1
|
Wang W, Zhou F, Li Y, Liu Y, Sun H, Lv Q, Ding W. U-shaped association between triglyceride glucose-body mass index with all-cause and cardiovascular mortality in US adults with osteoarthritis: evidence from NHANES 1999-2020. Sci Rep 2024; 14:19959. [PMID: 39198550 PMCID: PMC11358406 DOI: 10.1038/s41598-024-70443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
The association between insulin resistance (IR) and the risk of all-cause mortality and cardiovascular mortality among osteoarthritis (OA) patients remains uncertain. This study aims to clarify the correlation between a novel marker of IR, the triglyceride glucose-body mass index (TyG-BMI), and the risk of all-cause mortality and cardiovascular mortality in OA patients. Data from the National Health and Nutrition Examination Survey (NHANES) spanning from 1999 to 2020 were analyzed. Multivariable Cox proportional hazards regression analysis and restricted cubic spline plots were employed to elucidate the association between the TyG-BMI index and the risk of all-cause mortality or cardiovascular mortality in OA patients. Additionally, subgroup analysis was conducted to explore potential interactions and identify populations at elevated risk of mortality. The study cohort comprised 4097 OA patients who were followed up for a period of 20 years, during which 1197 cases of all-cause mortality and 329 cases of mortality attributed to cardiovascular disease were recorded. Our findings revealed a U-shaped nonlinear relationship between the TyG-BMI index and the risk of all-cause mortality or cardiovascular mortality in OA patients, with the lowest mortality risk thresholds identified at 282 and 270, respectively. Moreover, surpassing these thresholds was associated with a 3% increase in the risk of all-cause mortality and a 5% increase in the risk of cardiovascular mortality for every 10-unit increment in TyG-BMI level. Among American OA patients, a U-shaped nonlinear relationship exists between the TyG-BMI index and the risk of all-cause mortality or cardiovascular mortality. These findings underscore the significant role of IR in the progression of OA.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopedics, Dandong Central Hospital, China Medical University, No. 338 Jinshan Street, Zhenxing District, Dandong, 118002, Liaoning, People's Republic of China
| | - Fan Zhou
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Yuhao Li
- Department of Orthopedics, Dandong Central Hospital, China Medical University, No. 338 Jinshan Street, Zhenxing District, Dandong, 118002, Liaoning, People's Republic of China
| | - Yazhou Liu
- School of Clinical Medicine, Dalian Medical University, Dalian, China
| | - Haoran Sun
- Department of Orthopedics, Dandong Central Hospital, China Medical University, No. 338 Jinshan Street, Zhenxing District, Dandong, 118002, Liaoning, People's Republic of China
| | - Qiaomei Lv
- Department of Rheumatology, Dandong Central Hospital, China Medical University, Dandong, China
| | - Wenbo Ding
- Department of Orthopedics, Dandong Central Hospital, China Medical University, No. 338 Jinshan Street, Zhenxing District, Dandong, 118002, Liaoning, People's Republic of China.
| |
Collapse
|
2
|
Maisenbacher TC, Ehnert S, Histing T, Nüssler AK, Menger MM. Advantages and Limitations of Diabetic Bone Healing in Mouse Models: A Narrative Review. Biomedicines 2023; 11:3302. [PMID: 38137522 PMCID: PMC10741210 DOI: 10.3390/biomedicines11123302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Diabetes represents a major risk factor for impaired fracture healing. Type 2 diabetes mellitus is a growing epidemic worldwide, hence an increase in diabetes-related complications in fracture healing can be expected. However, the underlying mechanisms are not yet completely understood. Different mouse models are used in preclinical trauma research for fracture healing under diabetic conditions. The present review elucidates and evaluates the characteristics of state-of-the-art murine diabetic fracture healing models. Three major categories of murine models were identified: Streptozotocin-induced diabetes models, diet-induced diabetes models, and transgenic diabetes models. They all have specific advantages and limitations and affect bone physiology and fracture healing differently. The studies differed widely in their diabetic and fracture healing models and the chosen models were evaluated and discussed, raising concerns in the comparability of the current literature. Researchers should be aware of the presented advantages and limitations when choosing a murine diabetes model. Given the rapid increase in type II diabetics worldwide, our review found that there are a lack of models that sufficiently mimic the development of type II diabetes in adult patients over the years. We suggest that a model with a high-fat diet that accounts for 60% of the daily calorie intake over a period of at least 12 weeks provides the most accurate representation.
Collapse
Affiliation(s)
- Tanja C. Maisenbacher
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Clinic Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (T.H.); (M.M.M.)
- Siegfried Weller Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (S.E.); (A.K.N.)
| | - Sabrina Ehnert
- Siegfried Weller Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (S.E.); (A.K.N.)
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Clinic Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (T.H.); (M.M.M.)
| | - Andreas K. Nüssler
- Siegfried Weller Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (S.E.); (A.K.N.)
| | - Maximilian M. Menger
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Clinic Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (T.H.); (M.M.M.)
| |
Collapse
|
3
|
Sheng N, Xing F, Wang J, Zhang QY, Nie R, Li-Ling J, Duan X, Xie HQ. Recent progress in bone-repair strategies in diabetic conditions. Mater Today Bio 2023; 23:100835. [PMID: 37928253 PMCID: PMC10623372 DOI: 10.1016/j.mtbio.2023.100835] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 10/02/2023] [Accepted: 10/14/2023] [Indexed: 11/07/2023] Open
Abstract
Bone regeneration following trauma, tumor resection, infection, or congenital disease is challenging. Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia. It can result in complications affecting multiple systems including the musculoskeletal system. The increased number of diabetes-related fractures poses a great challenge to clinical specialties, particularly orthopedics and dentistry. Various pathological factors underlying DM may directly impair the process of bone regeneration, leading to delayed or even non-union of fractures. This review summarizes the mechanisms by which DM hampers bone regeneration, including immune abnormalities, inflammation, reactive oxygen species (ROS) accumulation, vascular system damage, insulin/insulin-like growth factor (IGF) deficiency, hyperglycemia, and the production of advanced glycation end products (AGEs). Based on published data, it also summarizes bone repair strategies in diabetic conditions, which include immune regulation, inhibition of inflammation, reduction of oxidative stress, promotion of angiogenesis, restoration of stem cell mobilization, and promotion of osteogenic differentiation, in addition to the challenges and future prospects of such approaches.
Collapse
Affiliation(s)
- Ning Sheng
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Fei Xing
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Jie Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Qing-Yi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Duan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China
| |
Collapse
|
4
|
Jaber M, Hofbauer LC, Hofbauer C, Duda GN, Checa S. Reduced Bone Regeneration in Rats With Type 2 Diabetes Mellitus as a Result of Impaired Stromal Cell and Osteoblast Function-A Computer Modeling Study. JBMR Plus 2023; 7:e10809. [PMID: 38025037 PMCID: PMC10652174 DOI: 10.1002/jbm4.10809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 12/01/2023] Open
Abstract
Bone has the fascinating ability to self-regenerate. However, under certain conditions, such as type 2 diabetes mellitus (T2DM), this ability is impaired. T2DM is a chronic metabolic disease known by the presence of elevated blood glucose levels that is associated with reduced bone regeneration capability, high fracture risk, and eventual non-union risk after a fracture. Several mechanical and biological factors relevant to bone regeneration have been shown to be affected in a diabetic environment. However, whether impaired bone regeneration in T2DM can be explained due to mechanical or biological alterations remains unknown. To elucidate the relevance of either one, the aim of this study was to investigate the relative contribution of T2DM-related alterations on either cellular activity or mechanical stimuli driving bone regeneration. A previously validated in silico computer modeling approach that was capable of explaining bone regeneration in uneventful conditions of healing was further developed to investigate bone regeneration in T2DM. Aspects analyzed included the presence of mesenchymal stromal cells (MSCs), cellular migration, proliferation, differentiation, apoptosis, and cellular mechanosensitivity. To further verify the computer model findings against in vivo data, an experimental setup was replicated, in which regeneration was compared in healthy and diabetic after a rat femur bone osteotomy stabilized with plate fixation. We found that mechanical alterations had little effect on the reduced bone regeneration in T2DM and that alterations in MSC proliferation, MSC migration, and osteoblast differentiation had the highest effect. In silico predictions of regenerated bone in T2DM matched qualitatively and quantitatively those from ex vivo μCT at 12 weeks post-surgery when reduced cellular activities reported in previous in vitro and in vivo studies were included in the model. The presented findings here could have clinical implications in the treatment of bone fractures in patients with T2DM. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mahdi Jaber
- Julius Wolff Institute at Berlin Institute of Health, Charité—Universitätsmedizin BerlinBerlinGermany
| | - Lorenz C Hofbauer
- Department of Medicine III and Center for Healthy AgingTechnische Universität DresdenDresdenGermany
| | - Christine Hofbauer
- Department of Medicine III and Center for Healthy AgingTechnische Universität DresdenDresdenGermany
| | - Georg N Duda
- Julius Wolff Institute at Berlin Institute of Health, Charité—Universitätsmedizin BerlinBerlinGermany
- BIH Center for Regenerative TherapiesBIH at Charité ‐ Universitätsmedizin BerlinBerlinGermany
| | - Sara Checa
- Julius Wolff Institute at Berlin Institute of Health, Charité—Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
5
|
Moradi L, Witek L, Vivekanand Nayak V, Cabrera Pereira A, Kim E, Good J, Liu CJ. Injectable hydrogel for sustained delivery of progranulin derivative Atsttrin in treating diabetic fracture healing. Biomaterials 2023; 301:122289. [PMID: 37639975 PMCID: PMC11232488 DOI: 10.1016/j.biomaterials.2023.122289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/22/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Hydrogels with long-term storage stability, controllable sustained-release properties, and biocompatibility have been garnering attention as carriers for drug/growth factor delivery in tissue engineering applications. Chitosan (CS)/Graphene Oxide (GO)/Hydroxyethyl cellulose (HEC)/β-glycerol phosphate (β-GP) hydrogel is capable of forming a 3D gel network at physiological temperature (37 °C), rendering it an excellent candidate for use as an injectable biomaterial. This work focused on an injectable thermo-responsive CS/GO/HEC/β-GP hydrogel, which was designed to deliver Atsttrin, an engineered derivative of a known chondrogenic and anti-inflammatory growth factor-like molecule progranulin. The combination of the CS/GO/HEC/β-GP hydrogel and Atsttrin provides a unique biochemical and biomechanical environment to enhance fracture healing. CS/GO/HEC/β-GP hydrogels with increased amounts of GO exhibited rapid sol-gel transition, higher viscosity, and sustained release of Atsttrin. In addition, these hydrogels exhibited a porous interconnected structure. The combination of Atsttrin and hydrogel successfully promoted chondrogenesis and osteogenesis of bone marrow mesenchymal stem cells (bmMSCs) in vitro. Furthermore, the work also presented in vivo evidence that injection of Atsttrin-loaded CS/GO/HEC/β-GP hydrogel stimulated diabetic fracture healing by simultaneously inhibiting inflammatory and stimulating cartilage regeneration and endochondral bone formation signaling pathways. Collectively, the developed injectable thermo-responsive CS/GO/HEC/βG-P hydrogel yielded to be minimally invasive, as well as capable of prolonged and sustained delivery of Atsttrin, for therapeutic application in impaired fracture healing, particularly diabetic fracture healing.
