1
|
Wang M, Xu C, Zheng Y, Pieterse H, Sun Z, Liu Y. In vivo validation of osteoinductivity and biocompatibility of BMP-2 enriched calcium phosphate cement alongside retrospective description of its clinical adverse events. Int J Implant Dent 2024; 10:47. [PMID: 39472366 PMCID: PMC11522231 DOI: 10.1186/s40729-024-00567-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
PURPOSE Although bone morphogenetic protein-2 (BMP-2) possesses potent osteoinductivity, there have been some concerns on the safety of BMP-2 and BMP-2-incorporated bone substitutes used for bone formation. On the other hand, BMP-2-loaded calcium phosphate cement (BMP-2@CPC) has been developed and used for bone regeneration in oral implantology. Therefore, this study aims to investigate this product's biocompatibility and clinical safety after being used in maxillofacial surgery. MATERIALS AND METHODS A rat model was employed to assess the osteoinduction and biocompatibility of BMP-2@CPC. Further, a retrospective investigation was carried out: 110 patients who received BMP-2@CPC treatment after their maxillofacial surgery were recruited to describe relative adverse events. RESULTS In vivo, BMP-2@CPC showed a significantly higher mean bone volume density and osteoblasts volume density (15 ± 2% and 3 ± 1%)than those of the CPC group (p < 0.05) after being implanted in the dorsal area of rats. Regarding biocompatibility, the mean fibrous tissue volume density was significantly lower in the BMP-2@CPC group (20 ± 5% compared to 31 ± 6%, p = 0.026). The retrospective clinical study showed that only five mild/moderate adverse events were identified in four patients based on the medical records of 110 patients, including swelling, bony mass, and wound dehiscence. This adverse event occurrence was not affected by gender, age, the dose of filled materials, and operations in the study (p > 0.05). CONCLUSIONS BMP-2-loaded CPC has osteoinductivity and more promising biocompatibility than pure CPC. However, its degradation is slower than CPC. The safety of BMP-2-loaded CPC with 0.5 or 1 mg BMP-2 is promising in oral maxillofacial surgery. CLINICAL IMPLICATIONS This study confirmed the promising safety of this BMP-2 incorporated CPC used in dental clinical practice, which can promote its reassuring application for dental implant placement in bone insufficient areas.
Collapse
Affiliation(s)
- Mingjie Wang
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| | - Chunfeng Xu
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands.
- Department of Second Dental Center, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Centre for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Yuanna Zheng
- Ningbo Dental Hospital, Ningbo Oral Health Research Institute, Ningbo, Zhejiang, China
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Herman Pieterse
- Heymans Institute of Pharmacology at Ghent University, Ghent, Belgium
- Profess Medical Consultancy B.V., Heerhugowaard, The Netherlands
| | - Zhe Sun
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuelian Liu
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Cai F, Jiang B, He F. Formation and biological activities of foreign body giant cells in response to biomaterials. Acta Biomater 2024; 188:1-26. [PMID: 39245307 DOI: 10.1016/j.actbio.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
The integration of biomaterials in medical applications triggers the foreign body response (FBR), a multi-stage immune reaction characterized by the formation of foreign body giant cells (FBGCs). Originating from the fusion of monocyte/macrophage lineage cells, FBGCs are pivotal participants during tissue-material interactions. This review provides an in-depth examination of the molecular processes during FBGC formation, highlighting signaling pathways and fusion mediators in response to both exogenous and endogenous stimuli. Moreover, a wide range of material-specific characteristics, such as surface chemical and physical properties, has been proven to influence the fusion of macrophages into FBGCs. Multifaceted biological activities of FBGCs are also explored, with emphasis on their phagocytic capabilities and extracellular secretory functions, which profoundly affect the vascularization, degradation, and encapsulation of the biomaterials. This review further elucidates the heterogeneity of FBGCs and their diverse roles during FBR, as demonstrated by their distinct behaviors in response to different materials. By presenting a comprehensive understanding of FBGCs, this review intends to provide strategies and insights into optimizing biocompatibility and the therapeutic potential of biomaterials for enhanced stability and efficacy in clinical applications. STATEMENT OF SIGNIFICANCE: As a hallmark of the foreign body response (FBR), foreign body giant cells (FBGCs) significantly impact the success of implantable biomaterials, potentially leading to complications such as chronic inflammation, fibrosis, and device failure. Understanding the role of FBGCs and modulating their responses are vital for successful material applications. This review provides a comprehensive overview of the molecules and signaling pathways guiding macrophage fusion into FBGCs. By elucidating the physical and chemical properties of materials inducing distinct levels of FBGCs, potential strategies of materials in modulating FBGC formation are investigated. Additionally, the biological activities of FBGCs and their heterogeneity in responses to different material categories in vivo are highlighted in this review, offering crucial insights for improving the biocompatibility and efficacy of biomaterials.
Collapse
Affiliation(s)
- Fangyuan Cai
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Bulin Jiang
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Fuming He
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Dong Y, Yao L, Cai L, Jin M, Forouzanfar T, Wu L, Liu J, Wu G. Antimicrobial and Pro-Osteogenic Coaxially Electrospun Magnesium Oxide Nanoparticles-Polycaprolactone /Parathyroid Hormone-Polycaprolactone Composite Barrier Membrane for Guided Bone Regeneration. Int J Nanomedicine 2023; 18:369-383. [PMID: 36700148 PMCID: PMC9869899 DOI: 10.2147/ijn.s395026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/24/2022] [Indexed: 01/21/2023] Open
Abstract
Introduction An antibacterial and pro-osteogenic coaxially electrospun nanofiber guided bone regeneration (GBR) membrane was fabricated to satisfy the complicated and phased requirements of GBR process. Methods In this study, we synthesize dual-functional coaxially electrospun nanofiber GBR membranes by encapsulating parathyroid hormone (PTH) in the core layer and magnesium oxide nanoparticles (MgONPs) in the shell layer (MgONPs-PCL/PTH-PCL). Herein, the physicochemical characterization of MgONPs-PCL/PTH-PCL, the release rates of MgONPs and PTH, and antibacterial efficiency of the new membrane were evaluated. Furthermore, the pro-osteogenicity of the membranes was assessed both in-vitro and in-vivo. Results We successfully fabricated a coaxially electrospun nanofiber MgONPs-PCL/PTH-PCL membrane with the majority of nanofibers (>65%) ranged from 0.40~0.60μm in diameter. MgONPs-PCL/PTH-PCL showed outstanding antibacterial potential against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) through the release of MgONPs. We also discovered that the incorporation of MgONPs significantly prolonged the release of PTH. Furthermore, both the in-vivo and in-vitro studies demonstrated that high dosage of PTH promoted pro-osteogenicity of the membrane to improve bone regeneration efficacy with the presence of MgONPs. Conclusion The new composite membrane is a promising approach to enhance bone regeneration in periodontitis or peri-implantitis patients with large-volume bone defects.
Collapse
Affiliation(s)
- Yiwen Dong
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China,Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, Amsterdam, the Netherlands,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands
| | - Litao Yao
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, Amsterdam, the Netherlands,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands,Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China,Correspondence: Litao Yao, Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China, Zhejiang, Email
| | - Lei Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Mi Jin
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, Amsterdam, the Netherlands,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands
| | - Lianjun Wu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China,Jinsong Liu, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China, Email
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, Amsterdam, the Netherlands,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands
| |
Collapse
|
4
|
Xu G, Shen C, Lin H, Zhou J, Wang T, Wan B, Binshabaib M, Forouzanfar T, Xu G, Alharbi N, Wu G. Development, In-Vitro Characterization and In-Vivo Osteoinductive Efficacy of a Novel Biomimetically-Precipitated Nanocrystalline Calcium Phosphate With Internally-Incorporated Bone Morphogenetic Protein-2. Front Bioeng Biotechnol 2022; 10:920696. [PMID: 35935495 PMCID: PMC9354744 DOI: 10.3389/fbioe.2022.920696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
The repair of large-volume bone defects (LVBDs) remains a great challenge in the fields of orthopedics and maxillofacial surgery. Most clinically available bone-defect-filling materials lack proper degradability and efficient osteoinductivity. In this study, we synthesized a novel biomimetically-precipitated nanocrystalline calcium phosphate (BpNcCaP) with internally incorporated bone morphogenetic protein-2 (BpNcCaP + BMP-2) with an aim to develop properly degradable and highly osteoinductive granules to repair LVBDs. We first characterized the physicochemical properties of the granules with different incorporation amounts of BMP-2 using scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. We evaluated the cytotoxicity and cytocompatibility of BpNcCaP by assessing the viability and adhesion of MC3T3-E1 pre-osteoblasts using PrestoBlue assay, Rhodamine-Phalloidin and DAPI staining, respectively. We further assessed the in-vivo osteoinductive efficacy in a subcutaneous bone induction model in rats. In-vitro characterization data showed that the BpNcCaP + BMP-2 granules were comprised of hexagonal hydroxyapatite with an average crystallite size ranging from 19.7 to 25.1 nm and a grain size at 84.13 ± 28.46 nm. The vickers hardness of BpNcCaP was 32.50 ± 3.58 HV 0.025. BpNcCaP showed no obvious cytotoxicity and was favorable for the adhesion of pre-osteoblasts. BMP-2 incorporation rate could be as high as 65.04 ± 6.01%. In-vivo histomorphometric analysis showed that the volume of new bone induced by BpNcCaP exhibited a BMP-2 amount-dependent increasing manner. The BpNcCaP+50 μg BMP-2 exhibited significantly more degradation and fewer foreign body giant cells in comparison with BpNcCaP. These data suggested a promising application potential of BpNcCaP + BMP-2 in repairing LVBDs.
Collapse
Affiliation(s)
- Gaoli Xu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, Netherlands
- Department of Stomatology, Zhejiang Hospital, Hangzhou, China
| | - Chenxi Shen
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, Netherlands
- Hangzhou Huibo Science and Technology Co. Ltd., Xinjie Science Park, Hangzhou, China
| | - Haiyan Lin
- Department of Implantology, Hangzhou Stomatology Hospital, Hangzhou, China
- Savid School of Stomatology, Hangzhou Medical College, Hangzhou, China
| | - Jian Zhou
- Department of Implantology, Hangzhou Stomatology Hospital, Hangzhou, China
| | - Ting Wang
- Department of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ben Wan
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, Netherlands
- Hangzhou Huibo Science and Technology Co. Ltd., Xinjie Science Park, Hangzhou, China
| | - Munerah Binshabaib
- Department of Preventive Dental Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, Netherlands
| | - Guochao Xu
- Department of Stomatology, Zhejiang Hospital, Hangzhou, China
| | - Nawal Alharbi
- Department of Prosthetic Dental Sciences, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Nawal Alharbi, ; Gang Wu,
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, Netherlands
- *Correspondence: Nawal Alharbi, ; Gang Wu,
| |
Collapse
|
5
|
Uijlenbroek HJJ, Lin X, Liu T, Zheng Y, Wismeijer D, Liu Y. Bone morphogenetic protein-2 incorporated calcium phosphate graft promotes peri-implant bone defect healing in dogs: A pilot study. Clin Exp Dent Res 2022; 8:1092-1102. [PMID: 35796096 PMCID: PMC9562579 DOI: 10.1002/cre2.613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 11/12/2022] Open
Abstract
Objectives The evaluation of three different drug delivery modes of bone morphogenetic protein‐2 (BMP‐2) in healing peri‐implant bone defects in beagle dogs. BMP‐2 was incorporated in or onto calcium phosphate (CaP) granules in various ways: (i) directly on the outer layer of granules CaP: as an adsorbed depot; (ii) during the entire precipitation process of CaP: an internally incorporated depot; or (iii) during the biomimetic coating precipitation of BMP‐2 on the surface of CaP granules: as a coating incorporated depot. Material and Methods After extraction of the lower molars and wound healing in 6 male beagle dogs, 36 implants were placed (n = 6 animal per group). Peri‐implant bone defects were induced. The following treatment groups were evaluated: no treatment; air abrasive surface cleaning (SC) using hydroxyapatite; SC and the subsequent filling of the defect with CaP without BMP‐2; SC plus the subsequent filling of the defect with CaP adsorbed BMP‐2; SC plus the subsequent filling of the defect with CaP internally incorporated BMP‐2; SC plus the subsequent filling of the defect with CaP coating incorporated BMP‐2. Histological and histomorphometric analyses were carried out to quantify and compare the changes in bone tissue surrounding the treated implants. Results In Group 1 with no treatment, four implants were lost. Group 5 with the SC and the subsequent filling of the defect with internally incorporated BMP‐2 biomimetically prepared CaP (BioCaP), whereby the BMP‐2 is incorporated in the entire volume of all BioCaP particles, showed overall the best results to regenerate bone around the implants. Conclusion This study concluded that the group treated with SC plus the subsequent filling of the defect with CaP BMP‐2 internally incorporated BMP‐2, whereby BMP‐2 has been incorporated in the entire volume of all CaP particles, showed overall the best results when aiming to regenerate bone around the implants.
