1
|
Yao X, Kong L, Qiao Y, Brand D, Li J, Yan Z, Zheng SG, Qian Y, Fan C. Schwann cell-secreted frizzled-related protein 1 dictates neuroinflammation and peripheral nerve degeneration after neurotrauma. Cell Rep Med 2024:101791. [PMID: 39426375 DOI: 10.1016/j.xcrm.2024.101791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/12/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Neurotrauma in limbs can induce sustained neuroinflammation, resulting in persistent disruption of nerve tissue architecture and retardation of axon regrowth. Despite macrophage-mediated inflammation promoting the removal of necrotic neural components and stimulating neo-vessel ingrowth, detrimental shifts in macrophage phenotype exacerbate nerve degeneration. Herein, we find that peripheral nerve injuries (PNIs) result in abundant secreted frizzled-related protein 1 (sFRP1) expression, particularly by Schwann cells (SCs). Heat shock protein 90 (HSP90) in macrophages recognizes sFRP1 and triggers a dysregulated secretion of inflammatory mediators. Single-cell atlas of human injured peripheral nerves reveals the appearance of sFRP1-expressing SCs with mesenchymal traits and macrophages with a proinflammatory genetic profile. Deletion of either SC-specific sFRP1 or macrophage-specific HSP90 alleviates neuroinflammation and prevents the progression of nerve degeneration. Together, our findings implicate the response of macrophages to SC-derived sFRP1 in exacerbating nerve damage following PNIs.
Collapse
Affiliation(s)
- Xiangyun Yao
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, China
| | - Lingchi Kong
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, China
| | - Yi Qiao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - David Brand
- The Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, TN 38163, USA
| | - Juehong Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, China
| | - Zhiwen Yan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, China
| | - Song Guo Zheng
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201699, China.
| | - Yun Qian
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, China.
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, China.
| |
Collapse
|
2
|
Choi YJ. Cancer treatment-induced bone loss. Korean J Intern Med 2024; 39:731-745. [PMID: 38439172 PMCID: PMC11384245 DOI: 10.3904/kjim.2023.386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 03/06/2024] Open
Abstract
Cancer treatment-induced bone loss (CTBL) is associated with anti-tumor treatments, including endocrine therapies, chemotherapeutic treatments, radiotherapy, glucocorticoids, and tyrosine kinase inhibitors. Osteoporosis, characterized by the loss of bone mass, can increase the risk of fractures, leading to mortality and long-term disability, even after cancer remission. Cancer and osteoporosis have marked clinical and pathogenetic similarities. Both have a multifactorial etiology, affect the geriatric population, and markedly influence quality of life. Lifestyle management, including calcium and vitamin D supplementation, is recommended but the supporting evidence is limited. Oral and injectable bisphosphonates are effective for osteoporosis and malignant bone disease. Bisphosphonates increase bone mineral density (BMD) in patients with CTBL. Denosumab is also used in the management of CTBL; in clinical trials, it improved BMD and reduced the risk of fracture. Currently, there are no bone anabolic therapies for patients with cancer. Appropriate therapies are necessary to maintain optimal bone health, particularly in patients at heightened risk.
Collapse
Affiliation(s)
- Yong Jun Choi
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
3
|
Xie H, Lin Y, Fang F. AR-A014418, a glycogen synthase kinase-3β inhibitor, mitigates lipopolysaccharide-induced inflammation in rat dental pulp stem cells via NLR family pyrin domain containing 3 inflammasome impairment. J Dent Sci 2023; 18:1534-1543. [PMID: 37799857 PMCID: PMC10548004 DOI: 10.1016/j.jds.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/09/2023] [Indexed: 10/07/2023] Open
Abstract
Background/purpose Cell pyroptosis and gingival inflammation have been implicated in periodontitis progression. Our previous study revealed that AR-A014418, a pharmacological inhibitor of glycogen synthase kinase-3β (GSK-3β), can enhance the migratory and osteogenic differentiation abilities of rat dental pulp stem cells (rDPSCs). The present study aimed to explore the effect of AR on the inflammation of rDPSCs. Materials and methods The primary rDPSCs were isolated and identified by flow cytometry, as well as Oil red O and Alizarin Red S staining. The rDPSCs were cultured and exposed to lipopolysaccharide (LPS) before treating them with different concentrations of AR-A014418. The cell viability was detected using the CCK-8 assay. The generation and secretion of pro-inflammatory cytokines (IL-18, TNF-α, L-1β, and IL-6) were examined by qPCR and ELISA, respectively. To investigate the activation of the NLRP3 inflammasome, the expression levels of pro-caspase 1, cleaved caspase 1, as well as NLRP3 were analyzed by western blotting and immunofluorescence, respectively. Results In the rDPSCs, LPS prohibited cell viability and enhanced the generation and secretion of pro-inflammatory cytokines. LPS upregulated NLRP3 and cleaved caspase-1 protein levels and promoted ASC speck formation in the rDPSCs. AR-A014418 administration effectively blocked the LPS-induced inflammation of the rDPSCs in a dose-dependent way. Mechanistically, AR-A014418 significantly restrained the up-regulation of NLRP3 and cleaved caspase-1 in LPS-treated rDPSCs. Conclusion Collectively, our findings suggest that AR-A014418 significantly mitigates LPS-induced inflammation of rDPSCs by blocking the activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Huilan Xie
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Stomatology, Fujian Provincial Hospital, Fuzhou, China
| | - Yi Lin
- Department of Stomatology, Fujian Provincial Hospital, Fuzhou, China
| | - Fang Fang
- Department of Stomatology, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
4
|
Ishizaka T, Horiuchi K, Kondo S, Isaji M, Nakagawa T, Inoue M, Rikitake H, Taguchi E, Susa M, Yoda M, Ono T, Kozai Y, Chiba K. Eribulin mesylate induces bone mass loss by promoting osteoclastic bone resorption in mice. Bone Rep 2023; 18:101693. [PMID: 37305428 PMCID: PMC10248043 DOI: 10.1016/j.bonr.2023.101693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023] Open
Abstract
Over the past few decades, the clinical outcomes of patients with cancer have significantly improved mostly owing to the development of effective chemotherapeutic treatments. However, chronic health conditions such as bone mass loss and risk of fragility fractures caused by chemotherapy have also emerged as crucial issues in patients treated for cancer. In this study, we aimed to understand the effect of eribulin mesylate (ERI), a microtubule-targeting agent currently used to treat metastatic breast cancer and certain subtypes of advanced sarcomas, on bone metabolism in mice. The administration of ERI reduced bone mass in mice, mainly by promoting osteoclast activity. Gene expression analysis of skeletal tissues revealed no change in the expression levels of the transcripts for RANK ligand, one of the master regulators of osteoclastogenesis; however, the transcript levels of osteoprotegerin, which neutralizes RANK ligand, were significantly reduced in ERI-treated mice compared with those in vehicle-treated controls, indicating a relative increase in RANK ligand availability after ERI treatment. In line with the increased bone resorption in ERI-treated mice, we found that zoledronate administration effectively suppressed bone loss in these mice. These results reveal a previously unrecognized effect of ERI on bone metabolism and suggest the application of bisphosphonates for patients with cancer undergoing treatment with ERI.