Collapse
Affiliation(s)
- Lida Moradi
- Department of Orthopaedics Surgery, New York University Grossman School of Medicine, New York, NY, 10003, USA; Department of Orthopaedics & Rehabilitation, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Lukasz Witek
- Biomaterials Division - Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA; Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, 11201, USA
| | - Vasudev Vivekanand Nayak
- Biomaterials Division - Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Angel Cabrera Pereira
- Biomaterials Division - Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Ellen Kim
- Department of Orthopaedics Surgery, New York University Grossman School of Medicine, New York, NY, 10003, USA
| | - Julia Good
- Department of Orthopaedics Surgery, New York University Grossman School of Medicine, New York, NY, 10003, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics Surgery, New York University Grossman School of Medicine, New York, NY, 10003, USA; Department of Orthopaedics & Rehabilitation, Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
6
|
Alharbi MA, Graves DT. FOXO 1 deletion in chondrocytes rescues diabetes-impaired fracture healing by restoring angiogenesis and reducing apoptosis. Front Endocrinol (Lausanne) 2023; 14:1136117. [PMID: 37576976 PMCID: PMC10421747 DOI: 10.3389/fendo.2023.1136117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/12/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Diabetes mellitus is associated with higher risks of long bone and jaw fractures. It is also associated with a higher incidence of delayed union or non-union. Our previous investigations concluded that a dominant mechanism was the premature loss of cartilage during endochondral bone formation associated with increased osteoclastic activities. We tested the hypothesis that FOXO1 plays a key role in diabetes-impaired angiogenesis and chondrocyte apoptosis. Methods Closed fractures of the femur were induced in mice with lineage-specific FOXO1 deletion in chondrocytes. The control group consisted of mice with the FOXO1 gene present. Mice in the diabetic group were rendered diabetic by multiple streptozotocin injections, while mice in the normoglycemic group received vehicle. Specimens were collected 16 days post fracture. The samples were fixed, decalcified, and embedded in paraffin blocks for immunostaining utilizing anti cleaved caspase-3 or CD31 specific antibodies compared with matched control IgG antibody, and apoptosis by the TUNEL assay. Additionally, ATDC5 chondrocytes were examined in vitro by RT-PCR, luciferase reporter and chromatin immunoprecipitation assays. Results Diabetic mice had ~ 50% fewer blood vessels compared to normoglycemic mice FOXO1 deletion in diabetic mice partially rescued the low number of blood vessels (p < 0.05). Additionally, diabetes increased caspase-3 positive and apoptotic chondrocytes by 50%. FOXO1 deletion in diabetic animals blocked the increase in both to levels comparable to normoglycemic animals (p < 0.05). High glucose (HG) and high advanced glycation end products (AGE) levels stimulated FOXO1 association with the caspase-3 promoter in vitro, and overexpression of FOXO1 increased caspase-3 promoter activity in luciferase reporter assays. Furthermore, we review previous mechanistic studies demonstrating that tumor necrosis factor (TNF) inhibition reverses impaired angiogenesis and reverses high levels of chondrocyte apoptosis that occur in fracture healing. Discussion New results presented here, in combination with recent studies, provide a comprehensive overview of how diabetes, through high glucose levels, AGEs, and increased inflammation, impair the healing process by interfering with angiogenesis and stimulating chondrocyte apoptosis. FOXO1 in diabetic fractures plays a negative role by reducing new blood vessel formation and increasing chondrocyte cell death which is distinct from its role in normal fracture healing.
Collapse
Affiliation(s)
- Mohammed A. Alharbi
- Department of Endodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dana T. Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
7
|
Yan W, Shen M, Sun K, Li S, Miao J, Wang J, Xu J, Wen P, Zhang Q. Norisoboldine, a Natural Isoquinoline Alkaloid, Inhibits Diaphyseal Fracture Healing in Mice by Alleviating Cartilage Formation. Biomedicines 2023; 11:2031. [PMID: 37509670 PMCID: PMC10377295 DOI: 10.3390/biomedicines11072031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Norisoboldine (NOR), the major isoquinoline alkaloid constituent of a Chinese traditional medicine Radix Linderae, has been demonstrated to inhibit osteoclast differentiation and improve arthritis. The aim of this study is to examine the effect of NOR on bone fracture healing and the underlying mechanisms correlated with bone marrow stromal cells (BMSCs) differentiation to chondrocytes. Our results showed that NOR inhibits the tibia fracture healing process by suppressing cartilage formation, which leads to less endochondral ossification, indicated by less osterix and collage I signaling at the fracture site. Moreover, NOR significantly reduced the differentiation of primary BMSCs to chondrocytes in vitro by reducing the bone morphogenetic protein 2 (BMP2) signaling. These findings imply that NOR negatively regulates the healing of the tibial midshaft fracture, which might delay the union of the fractures and should be noticed when used in other treatments.
Collapse
Affiliation(s)
- Wenliang Yan
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Meng Shen
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Kainong Sun
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Shiming Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jingyuan Miao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jun Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jiayang Xu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Pengcheng Wen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qian Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
8
|
Sobieh BH, El-Mesallamy HO, Kassem DH. Beyond mechanical loading: The metabolic contribution of obesity in osteoarthritis unveils novel therapeutic targets. Heliyon 2023; 9:e15700. [PMID: 37180899 PMCID: PMC10172930 DOI: 10.1016/j.heliyon.2023.e15700] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent progressive disease that frequently coexists with obesity. For several decades, OA was thought to be the result of ageing and mechanical stress on cartilage. Researchers' perspective has been greatly transformed when cumulative findings emphasized the role of adipose tissue in the diseases. Nowadays, the metabolic effect of obesity on cartilage tissue has become an integral part of obesity research; hoping to discover a disease-modifying drug for OA. Recently, several adipokines have been reported to be associated with OA. Particularly, metrnl (meteorin-like) and retinol-binding protein 4 (RBP4) have been recognized as emerging adipokines that can mediate OA pathogenesis. Accordingly, in this review, we will summarize the latest findings concerned with the metabolic contribution of obesity in OA pathogenesis, with particular emphasis on dyslipidemia, insulin resistance and adipokines. Additionally, we will discuss the most recent adipokines that have been reported to play a role in this context. Careful consideration of these molecular mechanisms interrelated with obesity and OA will undoubtedly unveil new avenues for OA treatment.
Collapse
Affiliation(s)
- Basma H. Sobieh
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hala O. El-Mesallamy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Dina H. Kassem
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Corresponding author. Associate Professor of Biochemistry Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, street of African Union Organization, 11566, Cairo, Egypt.
| |
Collapse
|
9
|
Liu H, Tian F, Hu Y, Ping S, Zhang L. Liraglutide in Combination with Insulin Has a Superior Therapeutic Effect to Either Alone on Fracture Healing in Diabetic Rats. Diabetes Metab Syndr Obes 2023; 16:1235-1245. [PMID: 37151908 PMCID: PMC10155808 DOI: 10.2147/dmso.s404392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Purpose Fractures in patients with type 2 diabetes mellitus are at a high risk of delayed union or non-union. Previous studies have shown a protective effect of liraglutide on bone. In the present study, we aimed to investigate the effects of a combination of liraglutide and insulin on fracture healing in a rat model of diabetes and the mechanisms involved. Materials and Methods Closed femoral mid-shaft fractures were established in male Sprague-Dawley rats with or without diabetes mellitus, and the diabetic rats were administered insulin and/or liraglutide. Six weeks after femoral fracture, the femoral callus was evaluated by immunohistochemistry, histology, and micro-computed tomography. Additionally, the effects of liraglutide on high-glucose-stimulated MC3T3-E1 cells were analyzed by Western blotting. Results Micro-computed tomography and safranin O/fast green staining showed that fracture healing was delayed in the diabetic rats, and this was accompanied by much lower expression of osteogenic markers and greater osteoclast activity. However, treatment with insulin and/or liraglutide prevented these changes. Liraglutide in combination with insulin treatment resulted in lower blood glucose concentrations and significantly higher osteocalcin (OCN) and collagen I (Col I) expression six weeks following fracture. Western blot analysis showed that liraglutide prevented the low expression of the bone morphogenetic protein-2, osterix/SP7, OCN, Col I, and β-catenin in high-glucose-stimulated MC3T3-E1 cells. Conclusion These results demonstrate that insulin and/or liraglutide promotes bone fracture healing in the DF model. The combination was more effective than either single treatment, which may be because of the two drugs' additive effects on the osteogenic ability of osteoblast precursors.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Orthopedic Syrgery, The Affiliated Hospital, North China University of Science and Technology, Tangshan, Hebei, People's Republic of China
| | - Faming Tian
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, People’s Republic of China
| | - Yunpeng Hu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, People’s Republic of China
| | - Shaohua Ping
- Department of Orthopedic Syrgery, The Affiliated Hospital, North China University of Science and Technology, Tangshan, Hebei, People's Republic of China
| | - Liu Zhang
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Orthopedic Surgery, Emergency Management General Hospital, Beijing, People’s Republic of China
- Correspondence: Liu Zhang, Department of Orthopedic Surgery, Emergency Management General Hospital, Xibahenanli 29, Chaoyang dis, Beijing, 100028, People’s Republic of China, Tel +86-10-64662308, Email
| |
Collapse
|
10
|
Innella K, Levidy MF, Kadkoy Y, Lin A, Selles M, Sanchez A, Weiner A, Greendyk J, Moriarty B, Lauritsen K, Lopez J, Teitelbaum M, Fisher M, Mendiratta D, Ahn DB, Ippolitto J, Paglia DN, Cottrell J, O'Connor JP, Benevenia J, Lin SS. Local zinc treatment enhances fracture callus properties in diabetic rats. J Orthop Res 2022. [PMID: 36515300 DOI: 10.1002/jor.25499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
The effects of locally applied zinc chloride (ZnCl2 ) on early and late-stage parameters of fracture healing were evaluated in a diabetic rat model. Type 1 Diabetes has been shown to negatively impact mechanical parameters of bone as well as biologic markers associated with bone healing. Zinc treatments have been shown to reverse those outcomes in tests of nondiabetic and diabetic animals. This study is the first to assess the efficacy of a noncarrier mediated ZnCl2 on bony healing in diabetic animals. This is a promising basic science approach which may lead to benefits for diabetic patients in the future. Treatment and healing were assessed through quantification of callus zinc, radiographic scoring, microcomputed tomography (µCT), histomorphometry, and mechanical testing. Local ZnCl2 treatment increased callus zinc levels at 1 and 3 days after fracture (p ≤ 0.025). Femur fractures treated with ZnCl2 showed increased mechanical properties after 4 and 6 weeks of healing. Histomorphometry of the ZnCl2 -treated fractures found increased callus cartilage area at Day 7 (p = 0.033) and increased callus bone area at Day 10 (p = 0.038). In contrast, callus cartilage area was decreased (p < 0.01) after 14 days in the ZnCl2 -treated rats. µCT analysis showed increased bone volume in the fracture callus of ZnCl2 -treated rats at 6 weeks (p = 0.0012) with an associated increase in the proportion of µCT voxel axial projections (Z-rays) spanning the fracture site. The results suggest that local ZnCl2 administration improves callus chondrogenesis leading to greater callus bone formation and improved fracture healing in diabetic rats.
Collapse
Affiliation(s)
- Kevin Innella
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Michael F Levidy
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Yazan Kadkoy
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Anthony Lin
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Marcus Selles
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Alexandra Sanchez
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Adam Weiner
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Joshua Greendyk
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Brian Moriarty
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Katherine Lauritsen
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jonathan Lopez
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Marc Teitelbaum
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Mark Fisher
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Dhruv Mendiratta
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - David B Ahn
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Joseph Ippolitto
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - David N Paglia
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jessica Cottrell
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA.,Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, USA
| | - J Patrick O'Connor
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Joseph Benevenia
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Sheldon S Lin
- Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
11
|
Saul D, Khosla S. Fracture Healing in the Setting of Endocrine Diseases, Aging, and Cellular Senescence. Endocr Rev 2022; 43:984-1002. [PMID: 35182420 PMCID: PMC9695115 DOI: 10.1210/endrev/bnac008] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/19/2022]
Abstract
More than 2.1 million age-related fractures occur in the United States annually, resulting in an immense socioeconomic burden. Importantly, the age-related deterioration of bone structure is associated with impaired bone healing. Fracture healing is a dynamic process which can be divided into four stages. While the initial hematoma generates an inflammatory environment in which mesenchymal stem cells and macrophages orchestrate the framework for repair, angiogenesis and cartilage formation mark the second healing period. In the central region, endochondral ossification favors soft callus development while next to the fractured bony ends, intramembranous ossification directly forms woven bone. The third stage is characterized by removal and calcification of the endochondral cartilage. Finally, the chronic remodeling phase concludes the healing process. Impaired fracture healing due to aging is related to detrimental changes at the cellular level. Macrophages, osteocytes, and chondrocytes express markers of senescence, leading to reduced self-renewal and proliferative capacity. A prolonged phase of "inflammaging" results in an extended remodeling phase, characterized by a senescent microenvironment and deteriorating healing capacity. Although there is evidence that in the setting of injury, at least in some tissues, senescent cells may play a beneficial role in facilitating tissue repair, recent data demonstrate that clearing senescent cells enhances fracture repair. In this review, we summarize the physiological as well as pathological processes during fracture healing in endocrine disease and aging in order to establish a broad understanding of the biomechanical as well as molecular mechanisms involved in bone repair.
Collapse
Affiliation(s)
- Dominik Saul
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, 37073 Goettingen, Germany
| | - Sundeep Khosla
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
12
|
Quincey A, Mohan S, Edderkaoui B. Monocyte Chemotactic Proteins Mediate the Effects of Hyperglycemia in Chondrocytes: In Vitro Studies. Life (Basel) 2022; 12:life12060836. [PMID: 35743867 PMCID: PMC9224901 DOI: 10.3390/life12060836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Chemokines are secreted by a large variety of cells. They are involved in controlling cell trafficking, maturation, and differentiation. However, the specific responses and effects of chemokines on specific skeletal cell types under high glucose conditions have not been investigated. Chondrocytes play an important role in osteoarthritis and fracture healing. Delayed fracture healing is one of the major health complications caused by diabetes, so the goal of this study was to evaluate the response of several chemokines to high glucose conditions in chondrocyte cells and analyze their role in the catabolic effect of hyperglycemia. ATDC5 chondrocytes were cultured in normal and high glucose media, and mRNA expression levels of several chemokines and chondrocyte differentiation markers were quantified. Bindarit, a specific inhibitor of monocyte chemotactic proteins (MCPs), was used to determine the role of MCPs in mediating the effects of high glucose conditions in chondrocyte cells. High glucose treatment upregulated the expression of three Mcps, as well as the expression of matrix metalloproteinase 13 (Mmp13) and Osteocalcin (Oc). Furthermore, bindarit treatment downregulated Mmp13 and Oc but upregulated Collagen 2 (Col2) mRNA levels in chondrocytes treated with high glucose. Moreover, treatment of chondrocytes with ascorbic acid reduced the effect of high glucose conditions on the expression of chemokines and Mmps. These data together suggest that MCPs mediate the catabolic effect of high glucose in chondrocytes.