Collapse
Affiliation(s)
- Henri J J Uijlenbroek
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Xingnan Lin
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Tie Liu
- Department of Oral Implantology, the Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuanna Zheng
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Daniel Wismeijer
- Private Practice prof. dr. D. Wismeijer, Ellecom, The Netherlands
| | - Yuelian Liu
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| |
Collapse
|
6
|
Cheng C, Chaaban M, Born G, Martin I, Li Q, Schaefer DJ, Jaquiery C, Scherberich A. Repair of a Rat Mandibular Bone Defect by Hypertrophic Cartilage Grafts Engineered From Human Fractionated Adipose Tissue. Front Bioeng Biotechnol 2022; 10:841690. [PMID: 35350180 PMCID: PMC8957819 DOI: 10.3389/fbioe.2022.841690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/14/2022] [Indexed: 01/25/2023] Open
Abstract
Background: Devitalized bone matrix (DBM) is currently the gold standard alternative to autologous bone grafting in maxillofacial surgery. However, it fully relies on its osteoconductive properties and therefore requires defects with healthy bone surrounding. Fractionated human adipose tissue, when differentiated into hypertrophic cartilage in vitro, was proven reproducibly osteogenic in vivo, by recapitulating endochondral ossification (ECO). Both types of bone substitutes were thus compared in an orthotopic, preclinical mandibular defect model in rat. Methods: Human adipose tissue samples were collected and cultured in vitro to generate disks of hypertrophic cartilage. After hypertrophic induction, eight samples from two donors were implanted into a mandible defect in rats, in parallel to Bio-Oss® DBM granules. After 12 weeks, the mandible samples were harvested and evaluated by Micro-CT and histology. Results: Micro-CT demonstrated reproducible ECO and complete restoration of the mandibular geometry with adipose-based disks, with continuous bone inside and around the defect, part of which was of human (donor) origin. In the Bio-Oss® group, instead, osteoconduction from the border of the defect was observed but no direct connection of the granules with the surrounding bone was evidenced. Adipose-based grafts generated significantly higher mineralized tissue volume (0.57 ± 0.10 vs. 0.38 ± 0.07, n = 4, p = 0.03) and newly formed bone (18.9 ± 3.4% of surface area with bone tissue vs. 3 ± 0.7%, p < 0.01) than Bio-Oss®. Conclusion: Our results provide a proof-of-concept that adipose-based hypertrophic cartilage grafts outperform clinical standard biomaterials in maxillofacial surgery.
Collapse
Affiliation(s)
- Chen Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Plastic, Reconstructive, Aesthetic, and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Mansoor Chaaban
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gordian Born
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Qingfeng Li, ; Arnaud Scherberich,
| | - Dirk J. Schaefer
- Department of Plastic, Reconstructive, Aesthetic, and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Claude Jaquiery
- Clinic for Craniomaxillofacial and Oral Surgery, University Hospital Basel, Basel, Switzerland
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Plastic, Reconstructive, Aesthetic, and Hand Surgery, University Hospital Basel, Basel, Switzerland
- *Correspondence: Qingfeng Li, ; Arnaud Scherberich,
| |
Collapse
|
7
|
Xu C, Wang M, Zandieh-Doulabi B, Sun W, Wei L, Liu Y. To B (Bone Morphogenic Protein-2) or Not to B (Bone Morphogenic Protein-2): Mesenchymal Stem Cells May Explain the Protein's Role in Osteosarcomagenesis. Front Cell Dev Biol 2021; 9:740783. [PMID: 34869325 PMCID: PMC8635864 DOI: 10.3389/fcell.2021.740783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma (OS), a primary malignant bone tumor, stems from bone marrow-derived mesenchymal stem cells (BMSCs) and/or committed osteoblast precursors. Distant metastases, in particular pulmonary and skeletal metastases, are common in patients with OS. Moreover, extensive resection of the primary tumor and bone metastases usually leads to bone defects in these patients. Bone morphogenic protein-2 (BMP-2) has been widely applied in bone regeneration with the rationale that BMP-2 promotes osteoblastic differentiation of BMSCs. Thus, BMP-2 might be useful after OS resection to repair bone defects. However, the potential tumorigenicity of BMP-2 remains a concern that has impeded the administration of BMP-2 in patients with OS and in populations susceptible to OS with severe bone deficiency (e.g., in patients with genetic mutation diseases and aberrant activities of bone metabolism). In fact, some studies have drawn the opposite conclusion about the effect of BMP-2 on OS progression. Given the roles of BMSCs in the origination of OS and osteogenesis, we hypothesized that the responses of BMSCs to BMP-2 in the tumor milieu may be responsible for OS development. This review focuses on the relationship among BMSCs, BMP-2, and OS cells; a better understanding of this relationship may elucidate the accurate mechanisms of actions of BMP-2 in osteosarcomagenesis and thereby pave the way for clinically safer and broader administration of BMP-2 in the future. For example, a low dosage of and a slow-release delivery strategy for BMP-2 are potential topics for exploration to treat OS.
Collapse
Affiliation(s)
- Chunfeng Xu
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mingjie Wang
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Behrouz Zandieh-Doulabi
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Wei Sun
- Department of Mechanical Engineering, Drexel University, Philadelphia, PA, United States.,Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Lingfei Wei
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Oral Implantology, Yantai Stomatological Hospital, Yantai, China
| | - Yuelian Liu
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Coralline Hydroxyapatite Coated with a Layer Biomimetic Calcium Phosphate Containing BMP-2 Induces Dose-Related Ectopic Bone Formation in Wistar Rats. COATINGS 2021. [DOI: 10.3390/coatings11101195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In order to evaluate loading methods and the dose dependency of bone morphogenetic protein 2 (BMP-2) in ectopic bone formation, an osteoinductive material consisting of commercially available coralline hydroxyapatite (CHA) was coated with a layer of biomimetic calcium phosphate (BioCaP) containing BMP-2 in different ways. Eight groups—each containing samples of 0.25 g CHA—were formed and coated with, respectively, BioCaP with internally incorporated BMP-2 in concentrations of 1, 5, 10, 20, 40 and 60 µg per sample, and the two control groups with BioCaP only and BioCaP with 20 µg of adsorbed BMP-2 per sample. The samples were implanted subcutaneously in 27 male Wistar rats. The histological results show that there is no bone formation in the group in which no BMP-2 was included. All samples with BioCaP containing BMP-2 show bone formation. The group with 20 µg of adsorbed BMP-2 per sample shows the least bone formation. Coating-incorporated BMP-2 is more efficient in inducing bone formation than adsorbed BMP-2. The group with 5 µg of coating-incorporated BMP-2 per sample shows the most bone formation. Increasing the amount of coating-incorporated BMP-2 up to 60 µg does not improve ectopic bone formation.
Collapse
|
9
|
Repair of segmental bone defect using tissue engineered heterogeneous deproteinized bone doped with lithium. Sci Rep 2021; 11:4819. [PMID: 33649409 PMCID: PMC7921440 DOI: 10.1038/s41598-021-84526-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/17/2021] [Indexed: 02/05/2023] Open
Abstract
Lithium have been shown to play an important role in improving the osteogenic properties of biomaterials. This study aims to explore the osteogenic improvement effect of tissue engineered heterogeneous deproteinized bone (HDPB) doped with lithium, and evaluate their effectiveness in the healing of bone defects. Bone marrow mesenchymal stem cells (BMSCs) were co-cultured with different concentration of lithium chloride. Cell proliferation in each group was analyzed by 3-(4, 5-dimetyl-2-thiazoly-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay. BMSCs were then co-cultured in osteogenic induction medium with different concentration of lithium chloride, and the expression of related mRNA was detected. The role of lithium in promoting BMSCs osteogenic differentiation and inhibiting BMSCs lipogenic differentiation was also investigated. Biomechanical properties of the tibia were evaluated at 8 weeks after operation. The tibial specimens of each group were collected at 4 and 8 weeks after surgery for histological examination and histological analysis. Micro-computed tomography (CT) scanning and 3D reconstruction were performed at 8 weeks. The results demonstrate that lithium can induce the osteogenic differentiation inhibit of adipogenic differentiation of BMSCs by regulating the Wnt signaling pathway. The histological evaluation further certified that average bone formation area in the group of tissue engineered HDPB doped with lithium was also significantly better than that of HDPB alone group. Based on the above evaluation, tissue engineered HDPB doped with lithium can effectively promote the regeneration of segmental bone defect, which can be used as a tissue engineering scaffold for clinical trials.
Collapse
|
10
|
Liu T, Fang W, Wu G, Li Y, Pathak JL, Liu Y. Low Dose BMP2-Doped Calcium Phosphate Graft Promotes Bone Defect Healing in a Large Animal Model. Front Cell Dev Biol 2021; 8:613891. [PMID: 33553148 PMCID: PMC7858265 DOI: 10.3389/fcell.2020.613891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/21/2020] [Indexed: 12/03/2022] Open
Abstract
Background: Bone grafts are in high demand due to the increase in the cases of bone defects mainly caused by trauma, old age, and disease-related bone damages. Tissue-engineered calcium phosphate (CaP) biomaterials match the major inorganic contents of bone, thereby could be the potential bone graft substitute. However, CaP-bone grafts lack the osteoinductivity that is vital for effective bone regeneration. In this study, we aimed to test the bone defect healing potential of biomimetically fabricated low dose BMP2-doped CaP (BMP2.BioCaP) grafts in a large animal model. Methods: Low dose BMP2 was doped internally (BMP2-int.BioCaP) or on the surface of CaP (BMP2-sur.BioCaP) grafts during the fabrication process. Our previous study showed the robust bone regenerative potential of BMP2-int.BioCaP and BMP2-sur.BioCaP grafts in the rat ectopic model. In this study, we investigated the bone defect healing potential of BMP2.BioCaP grafts in sheep humerus/femoral defects, as well as compared with that of autologous bone graft and clinically used deproteinized bovine bone (DBB) xenograft. Results: Different ways of BMP2 doping did not affect the surface morphology and degradation properties of the graft materials. Micro-CT and histology results showed robustly higher bone defect-healing potential of the BMP2.BioCaP grafts compared to clinically used DBB grafts. The bone defect healing potential of BMP2.BioCaP grafts was as effective as that of the autologous bone graft. Although, BMP2-int.BioCaP doped half the amount of BMP2 compared to BMP2-sur.BioCaP, its' bone defect healing potential was even robust. The BMP2.BioCaP grafts showed less immunogenicity compared to BioCaP or DBB grafts. The volume density of blood vessel-like and bone marrow-like structures in both BMP2.BioCaP graft groups were in a similar extent to the autologous group. Meticulous observation of higher magnification histological images showed active bone regeneration and remodeling during bone defect healing in BMP2.BioCaP graft groups. Conclusion: The robust bone regenerative potential of BMP2.BioCaP grafts in the ectopic model and in-situ bone defects in small and large animals warrant the pre-clinical studies on large animal critical-sized segmental bone defects.
