vancomycin-containing (VC) and 125 vancomycin-free (VUC) composites using PLLA, β-TCP, and chloroform. One hundred twenty-five VC composites were further dip-coated with PLLA (CVC) to delay antibiotic release. Composites were characterized according to their pore structure, size, volume, density, and surface area. Vancomycin release and bioactivity were determined. Adhesion, proliferation, and mineralization were assessed for two and three replicates on Days 3 and 7 with mesenchymal stem (MSC) and Saos type 2 cells. RESULTS Pore size, volume, apparent density, and surface area of the CVC were 3.5 ± 1.9 μm, 0.005 ± 0.002 cm(3)/g, 1.18 g/cm(3) and 3.68 m(2)/g, respectively. CVC released 1.71 ± 0.13 mg (63.1%) and 2.49 ± 0.64 mg (91.9%) of its vancomycin on Day 1 and Week 6, respectively. MSC and Saos type 2 cells attached and proliferated on composites on Days 3 and 7. CONCLUSIONS Vancomycin-containing PLLA/β-TCP composites release antibiotics in inhibitory doses after dip coating and appeared biocompatible based on adhesion, proliferation, and mineralization. CLINICAL RELEVANCE Vancomycin-containing PLLA/β-TCP composites may be useful for controlling MRSA but will require in vivo confirmation.
Collapse
|
39
|
Prediction of spatio-temporal bone formation in scaffold by diffusion equation. Biomaterials 2011; 32:7006-12. [DOI: 10.1016/j.biomaterials.2011.05.085] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 05/28/2011] [Indexed: 11/20/2022]
|
40
|
Borcard F, Godinat A, Staedler D, Comas Blanco H, Dumont AL, Chapuis-Bernasconi C, Scaletta C, Applegate LA, Krauss Juillerat F, Gonzenbach UT, Gerber-Lemaire S, Juillerat-Jeanneret L. Covalent Cell Surface Functionalization of Human Fetal Osteoblasts for Tissue Engineering. Bioconjug Chem 2011; 22:1422-32. [DOI: 10.1021/bc200147m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Françoise Borcard
- Institute of Chemical Sciences and Engineering, EPFL, CH-1015, Lausanne, Switzerland
| | - Aurélien Godinat
- Institute of Chemical Sciences and Engineering, EPFL, CH-1015, Lausanne, Switzerland
| | - Davide Staedler
- Institute of Chemical Sciences and Engineering, EPFL, CH-1015, Lausanne, Switzerland
| | - Horacio Comas Blanco
- Institute of Chemical Sciences and Engineering, EPFL, CH-1015, Lausanne, Switzerland
| | - Anne-Laure Dumont
- Institute of Chemical Sciences and Engineering, EPFL, CH-1015, Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Cenni E, Perut F, Baglìo SR, Fiorentini E, Baldini N. Recent highlights on bone stem cells: a report from Bone Stem Cells 2009, and not only…. J Cell Mol Med 2011; 14:2614-21. [PMID: 20874718 PMCID: PMC4373490 DOI: 10.1111/j.1582-4934.2010.01175.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The use of stem cells has opened new prospects for the treatment of orthopaedic conditions characterized by large bone defects. However, many issues still exist to which answers are needed before routine, large-scale application becomes possible. Bone marrow stromal cells (MSC), which are clonogenic, multipotential precursors present in the bone marrow stroma, are generally employed for bone regeneration. Stem cells with multilineage differentiation similar to MSC have also been demonstrated in adipose tissue, peripheral blood, umbilical cord and amniotic fluid. Each source presents its own advantages and drawbacks. Unfortunately, no unique surface antigen is expressed by MSC, and this hampers simple MSC enrichment from heterogeneous populations. MSC are identified through a combination of physical, morphological and functional assays. Different in vitro and in vivo models have been described for the research on bone stem cells. These models should predict the in vivo bone healing capacity of MSC and if the induced osteogenesis is similar to the physiological one. Although stem cells offer an exciting possibility of a renewable source of cells and tissues for replacement, orthopaedic applications often represent case reports whereas controlled randomized trials are still lacking. Further biological aspects of bone stem cells should be elucidated and a general consensus on the best models, protocols and proper use of scaffolds and growth factors should be achieved.