Collapse
Affiliation(s)
- Adam Quincey
- Musculoskeletal Disease Center, Research Service, VA Loma Linda Healthcare Systems, Loma Linda, CA 92357, USA; (A.Q.); (S.M.)
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Research Service, VA Loma Linda Healthcare Systems, Loma Linda, CA 92357, USA; (A.Q.); (S.M.)
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Biochemistry, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Orthopedic Surgery, Loma Linda University, Loma Linda, CA 92354, USA
| | - Bouchra Edderkaoui
- Musculoskeletal Disease Center, Research Service, VA Loma Linda Healthcare Systems, Loma Linda, CA 92357, USA; (A.Q.); (S.M.)
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Correspondence:
| |
Collapse
|
13
|
Campos MS, Volpon JB, Ximenez JPB, Franttini AP, Dalloul CE, Sousa-Neto MD, Silva RA, Kacena MA, Zamarioli A. Vibration therapy as an effective approach to improve bone healing in diabetic rats. Front Endocrinol (Lausanne) 2022; 13:909317. [PMID: 36060973 PMCID: PMC9437439 DOI: 10.3389/fendo.2022.909317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To investigate the effects of vibration therapy on fracture healing in diabetic and non-diabetic rats. METHODS 148 rats underwent fracture surgery and were assigned to four groups: (1) SHAM: weight-matched non-diabetic rats, (2) SHAM+VT: non-diabetic rats treated with vibration therapy (VT), (3) DM: diabetic rats, and (4) DM+VT: diabetic rats treated with VT. Thirty days after diabetes induction with streptozotocin, animals underwent bone fracture, followed by surgical stabilization. Three days after bone fracture, rats began VT. Bone healing was assessed on days 14 and 28 post-fracture by serum bone marker analysis, and femurs collected for dual-energy X-ray absorptiometry, micro-computed tomography, histology, and gene expression. RESULTS Our results are based on 88 animals. Diabetes led to a dramatic impairment of bone healing as demonstrated by a 17% reduction in bone mineral density and decreases in formation-related microstructural parameters compared to non-diabetic control rats (81% reduction in bone callus volume, 69% reduction in woven bone fraction, 39% reduction in trabecular thickness, and 45% in trabecular number). These changes were accompanied by a significant decrease in the expression of osteoblast-related genes (Runx2, Col1a1, Osx), as well as a 92% reduction in serum insulin-like growth factor I (IGF-1) levels. On the other hand, resorption-related parameters were increased in diabetic rats, including a 20% increase in the callus porosity, a 33% increase in trabecular separation, and a 318% increase in serum C terminal telopeptide of type 1 collagen levels. VT augmented osteogenic and chondrogenic cell proliferation at the fracture callus in diabetic rats; increased circulating IGF-1 by 668%, callus volume by 52%, callus bone mineral content by 90%, and callus area by 72%; and was associated with a 19% reduction in circulating receptor activator of nuclear factor kappa beta ligand (RANK-L). CONCLUSIONS Diabetes had detrimental effects on bone healing. Vibration therapy was effective at counteracting the significant disruption in bone repair induced by diabetes, but did not improve fracture healing in non-diabetic control rats. The mechanical stimulus not only improved bone callus quality and quantity, but also partially restored the serum levels of IGF-1 and RANK-L, inducing bone formation and mineralization, thus creating conditions for adequate fracture repair in diabetic rats.
Collapse
Affiliation(s)
- Maysa S. Campos
- Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - José B. Volpon
- Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - João Paulo B. Ximenez
- Laboratory of Molecular Biology, Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, Ribeirão Preto, SP, Brazil
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana Paula Franttini
- Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Christopher E. Dalloul
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Manoel D. Sousa-Neto
- School of Dentistry of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Raquel A. Silva
- School of Dentistry of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, United States
| | - Ariane Zamarioli
- Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
- *Correspondence: Ariane Zamarioli,
| |
Collapse
|
14
|
Hu P, McKenzie JA, Buettmann EG, Migotsky N, Gardner MJ, Silva MJ. Type 1 diabetic Akita mice have low bone mass and impaired fracture healing. Bone 2021; 147:115906. [PMID: 33662611 PMCID: PMC8546917 DOI: 10.1016/j.bone.2021.115906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/15/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes (T1DM) impairs bone formation and fracture healing in humans. Akita mice carry a mutation in one allele of the insulin-2 (Ins2) gene, which leads to pancreatic beta cell dysfunction and hyperglycemia by 5-6 weeks age. We hypothesized that T1DM in Akita mice is associated with decreased bone mass, weaker bones, and impaired fracture healing. Ins2 ± (Akita) and wildtype (WT) males were subjected to femur fracture at 18-weeks age and healing assessed 3-21 days post-fracture. Non-fractured left femurs were assessed for morphology (microCT) and strength (bending or torsion) at 19-21 weeks age. Fractured right femurs were assessed for callus mechanics (torsion), morphology and composition (microCT and histology) and gene expression (qPCR). Both Akita and WT mice gained weight from 3 to 18 weeks age, but Akita mice weighed less starting at 5 weeks (-5.2%, p < 0.05). At 18-20 weeks age Akita mice had reduced serum osteocalcin (-30%), cortical bone area (-16%), and thickness (-17%) compared to WT, as well as reduced cancellous BV/TV (-39%), trabecular thickness (-23%) and vBMD (-31%). Mechanical testing of non-fractured femurs showed decreased structural (stiffness, ultimate load) and material (ultimate stress) properties of Akita bones. At 14 and 21 days post fracture Akita mice had a significantly smaller callus than WT mice (~30%), with less cartilage and bone area. Assessment of torsional strength showed a weaker callus in Akita mice with lower stiffness (-42%), maximum torque (-44%) and work to fracture (-44%). In summary, cortical and cancellous bone mass were reduced in Akita mice, with lower bone mechanical properties. Fracture healing in Akita mice was impaired by T1DM, with a smaller, weaker fracture callus due to decreased cartilage and bone formation. In conclusion, the Akita mouse mimics some of the skeletal features of T1DM in humans, including osteopenia and impaired fracture healing, and may be useful to test interventions.
Collapse
Affiliation(s)
- Pei Hu
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Jennifer A McKenzie
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Evan G Buettmann
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States; Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| | - Nicole Migotsky
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States; Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| | - Michael J Gardner
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Matthew J Silva
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States; Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States.
| |
Collapse
|
15
|
Ding Y, Wei J, Hettinghouse A, Li G, Li X, Einhorn TA, Liu CJ. Progranulin promotes bone fracture healing via TNFR pathways in mice with type 2 diabetes mellitus. Ann N Y Acad Sci 2021; 1490:77-89. [PMID: 33543485 DOI: 10.1111/nyas.14568] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus (T2DM) significantly increases bone fragility and fracture risk. Progranulin (PGRN) promotes bone fracture healing in both physiological and type 1 diabetic conditions. The present study aimed to investigate the role of PGRN in T2DM bone fracture healing. MKR mice (with an FVB/N genetic background) were used as the T2DM model. Drill-hole and Bonnarens and Einhorn models were used to investigate the role of PGRN in T2DM fracture healing in vivo. Primary bone marrow cells were isolated for molecular and signaling studies, and reverse transcription-polymerase chain reaction, immunohistochemical staining, and western blotting were performed to assess PGRN effects in vitro. PGRN mRNA and protein expression were upregulated in the T2DM model. Local administration of recombinant PGRN effectively promoted T2DM bone fracture healing in vivo. Additionally, PGRN could induce anabolic metabolism during endochondral ossification through the TNFR2-Akt and Erk1/2 pathways. Furthermore, PGRN showed anti-inflammatory activity in the T2DM bone regeneration process. These findings suggest that local administration of exogenous PGRN may be an alternative strategy to support bone regeneration in patients with T2DM. Additionally, PGRN might hold therapeutic potential for other TNFR-related metabolic disorders.
Collapse
Affiliation(s)
- Yuanjing Ding
- Department of Orthopaedic Surgery, New York University Medical Center, New York, New York.,Department of Orthopaedic Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jianlu Wei
- Department of Orthopaedic Surgery, New York University Medical Center, New York, New York.,Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, New York
| | - Guangfei Li
- Department of Orthopaedic Surgery, New York University Medical Center, New York, New York
| | - Xin Li
- College of Dentistry, New York University, New York, New York
| | - Thomas A Einhorn
- Department of Orthopaedic Surgery, New York University Medical Center, New York, New York
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, New York.,Department of Cell Biology, New York University School of Medicine, New York, New York
| |
Collapse
|
16
|
Shen H, Gardner AM, Vyas J, Ishida R, Tawfik VL. Modeling Complex Orthopedic Trauma in Rodents: Bone, Muscle and Nerve Injury and Healing. Front Pharmacol 2021; 11:620485. [PMID: 33597884 PMCID: PMC7882733 DOI: 10.3389/fphar.2020.620485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022] Open
Abstract
Orthopedic injury can occur from a variety of causes including motor vehicle collision, battlefield injuries or even falls from standing. Persistent limb pain is common after orthopedic injury or surgery and presents a unique challenge, as the initiating event may result in polytrauma to bone, muscle, and peripheral nerves. It is imperative that we understand the tissue-specific and multicellular response to this unique type of injury in order to best develop targeted treatments that improve healing and regeneration. In this Mini Review we will first discuss current rodent models of orthopedic trauma/complex orthotrauma. In the second section, we will focus on bone-specific outcomes including imaging modalities, biomechanical testing and immunostaining for markers of bone healing/turnover. In the third section, we will discuss muscle-related pathology including outcome measures of fibrosis, muscle regeneration and tensile strength measurements. In the fourth section, we will discuss nervous system-related pathology including outcome measures of pain-like responses, both reflexive and non-reflexive. In all sections we will consider parallels between preclinical outcome measures and the functional and mechanistic findings of the human condition.
Collapse
Affiliation(s)
- Huaishuang Shen
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States.,Department of Orthopaedic Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Aysha M Gardner
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Juhee Vyas
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Ryosuke Ishida
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States.,Department of Anesthesiology, Shimane University, Shimane, Japan
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
17
|
Doherty L, Wan M, Kalajzic I, Sanjay A. Diabetes impairs periosteal progenitor regenerative potential. Bone 2021; 143:115764. [PMID: 33221502 PMCID: PMC7770068 DOI: 10.1016/j.bone.2020.115764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023]
Abstract
Diabetics are at increased risk for fracture, and experience severely impaired skeletal healing characterized by delayed union or nonunion of the bone. The periosteum harbors osteochondral progenitors that can differentiate into chondrocytes and osteoblasts, and this connective tissue layer is required for efficient fracture healing. While bone marrow-derived stromal cells have been studied extensively in the context of diabetic skeletal repair and osteogenesis, the effect of diabetes on the periosteum and its ability to contribute to bone regeneration has not yet been explicitly evaluated. Within this study, we utilized an established murine model of type I diabetes to evaluate periosteal cell differentiation capacity, proliferation, and availability under the effect of a diabetic environment. Periosteal cells from diabetic mice were deficient in osteogenic differentiation ability in vitro, and diabetic mice had reduced periosteal populations of mesenchymal progenitors with a corresponding reduction in proliferation capacity following injury. Additionally, fracture callus mineralization and mature osteoblast activity during periosteum-mediated healing was impaired in diabetic mice compared to controls. We propose that the effect of diabetes on periosteal progenitors and their ability to aid in skeletal repair directly impairs fracture healing.