Collapse
Affiliation(s)
- Tie Liu
- Department of Oral Implantology, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Wen Fang
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China.,Department of Periodontology, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic of Dentistry Amsterdam (ACTA), VU Universiteit Amsterdam and University of Amsterdam, Amsterdam, Netherlands
| | - Yining Li
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China.,Department of Oral Pathology, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Janak L Pathak
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuelian Liu
- Department of Oral Implantology and Prosthetic Dentistry, Academic of Dentistry Amsterdam (ACTA), VU Universiteit Amsterdam and University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
11
|
Sun P, Shi A, Shen C, Liu Y, Wu G, Feng J. Human salivary histatin-1 (Hst1) promotes bone morphogenetic protein 2 (BMP2)-induced osteogenesis and angiogenesis. FEBS Open Bio 2020; 10:1503-1515. [PMID: 32484586 PMCID: PMC7396425 DOI: 10.1002/2211-5463.12906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/25/2020] [Accepted: 05/28/2020] [Indexed: 12/26/2022] Open
Abstract
Large‐volume bone defects can result from congenital malformation, trauma, infection, inflammation and cancer. At present, it remains challenging to treat these bone defects with clinically available interventions. Allografts, xenografts and most synthetic materials have no intrinsic osteoinductivity, and so an alternative approach is to functionalize the biomaterial with osteoinductive agents, such as bone morphogenetic protein 2 (BMP2). Because it has been previously demonstrated that human salivary histatin‐1 (Hst1) promotes endothelial cell adhesion, migration and angiogenesis, we examine here whether Hst1 can promote BMP2‐induced bone regeneration. Rats were given subcutaneous implants of absorbable collagen sponge membranes seeded with 0, 50, 200 or 500 μg Hst1 per sample and 0 or 2 μg BMP2 per sample. At 18 days postsurgery, rats were sacrificed, and implanted regional tissue was removed for micro computed tomography (microCT) analyses of new bone (bone volume, trabecular number and trabecular separation). Four samples per group were decalcified and subjected to immunohistochemical staining to analyze osteogenic and angiogenic markers. We observed that Hst1 increased BMP2‐induced new bone formation in a dose‐dependent manner. Co‐administration of 500 μg Hst1 and BMP2 resulted in the highest observed bone volume and trabecular number, the lowest trabecular separation and the highest expression of osteogenic markers and angiogenic markers. Our results suggest that coadministration of Hst1 may enhance BMP2‐induced osteogenesis and angiogenesis, and thus may have potential for development into a treatment for large‐volume bone defects.
Collapse
Affiliation(s)
- Ping Sun
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Andi Shi
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands.,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam (VU), Amsterdam Movement Sciences (AMS), Amsterdam, the Netherlands.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Chenxi Shen
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam (VU), Amsterdam Movement Sciences (AMS), Amsterdam, the Netherlands
| | - Yi Liu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands.,Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands
| | - Jianying Feng
- School of Dentistry, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
12
|
Jiang S, Liu T, Wu G, Li W, Feng X, Pathak JL, Shi J. BMP2-Functionalized Biomimetic Calcium Phosphate Graft Promotes Alveolar Defect Healing During Orthodontic Tooth Movement in Beagle Dogs. Front Bioeng Biotechnol 2020; 8:517. [PMID: 32548104 PMCID: PMC7272671 DOI: 10.3389/fbioe.2020.00517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/01/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Grafting of biomaterial in alveolar defect facilitates bone healing and orthodontic treatment. BMP2-functionalized biomimetic calcium phosphate (BioCaP) graft had shown excellent bone defect healing potential in many preclinical studies. In this study, we aimed to investigate the influence of BioCaP graft on surgical alveolar bone defect healing during orthodontic tooth movement (OTM) in beagle dogs. Methods: Nine Beagle dogs were randomly assigned to three groups: control, deproteinized bovine bone (DBB), and BioCaP. The maxillary second premolars were protracted into the defects of the extracted maxillary first premolar for 8 weeks. The rate of OTM, alveolar remodeling and bone defect healing were evaluated by histology, histomorphometry, and cone beam computed tomography (CBCT) imaging. Periodontal probing depth was analyzed. Gingival cervicular fluid was collected at week 4 and 8, and the IL-1β level was measured by ELISA. Results: The histological sections of the bone defect showed more newly formed bone in the BioCaP group. The percentage of new bone formation in the BioCaP group was 1.61-, and 1.25-fold higher compared to the control and DBB group, respectively. After 8 weeks of OTM, the resorption rate of BioCaP was 1.42-fold higher compared to DBB. The root resorption index in the DBB group was 1.87-, and 1.39-fold higher compared to the control and BioCaP group, respectively. CBCT images showed 1.92-, and 1.36-fold higher bone mineral density in the BioCaP group compared to the control and DBB group, respectively. There was no significant difference in OTM among the three groups. The distance between the enamel cementum and the crest of the alveolar ridge in the control group was 1.45-, and 1.69-fold higher compared to DBB and BioCaP group, respectively. Periodontal probing depth at week 8 was reduced in the BioCaP group compared to the control. IL-1β concentration in the gingival cervicular fluid was significantly lower in the BioCaP group compared to the control group at week 4 and 8. Conclusion: BioCaP graft robustly promoted bone regeneration and alveolar bone defect healing without affecting OTM. BioCaP graft caused less alveolar bone recession and root resorption of traction tooth with favorable periodontal attachment level indicating that BioCaP as a bioactive and functional bone filling material for alveolar bone defects during orthodontic treatment.
Collapse
Affiliation(s)
- Shijie Jiang
- Department of Orthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Tie Liu
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China.,Department of Oral Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre of Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, Netherlands
| | - Wen Li
- Department of Orthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Xiaoxia Feng
- Department of Orthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Janak L Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiejun Shi
- Department of Orthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| |
Collapse
|
13
|
Paini S, Bighetti ACC, Cestari TM, Arantes RVN, Santos PS, Mena-Laura EE, Garlet GP, Taga R, Assis GF. Concentration-dependent effects of latex F1-protein fraction incorporated into deproteinized bovine bone and biphasic calcium phosphate on the repair of critical-size bone defects. J Biomed Mater Res B Appl Biomater 2020; 108:3270-3285. [PMID: 32537889 DOI: 10.1002/jbm.b.34664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/31/2022]
Abstract
F1-protein fraction (F1) is a natural bioactive compound extracted from the rubber tree, Hevea brasiliensis, and has been recently studied for its therapeutic potential in wound healing. In this study, we investigated the concentration-dependent effects of F1 (0.01%, 0.025%, 0.05%, and 0.1%) incorporated into deproteinized bovine bone (DBB) and porous biphasic calcium phosphate (pBCP), on the repair of rat calvarial critical-size bone defects (CSBD). The defects were analyzed by 3D-microtomography and 2D-histomorphometry at 12 weeks postsurgery. The binding efficiency of F1 to pBCP (96.3 ± 1.4%) was higher than that to DBB (67.7 ± 3.3%). In vivo analysis showed a higher bone volume (BV) gain in all defects treated with DBB (except in 0.1% of F1) and pBCP (except in 0.05% and 0.1% of F1) compared to the CSBD without treatment/control group (9.96 ± 2.8 mm3 ). DBB plus 0.025% F1 promoted the highest BV gain (29.7 ± 2.2 mm3 , p < .0001) compared to DBB without F1 and DBB plus 0.01% and 0.1% of F1. In the pBCP group, incorporation of F1 did not promote bone gain when compared to pBCP without F1 (15.9 ± 4.2 mm3 , p > .05). Additionally, a small BV occurred in defects treated with pBCP plus 0.1% F1 (10.4 ± 1.4 mm3, p < .05). In conclusion, F1 showed a higher bone formation potential in combination with DBB than with pBCP, in a concentration-dependent manner. Incorporation of 0.25% F1 into DBB showed the best results with respect to bone formation/repair in CSBD. These results suggest that DBB plus 0.25% F1 can be used as a promising bioactive material for application in bone tissue engineering.
Collapse
Affiliation(s)
- Suelen Paini
- Laboratory of Histology of Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, Sao Paulo, Brazil
| | - Ana Carolina Cestari Bighetti
- Laboratory of Histology of Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, Sao Paulo, Brazil
| | - Tania Mary Cestari
- Laboratory of Histology of Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, Sao Paulo, Brazil
| | - Ricardo Vinicius Nunes Arantes
- Laboratory of Histology of Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, Sao Paulo, Brazil
| | - Paula Sanches Santos
- Laboratory of Histology of Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, Sao Paulo, Brazil
| | - Ever Elias Mena-Laura
- Laboratory of Histology of Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, Sao Paulo, Brazil
| | - Gustavo Pompermaier Garlet
- Laboratory of Histology of Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, Sao Paulo, Brazil
| | - Rumio Taga
- Laboratory of Histology of Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, Sao Paulo, Brazil
| | - Gerson Francisco Assis
- Laboratory of Histology of Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, Sao Paulo, Brazil
| |
Collapse
|
14
|
The Role of Marine Organic Extract in Bone Regeneration: A Pilot Study. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2925879. [PMID: 32149098 PMCID: PMC7049417 DOI: 10.1155/2020/2925879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/22/2019] [Accepted: 01/07/2020] [Indexed: 11/25/2022]
Abstract
Novel biomaterials capable of accelerating the healing process of skeletal tissues are urgently needed in dentistry. The present in vivo study assessed the osteoconductive and osteoinductive properties of experimental biphasic bioceramics (HA-TCP) modified or not by a nacre extract (marine organic extract, MOE) in a sheep model. Fabrication of MOE involved mixing ground nacre (0.05 g, particle sizes < 0.1 mm) with glacial ethanoic acid (5 mL, pH 7) for 72 hours using external magnetic stirring (25°C). Nonreactive carriers (sterile polythene tubes; 3/animal, radius: 2.5 mm, length: 10.0 mm) pertaining to the control (empty) or experimental groups (HA-TCP or MOE-modified HA-TCP) were implanted intramuscularly into the abdominal segment of the torso in sheep (n = 8, age: 2 years, weight: 45 kg). Euthanization of animals was performed at 3 and 6 months after surgery. Tissues harvested were subjected to macroscopic and radiographic assessments. Specimens were then stained for histological analysis. Both control and experimental animals were capable of inducing the neoformation of fibrous connective tissue at both time points where superior amounts of tissue formation and mineralization were detected for experimental groups (unaltered (at 3 and 6 mos) and MOE-modified HA-TCP (at 3 mos)). Histological results, however, revealed that mature bone formation was only observed for specimens fabricated with MOE-modified HA-TCP in a time-dependent manner. The present study has successfully demonstrated the in vivo utility of experimental biphasic bioceramics modified by MOE in an ectopic grafting sheep model. Promising osteoconductive and osteoinductive properties must be further developed and confirmed by subsequent research.