Collapse
Affiliation(s)
- Takahiro Ishizaka
- Department of Orthopedic Surgery, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Shinya Kondo
- Department of Orthopedic Surgery, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Masashi Isaji
- Department of Orthopedic Surgery, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Takahiro Nakagawa
- Department of Orthopedic Surgery, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Masahiro Inoue
- Department of Orthopedic Surgery, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Hajime Rikitake
- Department of Orthopedic Surgery, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Eiko Taguchi
- Department of Orthopedic Surgery, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Michiro Susa
- Department of Orthopedic Surgery, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Masaki Yoda
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Takeshi Ono
- Department of Global Infectious Diseases and Tropical Medicine, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Yusuke Kozai
- Department of Education Planning, Kanagawa Dental University, 82 Inaokacho, Yokosuka, Kanagawa 238-8580, Japan
| | - Kazuhiro Chiba
- Department of Orthopedic Surgery, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| |
Collapse
|
5
|
Peymanfar Y, Su YW, Hassanshahi M, Xian CJ. Methotrexate treatment suppresses osteoblastic differentiation by inducing Notch2 signaling and blockade of Notch2 rescues osteogenesis by preserving Wnt/β-catenin signaling. J Orthop Res 2022; 40:2258-2270. [PMID: 34935186 DOI: 10.1002/jor.25253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/22/2021] [Accepted: 12/19/2021] [Indexed: 02/04/2023]
Abstract
Methotrexate (MTX) is a commonly used antimetabolite in cancer treatment. Its intensive use is linked with skeletal adverse effects such as reduced bone formation and bone loss, and yet little information is available on molecular mechanisms underlying MTX-induced impaired bone formation. This study investigated the effects of MTX treatment at a clinical chemotherapy relevant dose on osteogenic differentiation in MC3T3E1 osteoblastic cells. To investigate the potential mechanisms, the expression of 87 genes regulating osteoblast differentiation and bone homeostasis was screened in MTX-treated versus untreated cells by polymerase chain reaction (PCR) arrays and results illustrated significant upregulation of Notch2 and Notch target genes at both early and late stages of MC3T3E1 differentiation following MTX treatment. To confirm the roles of Notch2 pathway and its potential action mechanisms, MC3T3E1 cells were treated with MTX with an anti-Notch2 neutralizing antibody or control IgG and effects were examined on osteogenesis and activation of the Wnt/β-catenin pathway. Our results demonstrated that induction of Notch2 activity is associated with MTX adverse effects on osteogenic differentiation and blocking Notch2 rescues osteoblast differentiation by preserving activation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yaser Peymanfar
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Yu-Wen Su
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | | | - Cory J Xian
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Therapeutic Targeting Notch2 Protects Bone Micro-Vasculatures from Methotrexate Chemotherapy-Induced Adverse Effects in Rats. Cells 2022; 11:cells11152382. [PMID: 35954226 PMCID: PMC9367713 DOI: 10.3390/cells11152382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023] Open
Abstract
Intensive cancer chemotherapy is well known to cause bone vasculature disfunction and damage, but the mechanism is poorly understood and there is a lack of treatment. Using a rat model of methotrexate (MTX) chemotherapy (five once-daily dosses at 0.75 mg/kg), this study investigated the roles of the Notch2 signalling pathway in MTX chemotherapy-induced bone micro-vasculature impairment. Gene expression, histological and micro-computed tomography (micro-CT) analyses revealed that MTX-induced micro-vasculature dilation and regression is associated with the induction of Notch2 activity in endothelial cells and increased production of inflammatory cytokine tumour necrosis factor alpha (TNFα) from osteoblasts (bone forming cells) and bone marrow cells. Blockade of Notch2 by a neutralising antibody ameliorated MTX adverse effects on bone micro-vasculature, both directly by supressing Notch2 signalling in endothelial cells and indirectly via reducing TNFα production. Furthermore, in vitro studies using rat bone marrow-derived endothelial cell revealed that MTX treatment induces Notch2/Hey1 pathway and negatively affects their ability in migration and tube formation, and Notch2 blockade can partially protect endothelial cell functions from MTX damage.
Collapse
|
7
|
Notch2 Blockade Mitigates Methotrexate Chemotherapy-Induced Bone Loss and Marrow Adiposity. Cells 2022; 11:cells11091521. [PMID: 35563828 PMCID: PMC9103078 DOI: 10.3390/cells11091521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Childhood cancer methotrexate (MTX) chemotherapy often causes bone growth impairments, bone loss, and increased risks of fractures during or after treatment, for which the pathobiology is unclear and there is a lack of specific treatment. Our time course analyses of long bones from rats receiving intensive MTX treatment (mimicking a clinical protocol) found decreased trabecular bone volume, increased osteoclast formation and activity, increased adipogenesis in the expense of osteogenesis from the bone marrow stromal cells at days 6 and 9 following the first of five daily MTX doses. For exploring potential mechanisms, PCR array expression of 91 key factors regulating bone homeostasis was screened with the bone samples, which revealed MTX treatment-induced upregulation of Notch receptor NOTCH2, activation of which is known to be critical in skeletal development and bone homeostasis. Consistently, increased Notch2 activation in bones of MTX-treated rats was confirmed, accompanied by increased expression of Notch2 intracellular domain protein and Notch target genes HEY1, HES1 and HEYL. To confirm the roles of Notch2 signalling, a neutralising anti-Notch2 antibody or a control IgG was administered to rats during MTX treatment. Microcomputed tomography analyses demonstrated that trabecular bone volume was preserved by MTX+anti-Notch2 antibody treatment. Anti-Notch2 antibody treatment ameliorated MTX treatment-induced increases in osteoclast density and NFATc1 and RANKL expression, and attenuated MTX-induced bone marrow adiposity via regulating Wnt/β-catenin signalling and PPARγ expression. Thus, Notch2 signalling plays an important role in mediating MTX treatment-induced bone loss and bone marrow adiposity, and targeting Notch2 could be a potential therapeutic option.
Collapse
|
8
|
Chilbule SK, Rajagopal K, Walter N, Dutt V, Madhuri V. Role of WNT Agonists, BMP and VEGF Antagonists in Rescuing Osteoarthritic Knee Cartilage in a Rat Model. Indian J Orthop 2022; 56:24-33. [PMID: 35070139 PMCID: PMC8748585 DOI: 10.1007/s43465-021-00434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/27/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The superficial zone of articular cartilage (AC) is vital for its function and biomechanics. The damaged AC gets vascularized and undergoes hypertrophy and ossification. Studies have highlighted these two as the major causative factors in osteoarthritis (OA). We aimed at preventing the OA progression in a rat knee instability model by inhibiting the vascular ingrowth and ossification using VEGF and BMP antagonist. A WNT agonist was also used to promote AC regeneration because of its protective effect on the superficial layer. METHODS Rat knee OA was created by surgical excision of the medial meniscus and medial collateral ligament. Forty rats were divided into two groups of twenty each for surgical control and tests (surgery + intra-articular injection of drugs every two weeks). Ten animals from each group were sacrificed at four and eight weeks. Histology was mainly used to evaluate the outcome. RESULTS A surgical OA model was successfully created with higher histological scores for operated knees, both in short- (P = 0.0001) and long-term (P = 0.001). Modified Mankin score was lesser in the test animals as compared to control (P = 0.17) in the short-term, but the trend was reversed in the long-term (P = 0.13). Subgroup analysis revealed that repeated injections in the anterolateral compartment contributed to higher scores in the lateral (P = 0.03) and anterior (P = 0.03) compartment of the knee in the long-term. CONCLUSION The combinatorial approach was effective in controlling the OA in short-term. Further studies are needed to test the sustained drug delivery system to improve the outcome.