Collapse
Affiliation(s)
- Laura Doherty
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, UConn Health, Farmington, CT, USA
| | - Matthew Wan
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, UConn Health, Farmington, CT, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, UConn School of Dental Medicine, Farmington, CT, USA
| | - Archana Sanjay
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, UConn Health, Farmington, CT, USA.
| |
Collapse
|
18
|
Ren C, Li M, Sun L, Li Z, Lu Y, Wang Q, Ma T, Xue HZ, Zhang K. Serum MicroRNA Differences Between Fracture in Postmenopausal Women with and without Diabetes. Orthop Surg 2020; 13:285-295. [PMID: 33283469 PMCID: PMC7862172 DOI: 10.1111/os.12866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/21/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To screen serum microRNAs (miRNAs) which could discriminate fracture status in postmenopausal women with or without diabetes. METHODS The miRNA expression profile dataset GSE70318 was downloaded from Gene Expression Omnibus (GEO) database. This dataset composed of 74 samples, among these, 55 postmenopausal women was selected for bioinformatics analysis, including 19 osteoporotic fracture patients with type-2 diabetes, 19 osteoporotic fracture patients without type-2 diabetes, and 17 healthy control subjects. These samples were divided into two groups: fracture patients with diabetes vs healthy subjects (FH group) and fracture patients without diabetes vs healthy subjects (DFH group). Then, the differentially expressed miRNA (DEMs) in FH group and DFH group were respectively identified. The target genes of DEMs were predicted, followed by functional enrichment analysis. Furthermore, DEMs related to long non-coding RNAs (lncRNAs) were screened, and DEMs-lncRNA-target genes network was constructed. Subsequently, principal component analysis (PCA) of DEMs was performed to further explore the expression characteristics of the selected miRNAs in different types of fracture samples. Finally, the expression level of significant DEMs was calculated by quantitative real-time polymerase chain reaction (qPCR) to verify the accuracy of the results of bioinformatics analysis. RESULTS A total of 18 and 23 DEMs were identified in FH and DFH groups, respectively. Gene ontology (GO) analysis showed that genes in FH group were significantly enriched in regulation of transcription (GO: 0045449) and genes in DFH group were mainly enriched in cellular response to hormone stimulus (GO: 0032870). Meanwhile, pathway analysis indicated that genes in FH group were primarily enriched in T cell receptor signaling pathway (hsa04660) and genes in DFH group were mainly implicated in neurotrophin-signaling pathway (hsa04722). Moreover, the miRNA-lncRNA analysis revealed that miR-155-5p regulated by lncRNA MIR155HG was up-regulated in FH group; in addition, the miR-181c was significantly up-regulated and miR-375 was observably down-regulated in DFH group. Furthermore, PCA analysis suggested that the screened miRNAs were able to differentiate these two types of fractures in postmenopausal women. The miR-181c and miR-375 might be regarded as potential predictors for fracture, while miR-155-5p might be a candidate diagnostic biomarker for diabetic fracture. Finally, the results of qPCR were consistent with that of microarray data. CONCLUSIONS Overall, these three miRNAs might be regarded as potential diagnostic biomarkers to discriminate fracture status in postmenopausal women with and or without diabetes, and they served a putative role in the pathogenesis of these two diseases. However, these findings were only observed in serum samples and further clinical trials are urgently demanded to validate our results.
Collapse
Affiliation(s)
- Cheng Ren
- Department of Orthopaedic Trauma, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ming Li
- Department of Orthopaedic Trauma, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Liang Sun
- Department of Orthopaedic Trauma, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zhong Li
- Department of Orthopaedic Trauma, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yao Lu
- Department of Orthopaedic Trauma, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qian Wang
- Department of Orthopaedic Trauma, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Teng Ma
- Department of Orthopaedic Trauma, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Han-Zhong Xue
- Department of Orthopaedic Trauma, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Kun Zhang
- Department of Orthopaedic Trauma, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
19
|
Outcome of fragility hip fractures in elderly patients: Does diabetes mellitus and its severity matter? Arch Gerontol Geriatr 2020; 93:104297. [PMID: 33248319 DOI: 10.1016/j.archger.2020.104297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 11/22/2022]
Abstract
AIMS Diabetes mellitus (DM) and osteoporosis are both diseases of epidemic proportions with an increasing incidence worldwide. Fragility hip fractures (FHF) are associated with elevated morbidity, mortality, social burden and medical costs. The aim of this study was to determine whether patients with DM have worse medical and surgical outcomes following FHFs and whether the Diabetes Complications Severity Index (DCSI) can predict in-hospital complications and one-year mortality. METHODS A single centre retrospective cohort study including 1343 patients older than 65 years who underwent surgery for FHFs was conducted. The data collected included length of hospital stay, time-to-surgery, blood loss, complications and mortality during the first post-operative year. RESULTS 408 patients with a DM diagnosis were compared with 935 without DM. Pre-operatively, patients with DM had lower haemoglobin levels, higher platelet counts and worse renal function. Following surgery, patients with DM were more likely to be transferred to another department or intensive care. One-year mortality was significantly higher in the DM group [23.3% vs. 17.1%, odds ratio 1.36 (CI 1.029-1.799, p = 0.03)]. Higher DCSI scores were related with elevated one-year mortality rates in the DM group. Cerebrovascular events were found to be nearly five times more prevalent in the DM group. Patients with DM were more likely to continue treatment in a rehabilitation centre and had a higher probability to be re-hospitalized in the first post-operative year (p.<0.001). CONCLUSIONS Our results emphasize the increased vulnerability of this patient population and the importance of specialized care during the peri-operative period of FHFs.
Collapse
|
20
|
Berber R, Aziz S, Simkins J, Lin SS, Mangwani J. Low Intensity Pulsed Ultrasound Therapy (LIPUS): A review of evidence and potential applications in diabetics. J Clin Orthop Trauma 2020; 11:S500-S505. [PMID: 32774018 PMCID: PMC7394837 DOI: 10.1016/j.jcot.2020.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 11/29/2022] Open
Abstract
Low Intensity Pulsed Ultrasound Therapy (LIPUS) is a non-invasive treatment and aims to reduce fracture healing time and avoid non-union by delivering micro-mechanical stress to the bone to stimulate bone healing. In 2018, the National Institute for Health and Clinical Excellence (NICE) recommended that the evidence for LIPUS to promote healing of delayed-union and non-union fractures raised no major safety concerns, but the current evidence on efficacy is inadequate in quality. Little is known about the potential benefits of LIPUS for fracture healing in diabetic patients. In this article, we review the current evidence of LIPUS therapy both in animal and human studies and its possible application on fractures in diabetics.
Collapse
Affiliation(s)
- Reshid Berber
- Academic Team of Musculoskeletal Surgery, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK
| | - Sheweidin Aziz
- Academic Team of Musculoskeletal Surgery, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK
| | - Joanna Simkins
- Academic Team of Musculoskeletal Surgery, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK
| | - Sheldon S. Lin
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Newark, NJ, 07101, USA
| | - Jitendra Mangwani
- Academic Team of Musculoskeletal Surgery, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK,Corresponding author. Academic Team of Musculoskeletal Surgery, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK.
| |
Collapse
|
21
|
Insulin Resistance in Osteoarthritis: Similar Mechanisms to Type 2 Diabetes Mellitus. J Nutr Metab 2020; 2020:4143802. [PMID: 32566279 PMCID: PMC7261331 DOI: 10.1155/2020/4143802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) and type 2 diabetes mellitus (T2D) are two of the most widespread chronic diseases. OA and T2D have common epidemiologic traits, are considered heterogenic multifactorial pathologies that develop through the interaction of genetic and environmental factors, and have common risk factors. In addition, both of these diseases often manifest in a single patient. Despite differences in clinical manifestations, both diseases are characterized by disturbances in cellular metabolism and by an insulin-resistant state primarily associated with the production and utilization of energy. However, currently, the primary cause of OA development and progression is not clear. In addition, although OA is manifested as a joint disease, evidence has accumulated that it affects the whole body. As pathological insulin resistance is viewed as a driving force of T2D development, now, we present evidence that the molecular and cellular metabolic disturbances associated with OA are linked to an insulin-resistant state similar to T2D. Moreover, the alterations in cellular energy requirements associated with insulin resistance could affect many metabolic changes in the body that eventually result in pathology and could serve as a unified mechanism that also functions in many metabolic diseases. However, these issues have not been comprehensively described. Therefore, here, we discuss the basic molecular mechanisms underlying the pathological processes associated with the development of insulin resistance; the major inducers, regulators, and metabolic consequences of insulin resistance; and instruments for controlling insulin resistance as a new approach to therapy.
Collapse
|
22
|
Ding Z, Zeng W, Rong X, Liang Z, Zhou Z. Do patients with diabetes have an increased risk of impaired fracture healing? A systematic review and meta‐analysis. ANZ J Surg 2020; 90:1259-1264. [PMID: 32255244 DOI: 10.1111/ans.15878] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/29/2020] [Accepted: 03/14/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Zi‐chuan Ding
- Department of Orthopedics, West China Hospital/West China School of MedicineSichuan University Chengdu China
| | - Wei‐nan Zeng
- Department of Orthopedics, West China Hospital/West China School of MedicineSichuan University Chengdu China
| | - Xiao Rong
- Department of Orthopedics, West China Hospital/West China School of MedicineSichuan University Chengdu China
| | - Zhi‐min Liang
- Clinic Research Management Department, West China HospitalSichuan University Chengdu China
| | - Zong‐ke Zhou
- Department of Orthopedics, West China Hospital/West China School of MedicineSichuan University Chengdu China
| |
Collapse
|
23
|
Abstract
The incidence and prevalence of diabetes continues to increase, and proper understanding of the adverse effects on bone metabolism is important. This review attempts to discuss the pathophysiology of the effects of diabetes and diabetic medications on bone metabolism and bone health. In addition, this review will address the mechanisms resulting in increased fracture risk and delayed bone healing to better treat and manage diabetic patients in the orthopedic clinical setting.
Collapse
|
24
|
Akyol S, Karagoz Z, Dingil Inan N, Butun I, Benli I, Demircan K, Yigitoglu MR, Akyol O, Sahin S, Ozyurt H. The gene expression and protein profiles of ADAMTS and TIMP in human chondrosarcoma cell lines induced by insulin: The potential mechanisms for skeletal and articular abnormalities in diabetes. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2020. [DOI: 10.29333/ejgm/112767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Chetina EV, Markova GA, Sharapova EP. [there any association of metabolic disturbances with joint destruction and pain?]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 65:441-456. [PMID: 31876515 DOI: 10.18097/pbmc20196506441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Osteoarthritis and type 2 diabetes mellitus represent two the most common chronic diseases. They possess many shared epidemiologic traits, have common risk factors, and embody heterogeneous multifactorial pathologies, which develop due to interaction of genetic an environmental factors. In addition, these diseases are often occurring in the same patient. In spite of the differences in clinical manifestation both diseases have similar disturbances of cellular metabolism, primarily associated with ATP production and utilization. The review discusses molecular mechanisms determining pathophysiological processes associated with glucose and lipid metabolism as well as the means aiming to alleviate the disturbances of energy metabolism as a new a therapeutic approach.
Collapse
Affiliation(s)
- E V Chetina
- Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - G A Markova
- Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - E P Sharapova
- Nasonova Research Institute of Rheumatology, Moscow, Russia
| |
Collapse
|
26
|
Wang Z, Tang J, Li Y, Wang Y, Guo Y, Tu Q, Chen J, Wang C. AdipoRon promotes diabetic fracture repair through endochondral ossification-based bone repair by enhancing survival and differentiation of chondrocytes. Exp Cell Res 2019; 387:111757. [PMID: 31838062 DOI: 10.1016/j.yexcr.2019.111757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/27/2022]
Abstract
Diabetic bone defects may exhibit impaired endochondral ossification (ECO) leading to delayed bone repair. AdipoRon, a receptor agonist of adiponectin polymers, can ameliorate diabetes and related complications, as well as overcome the disadvantages of the unstable structure of artificial adiponectin polymers. Here, the effects of AdipoRon on the survival and differentiation of chondrocytes in a diabetic environment were explored focusing on related mechanisms in gene and protein levels. In vivo, AdipoRon was applied to diet-induced-obesity (DIO) mice, a model of obesity and type 2 diabetes, with femoral fracture. Sequential histological evaluations and micro-CT were examined for further verification. We found that AdipoRon could ameliorate cell viability, apoptosis, and reactive oxygen species (ROS) production and promote mRNA expression of chondrogenic markers and cartilaginous matrix production of ATDC5 cells in high glucose medium via activating ERK1/2 pathway. Additionally, DIO mice with intragastric AdipoRon administration had more neocartilage and accelerated new bone formation. These data suggest that AdipoRon could stimulate bone regeneration via ECO in diabetes.