Collapse
|
15
|
Wei L, Yu D, Wang M, Deng L, Wu G, Liu Y. Dose Effects of Slow-Released Bone Morphogenetic Protein-2 Functionalized β-Tricalcium Phosphate in Repairing Critical-Sized Bone Defects. Tissue Eng Part A 2020; 26:120-129. [DOI: 10.1089/ten.tea.2019.0161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Lingfei Wei
- Department of Oral Implantology, Yantai Stomatological Hospital, Yantai, China
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, the Netherlands
| | - Dedong Yu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, the Netherlands
- Department of Second Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Mingjie Wang
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, the Netherlands
| | - Liquan Deng
- Key Laboratory of Stomatology, School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, the Netherlands
| | - Yuelian Liu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, the Netherlands
| |
Collapse
|
16
|
Teng F, Wei L, Yu D, Deng L, Zheng Y, Lin H, Liu Y. Vertical bone augmentation with simultaneous implantation using deproteinized bovine bone block functionalized with a slow delivery of BMP-2. Clin Oral Implants Res 2020; 31:215-228. [PMID: 31730250 DOI: 10.1111/clr.13558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/01/2019] [Accepted: 10/30/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVE We hypothesized that a biomimetic calcium phosphate (CaP) coating which incorporates morphogenetic protein 2 (BMP-2) on the deproteinized bovine bone (DBB) blocks could be used to enhance the vertical alveolar ridge augmentation for the one-stage onlay surgery with simultaneous implants insertion. We aimed to test this hypothesis in vivo. MATERIAL AND METHODS Beagles dogs were used for the study (n = 6 specimens per group). One month after building the edentulous animal model, 4 mm vertical alveolar bone loss were surgically created and four groups of blocks (W × L × H: 7 mm × 10 mm × 4 mm) were randomly fixed onto the reduced alveolar ridge by implants: (a) DBB blocks alone (negative control group); (b) DBB blocks with superficial adsorption of 50 μg BMP-2 (ad.BMP-2 group); (c) DBB blocks coated by biomimetic CaP coating which incorporates 50 μg BMP-2 (inc.BMP-2 group); and (d) autologous bone blocks (positive control group). After 3 months of healing, samples were harvested for micro-CT and histomorphometric analyses. RESULTS In histomorphometry, the inc.BMP-2 group showed a significantly thicker (coronal-apically) and wider (buccal-lingually) augmented bone area, better bone-to-implant contact than the negative control group. In both the micro-CT and histomorphometry, the inc.BMP-2 group showed more mineralized tissue than the negative control group and the inc.BMP-2 group also showed significantly more newly formed bone and residual grafts than the negative control group in the upper half of the blocks. In micro-CT, the inc.BMP-2 group showed significantly more bone-to-graft contact percentage than the ad.BMP-2 group. In both micro-CT and histomorphometry, the inc.BMP-2 group showed significantly more percentage of mineralized tissue than the ad.BMP-2 group. No significant differences were found between the inc.BMP-2 group and the positive control group either in micro-CT or in histomorphometry. CONCLUSIONS The DBB blocks with coating-delivered BMP-2 significantly enhanced the efficacy of vertical alveolar bone augmentation, compared with the unloaded blocks and blocks with adsorbed BMP-2, in the one-stage onlay surgery with simultaneous implant insertion.
Collapse
Affiliation(s)
- Fei Teng
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China.,Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Lingfei Wei
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands.,Department of Oral Implantology, Yantai Stomatological Hospital, Yantai, China
| | - Dedong Yu
- 2nd Dental Center, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Liquan Deng
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuanna Zheng
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haiyan Lin
- Hangzhou Dental Hospital, Hangzhou, China
| | - Yuelian Liu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Wei L, Teng F, Deng L, Liu G, Luan M, Jiang J, Liu Z, Liu Y. Periodontal regeneration using bone morphogenetic protein 2 incorporated biomimetic calcium phosphate in conjunction with barrier membrane: A pre-clinical study in dogs. J Clin Periodontol 2019; 46:1254-1263. [PMID: 31518453 PMCID: PMC6899729 DOI: 10.1111/jcpe.13195] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/22/2019] [Accepted: 09/09/2019] [Indexed: 12/26/2022]
Abstract
Aim To evaluate the effect of bone morphogenetic protein 2 (BMP‐2) incorporated biomimetic calcium phosphate (BMP‐2/BioCaP) in conjunction with barrier membrane on periodontal regeneration in chronic periodontitis experimental model. Material and Methods Chronic periodontitis experimental model with critical‐sized supra‐alveolar defects was created in 15 dogs’ mandibles. After the initial periodontal therapy, the defects were randomly assigned to the following groups: (a) control; (b) barrier membrane; (c) deproteinized bovine bone mineral + barrier membrane; (d) BioCaP + barrier membrane and (e) BMP‐2/BioCaP + barrier membrane (6 quadrants with 18 teeth per group). Eight weeks later, clinical examinations, micro‐CT, and histomorphometric analyses were performed. Results Clinical examinations, including plaque index, bleeding index, and probing depth, were similar for all groups. In contrast, the clinical attachment loss was significantly lower in defects grafted with BMP‐2/BioCaP and barrier membrane. The micro‐CT results showed that the height of mineralized tissue in defects grafted with BMP‐2/BioCaP and barrier membrane was significantly higher. For histometric analysis, the defects grafted with BMP‐2/BioCaP and barrier membrane exhibited significantly more connective tissue height, new cementum height, new bone height and area, as well as less down‐growth of junctional epithelium. Conclusion BMP‐2/BioCaP could be a promising bone substitute for periodontal regeneration.
Collapse
Affiliation(s)
- Lingfei Wei
- Department of Oral Implantology, Yantai Stomatological Hospital, Yantai, China.,Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Fei Teng
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Liquan Deng
- Key Laboratory of Stomatology, School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gangfeng Liu
- Faculty of Stomatology, Binzhou Medical University, Yantai, China
| | - Mengyin Luan
- Faculty of Stomatology, Binzhou Medical University, Yantai, China
| | - Jie Jiang
- Faculty of Stomatology, Binzhou Medical University, Yantai, China
| | - Zhonghao Liu
- Department of Oral Implantology, Yantai Stomatological Hospital, Yantai, China
| | - Yuelian Liu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| |
Collapse
|
18
|
Wang D, Liu Y, Liu Y, Yan L, Zaat SAJ, Wismeijer D, Pathak JL, Wu G. A dual functional bone-defect-filling material with sequential antibacterial and osteoinductive properties for infected bone defect repair. J Biomed Mater Res A 2019; 107:2360-2370. [PMID: 31173657 DOI: 10.1002/jbm.a.36744] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/19/2019] [Accepted: 05/27/2019] [Indexed: 12/27/2022]
Abstract
Infected bone defect healing is hindered by infection and compromised bone regenerative capacity. In this study, we designed a dual functional bone-defect-filling material with a sequential release system, that is, a burst release of a potent antibacterial agent, hydroxypropyltrimethyl ammonium chloride chitosan (HACC), followed by a controlled release of osteoinductive bone morphogenic protein (BMP2) to repair the infected bone defect. Minimum bactericidal concentration (MBC) of HACC against methicillin-resistant Staphylococcus aureus was 40 μg/mL. HACC at 40 μg/mL did not affect preosteoblast proliferation and did not influence the BMP2-induced alkaline phosphatase activity, osteocalcin expression, and matrix mineralization. in vitro release profile revealed burst release of HACC followed by a slow release of BMP2. in vivo bone formation was observed only in the BMP2-containing groups. HACC did not influence of biomimetic calcium phosphate (BioCaP) resorption and BMP2-induced bone formation. In conclusion, the optimized HACC/BMP2-incorporated BioCaP complex showed strong antibacterial effect and robustly enhanced osteoinduction both in vitro and in vivo.
Collapse
Affiliation(s)
- Dongyun Wang
- Department of Stomatology, Peking University Shenzhen Hospital, Shenzhen, China.,Department of Oral Implantology and Prosthetic Dentistry, Academic Centre of Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| | - Yi Liu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuelian Liu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre of Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| | - Liang Yan
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre of Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sebastian A J Zaat
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Daniel Wismeijer
- Department of Stomatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Janak L Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre of Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Bai Y, Dai X, Yin Y, Wang J, Sun X, Liang W, Li Y, Deng X, Zhang X. Biomimetic piezoelectric nanocomposite membranes synergistically enhance osteogenesis of deproteinized bovine bone grafts. Int J Nanomedicine 2019; 14:3015-3026. [PMID: 31118619 PMCID: PMC6503198 DOI: 10.2147/ijn.s197824] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/03/2019] [Indexed: 12/26/2022] Open
Abstract
Purpose: The combination of a bone graft with a barrier membrane is the classic method for guided bone regeneration (GBR) treatment. However, the insufficient osteoinductivity of currently-available barrier membranes and the consequent limited bone regeneration often inhibit the efficacy of bone repair. In this study, we utilized the piezoelectric properties of biomaterials to enhance the osteoinductivity of barrier membranes. Methods: A flexible nanocomposite membrane mimicking the piezoelectric properties of natural bone was utilized as the barrier membrane. Its therapeutic efficacy in repairing critical-sized rabbit mandible defects in combination with xenogenic grafts of deproteinized bovine bone (DBB) was explored. The nanocomposite membranes were fabricated with a homogeneous distribution of piezoelectric BaTiO3 nanoparticles (BTO NPs) embedded within a poly(vinylidene fluoridetrifluoroethylene) (P(VDF-TrFE)) matrix. Results: The piezoelectric coefficient of the polarized nanocomposite membranes was close to that of human bone. The piezoelectric coefficient of the polarized nanocomposite membranes was highly stable, with more than 90% of the original piezoelectric coefficient (d33) remaining up to 28 days after immersion in culture medium. Compared with commercially-available polytetrafluoroethylene (PTFE) membranes, the polarized BTO/P(VDF-TrFE) nanocomposite membranes exhibited higher osteoinductivity (assessed by immunofluorescence staining for runt-related transcription factor 2 (RUNX-2) expression) and induced significantly earlier neovascularization and complete mature bone-structure formation within the rabbit mandible critical-sized defects after implantation with DBB Bio-Oss® granules. Conclusion: Our findings thus demonstrated that the piezoelectric BTO/P(VDF-TrFE) nanocomposite membranes might be suitable for enhancing the clinical efficacy of GBR.