Collapse
Affiliation(s)
- Sanjay K. Chilbule
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore, 632004 India
| | - Karthikeyan Rajagopal
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore, 632004 India
- Centre for Stem Cell Research, Christian Medical College, Vellore, 632002 India
| | - Noel Walter
- Department of Forensic Medicine, Christian Medical College, Vellore, 632004 India
| | - Vivek Dutt
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore, 632004 India
| | - Vrisha Madhuri
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore, 632004 India
- Centre for Stem Cell Research, Christian Medical College, Vellore, 632002 India
| |
Collapse
|
9
|
Zhang YL, Liu L, Su YW, Xian CJ. miR-6315 Attenuates Methotrexate Treatment-Induced Decreased Osteogenesis and Increased Adipogenesis Potentially through Modulating TGF-β/Smad2 Signalling. Biomedicines 2021; 9:biomedicines9121926. [PMID: 34944742 PMCID: PMC8698410 DOI: 10.3390/biomedicines9121926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/02/2022] Open
Abstract
Methotrexate (MTX) treatment for childhood malignancies has shown decreased osteogenesis and increased adipogenesis in bone marrow stromal cells (BMSCs), leading to bone loss and bone marrow adiposity, for which the molecular mechanisms are not fully understood. Currently, microRNAs (miRNAs) are emerging as vital mediators involved in bone/bone marrow fat homeostasis and our previous studies have demonstrated that miR-6315 was upregulated in bones of MTX-treated rats, which might be associated with bone/fat imbalance by directly targeting Smad2. However, the underlying mechanisms by which miR-6315 regulates osteogenic and adipogenic differentiation require more investigations. Herein, we further explored and elucidated the regulatory roles of miR-6315 in osteogenesis and adipogenesis using in vitro cell models. We found that miR-6315 promotes osteogenic differentiation and it alleviates MTX-induced increased adipogenesis. Furthermore, our results suggest that the involvement of miR-6315 in osteogenesis/adipogenesis regulation might be partially through modulating the TGF-β/Smad2 signalling pathway. Our findings indicated that miR-6315 may be important in regulating osteogenesis and adipogenesis and might be a therapeutic target for preventing/attenuating MTX treatment-associated bone loss and marrow adiposity.
Collapse
|
10
|
Zhang YL, Liu L, Su YW, Xian CJ. miR-542-3p Attenuates Bone Loss and Marrow Adiposity Following Methotrexate Treatment by Targeting sFRP-1 and Smurf2. Int J Mol Sci 2021; 22:ijms222010988. [PMID: 34681655 PMCID: PMC8538253 DOI: 10.3390/ijms222010988] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
Intensive methotrexate (MTX) treatment for childhood malignancies decreases osteogenesis but increases adipogenesis from the bone marrow stromal cells (BMSCs), resulting in bone loss and bone marrow adiposity. However, the underlying mechanisms are unclear. While microRNAs (miRNAs) have emerged as bone homeostasis regulators and miR-542-3p was recently shown to regulate osteogenesis in a bone loss context, the role of miR-542-3p in regulating osteogenesis and adipogenesis balance is not clear. Herein, in a rat MTX treatment-induced bone loss model, miR-542-3p was found significantly downregulated during the period of bone loss and marrow adiposity. Following target prediction, network construction, and functional annotation/ enrichment analyses, luciferase assays confirmed sFRP-1 and Smurf2 as the direct targets of miR-542-3p. miRNA-542-3p overexpression suppressed sFRP-1 and Smurf2 expression post-transcriptionally. Using in vitro models, miR-542-3p treatment stimulated osteogenesis but attenuated adipogenesis following MTX treatment. Subsequent signalling analyses revealed that miR-542-3p influences Wnt/β-catenin and TGF-β signalling pathways in osteoblastic cells. Our findings suggest that MTX treatment-induced bone loss and marrow adiposity could be molecularly linked to miR-542-3p pathways. Our results also indicate that miR-542-3p might be a therapeutic target for preserving bone and attenuating marrow fat formation during/after MTX chemotherapy.
Collapse
|
11
|
Zhang Y, Liu L, Pillman KA, Hayball J, Su YW, Xian CJ. Differentially expressed miRNAs in bone after methotrexate treatment. J Cell Physiol 2021; 237:965-982. [PMID: 34514592 DOI: 10.1002/jcp.30583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
Previous studies have shown that administration of antimetabolite methotrexate (MTX) caused a reduced trabecular bone volume and increased marrow adiposity (bone/fat switch), for which the underlying molecular mechanisms and recovery potential are unclear. Altered expression of microRNAs (miRNAs) has been shown to be associated with dysregulation of osteogenic and/or adipogenic differentiation by disrupting target gene expression. First, the current study confirmed the bone/fat switch following MTX treatment in precursor cell culture models in vitro. Then, using a rat intensive 5-once daily MTX treatment model, this study aimed to identify miRNAs associated with bone damage and recovery (in a time course over Days 3, 6, 9, and 14 after the first MTX treatment). RNA isolated from bone samples of treated and control rats were subjected to miRNA array and reverse transcription-polymerase chain reaction validation, which identified five upregulated miRNA candidates, namely, miR-155-5p, miR-154-5p, miR-344g, miR-6215, and miR-6315. Target genes of these miRNAs were predicted using TargetScan and miRDB. Then, the protein-protein network was established via STRING database, after which the miRNA-key messenger RNA (mRNA) network was constructed by Cytoscape. Functional annotation and pathway enrichment analyses for miR-6315 were performed by DAVID database. We found that TGF-β signaling was the most significantly enriched pathway and subsequent dual-luciferase assays suggested that Smad2 was the direct target of miR-6315. Our current study showed that miR-6315 might be a vital regulator involved in bone and marrow fat formation. Also, this study constructed a comprehensive miRNA-mRNA regulatory network, which may contribute to the pathogenesis/prognosis of MTX-associated bone loss and bone marrow adiposity.