Collapse
Affiliation(s)
- Elisabetta Cenni
- Laboratorio di Fisiopatologia Ortopedica e Medicina Rigenerativa, Istituto Ortopedico Rizzoli, Bologna, Italy.
| | | | | | | | | |
Collapse
|
42
|
Roshan-Ghias A, Pioletti DP. Surgical preparation of bone-scaffold interface is critical for bone regeneration inside tissue engineering scaffold. J Orthop Res 2011; 29:767-72. [PMID: 21437957 DOI: 10.1002/jor.21290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 10/02/2010] [Indexed: 02/04/2023]
Abstract
The goal of this study was to investigate if the preparation of implantation site affects bone formation inside tissue engineering scaffolds. For this purpose, two different drilling techniques were used to create a hole in distal femurs of rats before the insertion of a bone scaffold: a manually driven wood drill bit and an electrically driven metal drill bit. The size and the position of the hole were identical for the two cases. The bone volume, bone mineral density, and callus formation were assessed noninvasively using micro-CT tomography at several time points after implantation. The formation of bone and soft tissue inside scaffold were evaluated by histology. The bone structure around the holes made by the two techniques was compared ex vivo. The long-term study of bone formation showed that when a wood drill bit was used, the bone formation is accelerated by 3 weeks compared to when a metal drill bit was used. The ex vivo studies suggest that this result is due to the drilling methods differentially affecting the structure of the bone surrounding the generated defects.
Collapse
Affiliation(s)
- Alireza Roshan-Ghias
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | | |
Collapse
|
43
|
Abstract
Two biodegradable polymers, poly(L-lactide) and poly(ε-caprolactone) were blended (50/50) and used to produce polymeric scaffolds by the dual porogen approach using a salt leaching technique to create pores within the matrix, while supercritical-CO 2 treatment was used to enhance the interconnectivity and to remove impurities from synthesis steps. The scaffolds were highly porous (porosity >90%) with interconnected pore morphologies. These biodegradable scaffolds were evaluated in Sprague Dawley rats for osteoconductive properties over a 6-month period. Bone specimens were analyzed after 1, 3, and 6 months, for bone healing and tissue response. The cortical bone remodeling by controlled osteoblastic and osteoclastic activities as well as the bone marrow elements recovery were semi-quantitatively examined for each group. Excellent integration and biocompatibility behavior was observed in all groups. No adverse tissue responses were observed.
Collapse
|
44
|
Tenorio DMH, Scaletta C, Jaccoud S, Hirt-Burri N, Pioletti DP, Jaques B, Applegate LA. Human fetal bone cells in delivery systems for bone engineering. J Tissue Eng Regen Med 2011; 5:806-14. [PMID: 22002924 DOI: 10.1002/term.381] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 09/22/2010] [Indexed: 01/03/2023]
Abstract
The aim of this study was to culture human fetal bone cells (dedicated cell banks of fetal bone derived from 14 week gestation femurs) within both hyaluronic acid gel and collagen foam, to compare the biocompatibility of both matrices as potential delivery systems for bone engineering and particularly for oral application. Fetal bone cell banks were prepared from one organ donation and cells were cultured for up to 4 weeks within hyaluronic acid (Mesolis®) and collagen foams (TissueFleece®). Cell survival and differentiation were assessed by cell proliferation assays and histology of frozen sections stained with Giemsa, von Kossa and ALP at 1, 2 and 4 weeks of culture. Within both materials, fetal bone cells could proliferate in three-dimensional structure at ∼70% capacity compared to monolayer culture. In addition, these cells were positive for ALP and von Kossa staining, indicating cellular differentiation and matrix production. Collagen foam provides a better structure for fetal bone cell delivery if cavity filling is necessary and hydrogels would permit an injectable technique for difficult to treat areas. In all, there was high biocompatibility, cellular differentiation and matrix deposition seen in both matrices by fetal bone cells, allowing for easy cell delivery for bone stimulation in vivo.