Collapse
Affiliation(s)
- Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - Xiaohan Dai
- Xiangya Stomatological Hospital, Central South University, Changsha 410078, People's Republic of China
| | - Ying Yin
- Xiangya Stomatological Hospital, Central South University, Changsha 410078, People's Republic of China
| | - Jiaqi Wang
- Xiangya Stomatological Hospital, Central South University, Changsha 410078, People's Republic of China
| | - Xiaowen Sun
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - Weiwei Liang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - Yiping Li
- Xiangya Stomatological Hospital, Central South University, Changsha 410078, People's Republic of China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| |
Collapse
|
20
|
Zhang X, Lin X, Liu T, Deng L, Huang Y, Liu Y. Osteogenic Enhancement Between Icariin and Bone Morphogenetic Protein 2: A Potential Osteogenic Compound for Bone Tissue Engineering. Front Pharmacol 2019; 10:201. [PMID: 30914948 PMCID: PMC6423068 DOI: 10.3389/fphar.2019.00201] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/18/2019] [Indexed: 11/16/2022] Open
Abstract
Icariin, a typical flavonol glycoside, is the main active component of Herba Epimedii, which was used to cure bone-related diseases in China for centuries. It has been reported that Icariin can be delivered locally by biomaterials and it has an osteogenic potential for bone tissue engineering. Biomimetic calcium phosphate (BioCaP) bone substitute is a novel drug delivery carrier system. Our study aimed to evaluate the osteogenic potential when Icariin was internally incorporated into the BioCaP granules. The BioCaP combined with Icariin and bone morphogenetic protein 2 (BMP-2) was investigated in vitro using an MC3T3-E1 cell line. We also investigated its efficacy to repair 8 mm diameter critical size bone defects in the skull of SD male rats. BioCaP was fabricated according to a well-established biomimetic mineralization process. In vitro, the effects of BioCaP alone or BioCaP with Icariin and/or BMP-2 on cell proliferation and osteogenic differentiation of MC3T3-E1 cells were systematically evaluated. In vivo, BioCaP alone or BioCaP with Icariin and/or BMP-2 were used to study the bone formation in a critical-sized bone defect created in a rat skull. Samples were retrieved for Micro-CT and histological analysis 12 weeks after surgery. The results indicated that BioCaP with or without the incorporation of Icariin had a positive effect on the osteogenic differentiation of MC3T3-E1. BioCaP with Icariin had better osteogenic efficiency, but had no influence on cell proliferation. BioCap + Icariin + BMP-2 showed better osteogenic potential compared with BioCaP with BMP-2 alone. The protein and mRNA expression of alkaline phosphatase and osteocalcin and mineralization were higher as well. In vivo, BioCaP incorporate internally with both Icariin and BMP-2 induced significantly more newly formed bone than the control group and BioCaP with either Icariin or BMP-2 did. Micro-CT analysis revealed that no significant differences were found between the bone mineral density induced by BioCaP with icariin and that induced by BioCaP with BMP-2. Therefore, co-administration of Icariin and BMP-2 was helpful for bone tissue engineering.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Periodontics, Hospital/School of Stomatology, Zhejiang University, Hangzhou, China.,ACTA, Department of Oral Implantology and Prosthetic Dentistry, Research Institute, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan, Netherlands
| | - Xingnan Lin
- Department of Orthodontics, Nanjing Stomatological Hospital, Nanjing University Medical School, Nanjing, China
| | - Tie Liu
- Department of Oral Implantology, Hospital/School of Stomatology, Zhejiang University, Hangzhou, China.,ACTA, Department of Oral Implantology and Prosthetic Dentistry, Research Institute, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan, Netherlands
| | - Liquan Deng
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou Dental Hospital, Hangzhou, China
| | - Yuanliang Huang
- Department of Dentistry, Shanghai East Hospital Affiliated to Tongji University, Shanghai, China
| | - Yuelian Liu
- ACTA, Department of Oral Implantology and Prosthetic Dentistry, Research Institute, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan, Netherlands
| |
Collapse
|
21
|
Lin X, Hunziker EB, Liu T, Hu Q, Liu Y. Enhanced biocompatibility and improved osteogenesis of coralline hydroxyapatite modified by bone morphogenetic protein 2 incorporated into a biomimetic coating. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:329-336. [PMID: 30606540 DOI: 10.1016/j.msec.2018.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/31/2018] [Accepted: 11/13/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVES (1) To determine whether the biocompatibility of coralline hydroxyapatite (CHA) granules could be improved by using an octacalcium phosphate (OCP) coating layer, and/or functionalized with bone morphogenetic protein 2 (BMP-2), and (2) to investigate if BMP-2 incorporated into this coating is able to enhance its osteoinductive efficiency, in comparison to its surface-adsorbed delivery mode. METHODS CHA granules (0.25 g per sample) bearing a coating-incorporated depot of BMP-2 (20 μg/sample) together with the controls (CHA bearing an adsorbed depot of BMP-2; CHA granules with an OCP coating without BMP-2; pure CHA granules) were implanted subcutaneously in rats (n = 6 animals per group). Five weeks later, the implants were retrieved for histomorphometric analysis to quantify the volume of newly generated bone, bone marrow, fibrous tissue and foreign body giant cells (FBGCs). The osteoinductive efficiency of BMP-2 and the rates of CHA degradation were also determined. RESULTS The group with an OCP coating-incorporated depot of BMP-2 showed the highest volume and quality or bone, and the highest osteoinductive efficacy. OCP coating was able to reduce inflammatory responses (improve biocompatibility), and also simple adsorption of BMP-2 to CHA achieved this. CONCLUSIONS The biocompatibility of CHA granules (reduction of inflammation) was significantly improved by coating with a layer of OCP. Pure surface adsorption of BMP-2 to CHA also reduced inflammation. Incorporation of BMP-2 into the OCP coatings was associated with the highest volume and quality of bone, and the highest biocompatibility degree of the CHA granules. CLINICAL SIGNIFICANCE Higher osteoinductivity and improved biocompatibility of CHA can be obtained when a layer of BMP-2 functionalized OCP is deposited on the surfaces of CHA granules.
Collapse
Affiliation(s)
- Xingnan Lin
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, 210008 Nanjing, China; Department of Oral Implantology and Prosthetic Dentistry, Academic Centre of Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, 1081LA Amsterdam, the Netherlands.
| | - Ernst B Hunziker
- Departments of Osteoporosis and Orthopaedic Surgery, Inselspital (University Hospital), Bern, 3010 Bern, Switzerland.
| | - Tie Liu
- Department of Oral Implantology, Hospital/School of Stomatology, Zhejiang University, 310003 Hangzhou, Zhejiang, China
| | - Qingang Hu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Medical School, Nanjing University, 210008 Nanjing, China.
| | - Yuelian Liu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre of Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, 1081LA Amsterdam, the Netherlands.
| |
Collapse
|
22
|
Liu Y, Schouten C, Boerman O, Wu G, Jansen JA, Hunziker EB. The kinetics and mechanism of bone morphogenetic protein 2 release from calcium phosphate-based implant-coatings. J Biomed Mater Res A 2018; 106:2363-2371. [DOI: 10.1002/jbm.a.36398] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/16/2018] [Accepted: 03/15/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Yuelian Liu
- Department of Oral Implantology and Prosthetic Dentistry; Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit Amsterdam; Amsterdam The Netherlands
| | - Corinne Schouten
- Department of Plastic and Reconstructive; Hand, and Aesthetic Surgery, Catharina Hospital Eindhoven; Eindhoven The Netherlands
| | - Otto Boerman
- Nuclear Medicine Department; Radboud University Medical Center; Nijmegen The Netherlands
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry; Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit Amsterdam; Amsterdam The Netherlands
| | - John A. Jansen
- Department of Biomaterials; Radboud University Medical Center; Nijmegen The Netherlands
| | - Ernst B. Hunziker
- Departments of Osteoporosis and Orthopaedic Surgery; Inselspital (University Hospital); Bern Switzerland
| |
Collapse
|
23
|
Zielak JC, Neto DG, Cazella Zielak MA, Savaris LB, Esteban Florez FL, Deliberador TM. In vivo regeneration functionalities of experimental organo-biomaterials containing water-soluble nacre extract. Heliyon 2018; 4:e00776. [PMID: 30229137 PMCID: PMC6141258 DOI: 10.1016/j.heliyon.2018.e00776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/08/2018] [Accepted: 09/05/2018] [Indexed: 12/01/2022] Open
Abstract
Background Novel multifunctional biomaterials were recently designed to allow for an optimized tissue regeneration process. Purpose To comprehensively assess (photographic, radiographic and histological) the in vivo functionality of demineralized bovine bone matrix (DBM) associated with an experimental marine organic extract (MOE) from nacre in a sheep ectopic grafting model. Materials and methods Synthesis of MOE was based on mixing powdered nacre (0.05 g, particles average size <0.1 mm) with acetic acid (5 mL, pH 7) under constant stirring for 72 hours (25 °C). Polyethylene tubes (3/animal, n = 4, diameter: 5.0 mm × length: 10.0 mm) from the control (empty) or experimental groups (DBM or DBM + MOE) were then intramuscularly implanted into the lumbar regions of sheep (n = 8, 2-years old, ≈45 kg). Animals were euthanized at 3 and 6 months to allow for the collection of tissue samples. Tissue samples were fixed in formalin 10% (buffered, 7 days) in preparation for photographic, radiographic and histological assessments. Acquired images were then analyzed using digital image analysis software to quantify the amount of neoformed tissues, whereas radiographic and histological analyses were performed to determine radiopacity and classification of tissues deposited inside of the tubes. Results Photographic and radiographic analyses have shown that both pure (unaltered) and MOE-modified DBM were capable of depositing neoformed tissues (at 3 and 6 months), where higher levels of deposition and radiopacity were observed on groups treated with experimental materials. Histological results, however, demonstrated that tissues formed from both unaltered and MOE-modified DBM were only fibrous connective in origin. Conclusions As an ectopic grafting in sheep, the experimental organo-biomaterial association applied did not reveal any osteoinductive property but led to a fibrous tissue repair only.
Collapse
Affiliation(s)
- João César Zielak
- Graduate Program in Dentistry, Universidade Positivo, Rua Professor Pedro Viriato Parigot de Souza, 5300, Curitiba, Paraná, 81280-330, Brazil
| | - David Gulin Neto
- Graduate Program in Dentistry, Universidade Positivo, Rua Professor Pedro Viriato Parigot de Souza, 5300, Curitiba, Paraná, 81280-330, Brazil
| | - Makeli Aparecida Cazella Zielak
- Graduate Program in Dentistry, Universidade Positivo, Rua Professor Pedro Viriato Parigot de Souza, 5300, Curitiba, Paraná, 81280-330, Brazil
| | - Leonardo Brunet Savaris
- Graduate Program in Dentistry, Universidade Positivo, Rua Professor Pedro Viriato Parigot de Souza, 5300, Curitiba, Paraná, 81280-330, Brazil
| | - Fernando Luis Esteban Florez
- Department of Restorative Sciences, Division of Dental Biomaterials, The University of Oklahoma Health Sciences Center, 1201 N. Stonewall Ave., Oklahoma City, OK, 73117, USA
| | - Tatiana Miranda Deliberador
- Graduate Program in Dentistry, Universidade Positivo, Rua Professor Pedro Viriato Parigot de Souza, 5300, Curitiba, Paraná, 81280-330, Brazil
| |
Collapse
|
24
|
Guo H, Wang C, Wang J, He Y. Lithium-incorporated deproteinized bovine bone substitute improves osteogenesis in critical-sized bone defect repair. J Biomater Appl 2018; 32:1421-1434. [PMID: 29703129 DOI: 10.1177/0885328218768185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aimed to explore the surface modification of deproteinized bovine bone using lithium-ion and evaluate its efficacy on osteogenesis improvement and critical-sized bone defect repair. Hydrothermal treatment was performed to produce lithium-incorporated deproteinized bovine bone. In vitro study, human osteosarcoma cell MG63 (MG63) was cultured with the bone substitute to evaluate the cell viability and then calcium deposition was measured to analyze the osteogenesis. In vivo studies, male adult goats were chosen to build critical-sized bone defect model and randomly divided into three groups. The goats were treated with autogenous cancellous bone, lithium-incorporated deproteinized bovine bone, and deproteinized bovine bone. Animals were evaluated using radiological analysis including X-ray, computed tomography, and Micro-CT; histological methods involving hematoxylin-eosin dyeing, Masson dyeing, and immunofluorescence detection at 4 and 12 weeks after surgery were carried out. According to the results, lithium-incorporated deproteinized bovine bone produced nano-structured surface layer. The lithium-incorporated deproteinized bovine bone could promote the osteoblast proliferation and increase the calcium deposition. In vivo studies, radiographic results revealed that lithium-incorporated deproteinized bovine bone scaffolds provided better performance in terms of mean gray values of X films, mean pixel values of computed tomography films, and bone volume and trabecular thickness of micro-computed tomography pictures when compared with the deproteinized bovine bone group. In addition, histological analysis showed that the lithium-incorporated deproteinized bovine bone group also significantly achieved larger new bone formation area. At the same time, when the expression of osteogenic factors in vivo was evaluated, runt-related transcription factor 2 (Runx2) and collagen type one (Col-1) were expressed more in lithium-incorporated deproteinized bovine bone group than those in deproteinized bovine bone group. However, the bone defect repair effect using autograft is still a little better than that of lithium-incorporated deproteinized bovine bone substitute based on our results. In conclusion, surface lithium-incorporated deproteinized bovine bone achieved improvement of osteogenesis effect and could enhance the new bone formation in critical-sized bone defects.