Collapse
Affiliation(s)
- Zhongyi Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China
| | - Jinxin Tang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China
| | - Ying Li
- Department of Stomatology, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, China
| | - Yu Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China
| | - Yanyang Guo
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China
| | - Qisheng Tu
- Tufts School of Dental Medicine, Sackler School of Graduate Biomedical Sciences, Tufts School of Medicine, Boston, 02111, USA
| | - Jake Chen
- Tufts School of Dental Medicine, Sackler School of Graduate Biomedical Sciences, Tufts School of Medicine, Boston, 02111, USA.
| | - Chen Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
27
|
Wang X, Qi F, Xing H, Zhang X, Lu C, Zheng J, Ren X. Uniform-sized insulin-loaded PLGA microspheres for improved early-stage peri-implant bone regeneration. Drug Deliv 2019; 26:1178-1190. [PMID: 31738084 PMCID: PMC6882491 DOI: 10.1080/10717544.2019.1682719] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/08/2019] [Accepted: 10/16/2019] [Indexed: 11/05/2022] Open
Abstract
Poor initial stability at the first four weeks after surgery is becoming the major causes for metal implant failure. Previous attempts neglected the control release of insulin for the bone regeneration among nondiabetic subjects. The major reason may lie in the adverse effects, such as attenuated bone formation, hypoglycemia or hyperinsulinemia, that caused by the excessive insulin. Thus, spatiotemporal release of insulin may serve as the promising strategy. To address this, through solvent extraction (EMS), solvent evaporation (SMS) and cosolvent methods (CMS), we prepared three types of PLGA microspheres with various internal structures, but similar size distribution. The effects of the preparation methods on the properties of the microspheres, such as their release behavior, degradation of molecular weight, and structural evolution, were investigated. Human bone marrow mesenchymal stromal cells (BMSCs) and rabbit implant models were used to test the bioactivity of the microspheres in vitro and in vivo, respectively. The result demonstrated that these three preparation methods did not influence the polymer degradation but instead affected the internal structural evolution, which plays a crucial role in the release behavior, osteogenesis and peri-implant bone regeneration. Compared with EMS and CMS microspheres, SMS microspheres exhibited a relatively steady release rate in the first four weeks, which evidently stimulated the osteogenic differentiation of the stem cells and peri-implant bone regeneration. Meanwhile, SMS microspheres significantly enhanced the stability of the implant at Week 4, which is promising to reduce early failure rate of the implant without inducing adverse effects on the serum biochemical indices.
Collapse
Affiliation(s)
- Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Feng Qi
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Helin Xing
- Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing, China
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Chunxiang Lu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Jiajia Zheng
- First Clinical Division, Peking University Hospital of Stomatology, Beijing, China
| | - Xiuyun Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| |
Collapse
|
28
|
Haffner-Luntzer M, Hankenson KD, Ignatius A, Pfeifer R, Khader BA, Hildebrand F, van Griensven M, Pape HC, Lehmicke M. Review of Animal Models of Comorbidities in Fracture-Healing Research. J Orthop Res 2019; 37:2491-2498. [PMID: 31444806 DOI: 10.1002/jor.24454] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/13/2019] [Indexed: 02/04/2023]
Abstract
There is clinical evidence that patient-specific comorbidities like osteoporosis, concomitant tissue injury, and ischemia may strongly interfere with bone regeneration. However, underlying mechanisms are still unclear. To study these mechanisms in detail, appropriate animal models are needed. For decades, bone healing has been studied in large animals, including dogs, rabbits, pigs, or sheep. However, large animal models display a limited ability to study molecular pathways and cellular functions. Therefore in recent years, mice and rats have become increasingly popular as a model organism for fracture healing research due to the availability of molecular analysis tools and transgenic models. Both large and small animals can be used to study comorbidities and risk factors, modelling the human clinical situation. However, attention has to be paid when choosing an appropriate model due to species differences between large animals, rodents, and humans. This review focuses on large and small animal models for the common comorbidities ischemic injury/reduced vascularization, osteoporosis, and polytrauma, and critically discusses the translational and molecular aspects of these models. Here, we review material which was presented at the workshop "Animal Models of Comorbidities in Fracture Healing Research" at the 2019 ORS Annual Meeting in Austin Texas. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2491-2498, 2019.
Collapse
Affiliation(s)
- Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Roman Pfeifer
- Department of Trauma, University Hospital Zurich, Zurich, Switzerland
| | - Basel A Khader
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Frank Hildebrand
- Department of Orthopaedic Trauma, University Hospital RWTH Aachen, Aachen, Germany
| | - Martijn van Griensven
- Department of Experimental Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Michael Lehmicke
- Alliance for Regenerative Medicine, Washington, District of Columbia
| |
Collapse
|
29
|
Jiang C, Xia W, Wu T, Pan C, Shan H, Wang F, Zhou Z, Yu X. Inhibition of microRNA-222 up-regulates TIMP3 to promotes osteogenic differentiation of MSCs from fracture rats with type 2 diabetes mellitus. J Cell Mol Med 2019; 24:686-694. [PMID: 31691506 PMCID: PMC6933364 DOI: 10.1111/jcmm.14777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/27/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is the most common diabetes and has numerous complications. Recent studies demonstrated that T2DM compromises bone fracture healing in which miR-222 might be involved. Furthermore, tissue inhibitor of metalloproteinase 3 (TIMP-3) that is the target of miR-222 accelerates fracture healing. Therefore, we assume that miR-222 could inhibit TIMP-3 expression. Eight-week-old rats were operated femoral fracture or sham, following the injection of streptozotocin (STZ) to induce diabetes one week later in fractured rats, and then, new generated tissues were collected for measuring the expression of miR-222 and TIMP-3. Rat mesenchymal stem cells (MSCs) were isolated and treated with miR-222 mimic or inhibitor to analyse osteogenic differentiation. MiR-222 was increased in fractured rats and further induced in diabetic rats. In contrast, TIMP-3 was reduced in fractured and further down-regulated in diabetic rats. Luciferase report assay indicated miR-222 directly binds and mediated TIMP-3. Furthermore, osteogenic differentiation was suppressed by miR-222 mimic and promoted by miR-222 inhibitor. miR-222 is a key regulator that is promoted in STZ-induced diabetic rats, and it binds to TIMP3 to reduce TIMP-3 expression and suppressed MSCs' differentiation.
Collapse
Affiliation(s)
- Chenyi Jiang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenyang Xia
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tianyi Wu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chenhao Pan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Haojie Shan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zubin Zhou
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaowei Yu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
30
|
Murray CE, Coleman CM. Impact of Diabetes Mellitus on Bone Health. Int J Mol Sci 2019; 20:ijms20194873. [PMID: 31575077 PMCID: PMC6801685 DOI: 10.3390/ijms20194873] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/21/2022] Open
Abstract
Long-term exposure to a diabetic environment leads to changes in bone metabolism and impaired bone micro-architecture through a variety of mechanisms on molecular and structural levels. These changes predispose the bone to an increased fracture risk and impaired osseus healing. In a clinical practice, adequate control of diabetes mellitus is essential for preventing detrimental effects on bone health. Alternative fracture risk assessment tools may be needed to accurately determine fracture risk in patients living with diabetes mellitus. Currently, there is no conclusive model explaining the mechanism of action of diabetes mellitus on bone health, particularly in view of progenitor cells. In this review, the best available literature on the impact of diabetes mellitus on bone health in vitro and in vivo is summarised with an emphasis on future translational research opportunities in this field.
Collapse
Affiliation(s)
- Cliodhna E Murray
- Regenerative Medicine Institute, National University of Ireland, Galway, Biomedical Sciences Building, Dangan, Newcastle Road, Galway City, County Galway, H91W2TY, Ireland.
| | - Cynthia M Coleman
- Regenerative Medicine Institute, National University of Ireland, Galway, Biomedical Sciences Building, Dangan, Newcastle Road, Galway City, County Galway, H91W2TY, Ireland.
| |
Collapse
|
31
|
Ozler S, Oztas E, Gumus Guler B, Erel O, Turhan Caglar A, Ergin M, Uygur D, Danisman N. Are serum levels of ADAMTS5, TAS and TOS at 24-28 gestational weeks associated with adverse perinatal outcomes in gestational diabetic women? J OBSTET GYNAECOL 2019; 40:619-625. [PMID: 31526197 DOI: 10.1080/01443615.2019.1634025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We aimed to determine the role of placental A Disintegrin and Metalloproteinase with thrombospondin motifs 5 (ADAMTS5), and maternal serum ADAMTS5, total antioxidant status (TAS), total oxidant status (TOS) and oxidative stress index (OSI) levels at 24-28th gestational weeks in GDM. This study included 57 patients, who had been diagnosed as having GDM at their 24-28th gestational week, and 29 controls. The maternal blood samples were collected at the 24-28th gestational week and ADAMTS5 was studied with the enzyme-linked immunosorbent assay (ELISA) method, whereas an automated colorimetric method was used to study TAS, TOS, and OSI. The level of ADAMTS5 in maternal serum of patients with GDM were significantly lower than the controls (p = .017); whereas TOS and OSI levels were significantly higher (p = .003 and p = .008). Multivariable logistic regression analysis revealed ADAMTS5 and TOS levels were independently associated with adverse perinatal outcomes (p = .004 and p = .018). We found that serum ADAMTS5 levels decreased and TOS level increased in GDM pregnant at 24-28th gestational weeks. In addition, we found that increased levels of serum ADAMTS5 and decreased TOS levels at 24-28th weeks were associated with adverse perinatal outcomes independent of the mode of treatment in GDM.Impact statementWhat is already known on this subject? Gestational diabetes mellitus (GDM) is one of the most common medical complications of pregnancy. The insulin resistance, which starts at the 24-28th gestational weeks, increases during gestation. GDM increases maternal complications like preeclampsia, cesarean rate, cardiovascular disease, obesity, and diabetes after pregnancy; and neonatal complications like macrosomia, hypoglycemia, hyperbilirubinemia, delivery trauma, shoulder dystocia, and adult-onset obesity, and diabetes.What the results of this study add? A significant relationship between ADAMTS5, TOS levels and adverse perinatal outcome. insulin resistance and was observed.What the implications are of these findings for clinical practice and/or further research? Based on this finding, we concluded that increased levels of oxidative stress and decreased ADAMTS5 levels are associated with GDM and predictive for adverse perinatal outcomes. The results of the present study were consistent with the previous reports and indicated that increased oxidative stress in GDM patients are related to adverse perinatal outcomes.
Collapse
Affiliation(s)
- Sibel Ozler
- Department of Perinatology, Selcuk University Medical School, Konya, Turkey
| | - Efser Oztas
- Department of Perinatology, Eskisehir City Hospital, Eskisehir, Turkey
| | | | - Ozcan Erel
- Department of Clinical Biochemistry, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | - Ali Turhan Caglar
- Department of Clinical Biochemistry, Aralik State Hospital, Gaziantep, Turkey
| | - Merve Ergin
- Department of Pathology, Etlik Zübeyde Haním Women's Health Education and Research Hospital, Ankara, Turkey
| | - Dilek Uygur
- Department of Clinical Biochemistry, Aralik State Hospital, Gaziantep, Turkey
| | - Nuri Danisman
- Department of Perinatology, Acıbadem Acıbadem University Medical School, Istanbul, Turkey
| |
Collapse
|
32
|
Luo TD, Marquez-Lara A, Stone AV, Mannava S, Howse EA, Rosas S, Schallmo MS, Atilla HA, Stubbs AJ. Diabetic hip arthropathy is associated with a higher prevalence of femoral head chondromalacia: a case-controlled study. Hip Int 2019; 29:527-534. [PMID: 30465436 DOI: 10.1177/1120700018813829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION No previous studies have characterised hip joint disease in diabetic patients undergoing hip arthroscopy. The purpose of our study was to evaluate intra-articular hip pathology and surgical variables in patients with diabetes compared to matched, non-diabetic controls. We hypothesised that diabetic patients would demonstrate a higher prevalence and severity of hip chondral pathology. METHODS We retrospectively reviewed 795 consecutive hip arthroscopies performed by a single surgeon between 2010 and 2015. Patients ⩾18 years of age without a history of diabetes served as controls and were matched based on age, sex, body mass index, duration of symptoms, and operative side. Clinical symptoms, preoperative physical examination, and radiologic and intraoperative findings were assessed. The primary outcomes were the acetabular and femoral head chondromalacia index (CMI), calculated as the product of the Outerbridge chondromalacia grade and surface area (mm2*severity). RESULTS 15 diabetic patients were matched to 137 non-diabetic controls. Diabetic patients demonstrated a higher prevalence of femoral head chondromalacia compared to controls both on magnetic resonance imaging (45.5% vs. 7.5%, p = 0.002) and during arthroscopy (100% vs. 75.9%, p = 0.042). Femoral head chondromalacia in diabetic patients had higher Outerbridge grade (2.4 vs. 2.0, p = 0.030) but similar CMI (513.0 vs. 416.4, p = 0.298) compared to controls. DISCUSSION Femoral head chondral pathology was more prevalent and of higher severity grade in diabetic patients. The prevalence, size, and severity of acetabular chondral disease were similar between diabetic and non-diabetic patients. Multivariate analysis demonstrated that diabetic status was independently associated with the presence of femoral head chondromalacia.