Collapse
Affiliation(s)
- Yali Zhang
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Liang Liu
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, South Australia, Australia
| | - John Hayball
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Yu-Wen Su
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Cory J Xian
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
12
|
Caron MMJ, van Rietbergen B, Castermans TMR, Haartmans MJJ, van Rhijn LW, Welting TJM, Witlox AMA. Evaluation of impaired growth plate development of long bones in skeletally immature mice by antirheumatic agents. J Orthop Res 2021; 39:553-564. [PMID: 32740982 PMCID: PMC7984053 DOI: 10.1002/jor.24819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/05/2020] [Accepted: 07/13/2020] [Indexed: 02/04/2023]
Abstract
Restriction of physical growth and development is a known problem in patients with juvenile idiopathic arthritis (JIA). However, the effect of medical treatment for JIA on skeletal growth in affected children has not been properly investigated. We, therefore, hypothesize that naproxen and methotrexate (MTX) affect endochondral ossification and will lead to reduced skeletal development. Treatment of ATDC5 cells, an in vitro model for endochondral ossification, with naproxen or MTX resulted in increased chondrogenic but decreased hypertrophic differentiation. In vivo, healthy growing C57BL/6 mice were treated with naproxen, MTX, or placebo for 10 weeks. At 15 weeks postnatal, both the length of the tibia and the length of the femur were significantly reduced in the naproxen- and MTX-treated mice compared to their controls. Growth plate analysis revealed a significantly thicker proliferative zone, while the hypertrophic zone was significantly thinner in both experimental groups compared to their controls, comparable to the in vitro results. Micro-computed tomography analysis of the subchondral bone region directly below the growth disc showed significantly altered bone microarchitecture in naproxen and MTX groups. In addition, the involvement of the PTHrP-Ihh loop in naproxen- and MTX-treated cells was shown. Overall, these results demonstrate that naproxen and MTX have a profound effect on endochondral ossification during growth plate development, abnormal subchondral bone morphology, and reduced bone length. A better understanding of how medication influences the development of the growth plate will improve understanding of endochondral ossification and reveal possibilities to improve the treatment of pediatric patients.
Collapse
Affiliation(s)
- Marjolein M. J. Caron
- Department of Orthopaedic Surgery, CAPHRI Care and Public Health Research InstituteMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Bert van Rietbergen
- Department of Orthopaedic Surgery, CAPHRI Care and Public Health Research InstituteMaastricht University Medical CenterMaastrichtThe Netherlands
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | | | - Mirella J. J. Haartmans
- Department of Orthopaedic Surgery, CAPHRI Care and Public Health Research InstituteMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Lodewijk W. van Rhijn
- Department of Orthopaedic Surgery, CAPHRI Care and Public Health Research InstituteMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Tim J. M. Welting
- Department of Orthopaedic Surgery, CAPHRI Care and Public Health Research InstituteMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Adhiambo M. A. Witlox
- Department of Orthopaedic Surgery, CAPHRI Care and Public Health Research InstituteMaastricht University Medical CenterMaastrichtThe Netherlands
| |
Collapse
|
13
|
Robin F, Cadiou S, Albert JD, Bart G, Coiffier G, Guggenbuhl P. Methotrexate osteopathy: five cases and systematic literature review. Osteoporos Int 2021; 32:225-232. [PMID: 33128074 DOI: 10.1007/s00198-020-05664-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/01/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Methotrexate (MTX)-related osteopathy is rare, defined by the triad of pain, osteoporosis, and "atypical fractures" when it was first described in the 1970s in children treated with high doses MTX for acute leukemia. Since then, several cases have been reported in patients treated with low-dose MTX for inflammatory diseases. METHODS A systematic research of cases of MTX-related osteopathy was performed in records of Rheumatology Department of Rennes University Hospital. Data collection focused on demographic data, corticosteroid doses, MTX doses and intake method, cumulative doses, year of diagnosis, fracture location, bone densitometry value, and osteoporosis treatment if necessary. A literature review was also conducted to identify other cases in literature and try to understand the pathophysiological mechanisms of this rare entity. RESULTS We report 5 cases identified between 2011 and 2019, which represents the largest cohort described excluding oncology cases. Fracture locations were atypical for osteoporotic fractures. All patients improved in the following months with MTX withdrawal. All patients except one were treated with antiresorptives (bisphosphonates, denosumab). Two patients, treated with bisphosphonates, had a recurrence of fracture, once again of atypical location. Twenty-five cases were collected in literature with similar clinical presentation. The cellular studies that investigated the bone toxicity of MTX mainly showed a decrease in the number of osteoblasts, osteocytes, and chondrocytes in the growth plate and an increase in the number and activity of osteoclasts. In vitro, consequences of mechanical stimulation on human trabecular bone cells in the presence of MTX showed an alteration in mechano-transduction, with membrane hyperpolarization, acting on the integrin pathway. In contrast with our report, the cases described in the literature were not consistently associated with a decrease in bone mineral density (BMD). CONCLUSION MTX osteopathy while rare must be known by the rheumatologist, especially when using this treatment for inflammatory conditions. The mechanisms are still poorly understood, raising the question of a possible remnant effect of MTX on osteo-forming bone cells, potentially dose-dependent. Methotrexate (MTX) osteopathy, described as a clinical triad, pain, osteoporosis, and atypical stress fractures, while rare, must be known by the rheumatologist. Our cohort of 5 cases represent the largest series of the literature. Pathophysiological studies raised the question of a dose-dependent remnant effect of MTX on osteo-forming bone cells.
Collapse
Affiliation(s)
- F Robin
- INSERM, Rennes University Hospital, UMR 1241, Institut NuMeCan (Nutrition Metabolisms and Cancer), University Rennes, Rennes, France.
- Rheumatology department, Rennes University Hospital, 16 Boulevard de Bulgarie, 35200, Rennes, France.
| | - S Cadiou
- Rheumatology department, Rennes University Hospital, 16 Boulevard de Bulgarie, 35200, Rennes, France
| | - J-D Albert
- INSERM, Rennes University Hospital, UMR 1241, Institut NuMeCan (Nutrition Metabolisms and Cancer), University Rennes, Rennes, France
- Rheumatology department, Rennes University Hospital, 16 Boulevard de Bulgarie, 35200, Rennes, France
| | - G Bart
- Rheumatology department, Rennes University Hospital, 16 Boulevard de Bulgarie, 35200, Rennes, France
| | - G Coiffier
- INSERM, Rennes University Hospital, UMR 1241, Institut NuMeCan (Nutrition Metabolisms and Cancer), University Rennes, Rennes, France
- Rheumatology department, Rennes University Hospital, 16 Boulevard de Bulgarie, 35200, Rennes, France
| | - P Guggenbuhl
- INSERM, Rennes University Hospital, UMR 1241, Institut NuMeCan (Nutrition Metabolisms and Cancer), University Rennes, Rennes, France
- Rheumatology department, Rennes University Hospital, 16 Boulevard de Bulgarie, 35200, Rennes, France
| |
Collapse
|
14
|
Rafieemehr H, Maleki Behzad M, Azandeh S, Farshchi N, Ghasemi Dehcheshmeh M, Saki N. Chemo/radiotherapy-Induced Bone Marrow Niche Alterations. Cancer Invest 2020; 39:180-194. [PMID: 33225760 DOI: 10.1080/07357907.2020.1855353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bone marrow (BM) niche is a specific microenvironment for hematopoietic stem cells (HSCs) as well as non-hematopoietic cells. Evidence shows that chemo/radiotherapy can lead to the disruption of different properties of HSCs such as proliferation, differentiation, localization, self-renewa, and steady-state of cell populations. Investigations have shown that the deregulation of balance within the marrow cavity due to chemo/radiotherapy could lead to bone loss, abnormal hematopoiesis, and enhanced differentiation potential of mesenchymal stem cells towards the adipogenic lineage. Therefore, understanding the underlying mechanisms of chemo/radiotherapy induced BM niche changes may lead to the application of appropriate therapeutic agents to prevent BM niche defects. Highlights Chemo/radiotherapy disrupts the steady-state of bone marrow niche cells and result in deregulation of normal balance of stromal cell populations. Chemo/radiotherapy agents play a significant role in reducing of bone formation as well as fat accumulation in the bone marrow niche. Targeting molecular pathways may lead to recovery of bone marrow niches after chemo/radiotherapy.