Collapse
Affiliation(s)
- Hongzhang Guo
- 1 Department of Orthopaedics, Gansu Provincial Hospital of TCM, GuaZhou Road, Qi Li He zone, Lanzhou, People's Republic of China
| | - Changde Wang
- 1 Department of Orthopaedics, Gansu Provincial Hospital of TCM, GuaZhou Road, Qi Li He zone, Lanzhou, People's Republic of China
| | - Jixiang Wang
- 1 Department of Orthopaedics, Gansu Provincial Hospital of TCM, GuaZhou Road, Qi Li He zone, Lanzhou, People's Republic of China
| | - Yufang He
- 2 The Third Hospital of Gansu Province, Lanzhou, People's Republic of China
| |
Collapse
|
25
|
Haimov H, Yosupov N, Pinchasov G, Juodzbalys G. Bone Morphogenetic Protein Coating on Titanium Implant Surface: a Systematic Review. EJOURNAL OF ORAL MAXILLOFACIAL RESEARCH 2017; 8:e1. [PMID: 28791077 PMCID: PMC5541986 DOI: 10.5037/jomr.2017.8201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/27/2017] [Indexed: 01/06/2023]
Abstract
Objectives The purpose of the study is to systematically review the osseointegration process improvement by bone morphogenetic protein coating on titanium implant surface. Material and Methods An electronic literature search was conducted through the MEDLINE (PubMed) and EMBASE databases. The search was restricted for articles published during the last 10 years from October 2006 to September 2016 and articles were limited to English language. Results A total of 41 articles were reviewed, and 8 of the most relevant articles that are suitable to the criteria were selected. Articles were analysed regarding concentration of bone morphogenetic protein (BMP), delivery systems, adverse reactions and the influence of the BMP on the bone and peri-implant surface in vivo. Finally, the present data included 340 implants and 236 models. Conclusions It’s clearly shown from most of the examined studies that bone morphogenetic protein increases bone regeneration. Further studies should be done in order to induce and sustain bone formation activity. Osteogenic agent should be gradually liberated and not rapidly released with priority to three-dimension reservoir (incorporated) titanium implant surface in order to avoid following severe side effects: inflammation, bleeding, haematoma, oedema, erythema, and graft failure.
Collapse
Affiliation(s)
- Haim Haimov
- Department of Oral and Maxillofacial Surgery, Lithuanian University of Health Sciences, KaunasLithuania
| | - Natali Yosupov
- Department of Oral and Maxillofacial Surgery, Lithuanian University of Health Sciences, KaunasLithuania
| | - Ginnady Pinchasov
- Department of Oral and Maxillofacial Surgery, Lithuanian University of Health Sciences, KaunasLithuania
| | - Gintaras Juodzbalys
- Department of Oral and Maxillofacial Surgery, Lithuanian University of Health Sciences, KaunasLithuania
| |
Collapse
|
26
|
Civantos A, Martínez-Campos E, Ramos V, Elvira C, Gallardo A, Abarrategi A. Titanium Coatings and Surface Modifications: Toward Clinically Useful Bioactive Implants. ACS Biomater Sci Eng 2017; 3:1245-1261. [DOI: 10.1021/acsbiomaterials.6b00604] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ana Civantos
- Tissue
Engineering Group, Institute of Biofunctional Studies, Associated
Unit to the Institute of Polymer Science and Technology (CSIC), Pharmacy
Faculty, Complutense University of Madrid (UCM), Paseo Juan XXIII 1, 28040 Madrid, Spain
- Polymer
Functionalization Group, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Enrique Martínez-Campos
- Tissue
Engineering Group, Institute of Biofunctional Studies, Associated
Unit to the Institute of Polymer Science and Technology (CSIC), Pharmacy
Faculty, Complutense University of Madrid (UCM), Paseo Juan XXIII 1, 28040 Madrid, Spain
- Polymer
Functionalization Group, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Viviana Ramos
- Tissue
Engineering Group, Institute of Biofunctional Studies, Associated
Unit to the Institute of Polymer Science and Technology (CSIC), Pharmacy
Faculty, Complutense University of Madrid (UCM), Paseo Juan XXIII 1, 28040 Madrid, Spain
- Noricum S.L., San Sebastián
de los Reyes, Av. Fuente Nueva, 14, 28703 Madrid, Spain
| | - Carlos Elvira
- Polymer
Functionalization Group, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Alberto Gallardo
- Polymer
Functionalization Group, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Ander Abarrategi
- Haematopoietic
Stem Cell Laboratory, The Francis Crick Institute, 1 Midland
Road, NW1 1AT London, U.K
| |
Collapse
|
27
|
BMP2-coprecipitated calcium phosphate granules enhance osteoinductivity of deproteinized bovine bone, and bone formation during critical-sized bone defect healing. Sci Rep 2017; 7:41800. [PMID: 28139726 PMCID: PMC5282552 DOI: 10.1038/srep41800] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/28/2016] [Indexed: 11/08/2022] Open
Abstract
Most materials used clinically for filling critical-sized bone defects (CSBD), such as deproteinized bovine bone (DBB), lack osteoinductivity so that their therapeutic effects are far from satisfactory. The effect of bone morphogenic protein 2 (BMP2)-coprecipitated biomimetic calcium phosphate granules (BMP2-cop.BioCaP) on osteoinduction of DBB graft(s) during CSBD healing is still unknown. We investigated whether BMP2-cop.BioCaP affects the osteoinductivity of DBB, bone formation, and foreign body reaction during CSBD healing. DBB + BMP2-cop.BioCaP, DBB, DBB + BMP2, DBB + BioCaP, and autologous bone grafts were implanted in the CSBD of sheep. Bone formation, DBB/BioCaP degradability, foreign body reaction, and osteoinductivity of DBB were analyzed histologically and histomorphometrically at week 4 and 8. Combination of BMP2-cop.BioCaP and DBB healed CSBD as effectively as autologous bone grafts. About 95% of the BMP2-cop.BioCaP had been degraded and replaced by new bone at week 8 in the DBB + BMP2-cop.BioCaP-group. Foreign body reaction was reduced in the DBB + BMP2-cop.BioCaP-group compared to the other groups. The independent use of the BMP2-cop.BioCaP did not achieve a satisfactory bone repair. In conclusion, the BMP2-cop.BioCaP showed good degradability and biocompatibility, and enhanced osteoinductivity of DBB during CSBD healing in sheep, suggesting BMP2-cop.BioCaP as a potential osteoinducer to enhance the therapeutic effects of the graft materials in clinic.
Collapse
|
28
|
A Long-Acting BMP-2 Release System Based on Poly(3-hydroxybutyrate) Nanoparticles Modified by Amphiphilic Phospholipid for Osteogenic Differentiation. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5878645. [PMID: 27379249 PMCID: PMC4917749 DOI: 10.1155/2016/5878645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/17/2016] [Indexed: 12/31/2022]
Abstract
We explored a novel poly(3-hydroxybutyrate) (PHB) nanoparticle loaded with hydrophilic recombinant human BMP-2 with amphiphilic phospholipid (BPC-PHB NP) for a rapid-acting and long-acting delivery system of BMP-2 for osteogenic differentiation. The BPC-PHB NPs were prepared by a solvent evaporation method and showed a spherical particle with a mean particle size of 253.4 nm, mean zeta potential of −22.42 mV, and high entrapment efficiency of 77.18%, respectively. For BPC-PHB NPs, a short initial burst release of BMP-2 from NPs in 24 h was found and it has steadily risen to reach about 80% in 20 days for in vitro test. BPC-PHB NPs significantly reduced the burst release of BMP-2, as compared to that of PHB NPs loading BMP-2 without PL (B-PHB NPs). BPC-PHB NPs maintained the content of BMP-2 for a long-term osteogenic differentiation. The OCT-1 cells with BPC-PHB NPs have high ALP activity in comparison with others. The gene markers for osteogenic differentiation were significantly upregulated for sample with BPC-PHB NPs, implying that BPC-PHB NPs can be used as a rapid-acting and long-acting BMP-2 delivery system for osteogenic differentiation.
Collapse
|
29
|
Wang D, Tabassum A, Wu G, Deng L, Wismeijer D, Liu Y. Bone regeneration in critical-sized bone defect enhanced by introducing osteoinductivity to biphasic calcium phosphate granules. Clin Oral Implants Res 2016; 28:251-260. [PMID: 26970206 DOI: 10.1111/clr.12791] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Biphasic calcium phosphate (BCP) is frequently used as bone substitute and often needs to be combined with autologous bone to gain an osteoinductive property for guided bone regeneration in implant dentistry. Given the limitations of using autologous bone, bone morphogenetic protein-2 (BMP2)-coprecipitated, layer-by-layer assembled biomimetic calcium phosphate particles (BMP2-cop.BioCaP) have been developed as a potential osteoinducer. In this study, we hypothesized that BMP2-cop.BioCaP could introduce osteoinductivity to BCP and so could function as effectively as autologous bone for the repair of a critical-sized bone defect. MATERIALS AND METHODS We prepared BMP2-cop.BioCaP and monitored the loading and release kinetics of BMP2 from it in vitro. Seven groups (n = 6 animals/group) were established: (i) Empty defect; (ii) BCP; (iii) BCP mixed with biomimetic calcium phosphate particles (BioCaP); (iv) BCP mixed with BMP2-cop.BioCaP; (v) BioCaP; (vi) BMP2-cop.BioCaP; (vii) BCP mixed with autologous bone. They were implanted into 8-mm-diameter rat cranial critical-sized bone defects for an in vivo evaluation. Autologous bone served as a positive control. The osteoinductive efficacy and degradability of materials were evaluated using micro-CT, histology and histomorphometry. RESULTS The combined application of BCP and BMP2-cop.BioCaP resulted in significantly more new bone formation than BCP alone. The osteoinductive efficacy of BMP2-cop.BioCaP was comparable to the golden standard use of autologous bone. Compared with BCP alone, significantly more BCP degradation was found when mixed with BMP2-cop.BioCaP. CONCLUSION The combination of BCP and BMP2-cop.BioCaP showed a promising potential for guided bone regeneration clinically in the future.