Collapse
Affiliation(s)
- T David Luo
- 1 Department of Orthopaedic Surgery, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Alejandro Marquez-Lara
- 1 Department of Orthopaedic Surgery, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Austin V Stone
- 2 Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Sandeep Mannava
- 3 Department of Orthopaedics and Rehabilitation, Division of Sports Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Elizabeth A Howse
- 4 Department of Emergency Medicine, Kaiser Permanente Walnut Creek Medical Center, Walnut Creek, CA, USA
| | - Samuel Rosas
- 1 Department of Orthopaedic Surgery, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Michael S Schallmo
- 1 Department of Orthopaedic Surgery, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - H Atil Atilla
- 5 Department of Orthopaedics and Traumatology, Mevki Military Hospital, Ankara, Turkey
| | - Allston J Stubbs
- 1 Department of Orthopaedic Surgery, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| |
Collapse
|
33
|
Wei J, Zhang L, Ding Y, Liu R, Guo Y, Hettinghouse A, Buza J, De La Croix J, Li X, Einhorn TA, Liu CJ. Progranulin promotes diabetic fracture healing in mice with type 1 diabetes. Ann N Y Acad Sci 2019; 1460:43-56. [PMID: 31423598 DOI: 10.1111/nyas.14208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/18/2019] [Indexed: 12/21/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by insulin deficiency, and patients with diabetes have an increased risk of bone fracture and significantly impaired fracture healing. Proinflammatory cytokine tumor necrosis factor-alpha is significantly upregulated in diabetic fractures and is believed to underlie delayed fracture healing commonly observed in diabetes. Our previous genetic screen for the binding partners of progranulin (PGRN), a growth factor-like molecule that induces chondrogenesis, led to the identification of tumor necrosis factor receptors (TNFRs) as the PGRN-binding receptors. In this study, we employed several in vivo models to ascertain whether PGRN has therapeutic effects in diabetic fracture healing. Here, we report that deletion of PGRN significantly delayed bone fracture healing and aggravated inflammation in the fracture models of mice with T1DM. In contrast, recombinant PGRN effectively promoted diabetic fracture healing by inhibiting inflammation and enhancing chondrogenesis. In addition, both TNFR1 proinflammatory and TNFR2 anti-inflammatory signaling pathways are involved in PGRN-stimulated diabetic fracture healing. Collectively, these findings illuminate a novel understanding concerning the role of PGRN in diabetic fracture healing and may have an application in the development of novel therapeutic intervention strategies for diabetic and other types of impaired fracture healing.
Collapse
Affiliation(s)
- Jianlu Wei
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York, New York.,Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lei Zhang
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York, New York.,Department of Orthopaedics, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China
| | - Yuanjing Ding
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York, New York
| | - Ronghan Liu
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York, New York
| | - Yuqi Guo
- College of Dentistry, New York University, New York, New York
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York, New York
| | - John Buza
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York, New York
| | - Jean De La Croix
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York, New York
| | - Xin Li
- College of Dentistry, New York University, New York, New York
| | - Thomas A Einhorn
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York, New York
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York, New York.,Department of Cell Biology, New York University School of Medicine, New York, New York
| |
Collapse
|
34
|
Henderson S, Ibe I, Cahill S, Chung YH, Lee FY. Bone Quality and Fracture-Healing in Type-1 and Type-2 Diabetes Mellitus. J Bone Joint Surg Am 2019; 101:1399-1410. [PMID: 31393433 DOI: 10.2106/jbjs.18.01297] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shasta Henderson
- Department of Orthopaedics, Pennsylvania State University, Hershey, Pennsylvania
| | - Izuchukwu Ibe
- Department of Orthopaedics and Rehabilitation (I.I.), Yale School of Medicine (S.C., Y.-H.C., and F.Y.L.), New Haven, Connecticut
| | - Sean Cahill
- Department of Orthopaedics and Rehabilitation (I.I.), Yale School of Medicine (S.C., Y.-H.C., and F.Y.L.), New Haven, Connecticut
| | - Yeon-Ho Chung
- Department of Orthopaedics and Rehabilitation (I.I.), Yale School of Medicine (S.C., Y.-H.C., and F.Y.L.), New Haven, Connecticut
| | - Francis Y Lee
- Department of Orthopaedics and Rehabilitation (I.I.), Yale School of Medicine (S.C., Y.-H.C., and F.Y.L.), New Haven, Connecticut
| |
Collapse
|
35
|
Lu Y, Alharbi M, Zhang C, O'Connor JP, Graves DT. Deletion of FOXO1 in chondrocytes rescues the effect of diabetes on mechanical strength in fracture healing. Bone 2019; 123:159-167. [PMID: 30904630 PMCID: PMC6491266 DOI: 10.1016/j.bone.2019.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/05/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
Abstract
Diabetes increases the risk of fracture, impairs fracture healing and causes rapid loss of the fracture callus cartilage, which was linked to increased FOXO1 expression in chondrocytes. We recently demonstrated that deletion of FOXO1 in chondrocytes blocked the premature removal of cartilage associated with endochondral bone formation during fracture healing. However, the ultimate impact of this deletion on mechanical strength was not investigated and remains unknown. Closed fractures were induced in Col2α1Cre+.FOXO1L/L mice with lineage specific deletion of FOXO1 in chondrocytes compared to littermate controls. Type 1 diabetes was induced by multiple low dose streptozotocin treatment. Thirty-five days after fracture micro CT analysis showed that diabetes significantly reduced callus volume and bone volume (P < 0.05), both which were reversed by FOXO1 deletion in chondrocytes. Diabetes significantly reduced mechanical strength measured by maximum torque, stiffness, modulus of rigidity and toughness and FOXO1 deletion in diabetic mice rescued each parameter (P < 0.05). Diabetes also reduced both bone volume and mechanical strength in non-fractured femurs. However, FOXO1 deletion did not affect bone volume or strength in non-fractured bone. These results point to the important effect that diabetes has on chondrocytes and show for the first time that the premature removal of cartilage induced by FOXO1 in chondrocytes has a significant impact on the mechanical strength of the healing bone.
Collapse
Affiliation(s)
- Yongjian Lu
- Department of Stomatology, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohammed Alharbi
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Endodontics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Citong Zhang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Implantology, School of Stomatology, Jilin University, Changchun 130021, China
| | - J Patrick O'Connor
- Department of Orthopaedics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
36
|
Zhang C, Feinberg D, Alharbi M, Ding Z, Lu C, O’Connor JP, Graves DT. Chondrocytes Promote Vascularization in Fracture Healing Through a FOXO1-Dependent Mechanism. J Bone Miner Res 2019; 34:547-556. [PMID: 30347467 PMCID: PMC6414243 DOI: 10.1002/jbmr.3610] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022]
Abstract
Chondrocytes play an essential role in fracture healing by producing cartilage, which forms an anlage for endochondral ossification that stabilizes the healing fracture callus. More recently it has been appreciated that chondrocytes have the capacity to produce factors that may affect the healing process. We examined the role of chondrocytes in angiogenesis during fracture healing and the role of the transcription factor forkhead box-O 1 (FOXO1), which upregulates wound healing in soft tissue. Closed fractures were induced in experimental mice with lineage-specific FOXO1 deletion by Cre recombinase under the control of a collagen-2α1 promoter element (Col2α1Cre+ FOXO1L/L ) and Cre recombinase negative control littermates containing flanking loxP sites (Col2α1Cre- FOXO1L/L ). Experimental mice had significantly reduced CD31+ new vessel formation. Deletion of FOXO1 in chondrocytes in vivo suppressed the expression of vascular endothelial growth factor-A (VEGFA) at both the protein and mRNA levels. Overexpression of FOXO1 in chondrocytes in vitro increased VEGFA mRNA levels and VEGFA transcriptional activity whereas silencing FOXO1 reduced it. Moreover, FOXO1 interacted directly with the VEGFA promoter and a deacetylated FOXO1 mutant enhanced VEGFA expression whereas an acetylated FOXO1 mutant did not. Lastly, FOXO1 knockdown by siRNA significantly reduced the capacity of chondrocytes to stimulate microvascular endothelial cell tube formation in vitro. The results indicate that chondrocytes play a key role in angiogenesis which is FOXO1 dependent and that FOXO1 in chondrocytes regulates a potent angiogenic factor, VEGFA. These studies provide new insight into fracture healing given the important role of vessel formation in the fracture repair process. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Citong Zhang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Implantology, School of Stomatology, Jilin University, Changchun, China
| | - Daniel Feinberg
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohammed Alharbi
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Endodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, KSA
| | - Zhenjiang Ding
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatric Dentistry, School of Stomatology, China Medical University, Shenyang, China
- Key Laboratory of Oral Disease and Liaoning Province, Shenyang, China
| | - Chanyi Lu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J Patrick O’Connor
- Department of Orthopaedics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
37
|
Ye IB, Girdler SJ, Cheung ZB, White SJ, Ranson WA, Cho SKW. Risk Factors Associated with 30-Day Mortality After Open Reduction and Internal Fixation of Vertebral Fractures. World Neurosurg 2019; 125:e1069-e1073. [PMID: 30790742 DOI: 10.1016/j.wneu.2019.01.247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Few studies have examined the outcomes of open reduction and internal fixation of vertebral fractures. The purpose of this study was to determine patient-related and surgery-related risk factors associated with 30-day postoperative mortality after open reduction and internal fixation (ORIF) of cervical, thoracic, and lumbar vertebral fractures. METHODS This was a retrospective cohort study of data from the 2010-2014 ACS-NSQIP database. Adult patients who underwent ORIF of vertebral fractures in the cervical, thoracic, or lumbar spine were included. Patients were divided into 2 groups on the basis of the occurrence of 30-day postoperative mortality. A univariate analysis was performed to compare baseline patient characteristics, comorbidities, operative variables, and 30-day postoperative complications between the mortality and nonmortality groups. A subsequent multivariate regression analysis adjusting for patient and operative factors was then performed to identify independent risk factors for 30-day mortality. RESULTS A total of 900 patients who underwent vertebral ORIF were included. The overall 30-day postoperative mortality rate was 1.56%. The mortality group had a higher incidence of pneumonia, pulmonary complications, cardiac complications, blood transfusion, sepsis, and prolonged hospitalization. Multivariate regression analysis identified pulmonary comorbidity and diabetes as independent predictors of 30-day mortality following ORIF of vertebral fractures. CONCLUSIONS Pulmonary comorbidity and diabetes were found to be independent risk factors for 30-day mortality after ORIF of vertebral fractures. Recognizing these risk factors is important in preoperative risk stratification, perioperative care, and patient counseling.
Collapse
Affiliation(s)
- Ivan B Ye
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Steven J Girdler
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zoe B Cheung
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Samuel J White
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - William A Ranson
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Samuel Kang-Wook Cho
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
38
|
Botega II, Zamarioli A, Guedes PMSG, Silva RABD, Issa JPM, Butezloff MM, Sousa YTCS, Ximenez JPB, Volpon JB. Bone callus formation is highly disrupted by dietary restriction in growing rats sustaining a femoral fracture1. Acta Cir Bras 2019; 34:e20190010000002. [PMID: 30785503 PMCID: PMC6585920 DOI: 10.1590/s0102-865020190010000002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/05/2018] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To evaluate the effects of food restriction on fracture healing in growing rats. METHODS Sixty-eight male Wistar rats were assigned to two groups: (1) Control and (2) Dietary restriction. After weaning the dietary restricted animals were fed ad libitum for 42 days with 50% of the standard chow ingested by the control group. Subsequently, the animals underwent bone fracture at the diaphysis of the right femur, followed by surgical stabilization of bone fragments. On days 14 and 28 post-fracture, the rats were euthanized, and the fractured femurs were dissected, the callus was analyzed by dual-energy X-ray absorptiometry, micro-computed tomography, histomorphometry, mechanical tests, and gene expression. RESULTS Dietary restriction decreased body mass gain and resulted in several phenotypic changes at the bone callus (a delay in cell proliferation and differentiation, lower rate of newly formed bone and collagen deposition, reductions in bone callus density and size, decrease in tridimensional callus volume, deterioration in microstructure, and reduction in bone callus strength), together with the downregulated expression of osteoblast-related genes. CONCLUSION Dietary restriction had detrimental effects on osseous healing, with a healing delay and a lower quality of bone callus formation.