Collapse
Affiliation(s)
- Hassan Rafieemehr
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masumeh Maleki Behzad
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Blood Transfusion Research Center, High Institute for Research and Education in Transfusion, Hamadan, Iran
| | - Saeed Azandeh
- Cellular and Molecular Research Center (CMRC), Department of Anatomical Sciences, Faculty of Medicin, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
| | - Niloofar Farshchi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
15
|
Shang Q, Shen G, Chen G, Zhang Z, Yu X, Zhao W, Zhang P, Chen H, Tang K, Yu F, Tang J, Liang D, Jiang X, Ren H. The emerging role of miR-128 in musculoskeletal diseases. J Cell Physiol 2020; 236:4231-4243. [PMID: 33241566 DOI: 10.1002/jcp.30179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/24/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
MicroRNA-128 (miR-128) is associated with cell proliferation, differentiation, migration, apoptosis, and survival. Genetic analysis studies have demonstrated that miR-128 participates in bone metabolism, which involves bone marrow-derived mesenchymal stem cells, osteoblasts, osteoclasts, and adipocytes. miR-128 also participates in regeneration of skeletal muscles by targeting myoblast-associated proteins. The deregulation of miR-128 could lead to a series of musculoskeletal diseases. In this review, we discuss recent findings of miR-128 in relation to bone metabolism and muscle regeneration to determine its potential therapeutic effects in musculoskeletal diseases, and to propose directions for future research in this significant field.
Collapse
Affiliation(s)
- Qi Shang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gengyang Shen
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guifeng Chen
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Yu
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhua Zhao
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Zhang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglin Chen
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai Tang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fuyong Yu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Tang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobing Jiang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Ren
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Fan J, Su YW, Hassanshahi M, Fan CM, Peymanfar Y, Piergentili A, Del Bello F, Quaglia W, Xian CJ. β-Catenin signaling is important for osteogenesis and hematopoiesis recovery following methotrexate chemotherapy in rats. J Cell Physiol 2020; 236:3740-3751. [PMID: 33078406 DOI: 10.1002/jcp.30114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
Cancer chemotherapy can significantly impair the bone formation and cause myelosuppression; however, their recovery potentials and mechanisms remain unclear. This study investigated the roles of the β-catenin signaling pathway in bone and bone marrow recovery potentials in rats treated with antimetabolite methotrexate (MTX) (five once-daily injections, 0.75 mg/kg) with/without β-catenin inhibitor indocyanine green (ICG)-001 (oral, 200 mg/kg/day). ICG alone reduced trabecular bone volume and bone marrow cellularity. In MTX-treated rats, ICG suppressed bone volume recovery on Day 11 after the first MTX injection. ICG exacerbated MTX-induced decreases on Day 9 osteoblast numbers on bone surfaces, their formation in vitro from bone marrow stromal cells (osteogenic differentiation/mineralization), as well as expression of osteogenesis-related markers Runx2, Osx, and OCN in bone, and it suppressed their subsequent recoveries on Day 11. On the other hand, ICG did not affect MTX-induced increased osteoclast density and the level of the osteoclastogenic signal (RANKL/OPG expression ratio) in bone, suggesting that ICG inhibition of β-catenin does nothing to abate the increased bone resorption induced by MTX. ICG also attenuated bone marrow cellularity recovery on Day 11, which was associated with the suppressed recovery of CD34+ or c-Kit+ hematopoietic progenitor cell contents. Thus, β-catenin signaling is important for osteogenesis and hematopoiesis recoveries following MTX chemotherapy.
Collapse
Affiliation(s)
- Jian Fan
- Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai, China
| | - Yu-Wen Su
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | | | - Chia-Ming Fan
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Yaser Peymanfar
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | | | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Cory J Xian
- Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai, China.,UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
17
|
Almoshari Y, Ren R, Zhang H, Jia Z, Wei X, Chen N, Li G, Ryu S, Lele SM, Reinhardt RA, Wang D. GSK3 inhibitor-loaded osteotropic Pluronic hydrogel effectively mitigates periodontal tissue damage associated with experimental periodontitis. Biomaterials 2020; 261:120293. [PMID: 32877763 DOI: 10.1016/j.biomaterials.2020.120293] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/16/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023]
Abstract
Periodontitis is a chronic inflammatory disease caused by complex interactions between the host immune system and pathogens that affect the integrity of periodontium. To prevent disease progression and thus preserve alveolar bone structure, simultaneous anti-inflammatory and osteogenic intervention are essential. Hence, a glycogen synthase kinase 3 beta inhibitor (BIO) was selected as a potent inflammation modulator and osteogenic agent to achieve this treatment objective. BIO's lack of osteotropicity, poor water solubility, and potential long-term systemic side effects, however, have hampered its clinical applications. To address these limitations, pyrophosphorylated Pluronic F127 (F127-PPi) was synthesized and mixed with regular F127 to prepare an injectable and thermoresponsive hydrogel formulation (PF127) of BIO, which could adhere to hard tissue and gradually release BIO to exert its therapeutic effects locally. Comparing to F127 hydrogel, PF127 hydrogels exhibited stronger binding to hydroxyapatite (HA). Additionally, BIO's solubility in PF127 solution was dramatically improved over F127 solution and the improvement was proportional to the polymer concentration. When evaluated on a rat model of periodontitis, PF127-BIO hydrogel treatment was found to be very effective in preserving alveolar bone and ligament, and preventing periodontal inflammation, as shown by the micro-CT and histological data, respectively. Altogether, these findings suggested that the thermoresponsive PF127 hydrogel is an effective local drug delivery system for better clinical management of periodontitis and associated pathologies.