Collapse
Affiliation(s)
- D Wang
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, VU University and University of Amsterdam, Amsterdam, the Netherlands
| | - A Tabassum
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, VU University and University of Amsterdam, Amsterdam, the Netherlands
| | - G Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, VU University and University of Amsterdam, Amsterdam, the Netherlands
| | - L Deng
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - D Wismeijer
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, VU University and University of Amsterdam, Amsterdam, the Netherlands
| | - Y Liu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, VU University and University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
30
|
Suliman S, Sun Y, Pedersen TO, Xue Y, Nickel J, Waag T, Finne‐Wistrand A, Steinmüller‐Nethl D, Krueger A, Costea DE, Mustafa K. In Vivo Host Response and Degradation of Copolymer Scaffolds Functionalized with Nanodiamonds and Bone Morphogenetic Protein 2. Adv Healthc Mater 2016; 5:730-42. [PMID: 26853449 DOI: 10.1002/adhm.201500723] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/30/2015] [Indexed: 12/22/2022]
Abstract
The aim is to evaluate the effect of modifying poly[(l-lactide)-co-(ε-caprolactone)] scaffolds (PLCL) with nanodiamonds (nDP) or with nDP+physisorbed BMP-2 (nDP+BMP-2) on in vivo host tissue response and degradation. The scaffolds are implanted subcutaneously in Balb/c mice and retrieved after 1, 8, and 27 weeks. Molecular weight analysis shows that modified scaffolds degrade faster than the unmodified. Gene analysis at week 1 shows highest expression of proinflammatory markers around nDP scaffolds; although the presence of inflammatory cells and foreign body giant cells is more prominent around the PLCL. Tissue regeneration markers are highly expressed in the nDP+BMP-2 scaffolds at week 8. A fibrous capsule is detectable by week 8, thinnest around nDP scaffolds and at week 27 thickest around PLCL scaffolds. mRNA levels of ALP, COL1α2, and ANGPT1 are significantly upregulating in the nDP+BMP-2 scaffolds at week 1 with ectopic bone seen at week 8. Even when almost 90% of the scaffold is degraded at week 27, nDP are observable at implantation areas without adverse effects. In conclusion, modifying PLCL scaffolds with nDP does not aggravate the host response and physisorbed BMP-2 delivery attenuates inflammation while lowering the dose of BMP-2 to a relatively safe and economical level.
Collapse
Affiliation(s)
- Salwa Suliman
- Department of Clinical Dentistry Center for Clinical Dental Research University of Bergen 5009 Bergen Norway
- Gade Laboratory for Pathology Department of Clinical Medicine University of Bergen 5020 Bergen Norway
- Center for International Health Department of Global Public Health and Primary Care University of Bergen 5009 Bergen Norway
| | - Yang Sun
- Department of Fibre and Polymer Technology KTH Royal Institute of Technology 10044 Stockholm Sweden
| | - Torbjorn O. Pedersen
- Department of Clinical Dentistry Center for Clinical Dental Research University of Bergen 5009 Bergen Norway
| | - Ying Xue
- Department of Clinical Dentistry Center for Clinical Dental Research University of Bergen 5009 Bergen Norway
| | - Joachim Nickel
- Chair Tissue Engineering and Regenerative Medicine University Hospital of Würzburg 97070 Würzburg Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Translational Center “Regenerative Therapies for Oncology and Musculoskeletal Diseases”‐ Würzburg branch D‐97070 Würzburg Germany
| | - Thilo Waag
- Institute of Organic Chemistry University of Würzburg 97074 Würzburg Germany
| | - Anna Finne‐Wistrand
- Department of Fibre and Polymer Technology KTH Royal Institute of Technology 10044 Stockholm Sweden
| | | | - Anke Krueger
- Institute of Organic Chemistry University of Würzburg 97074 Würzburg Germany
| | - Daniela E. Costea
- Gade Laboratory for Pathology Department of Clinical Medicine University of Bergen 5020 Bergen Norway
- Center for International Health Department of Global Public Health and Primary Care University of Bergen 5009 Bergen Norway
- Department of Pathology Hauekeland University Hospital 5020 Bergen Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry Center for Clinical Dental Research University of Bergen 5009 Bergen Norway
| |
Collapse
|
31
|
Spiller KL, Vunjak-Novakovic G. Clinical translation of controlled protein delivery systems for tissue engineering. Drug Deliv Transl Res 2016; 5:101-15. [PMID: 25787736 DOI: 10.1007/s13346-013-0135-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Strategies that utilize controlled release of drugs and proteins for tissue engineering have enormous potential to regenerate damaged organs and tissues. The multiple advantages of controlled release strategies merit overcoming the significant challenges to translation, including high costs and long, difficult regulatory pathways. This review highlights the potential of controlled release of proteins for tissue engineering and regenerative medicine. We specifically discuss treatment modalities that have reached preclinical and clinical trials, with emphasis on controlled release systems for bone tissue engineering, the most advanced application with several products already in clinic. Possible strategies to address translational and regulatory concerns are also discussed.
Collapse
Affiliation(s)
- Kara L Spiller
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street Vanderbilt Clinic 12-234, New York, NY, 10032, USA
| | | |
Collapse
|
32
|
Meng S, Zhang X, Xu M, Heng BC, Dai X, Mo X, Wei J, Wei Y, Deng X. Effects of deer age on the physicochemical properties of deproteinized antler cancellous bone: an approach to optimize osteoconductivity of bone graft. Biomed Mater 2015; 10:035006. [DOI: 10.1088/1748-6041/10/3/035006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Dadsetan M, Guda T, Runge MB, Mijares D, LeGeros RZ, LeGeros JP, Silliman DT, Lu L, Wenke JC, Brown Baer PR, Yaszemski MJ. Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds. Acta Biomater 2015; 18:9-20. [PMID: 25575855 DOI: 10.1016/j.actbio.2014.12.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 12/09/2014] [Accepted: 12/24/2014] [Indexed: 10/24/2022]
Abstract
Various calcium phosphate based coatings have been evaluated for better bony integration of metallic implants and are currently being investigated to improve the surface bioactivity of polymeric scaffolds. The aim of this study was to evaluate the role of calcium phosphate coating and simultaneous delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the in vivo bone regeneration capacity of biodegradable, porous poly(propylene fumarate) (PPF) scaffolds. PPF scaffolds were coated with three different calcium phosphate formulations: magnesium-substituted β-tricalcium phosphate (β-TCMP), carbonated hydroxyapatite (synthetic bone mineral, SBM) and biphasic calcium phosphate (BCP). In vivo bone regeneration was evaluated by implantation of scaffolds in a critical-sized rabbit calvarial defect loaded with different doses of rhBMP-2. Our data demonstrated that scaffolds with each of the calcium phosphate coatings were capable of sustaining rhBMP-2 release and retained an open porous structure. After 6weeks of implantation, micro-computed tomography revealed that the rhBMP-2 dose had a significant effect on bone formation within the scaffolds and that the SBM-coated scaffolds regenerated significantly greater bone than BCP-coated scaffolds. Mechanical testing of the defects also indicated restoration of strength in the SBM and β-TCMP with rhBMP-2 delivery. Histology results demonstrated bone growth immediately adjacent to the scaffold surface, indicating good osteointegration and osteoconductivity for coated scaffolds. The results obtained in this study suggest that the coated scaffold platform demonstrated a synergistic effect between calcium phosphate coatings and rhBMP-2 delivery and may provide a promising platform for the functional restoration of large bone defects.
Collapse
|
34
|
Lin X, de Groot K, Wang D, Hu Q, Wismeijer D, Liu Y. A review paper on biomimetic calcium phosphate coatings. Open Biomed Eng J 2015; 9:56-64. [PMID: 25893016 PMCID: PMC4391212 DOI: 10.2174/1874120701509010056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/31/2014] [Accepted: 08/30/2014] [Indexed: 12/14/2022] Open
Abstract
Biomimetic calcium phosphate coatings have been developed for bone regeneration and repair because of their biocompatibility, osteoconductivity, and easy preparation. They can be rendered osteoinductive by incorporating an osteogenic agent, such as bone morphogenetic protein 2 (BMP-2), into the crystalline lattice work in physiological situations. The biomimetic calcium phosphate coating enables a controlled, slow and local release of BMP-2 when it undergoes cell mediated coating degradation induced by multinuclear cells, such as osteoclasts and foreign body giant cells, which mimics a physiologically similar release mode, to achieve sustained ectopic or orthotopic bone formation. Therefore, biomimetic calcium phosphate coatings are considered to be a promising delivery vehicle for osteogenic agents. In this review, we present an overview of biomimetic calcium phosphate coatings including their preparation techniques, physico-chemical properties, potential as drug carrier, and their pre-clinical application both in ectopic and orthotopic animal models. We briefly review some features of hydroxyapatite coatings and their clinical applications to gain insight into the clinical applications of biomimetic calcium phosphate coatings in the near future.
Collapse
Affiliation(s)
- X Lin
- Department of Oral Implantology, Academic Centre of Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, Amsterdam, The Netherlands ; Department of Orthodontics, Affiliated Stomatological Hospital of Medical School, Nanjing University, Nanjing, China
| | - K de Groot
- Department of Oral Implantology, Academic Centre of Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, Amsterdam, The Netherlands
| | - D Wang
- Department of Oral Implantology, Academic Centre of Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, Amsterdam, The Netherlands
| | - Q Hu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Medical School, Nanjing University, Nanjing, China
| | - D Wismeijer
- Department of Oral Implantology, Academic Centre of Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, Amsterdam, The Netherlands
| | - Y Liu
- Department of Oral Implantology, Academic Centre of Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Luo N, Knudson W, Askew EB, Veluci R, Knudson CB. CD44 and hyaluronan promote the bone morphogenetic protein 7 signaling response in murine chondrocytes. Arthritis Rheumatol 2014; 66:1547-58. [PMID: 24497488 DOI: 10.1002/art.38388] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 01/28/2014] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Cell-matrix interactions promote cartilage homeostasis. We previously found that Smad1, the transcriptional modulator of the canonical bone morphogenetic protein 7 (BMP-7) pathway, interacted with the cytoplasmic domain of CD44, the principal hyaluronan receptor on chondrocytes. To elucidate the physiologic function of CD44-Smad1 interactions, as well as the role of hyaluronan, we studied the response of chondrocytes isolated from CD44(-/-) and BALB/c (wild-type [WT]) mice to stimulation with BMP-7. METHODS In primary murine chondrocytes, CD44 expression was decreased by small interfering RNA (siRNA) transfection or was enhanced by plasmid transfection. Pericellular hyaluronan was removed by hyaluronidase treatment, or its endogenous synthesis was inhibited. Changes in response to BMP-7 stimulation were evaluated by Western blotting of Smad1 phosphorylation and aggrecan messenger RNA (mRNA) expression. RESULTS Chondrocytes from CD44(-/-) mice and WT mice transfected with CD44 siRNA were less responsive than untransfected chondrocytes from WT mice to BMP-7. CD44(-/-) mouse chondrocytes transfected with pCD44 showed increased sensitivity to BMP-7. Significant increases in aggrecan mRNA were observed in WT mouse chondrocytes in response to 10 ng/ml of BMP-7, whereas at least 100 ng/ml of BMP-7 was required for CD44(-/-) mouse chondrocytes. However, in chondrocytes from CD44(-/-) and WT mice, hyaluronidase treatment decreased cellular responses to BMP-7. Treatment of both bovine and murine chondrocytes with 4-methylumbelliferone to reduce the synthesis of endogenous hyaluronan confirmed that hyaluronan promoted BMP-7 signaling. CONCLUSION Taken together, these investigations into the mechanisms underlying BMP-7 signaling in chondrocytes revealed that while hyaluronan-dependent pericellular matrix is critical for BMP-7 signaling, the expression of CD44 promotes the cellular response to lower concentrations of BMP-7.