Collapse
Affiliation(s)
- Diene M H Tenorio
- Department of Musculoskeletal Medicine, University Hospital of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
45
|
van der Pol U, Mathieu L, Zeiter S, Bourban PE, Zambelli PY, Pearce S, Bouré L, Pioletti D. Augmentation of bone defect healing using a new biocomposite scaffold: an in vivo study in sheep. Acta Biomater 2010; 6:3755-62. [PMID: 20346421 DOI: 10.1016/j.actbio.2010.03.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 03/12/2010] [Accepted: 03/17/2010] [Indexed: 10/19/2022]
Abstract
Previous studies support resorbable biocomposites made of poly(L-lactic acid) (PLA) and beta-tricalcium phosphate (TCP) produced by supercritical gas foaming as a suitable scaffold for tissue engineering. The present study was undertaken to demonstrate the biocompatibility and osteoconductive properties of such a scaffold in a large animal cancellous bone model. The biocomposite (PLA/TCP) was compared with a currently used beta-TCP bone substitute (ChronOS, Dr. Robert Mathys Foundation), representing a positive control, and empty defects, representing a negative control. Ten defects were created in sheep cancellous bone, three in the distal femur and two in the proximal tibia of each hind limb, with diameters of 5 mm and depths of 15 mm. New bone in-growth (osteoconductivity) and biocompatibility were evaluated using microcomputed tomography and histology at 2, 4 and 12 months after surgery. The in vivo study was validated by the positive control (good bone formation with ChronOS) and the negative control (no healing with the empty defect). A major finding of this study was incorporation of the biocomposite in bone after 12 months. Bone in-growth was observed in the biocomposite scaffold, including its central part. Despite initial fibrous tissue formation observed at 2 and 4 months, but not at 12 months, this initial fibrous tissue does not preclude long-term application of the biocomposite, as demonstrated by its osteointegration after 12 months, as well as the absence of chronic or long-term inflammation at this time point.
Collapse
|
46
|
Tare RS, Kanczler J, Aarvold A, Jones AMH, Dunlop DG, Oreffo ROC. Skeletal stem cells and bone regeneration: Translational strategies from bench to clinic. Proc Inst Mech Eng H 2010; 224:1455-70. [DOI: 10.1243/09544119jeim750] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Clinical imperatives for new bone to replace or restore the function of traumatized or bone lost as a consequence of age or disease has led to the need for therapies or procedures to generate bone for skeletal applications. Tissue regeneration promises to deliver specifiable replacement tissues and the prospect of efficacious alternative therapies for orthopaedic applications such as non-union fractures, healing of critical sized segmental defects and regeneration of articular cartilage in degenerative joint diseases. In this paper we review the current understanding of the continuum of cell development from skeletal stem cells, osteoprogenitors through to mature osteoblasts and the role of the matrix microenvironment, vasculature and factors that control their fate and plasticity in skeletal regeneration. Critically, this review addresses in vitro and in vivo models to investigate laboratory and clinical based strategies for the development of new technologies for skeletal repair and the key translational points to clinical success. The application of developmental paradigms of musculoskeletal tissue formation specifically, understanding developmental biology of bone formation particularly in the adult context of injury and disease will, we propose, offer new insights into skeletal cell biology and tissue regeneration allowing for the critical integration of stem cell science, tissue engineering and clinical applications. Such interdisciplinary, iterative approaches will be critical in taking patient aspirations to clinical reality.