Collapse
Affiliation(s)
- Iara Inácio Botega
- Fellow Master degree, Postgraduate Program in Health Sciences Applied to the Locomotor System, School of Medicine, Universidade de São Paulo (USP), Ribeirao Preto-SP, Brazil. Design of the study, technical procedures, acquisition and interpretation of data, manuscript preparation
| | - Ariane Zamarioli
- Researcher, Laboratory of Bioengineering, School of Medicine, USP, Ribeirao Preto-SP, Brazil. Design of the study, interpretation of data, manuscript preparation, critical revision
| | - Patrícia Madalena San Gregório Guedes
- Fellow Master degree, Postgraduate Program in Health Sciences Applied to the Locomotor System, School of Medicine, USP, Ribeirao Preto-SP, Brazil. Technical procedures, acquisition of data
| | - Raquel Assed Bezerra da Silva
- PhD, Associate Professor, Department of Children's Clinic, School of Dentistry, USP, Ribeirao Preto-SP, Brazil. Technical procedures, critical revision
| | - João Paulo Mardegan Issa
- PhD, Associate Professor, Department of Morphology, Physiology and Basic Pathology, School of Dentistry, USP, Ribeirao Preto-SP, Brazil. Technical procedures, critical revision
| | - Mariana Maloste Butezloff
- Fellow PhD degree, Postgraduate Program in Health Sciences Applied to the Locomotor System, School of Medicine, USP, Ribeirao Preto-SP, Brazil. Technical procedures
| | | | - João Paulo Bianchi Ximenez
- Fellow PhD degree, Postgraduate Program in Toxicology, School of Pharmaceutical Sciences, USP, Ribeirao Preto-SP, Brazil. Statistical analysis, technical procedures, critical revision
| | - José Batista Volpon
- Full Professor, Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, School of Medicine, USP, Ribeirao Preto-SP, Brazil. Design, intellectual and scientific content of the study; manuscript preparation, critical revision, final approval
| |
Collapse
|
39
|
Hung J, Al-Nakkash L, Broderick TL, Castro M, Plochocki JH. Leptin-deficient mice have altered three-dimensional growth plate histomorphometry. Diabetol Metab Syndr 2019; 11:8. [PMID: 30697359 PMCID: PMC6346570 DOI: 10.1186/s13098-019-0402-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/17/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Leptin is an adipokine that regulates energy homeostasis and is also needed for normal bone growth and maintenance. Mutation in the lep gene, which characterizes the ob/ob mouse model, results in the development of obesity and type 2 diabetes mellitus, as well as reduced limb bone length and increased fracture risk. However, the relationship between limb bone length and growth plate cartilage structure in obese diabetic adolescents is incompletely understood. Here, we tested the hypothesis that leptin deficiency affects the microstructure of growth plate cartilage in juvenile ob/ob mice. METHODS Tibial growth plate cartilage structure was compared between lean and obese, leptin-deficient (ob/ob) female mice aged 10 weeks. We used confocal laser scanning microscopy to assess 3D histological differences in Z stacks of growth plate cartilage at 0.2 µm intervals, 80-100 µm in depth. Histomorphometric comparisons were made between juvenile lean and ob/ob mice. RESULTS We found obese mice have significantly reduced tibial length and growth plate height in comparison with lean mice (P < 0.05). Obese mice also have fewer chondrocyte columns in growth plate cartilage with reduced chondrocyte cell volumes relative to lean mice (P < 0.05). CONCLUSIONS These data help explicate the relationship between growth plate cartilage structure and bone health in obese diabetic juvenile mice. Our findings suggest obesity and diabetes may adversely affect growth plate cartilage structure.
Collapse
Affiliation(s)
- Jun Hung
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308 USA
| | - Layla Al-Nakkash
- Department of Physiology, Midwestern University, Glendale, AZ 85308 USA
| | - Tom L. Broderick
- Department of Physiology, Midwestern University, Glendale, AZ 85308 USA
- Laboratory of Diabetes and Exercise Metabolism, Midwestern University, Glendale, AZ 85308 USA
| | - Monica Castro
- Department of Anatomy, Midwestern University, Glendale, AZ 85308 USA
| | - Jeffrey H. Plochocki
- Department of Anatomy, Midwestern University, Glendale, AZ 85308 USA
- Department of Medical Education, University of Central Florida College of Medicine, 6850 Lake Nona Blvd, Orlando, FL 32827 USA
| |
Collapse
|
40
|
Pinto KNZ, Tim CR, Crovace MC, Rossi BRO, Kido HW, Parizotto NA, Zanotto ED, Peitl O, Rennó AC. Scaffolds of bioactive glass-ceramic (Biosilicate®) and bone healing: A biological evaluation in an experimental model of tibial bone defect in rats. Biomed Mater Eng 2018; 29:665-683. [PMID: 30400079 DOI: 10.3233/bme-181016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study aimed to investigate the in vivo tissue response of the Biosilicate® scaffolds in a model of tibial bone defect. Sixty male Wistar rats were distributed into bone defect control group (CG) and Biosilicate® scaffold group (BG). Animals were euthanized 15, 30 and 45 days post-surgery. Stereomicroscopy, scanning electron microscopy, histopathological, immunohistochemistry and biomechanical analysis were used. Scaffolds had a total porosity of 44%, macroporosity of 15% with pore diameter of 230 μm. Higher amount of newly formed bone was observed on days 30 and 45 in BG. Immunohistochemistry analysis showed that the COX-2 expression was significantly higher on days 15 and 30 in BG compared with the CG. RUNX-2 immunoexpression was significantly higher in BG on days 15 and 45. No statistically significant difference was observed in RANKL immunoexpression in all experimental groups. BMP-9 immunoexpression was significantly upregulated in the BG on day 45. Biomechanical analysis showed a decrease in the biomechanical properties of the bone callus on days 30 and 45. The implantation of the Biosilicate® scaffolds was effective in stimulating newly bone formation and produced an increased immunoexpression of markers related to the bone repair.
Collapse
Affiliation(s)
| | - Carla Roberta Tim
- Technological and Scientific Institute, Brazil University (UnBr), São Paulo, SP, Brazil.,Department of Bioscience, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - Murilo Camuri Crovace
- Department of Materials Engineering, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | | | - Hueliton Wilian Kido
- Department of Bioscience, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil.,Nove de Julho University (UNINOVE), Bauru, Brazil
| | - Nivaldo Antonio Parizotto
- Technological and Scientific Institute, Brazil University (UnBr), São Paulo, SP, Brazil.,Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Edgar Dutra Zanotto
- Department of Materials Engineering, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Oscar Peitl
- Department of Materials Engineering, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Ana Claudia Rennó
- Department of Bioscience, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| |
Collapse
|
41
|
Cao GL, Tian FM, Liu GY, Song HP, Yuan LL, Geng LD, Bei MJ, Zheng ZY, Zhang L. Strontium Ranelate Combined with Insulin Is as Beneficial as Insulin Alone in Treatment of Fracture Healing in Ovariectomized Diabetic Rats. Med Sci Monit 2018; 24:6525-6536. [PMID: 30221634 PMCID: PMC6154119 DOI: 10.12659/msm.911573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) and estrogen deficiency both predispose fracture patients to increased risk of delayed union or nonunion. The present study investigated the effects of strontium ranelate (SR) on fracture healing in ovariectomized (OVX) diabetic rats. Material/Methods A mid-shaft fracture was established in female normal control (CF), diabetic (DF), and OVX diabetic (DOF) rats. Treated DOF rats received either insulin alone (DOFI) or combined with SR (DOFIS). All rats were euthanized at 2 or 3 weeks after fracture. Fracture healing was evaluated using radiological, histological, immunohistochemical, and micro-computed tomography analyses. Results At 3 weeks after fracture, radiological and histological evaluations demonstrated delayed fracture healing in the DF group compared with the CF group, which was exacerbated by OVX, as indicated by the significantly lower X-ray score, BMD, BV/TV, and Md.Ar/Ps.Cl.Ar, and the markedly decreased OCN and Col I expression in the DOF group. All these changes were prevented by insulin alone or combined with SR treatment. In comparison with the DOFI group, DOFIS rats displayed markedly higher OCN expression at 2 weeks after fracture and Col I expression at 2 and 3 weeks after fracture. Conclusions These results demonstrated delayed fracture healing with preexisting estrogen deficiency and T2DM. While insulin alone and combined with SR were both effective in promoting bone fracture healing in this model, their combined treatment showed significant improvement in promoting osteogenic marker expression, but not of the radiological appearance, compared with insulin alone.
Collapse
Affiliation(s)
- Guo-Long Cao
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Fa-Ming Tian
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei, China (mainland).,International Science and Technology Cooperation Base of Geriatric Medicine, Department of International Cooperation, Ministry of Science and Technology of China, Tangshan, Hebei, China (mainland)
| | - Guang-Yuan Liu
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Hui-Ping Song
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Lei-Liang Yuan
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Lin-Dan Geng
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Ming-Jian Bei
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Zhi-Yuan Zheng
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Liu Zhang
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Mine Medical Security Center, Meitan General Hospital, Beijing, China (mainland)
| |
Collapse
|
42
|
Griffin TM, Huffman KM. Editorial: Insulin Resistance: Releasing the Brakes on Synovial Inflammation and Osteoarthritis? Arthritis Rheumatol 2018; 68:1330-3. [PMID: 26749517 DOI: 10.1002/art.39586] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/05/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Timothy M Griffin
- Oklahoma Medical Research Foundation and the University of Oklahoma Health Sciences Center, Oklahoma City
| | - Kim M Huffman
- Duke University Medical Center and Durham VA Medical Center, Durham, North Carolina
| |
Collapse
|
43
|
Yamanaka JS, Yanagihara GR, Carlos BL, Ramos J, Brancaleon BB, Macedo AP, Issa JPM, Shimano AC. A high-fat diet can affect bone healing in growing rats. J Bone Miner Metab 2018; 36:255-263. [PMID: 28516218 DOI: 10.1007/s00774-017-0837-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/24/2017] [Indexed: 12/11/2022]
Abstract
A high-fat diet (HFD) can have a negative effect on bone quality in young and old people. Although bone healing in children is normally efficient, there is no evidence that children who have a diet rich in fat have compromised bone fracture regeneration compared with children with recommended dietary fat levels. The purpose of the present study was to evaluate the effects of an HFD on bone healing in growing female rats. Twenty-six postweaning female Wistar rats were divided into two groups (13 animals per group): a standard diet (SD) group and an HFD (with 60% of energy from fat) group. The rats received the assigned diets for 5 weeks, and in the third week they were submitted to an osteotomy procedure of the left tibia. Body mass and feed intake were recorded during the experiment. One day before euthanasia, an insulin tolerance test was performed. After euthanasia, the tibiae were removed and analyzed by densitometry, mechanical testing, histomorphometry, stereology and immunohistochemistry. An HFD caused an adaptive response to maintain energetic balance by decreasing feed intake and causing insulin insensitivity. There was no change in bone mineral density, collagen amount and immunostaining for bone formation, but maximal load and stiffness were decreased in the HFD group. In addition, bone volume had a tendency to be higher in the SD group than in the HFD group. Compared with rats receiving an SD, growing rats receiving an HFD for 5 weeks had similar bone mineral density but altered mechanical properties at the osteotomy defect site.
Collapse
Affiliation(s)
- Jéssica Suzuki Yamanaka
- Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Rua Pedreira de Freitas, s/n, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Gabriela Rezende Yanagihara
- Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Rua Pedreira de Freitas, s/n, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Bruna Leonel Carlos
- Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Rua Pedreira de Freitas, s/n, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Júnia Ramos
- Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Brígida Batista Brancaleon
- Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Rua Pedreira de Freitas, s/n, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Ana Paula Macedo
- Departamento de Materiais Dentários e Próteses, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João Paulo Mardegan Issa
- Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Rua Pedreira de Freitas, s/n, 14049-900, Ribeirão Preto, São Paulo, Brazil
- Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antônio Carlos Shimano
- Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Rua Pedreira de Freitas, s/n, 14049-900, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
44
|
Chandran M, Tay D, Huang XF, Hao Y. The burden of inpatient care for diabetic and non-diabetic patients with osteoporotic hip fractures-does it differ? An analysis of patients recruited into a fracture liaison service in Southeast Asia. Arch Osteoporos 2018; 13:27. [PMID: 29546650 DOI: 10.1007/s11657-018-0440-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/26/2018] [Indexed: 02/03/2023]
Abstract
UNLABELLED Hospital care and mortality of diabetic and non-diabetic osteoporotic Asian patients undergoing hip fracture surgery were explored with no difference in length of hospitalization, incidence of post-operative complications, or mortality between diabetics and non-diabetics seen. Time to operation correlated with post-operative complications occurrence and therefore surgery should be expeditiously done. INTRODUCTION Whether burden of inpatient care, problems after admission, and mortality rates differ between diabetics and non-diabetics undergoing surgery for osteoporotic hip fractures has not been explored in Asian populations. METHOD Three hundred eighty-nine multi-ethnic diabetic and non-diabetic patients recruited into a FLS at a large Asian hospital with new osteoporotic hip fractures requiring operative repair were analyzed. RESULTS 87.9% were Chinese, 6.4% Malay, and 3.6% Indians. BMI and age did not significantly differ between diabetics and non-diabetics. Median (IQR) length of hospitalization (LOHS) in days was 12 (9, 17) in diabetics and 11 (8, 14) in non-diabetics (p = 0.011). Median time from admission to operation (TTO) was 3 (2, 5) in diabetics versus 2 (1, 4.5) in the non-diabetics (p = 0.003). Occurrence of aggregate post-operative complications did not differ between diabetics and non-diabetics. No in-hospital mortalities occurred in either group. Thirty-day and 1-year mortality rates did not differ between the two groups. One-year mortality was 2.8% in the entire cohort. On multivariate regression analysis adjusted for age and race, only TTO (β; 1.8, 95% CI 1.5-2.0, p < 0.001) and occurrence of post-operative complications (β; 6.3, 95% CI 3.7-7.9, p < 0.001) correlated with LOHS. TTO and age-adjusted Charlson's Comorbidity Index (CCI) correlated significantly with the development of post-operative complications. CONCLUSIONS Diabetes was not independently associated with LOHS in patients undergoing hip fracture surgery. Aggregate post-operative complications did not differ between diabetics and non-diabetics. TTO and occurrence of post-operative complications significantly affected LOHS. TTO correlated with post-complications development. Surgery should be expeditiously done in both diabetics and non-diabetics to avoid the development of post-operative complications and to prevent prolonged hospital stay.