Collapse
Affiliation(s)
- Yosif Almoshari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Rongguo Ren
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Haipeng Zhang
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Zhenshan Jia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xin Wei
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ningrong Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Guojuan Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sangjin Ryu
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, NE, 68588, USA
| | - Subodh M Lele
- Department of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Richard A Reinhardt
- Department of Surgical Specialties, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE, 68583, USA
| | - Dong Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
18
|
Wu CT, Liao JM, Ko JL, Lee YL, Chang HY, Wu CH, Ou CC. D-Methionine Ameliorates Cisplatin-Induced Muscle Atrophy via Inhibition of Muscle Degradation Pathway. Integr Cancer Ther 2019; 18:1534735419828832. [PMID: 30789014 PMCID: PMC6416772 DOI: 10.1177/1534735419828832] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cisplatin induces anorexia, weight loss, loss of adipose tissue, skeletal muscle atrophy, and serious adverse effects that can cause premature termination of chemotherapy. The aim of this study was to use an animal model to assess cisplatin therapy (3 cycles) with and without d-methionine to investigate its protective effects on cisplatin-induced anorexia and skeletal muscle wasting. Wistar rats were divided into 3 groups and treated as follows: saline as control (group 1), intraperitoneal cisplatin once a week for 3 weeks (group 2), and intraperitoneal cisplatin once a week for 3 weeks plus oral administration of d-methionine (group 3). Tissue somatic index (TSI), gastric emptying index (GEI), and feeding efficiency were measured. Both hepatic lipid metabolism and muscle atrophy-related gene expressions and C2C12 myotubes were determined by polymerase chain reaction. Micro-computed tomography (micro-CT) was used to conduct assessment of bone microarchitecture indices. Pathological changes of the gastric mucosa were assessed by hematoxylin and eosin staining after euthanizing the animals. d-Methionine increased food intake, weight gain, gastric emptying, and feeding efficiency, as well as decrease stomach contents, after cisplatin injections. Cisplatin caused shortening of myofibers. Cisplatin-induced muscle mass wasting was mediated by the elevation of mRNA expressions of MAFbx and MuRF-1 in ubiquitin ligases in muscle tissue homogenate. The mRNA expressions of MyoD and myogenin, markers of muscle differentiation, declined following cisplatin administration. The administration of d-methionine not only led to significant improvements in myofiber diameter and cross-sectional fiber areas but also reversed muscle atrophy-related gene expression. However, there were no significant changes in stomach histology or microarchitecture of trabecular bone among the study groups. The results indicate that d-methionine has an appetite-enhancing effect and ameliorates cisplatin-induced adipose and muscle tissue loss during cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Ching-Te Wu
- 1 Show Chwan Memorial Hospital, Changhua, Taiwan
| | | | | | - Yao-Ling Lee
- 2 Chung Shan Medical University, Taichung, Taiwan
| | - Hui-Yi Chang
- 2 Chung Shan Medical University, Taichung, Taiwan
| | | | - Chu-Chyn Ou
- 2 Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
19
|
Tang Q, Su YW, Fan CM, Chung R, Hassanshahi M, Peymanfar Y, Xian CJ. Release of CXCL12 From Apoptotic Skeletal Cells Contributes to Bone Growth Defects Following Dexamethasone Therapy in Rats. J Bone Miner Res 2019; 34:310-326. [PMID: 30395366 DOI: 10.1002/jbmr.3597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/31/2018] [Accepted: 09/23/2018] [Indexed: 12/17/2022]
Abstract
Dexamethasone (Dex) is known to cause significant bone growth impairment in childhood. Although previous studies have suggested roles of osteocyte apoptosis in the enhanced osteoclastic recruitment and local bone loss, whether it is so in the growing bone following Dex treatment requires to be established. The current study addressed the potential roles of chemokine CXCL12 in chondroclast/osteoclast recruitment and bone defects following Dex treatment. Significant apoptosis was observed in cultured mature ATDC5 chondrocytes and IDG-SW3 osteocytes after 48 hours of 10-6 M Dex treatment, and CXCL12 was identified to exhibit the most prominent induction in Dex-treated cells. Conditioned medium from the treated chondrocytes/osteocytes enhanced migration of RAW264.7 osteoclast precursor cells, which was significantly inhibited by the presence of the anti-CXCL12 neutralizing antibody. To investigate the roles of the induced CXCL12 in bone defects caused by Dex treatment, young rats were orally gavaged daily with saline or Dex at 1 mg/kg/day for 2 weeks, and received an intraperitoneal injection of anti-CXCL12 antibody or control IgG (1 mg/kg, three times per week). Aside from oxidative stress induction systemically, Dex treatment caused reductions in growth plate thickness, primary spongiosa height, and metaphysis trabecular bone volume, which are associated with induced chondrocyte/osteocyte apoptosis and enhanced chondroclast/osteoclast recruitment and osteoclastogenic differentiation potential. CXCL12 was induced in apoptotic growth plate chondrocytes and metaphyseal bone osteocytes. Anti-CXCL12 antibody supplementation considerably attenuated Dex-induced chondroclast/osteoclast recruitment and loss of growth plate cartilage and trabecular bone. CXCL12 neutralization did not affect bone marrow osteogenic potential, adiposity, and microvasculature. Thus, CXCL12 was identified as a potential molecular linker between Dex-induced skeletal cell apoptosis and chondroclastic/osteoclastic recruitment, as well as growth plate cartilage/bone loss, revealing a therapeutic potential of CXCL12 functional blockade in preventing bone growth defects during/after Dex treatment. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Qian Tang
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Yu-Wen Su
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Chia-Ming Fan
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Rosa Chung
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Yaser Peymanfar
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia.,Ningbo No. 6 Hospital, Ningbo, 315040, China
| |
Collapse
|
20
|
Pei Y, Zheng K, Shang G, Wang Y, Wang W, Qiu E, Li S, Zhang X. Therapeutic Effect of Strontium Ranelate on Bone in Chemotherapy-Induced Osteopenic Rats via Increased Bone Volume and Reduced Bone Loss. Biol Trace Elem Res 2019; 187:472-481. [PMID: 29882118 DOI: 10.1007/s12011-018-1401-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/29/2018] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to determine whether treatment with strontium ranelate (SrR) can restore bone mass and strength at a skeletal site with established osteopenia in chemotherapy-induced rats. Forty-five Sprague-Dawley male rats were randomly assigned to three study groups (n = 15 rats per group): normal rats (control group), osteopenic rats (chemo group), and osteopenic rats with SrR (chemo-SrR group). We chose a male rat model that mimicked a clinical setting by weekly intravenous injection of cyclophosphamide at 20 mg/kg. The control and chemo groups were maintained without treatment, and the chemo-SrR group was intragastrically administered strontium ranelate at a dosage of 900 mg/kg/day. All animals were fed a standard laboratory diet, and blood samples were collected for biochemical analysis. After 12 weeks of treatment, micro-CT, biomechanical testing, and histomorphometry were examined. In addition, bone samples were obtained to evaluate the content of mineral substances in bones. SrR treatment of chemo rats significantly increased tibial trabecular bone volume, trabecular thickness, and BV/TV. Serum levels of the bone formation marker alkaline phosphatase (ALP) in the SrR group were significantly higher than those in the chemo animals, which was accompanied by an increase in the bone mineral content, bone calcium and phosphate, as well as reduced serum Ca and P concentrations. The serum level of tartrate-resistant acid phosphatase (TRAP) in the SrR treatment group showed no obvious changes. Histomorphological analyses revealed that chemotherapy resulted in decreased osteoclast number, which may be due to the inhibition of bone turnover. However, SrR treatment enhanced the number of osteoblasts while restoring bone mass and improving bone strength in chemo rats. Therefore, the results of this study indicate that SrR treatment has a positive effect on bone in chemotherapy-induced osteoporosis.