Collapse
Affiliation(s)
- R S Tare
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Developmental Origins of Health and Disease, Institute of Developmental Sciences, University of Southampton School of Medicine, Southampton, United Kingdom
| | - J Kanczler
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Developmental Origins of Health and Disease, Institute of Developmental Sciences, University of Southampton School of Medicine, Southampton, United Kingdom
| | - A Aarvold
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Developmental Origins of Health and Disease, Institute of Developmental Sciences, University of Southampton School of Medicine, Southampton, United Kingdom
| | - A M H Jones
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Developmental Origins of Health and Disease, Institute of Developmental Sciences, University of Southampton School of Medicine, Southampton, United Kingdom
| | - D G Dunlop
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Developmental Origins of Health and Disease, Institute of Developmental Sciences, University of Southampton School of Medicine, Southampton, United Kingdom
| | - R O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Developmental Origins of Health and Disease, Institute of Developmental Sciences, University of Southampton School of Medicine, Southampton, United Kingdom
| |
Collapse
|
47
|
Montjovent MO, Bocelli-Tyndall C, Scaletta C, Scherberich A, Mark S, Martin I, Applegate LA, Pioletti DP. In vitro characterization of immune-related properties of human fetal bone cells for potential tissue engineering applications. Tissue Eng Part A 2009; 15:1523-32. [PMID: 19196143 DOI: 10.1089/ten.tea.2008.0222] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We describe herein some immunological properties of human fetal bone cells recently tested for bone tissue-engineering applications. Adult mesenchymal stem cells (MSCs) and osteoblasts were included in the study for comparison. Surface markers involved in bone metabolism and immune recognition were analyzed using flow cytometry before and after differentiation or treatment with cytokines. Immunomodulatory properties were studied on activated peripheral blood mononuclear cells (PBMCs). The immuno-profile of fetal bone cells was further investigated at the gene expression level. Fetal bone cells and adult MSCs were positive for Stro-1, alkaline phosphatase, CD10, CD44, CD54, and beta2-microglobulin, but human leukocyte antigen (HLA)-I and CD80 were less present than on adult osteoblasts. All cells were negative for HLA-II. Treatment with recombinant human interferon gamma increased the presence of HLA-I in adult cells much more than in fetal cells. In the presence of activated PBMCs, fetal cells had antiproliferative effects, although with patterns not always comparable with those of adult MSCs and osteoblasts. Because of the immunological profile, and with their more-differentiated phenotype than of stem cells, fetal bone cells present an interesting potential for allogeneic cell source in tissue-engineering applications.
Collapse
Affiliation(s)
- Marc-Olivier Montjovent
- Center of Translational Biomechanics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
48
|
The cultivation of human multipotent mesenchymal stromal cells in clinical grade medium for bone tissue engineering. Biomaterials 2009; 30:3415-27. [PMID: 19362364 DOI: 10.1016/j.biomaterials.2009.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 03/02/2009] [Indexed: 12/11/2022]
Abstract
Clinical application of human multipotent mesenchymal stromal cells (hMSCs) requires their expansion to be safe and rapid. We aimed to develop an expansion protocol which would avoid xenogeneic proteins, including fetal calf serum (FCS), and which would shorten the cultivation time and avoid multiple passaging. First, we have compared research-grade alpha-MEM medium with clinical grade CellGro for Hematopoietic Cells' Medium. When FCS was used for supplementation and non-adherent cells were discarded, both media were comparable. Both media were comparable also when pooled human serum (hS) was used instead of FCS, but the numbers of hMSCs were lower when non-adherent cells were discarded. However, significantly more hMSCs were obtained both in alpha-MEM and in CellGro supplemented with hS when the non-adherent cells were left in the culture. Furthermore, addition of recombinant cytokines and other supplements (EGF, PDGF-BB, M-CSF, FGF-2, dexamethasone, insulin and ascorbic acid) to the CellGro co-culture system with hS led to 40-fold increase of hMSCs' yield after two weeks of cultivation compared to alpha-MEM with FCS. The hMSCs expanded in the described co-culture system retain their osteogenic, adipogenic and chondrogenic differentiation potential in vitro and produce bone-like mineralized tissue when propagated on 3D polylactide scaffolds in immunodeficient mice. Our protocol thus allows for very effective one-step, xenogeneic protein-free expansion of hMSCs, which can be easily transferred into good manufacturing practice (GMP) conditions for large-scale, clinical-grade production of hMSCs for purposes of tissue engineering.
Collapse
|
49
|
Lemmouchi Y, Perry MC, Amass AJ, Chakraborty K, Schacht E. Novel synthesis of biodegradable linear and star block copolymers based on ε‐caprolactone and lactides using potassium‐based catalyst. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/pola.22835] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|