Collapse
Affiliation(s)
- M Chandran
- Department of Endocrinology, Osteoporosis and Bone Metabolism Unit, Singapore General Hospital, Academia, 20 College Road, Singapore, 169856, Singapore.
| | - D Tay
- Department of Endocrinology, Osteoporosis and Bone Metabolism Unit, Singapore General Hospital, Academia, 20 College Road, Singapore, 169856, Singapore
| | - X F Huang
- Department of Endocrinology, Osteoporosis and Bone Metabolism Unit, Singapore General Hospital, Academia, 20 College Road, Singapore, 169856, Singapore
| | - Y Hao
- Health Services Research Unit (HSRU), Division of Medicine, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
45
|
Ippolito JA, Krell ES, Cottrell J, Meyer R, Clark D, Nguyen D, Sudah S, Muñoz M, Lim E, Lin A, Lee TJH, O'Connor JP, Benevenia J, Lin SS. Effects of local vanadium delivery on diabetic fracture healing. J Orthop Res 2017; 35:2174-2180. [PMID: 28084655 DOI: 10.1002/jor.23521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/09/2017] [Indexed: 02/04/2023]
Abstract
This study evaluated the effect of local vanadyl acetylacetonate (VAC), an insulin mimetic agent, upon the early and late parameters of fracture healing in rats using a standard femur fracture model. Mechanical testing, and radiographic scoring were performed, as well as histomorphometry, including percent bone, percent cartilage, and osteoclast numbers. Fractures treated with local 1.5 mg/kg VAC possessed significantly increased mechanical properties compared to controls at 6 weeks post-fracture, including increased torque to failure (15%; p = 0.046), shear modulus (89%; p = 0.043), and shear stress (81%; p = 0.009). The radiographic scoring analysis showed increased cortical bridging at 4 weeks and 6 weeks (119%; p = 0.036 and 209%; p = 0.002) in 1.5 mg/kg VAC treated groups. Histomorphometry of the fracture callus at days 10 and 14 showed increased percent cartilage (121%; p = 0.009 and 45%; p = 0.035) and percent mineralized tissue (66%; p = 0.035 and 58%; p = 0.006) with local VAC treated groups compared to control. Additionally, fewer osteoclasts were observed in the local VAC treated animals as compared to controls at day 14 (0.45% ± 0.29% vs. 0.83% ± 0.36% of callus area; p = 0.032). The results suggest local administration of VAC acts to modulate osteoclast activity and increase percentage of early callus cartilage, ultimately enhancing mechanical properties comparably to non-diabetic animals treated with local VAC. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2174-2180, 2017.
Collapse
Affiliation(s)
- Joseph A Ippolito
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Ethan S Krell
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Jessica Cottrell
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey
| | - Ryan Meyer
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Devin Clark
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Daniel Nguyen
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Suleiman Sudah
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Maximillian Muñoz
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Elisha Lim
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Anthony Lin
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Thomas Jae Hoon Lee
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - James Patrick O'Connor
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Joseph Benevenia
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| | - Sheldon S Lin
- Department of Orthopaedics, Rutgers New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey 07101
| |
Collapse
|
46
|
Liu GY, Cao GL, Tian FM, Song HP, Yuan LL, Geng LD, Zheng ZY, Zhang L. Parathyroid hormone (1-34) promotes fracture healing in ovariectomized rats with type 2 diabetes mellitus. Osteoporos Int 2017; 28:3043-3053. [PMID: 28808745 DOI: 10.1007/s00198-017-4148-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/04/2017] [Indexed: 01/06/2023]
Abstract
UNLABELLED Ovariectomized (OVX) rats with type 2 diabetes mellitus (T2DM) with femur fracture received vehicle, insulin, or insulin plus parathyroid hormone (PTH) treatment for 2 and 3 weeks. Radiography, histomorphometry, histology, and immunohistochemistry in callus were evaluated. INTRODUCTION Reports about effects of PTH plus insulin on callus formation of osteoporotic fracture with T2DM were limited. This study was designed to investigate the effects of the combination of PTH and insulin on fracture healing in OVX rats with T2DM. METHODS Two-month-old female rats were randomly divided into five groups: normal fracture (F), OVX fracture (OF), T2DM + OVX fracture (DOF), insulin-treated (2-4 u/daylight, 4-6 u/night, DOFI), and treated with insulin and PTH (50 μg/kg/day, 5 days/week, DOFIP). A closed mid-shaft fracture was established in the right femurs of all rats after 6 weeks of OVX. Rats were euthanized at 2 and 3 weeks post-fracture according to the time schedule, respectively. RESULTS The administration of insulin alone or insulin combined with PTH significantly increased mineralized bone volume fraction (BV/TV) and connectivity density (Conn.D) compared with those of the DOF group at 3 weeks post-fracture and also increased cartilaginous callus area ratio in the DOFI and DOFIP groups at 2 weeks and bony callus area ratio in the DOFIP groups at both the 2 and 3 weeks post-fracture. CONCLUSIONS OVX rats with T2DM exhibited a marked delay in the fracture healing process; insulin treatment ameliorated these effects, and the healing process was enhanced following treatment with a combination of insulin and PTH.
Collapse
Affiliation(s)
- G Y Liu
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, China
| | - G L Cao
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, China
| | - F M Tian
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - H P Song
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - L L Yuan
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - L D Geng
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Z Y Zheng
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - L Zhang
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, China.
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
47
|
Chan DC, Chiu CY, Lan KC, Weng TI, Yang RS, Liu SH. Transplantation of human skeletal muscle-derived progenitor cells ameliorates knee osteoarthritis in streptozotocin-induced diabetic mice. J Orthop Res 2017; 35:1886-1893. [PMID: 27935109 DOI: 10.1002/jor.23503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 12/05/2016] [Indexed: 02/04/2023]
Abstract
The epidemiological and experimental evidence suggests that diabetes can be an independent risk factor for osteoarthritis. The osteoarthritis-like cartilage damage has been shown in streptozotocin-induced diabetic mice. The therapeutic effects of human skeletal muscle-derived progenitor cells (HSMPCs) on diabetic osteoarthritis still remain unclear. Here, we investigated the therapeutic potential of HSMPCs on diabetic knee osteoarthritis. The in vitro chondrogenic ability of HSMPCs was determined by pellet culture assay. Male mice were used to develop the model of streptozotocin-induced type 1 diabetes and its related osteoarthritis. HSMPCs were injected intra-articularly to rescue osteoarthritis. Protein expressions of advanced glycation end-products, cyclooxygenase-2, and type-2 collagen in tissues were determined by immunohistochemistry. The pellet culture assay showed that HSMPCs cultured in differentiation medium for chondrogenesis significantly produced larger pellets with an overproduction of extracellular matrix than in growth medium. In in vivo experiments, intra-articular injection of HSMPCs for 4 weeks significantly prevented the progression of degenerative changes in the cartilage of streptozotocin-induced diabetic mice, including an obvious increase of total articular cartilage thickness and a decrease of fibrous cartilage thickness. HSMPCs transplantation also exerted the decline in advanced glycation end-products and cyclooxygenase-2 protein expression, but increased the type-2 collagen protein expression in streptozotocin-induced osteoarthritic cartilages. Moreover, HSMPCs transplantation also inhibited the increased serum interleukin-6 and matrix metalloproteinase-3 levels in diabetic mice. These results demonstrated for the first time that HSMPCs transplantation ameliorates cartilage degeneration in diabetes-related osteoarthritis mice. These findings suggest that HSMPCs transplantation may apply as a potential therapeutic use of diabetes-related osteoarthritis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1886-1893, 2017.
Collapse
Affiliation(s)
- Ding-Cheng Chan
- Department of Geriatrics and Gerontology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Yuan Chiu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua, Taiwan
| | - Kuo-Cheng Lan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Te-I Weng
- Department of Forensic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Rong-Sen Yang
- Departments of Orthopaedics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
48
|
Lim JC, Ko KI, Mattos M, Fang M, Zhang C, Feinberg D, Sindi H, Li S, Alblowi J, Kayal RA, Einhorn TA, Gerstenfeld LC, Graves DT. TNFα contributes to diabetes impaired angiogenesis in fracture healing. Bone 2017; 99:26-38. [PMID: 28285015 PMCID: PMC5563392 DOI: 10.1016/j.bone.2017.02.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 01/05/2017] [Accepted: 02/26/2017] [Indexed: 02/07/2023]
Abstract
Diabetes increases the likelihood of fracture, interferes with fracture healing and impairs angiogenesis. The latter may be significant due to the critical nature of angiogenesis in fracture healing. Although it is known that diabetes interferes with angiogenesis the mechanisms remain poorly defined. We examined fracture healing in normoglycemic and streptozotocin-induced diabetic mice and quantified the degree of angiogenesis with antibodies to three different vascular markers, CD34, CD31 and Factor VIII. The role of diabetes-enhanced inflammation was investigated by treatment of the TNFα-specific inhibitor, pegsunercept starting 10days after induction of fractures. Diabetes decreased both angiogenesis and VEGFA expression by chondrocytes. The reduced angiogenesis and VEGFA expression in diabetic fractures was rescued by specific inhibition of TNF in vivo. In addition, the TNF inhibitor rescued the negative effect of diabetes on endothelial cell proliferation and endothelial cell apoptosis. The effect of TNFα in vitro was enhanced by high glucose and an advanced glycation endproduct to impair microvascular endothelial cell proliferation and tube formation and to stimulate apoptosis. The effect of TNF, high glucose and an AGE was mediated by the transcription factor FOXO1, which increased expression of p21 and caspase-3. These studies indicate that inflammation plays a major role in diabetes-impaired angiogenesis in endochondral bone formation through its effect on microvascular endothelial cells and FOXO1.
Collapse
Affiliation(s)
- Jason C Lim
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kang I Ko
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcelo Mattos
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Miao Fang
- Department of Endocrinology, Shanxi Province People's Hospital, Shanxi Province, China
| | - Citong Zhang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Implantology, School of Stomatology, Jilin University, Changchun 130021, China
| | - Daniel Feinberg
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hisham Sindi
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shuai Li
- Department of Implant Dentistry, Peking University, School and Hospital of Stomatology, Beijing, China
| | - Jazia Alblowi
- Department of Oral Basic and Clinical Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rayyan A Kayal
- Department of Oral Basic and Clinical Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thomas A Einhorn
- Department of Orthopedic Surgery, School of Medicine, Boston University, Boston, MA 02118, USA
| | - Louis C Gerstenfeld
- Department of Orthopedic Surgery, School of Medicine, Boston University, Boston, MA 02118, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
49
|
Aikawa T, Matsubara H, Ugaji S, Shirakawa J, Nagai R, Munesue S, Harashima A, Yamamoto Y, Tsuchiya H. Contribution of methylglyoxal to delayed healing of bone injury in diabetes. Mol Med Rep 2017; 16:403-409. [DOI: 10.3892/mmr.2017.6589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/06/2017] [Indexed: 11/06/2022] Open
|
50
|
Meyr AJ, Mirmiran R, Naldo J, Sachs BD, Shibuya N. American College of Foot and Ankle Surgeons ® Clinical Consensus Statement: Perioperative Management. J Foot Ankle Surg 2017; 56:336-356. [PMID: 28231966 DOI: 10.1053/j.jfas.2016.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Indexed: 02/07/2023]
Abstract
A wide range of factors contribute to the complexity of the management plan for an individual patient, and it is the surgeon's responsibility to consider the clinical variables and to guide the patient through the perioperative period. In an effort to address a number of important variables, the American College of Foot and Ankle Surgeons convened a panel of experts to derive a clinical consensus statement to address selected issues associated with the perioperative management of foot and ankle surgical patients.
Collapse
Affiliation(s)
- Andrew J Meyr
- Committee Chairperson and Clinical Associate Professor, Department of Surgery, Temple University School of Podiatric Medicine, Philadelphia, PA.
| | | | - Jason Naldo
- Assistant Professor, Department of Orthopedic Surgery, Virginia Tech Carilion School of Medicine, Roanoke, VA
| | - Brett D Sachs
- Private Practice, Rocky Mountain Foot & Ankle Center, Wheat Ridge, CO; Faculty, Podiatric Medicine and Surgery Program, Highlands-Presbyterian St. Luke's Medical Center, Denver, CO
| | - Naohiro Shibuya
- Professor, Department of Surgery, Texas A&M, College of Medicine, Temple, TX
| |
Collapse
|