Collapse
Affiliation(s)
- Yi Pei
- Department of Bone and Soft Tissue Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, People's Republic of China
| | - Ke Zheng
- Department of Bone and Soft Tissue Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, People's Republic of China
| | - GuanNing Shang
- Department of Bone and Soft Tissue Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, People's Republic of China
| | - YuMing Wang
- Department of Bone and Soft Tissue Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, People's Republic of China
| | - Wei Wang
- Department of Bone and Soft Tissue Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, People's Republic of China
| | - EnDuo Qiu
- Department of Bone and Soft Tissue Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, People's Republic of China
| | - ShenLong Li
- Department of Bone and Soft Tissue Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, People's Republic of China
| | - XiaoJing Zhang
- Department of Bone and Soft Tissue Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, People's Republic of China.
| |
Collapse
|
21
|
The Late Osteoblast/Preosteocyte Cell Line MLO-A5 Displays Mesenchymal Lineage Plasticity In Vitro and In Vivo. Stem Cells Int 2019; 2019:9838167. [PMID: 30800165 PMCID: PMC6360058 DOI: 10.1155/2019/9838167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/28/2018] [Accepted: 11/11/2018] [Indexed: 01/19/2023] Open
Abstract
The process of osteoblast switching to alternative mesenchymal phenotypes is incompletely understood. In this study, we tested the ability of the osteoblast/preosteocyte osteogenic cell line, MLO-A5, to also differentiate into either adipocytes or chondrocytes. MLO-A5 cells expressed a subset of skeletal stem cell markers, including Sca-1, CD44, CD73, CD146, and CD166. Confluent cultures of cells underwent differentiation within 3 days upon the addition of osteogenic medium. The same cultures were capable of undergoing adipogenic and chondrogenic differentiation under lineage-appropriate culture conditions, evidenced by lineage-specific gene expression analysis by real-time reverse-transcription-PCR, and by Oil Red O and alcian blue (pH 2.5) staining, respectively. Subcutaneous implantation of MLO-A5 cells in a gel foam into NOD SCID mice resulted in a woven bone-like structure containing embedded osteocytes and regions of cartilage-like tissue, which stained positive with both alcian blue (pH 2.5) and safranin O. Together, our findings show that MLO-A5 cells, despite being a strongly osteogenic cell line, exhibit characteristics of skeletal stem cells and display mesenchymal lineage plasticity in vitro and in vivo. These unique characteristics suggest that this cell line is a useful model with which to study aging and disease-related changes to the mesenchymal lineage composition of bone.
Collapse
|
22
|
Oncogenic role of SFRP2 in p53-mutant osteosarcoma development via autocrine and paracrine mechanism. Proc Natl Acad Sci U S A 2018; 115:E11128-E11137. [PMID: 30385632 DOI: 10.1073/pnas.1814044115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OS), the most common primary bone tumor, is highly metastatic with high chemotherapeutic resistance and poor survival rates. Using induced pluripotent stem cells (iPSCs) generated from Li-Fraumeni syndrome (LFS) patients, we investigate an oncogenic role of secreted frizzled-related protein 2 (SFRP2) in p53 mutation-associated OS development. Interestingly, we find that high SFRP2 expression in OS patient samples correlates with poor survival. Systems-level analyses identified that expression of SFRP2 increases during LFS OS development and can induce angiogenesis. Ectopic SFRP2 overexpression in normal osteoblast precursors is sufficient to suppress normal osteoblast differentiation and to promote OS phenotypes through induction of oncogenic molecules such as FOXM1 and CYR61 in a β-catenin-independent manner. Conversely, inhibition of SFRP2, FOXM1, or CYR61 represses the tumorigenic potential. In summary, these findings demonstrate the oncogenic role of SFRP2 in the development of p53 mutation-associated OS and that inhibition of SFRP2 is a potential therapeutic strategy.
Collapse
|
23
|
Su YW, Chim SM, Zhou L, Hassanshahi M, Chung R, Fan C, Song Y, Foster BK, Prestidge CA, Peymanfar Y, Tang Q, Butler LM, Gronthos S, Chen D, Xie Y, Chen L, Zhou XF, Xu J, Xian CJ. Osteoblast derived-neurotrophin‑3 induces cartilage removal proteases and osteoclast-mediated function at injured growth plate in rats. Bone 2018; 116:232-247. [PMID: 30125729 PMCID: PMC6550307 DOI: 10.1016/j.bone.2018.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 07/25/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023]
Abstract
Faulty bony repair causes dysrepair of injured growth plate cartilage and bone growth defects in children; however, the underlying mechanisms are unclear. Recently, we observed the prominent induction of neurotrophin‑3 (NT-3) and its important roles as an osteogenic and angiogenic factor promoting the bony repair. The current study investigated its roles in regulating injury site remodelling. In a rat tibial growth plate drill-hole injury repair model, NT-3 was expressed prominently in osteoblasts at the injury site. Recombinant NT-3 (rhNT-3) systemic treatment enhanced, but NT-3 immunoneutralization attenuated, expression of cartilage-removal proteases (MMP-9 and MMP-13), presence of bone-resorbing osteoclasts and expression of osteoclast protease cathepsin K, and remodelling at the injury site. NT-3 was also highly induced in cultured mineralizing rat bone marrow stromal cells, and the conditioned medium augmented osteoclast formation and resorptive activity, an ability that was blocked by presence of anti-NT-3 antibody. Moreover, NT-3 and receptor TrkC were induced during osteoclastogenesis, and rhNT-3 treatment activated TrkC downstream kinase Erk1/2 in differentiating osteoclasts although rhNT-3 alone did not affect activation of osteoclastogenic transcription factors NF-κB or NFAT in RAW264.7 osteoclast precursor cells. Furthermore, rhNT-3 treatment increased, but NT-3 neutralization reduced, expression of osteoclastogenic cytokines (RANKL, TNF-α, and IL-1) in mineralizing osteoblasts and in growth plate injury site, and rhNT-3 augmented the induction of these cytokines caused by RANKL treatment in RAW264.7 cells. Thus, injury site osteoblast-derived NT-3 is important in promoting growth plate injury site remodelling, as it induces cartilage proteases for cartilage removal and augments osteoclastogenesis and resorption both directly (involving activing Erk1/2 and substantiating RANKL-induced increased expression of osteoclastogenic signals in differentiating osteoclasts) and indirectly (inducing osteoclastogenic signals in osteoblasts).
Collapse
Affiliation(s)
- Yu-Wen Su
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Shek Man Chim
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Lin Zhou
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Rosa Chung
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Chiaming Fan
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia
| | - Yunmei Song
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Bruce K Foster
- Department of Orthopaedic Surgery, Women's and Children's Hospital, North Adelaide, SA 5006, Australia.
| | - Clive A Prestidge
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson Lakes 5095, Australia.