Collapse
Affiliation(s)
- Na Luo
- East Carolina University, Brody School of Medicine, Greenville, North Carolina; Nankai University School of Medicine, Tianjin, China
| | | | | | | | | |
Collapse
|
36
|
BMP-functionalised coatings to promote osteogenesis for orthopaedic implants. Int J Mol Sci 2014; 15:10150-68. [PMID: 24914764 PMCID: PMC4100145 DOI: 10.3390/ijms150610150] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/13/2014] [Accepted: 05/22/2014] [Indexed: 12/19/2022] Open
Abstract
The loss of bone integrity can significantly compromise the aesthetics and mobility of patients and can be treated using orthopaedic implants. Over the past decades; various orthopaedic implants; such as allografts; xenografts and synthetic materials; have been developed and widely used in clinical practice. However; most of these materials lack intrinsic osteoinductivity and thus cannot induce bone formation. Consequently; osteoinductive functionalisation of orthopaedic implants is needed to promote local osteogenesis and implant osteointegration. For this purpose; bone morphogenetic protein (BMP)-functionalised coatings have proven to be a simple and effective strategy. In this review; we summarise the current knowledge and recent advances regardingBMP-functionalised coatings for orthopaedic implants.
Collapse
|
37
|
Liu T, Wu G, Zheng Y, Wismeijer D, Everts V, Liu Y. Cell-mediated BMP-2 release from a novel dual-drug delivery system promotes bone formation. Clin Oral Implants Res 2013; 25:1412-21. [DOI: 10.1111/clr.12283] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tie Liu
- Department of Oral Implantology and Prosthetic Dentistry; Academic Centre for Dentistry Amsterdam (ACTA); MOVE Research Institute; University of Amsterdam and VU University Amsterdam; Amsterdam the Netherlands
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry; Academic Centre for Dentistry Amsterdam (ACTA); MOVE Research Institute; University of Amsterdam and VU University Amsterdam; Amsterdam the Netherlands
| | - Yuanna Zheng
- Department of Oral Implantology and Prosthetic Dentistry; Academic Centre for Dentistry Amsterdam (ACTA); MOVE Research Institute; University of Amsterdam and VU University Amsterdam; Amsterdam the Netherlands
- School of Stomatology/Dental Clinic; Zhejiang Chinese Medical University; Hangzhou China
| | - Daniel Wismeijer
- Department of Oral Implantology and Prosthetic Dentistry; Academic Centre for Dentistry Amsterdam (ACTA); MOVE Research Institute; University of Amsterdam and VU University Amsterdam; Amsterdam the Netherlands
| | - Vincent Everts
- Department of Oral Cell Biology; Academic Centre for Dentistry Amsterdam (ACTA); MOVE Research Institute; University of Amsterdam and VU University Amsterdam; Amsterdam the Netherlands
| | - Yuelian Liu
- Department of Oral Implantology and Prosthetic Dentistry; Academic Centre for Dentistry Amsterdam (ACTA); MOVE Research Institute; University of Amsterdam and VU University Amsterdam; Amsterdam the Netherlands
| |
Collapse
|
38
|
Liu T, Wu G, Wismeijer D, Gu Z, Liu Y. Deproteinized bovine bone functionalized with the slow delivery of BMP-2 for the repair of critical-sized bone defects in sheep. Bone 2013; 56:110-8. [PMID: 23732874 DOI: 10.1016/j.bone.2013.05.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 10/26/2022]
Abstract
As an alternative to an autologous bone graft, deproteinized bovine bone (DBB) is widely used in the clinical dentistry. Although DBB provides an osteoconductive scaffold, it is not capable of enhancing bone regeneration because it is not osteoinductive. In order to render DBB osteoinductive, bone morphogenetic protein 2 (BMP-2) has previously been incorporated into a three dimensional reservoir (a biomimetic calcium phosphate coating) on DBB, which effectively promoted the osteogenic response by the slow delivery of BMP-2. The aim of this study was to investigate the therapeutic effectiveness of such coating on the DBB granules in repairing a large cylindrical bone defect (8 mm diameter, 13 mm depth) in sheep. Eight groups were randomly assigned to the bone defects: (i) no graft material; (ii) autologous bone; (iii) DBB only; (iv) DBB mixed with autologous bone; (v) DBB bearing adsorbed BMP-2; (vi) DBB bearing a coating but no BMP-2; (vii) DBB bearing a coating with adsorbed BMP-2; and (viii) DBB bearing a coating-incorporated depot of BMP-2. 4 and 8 weeks after implantation, samples were withdrawn for a histological and a histomorphometric analysis. Histological results confirmed the excellent biocompatibility and osteoconductivity of all the grafts tested. At 4 weeks, DBB mixed with autologous bone or functionalized with coating-incorporated BMP-2 showed more newly-formed bone than the other groups with DBB. At 8 weeks, the volume of newly-formed bone around DBB that bore a coating-incorporated depot of BMP-2 was greatest among the groups with DBB, and was comparable to the autologous bone group. The use of autologous bone and BMP-2 resulted in more bone marrow formation. Multinucleated giant cells were observed in the resorption process around DBB, whereas histomorphometric analysis revealed no significant degradation of DBB. In conclusion, it was shown that incorporating BMP-2 into the calcium phosphate coating of DBB induced strong bone formation around DBB for repairing a critical-sized bone defect.
Collapse
Affiliation(s)
- Tie Liu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
39
|
Khan UA, Hashimi SM, Bakr MM, Forwood MR, Morrison NA. Foreign body giant cells and osteoclasts are TRAP positive, have podosome-belts and both require OC-STAMP for cell fusion. J Cell Biochem 2013; 114:1772-8. [DOI: 10.1002/jcb.24518] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/12/2013] [Indexed: 01/15/2023]
|
40
|
Zheng Y, Wu G, Liu T, Liu Y, Wismeijer D, Liu Y. A Novel BMP2-Coprecipitated, Layer-by-Layer Assembled Biomimetic Calcium Phosphate Particle: A Biodegradable and Highly Efficient Osteoinducer. Clin Implant Dent Relat Res 2013; 16:643-54. [DOI: 10.1111/cid.12050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuanna Zheng
- Department of Oral Implantology and Prosthetic Dentistry; Academic Centre for Dentistry Amsterdam (ACTA); Research Institute MOVE; VU University; University of Amsterdam; Amsterdam The Netherlands
- School of Stomatology/Dental Clinic; Zhejiang Chinese Medical University; Hangzhou China
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry; Academic Centre for Dentistry Amsterdam (ACTA); Research Institute MOVE; VU University; University of Amsterdam; Amsterdam The Netherlands
| | - Tie Liu
- Department of Oral Implantology and Prosthetic Dentistry; Academic Centre for Dentistry Amsterdam (ACTA); Research Institute MOVE; VU University; University of Amsterdam; Amsterdam The Netherlands
| | - Yi Liu
- School of Stomatology/Dental Clinic; Zhejiang Chinese Medical University; Hangzhou China
| | - Daniel Wismeijer
- Department of Oral Implantology and Prosthetic Dentistry; Academic Centre for Dentistry Amsterdam (ACTA); Research Institute MOVE; VU University; University of Amsterdam; Amsterdam The Netherlands
| | - Yuelian Liu
- Department of Oral Implantology and Prosthetic Dentistry; Academic Centre for Dentistry Amsterdam (ACTA); Research Institute MOVE; VU University; University of Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
41
|
Zhang Y, Wu C, Luo T, Li S, Cheng X, Miron RJ. Synthesis and inflammatory response of a novel silk fibroin scaffold containing BMP7 adenovirus for bone regeneration. Bone 2012; 51:704-13. [PMID: 22796416 DOI: 10.1016/j.bone.2012.06.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 11/25/2022]
Abstract
Gene therapy has garnished tremendous awareness for the repair of osseous defects. It exhibits high efficiency gene transfer and osteogenic differentiation potential making it well suitable for the sustained delivery of growth factors to local tissues. In the present study a simplified solution-based in situ biomimetic synthesis method is demonstrated for bone morphogenetic protein 7 (BMP7) adenovirus combined with silk fibroin scaffolds. This scaffold not only provides the three dimensional space for bone ingrowth, but also releases the BMP7 adenovirus which targets its secretion by host cells in vivo. Scaffolds were tested both in vitro for their osteogenic potential as well as in vivo in a critical-size calvarial defect in mice. Scaffolds loaded with bone morphogenetic protein 7 adenovirus (adBMP7) were able to sustain release of adBMP7 for up to 21 days and support cell proliferation and differentiation to bone forming osteoblasts. Calvarial defects treated with scaffolds containing adBMP7 significantly induced new bone formation in vivo. To demonstrate immuno-compatibility with host tissues, IL-2, IL-6 and TNF-α were measured up to 4 weeks post-implantation. Although these scaffolds demonstrated an initial pro-inflammatory response, levels of IL-2, IL-6 and TNF-α returned to baseline control values at either 2 or 4 weeks post-implantation demonstrating long term compatibility for growth factor delivery via gene therapy. The results from the present study indicate the promise of gene delivery scaffold systems for robust, low cost, and high quality bone tissue engineering applications.
Collapse
Affiliation(s)
- Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Wuhan University, 237 Luoyu Road, Wuhan 430079, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
42
|
Almodóvar J, Mower J, Banerjee A, Sarkar AK, Ehrhart NP, Kipper MJ. Chitosan-heparin polyelectrolyte multilayers on cortical bone: periosteum-mimetic, cytophilic, antibacterial coatings. Biotechnol Bioeng 2012; 110:609-18. [PMID: 22903591 DOI: 10.1002/bit.24710] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/05/2012] [Accepted: 08/07/2012] [Indexed: 12/28/2022]
Abstract
Cortical bone allografts suffer from high rates of failure due to poor integration with host tissue, leading to non-union, fracture, and infection following secondary procedures. Here, we report a method for modifying the surfaces of cortical bone with coatings that have biological functions that may help overcome these challenges. These chitosan-heparin coatings promote mesenchymal stem cell attachment and have significant antibacterial activity against both S. aureus and E. coli. Furthermore, their chemistry is similar to coatings we have reported on previously, which effectively stabilize and deliver heparin-binding growth factors. These coatings have potential as synthetic periosteum for improving bone allograft outcomes.
Collapse
Affiliation(s)
- Jorge Almodóvar
- Grenoble Institute of Technology, LMGP, CNRS, Grenoble, France
| | | | | | | | | | | |
Collapse
|
43
|
Tian Z, Zhu Y, Qiu J, Guan H, Li L, Zheng S, Dong X, Xiao J. Synthesis and characterization of UPPE-PLGA-rhBMP2 scaffolds for bone regeneration. ACTA ACUST UNITED AC 2012; 32:563-570. [DOI: 10.1007/s11596-012-0097-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Indexed: 01/06/2023]
|