| | - Yaser Peymanfar
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Qian Tang
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Lisa M Butler
- University of Adelaide Schools of Medicine and Medical Sciences, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| | - Stan Gronthos
- University of Adelaide Schools of Medicine and Medical Sciences, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Yangli Xie
- State Key Laboratory of Trauma, Burns and Combined Injury, Center of Bone Metabolism and Repair, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Lin Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Center of Bone Metabolism and Repair, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
24
|
Liu F, Wang Z, Liu F, Xu J, Liu Q, Yin K, Lan J. MicroRNA-29a-3p enhances dental implant osseointegration of hyperlipidemic rats via suppressing dishevelled 2 and frizzled 4. Cell Biosci 2018; 8:55. [PMID: 30386554 PMCID: PMC6203977 DOI: 10.1186/s13578-018-0254-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022] Open
Abstract
Background Fine osseointegration is the basis of long-term survival of implant. In our previous study, we observed a strong correlation between hyperlipidemia and compromised osseointegration. MicroRNA-29a-3p (miR-29a-3p) has been discovered to participate in bone marrow mesenchymal stem cells (BMSCs) differentiation. However, the role and the underlying mechanisms of hyperlipidemia and miR-29a-3p in osseointegration still remain obscure. Results In peri-implant bone tissues of hyperlipidemia rats, bone mass, mineralization and bone trabecula formation were weakened. Alkaline phosphatase (ALP) and runt-related transcription factor 2 (Runx2), and miR-29a-3p expression were reduced. While in normal rats, implant-bone interfaces were filled with dense new bone and ALP, Runx2 and miR-29a-3p were up-regulated. Overexpressed miR-29a-3p can reverse the adverse effect of hyperlipidemia on osseointegration. Implants were tightly integrated with the surrounding dense new bone tissues, and ALP as well as Runx2 mRNAs were enhanced in miR-29a-3p overexpressed and hyperlipidemia rats, while little peri-implant bone tissue existed, ALP and Runx2 deregulated on miR-29a-3p inhibited rats. Dishevelled 2 (Dvl2) mRNA was declined in peri-implant bone tissue of high-fat (HF) group than normal group, while frizzled 4 (Fzd4) mRNA declined on day 5 and increased from day 10 to day 20 after implantation in hyperlipidemia rats than in normal rats. Next, BMSCs were cultured under HF or normal medium in vitro. In the HF group, ALP activity and mineralization, ALP and Runx2 mRNAs and proteins expression, and miR-29a-3p expression were suppressed, while adipogenesis was increased, as a result, cytoskeletons were sparse and disordered compared to control group. However, when miR-29a-3p was overexpressed in BMSCs, ALP activity, ALP, Runx2, Dvl2 and Fzd4 mRNAs and proteins expressions were up-regulated. As miR-29a-3p was inhibited in BMSCs, the reverse results were obtained. In addition, promoter assay revealed that miR-29a-3p can directly suppress Wnt/β-catenin pathway related Dvl2 and Fzd4 through binding to their 3'-UTR. Conclusions MiR-29a-3p facilitated implant osseointegration via targeting Wnt/β-catenin pathway-related Dvl2 and Fzd4. MiR-29a-3p/Dvl2/Fzd4 may serve as a promising therapeutic target for hyperlipidemia osseointegration.
Collapse
Affiliation(s)
- Fei Liu
- 1Department of Prosthodontics, School of Stomatology, Shandong University, Jinan, 250000 China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, 44-1 West Wenhua Street, Jinan, 250012 Shandong China
| | - Zhifeng Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, 44-1 West Wenhua Street, Jinan, 250012 Shandong China.,3Department of Pediatric Dentistry, School of Stomatology, Shandong University, Jinan, 250000 China
| | - Fangfang Liu
- Department of Implantology, Stomatological Hospital of Nanyang, Nanyang, 473000 China
| | - Jinzhao Xu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, 44-1 West Wenhua Street, Jinan, 250012 Shandong China.,3Department of Pediatric Dentistry, School of Stomatology, Shandong University, Jinan, 250000 China
| | - Qibo Liu
- 1Department of Prosthodontics, School of Stomatology, Shandong University, Jinan, 250000 China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, 44-1 West Wenhua Street, Jinan, 250012 Shandong China
| | - Kaifeng Yin
- 4Department of Orthodontics, Herman Ostrow School of Dentistry, Los Angeles, CA 90089 USA.,5Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Los Angeles, 90033 USA
| | - Jing Lan
- 1Department of Prosthodontics, School of Stomatology, Shandong University, Jinan, 250000 China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, 44-1 West Wenhua Street, Jinan, 250012 Shandong China.,7Department of Prosthodontics, School of Dentistry, Shandong University, Jinan, China
| |
Collapse
|
25
|
Lee AMC, Bowen JM, Su YW, Plews E, Chung R, Keefe DMK, Xian CJ. Individual or combination treatments with lapatinib and paclitaxel cause potential bone loss and bone marrow adiposity in rats. J Cell Biochem 2018; 120:4180-4191. [PMID: 30260048 DOI: 10.1002/jcb.27705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 08/27/2018] [Indexed: 11/09/2022]
Abstract
Cancer treatments with cytotoxic drugs have been shown to cause bone loss. However, effects on bone are less clear for ErbB-targeting tyrosine kinase inhibitors or their combination use with cytotoxic drugs. This study examined the effects of individual or combination treatments with breast cancer drugs lapatinib (a dual ErbB1/ErbB2 inhibitor) and paclitaxel (a microtubule-stabilizing cytotoxic agent) on bone and bone marrow of rats. Wistar rats received lapatinib (240 mg/kg) daily, paclitaxel (12 mg/kg) weekly, or their combination for 4 weeks, and effects on bone/bone marrow were examined at the end of week 4. Microcomputed tomographical structural analyses showed a reduction in trabecular bone volume in tibia following the lapatinib, paclitaxel or their combination treatments ( P < 0.05). Histomorphometry analyses revealed marked increases in bone marrow adipocyte contents in all treatment groups. Reverse transcription polymerase chain reaction gene expression studies with bone samples and cell culture studies with isolated bone marrow stromal cells showed that the all treatment groups displayed significantly reduced levels of osterix expression and osteogenic differentiation potential but increased expression levels of adipogenesis transcription factor peroxisome proliferator-activated receptor γ. In addition, these treatments suppressed the expression of Wnt10b and/or increased expression of Wnt antagonists (secreted frizzled-related protein 1, Dickkopf-related protein 1 and/or sclerostin). Furthermore, all treatment groups showed increased numbers of bone-resorbing osteoclasts on trabecular bone surfaces, although only the lapatinib group displayed increased levels of osteoclastogenic signal (receptor activator of nuclear factor κΒ ligand/osteoclastogenesis inhibitor osteoprotegrin expression ratio) in the bones. Thus, inhibiting ErbB1 and ErbB2 by lapatinib or blocking cell division by paclitaxel or their combination causes significant trabecular bone loss and bone marrow adiposity involving a switch in osteogenesis/adipogenesis potential, altered expression of some major molecules of the Wnt/β-catenin signalling pathway, and increased recruitment of bone-resorbing osteoclasts.
Collapse
Affiliation(s)
- Alice M C Lee
- School of Pharmacy and Medical Sciences, UniSA Institute for Cancer Research, University of South Australia, Adelaide, South Australia, Australia
| | - Joanne M Bowen
- Physiology Discipline, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Yu-Wen Su
- School of Pharmacy and Medical Sciences, UniSA Institute for Cancer Research, University of South Australia, Adelaide, South Australia, Australia
| | - Erin Plews
- Physiology Discipline, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Rosa Chung
- School of Pharmacy and Medical Sciences, UniSA Institute for Cancer Research, University of South Australia, Adelaide, South Australia, Australia
| | - Dorothy M K Keefe
- SA Cancer Service, SA Cancer Clinical Network, SA Health, Adelaide, South Australia, Australia.,Centre of Cancer Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, UniSA Institute for Cancer Research, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
26
|
Bone resorption and bone metastasis risk. Med Hypotheses 2018; 118:36-41. [PMID: 30037612 DOI: 10.1016/j.mehy.2018.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/30/2018] [Accepted: 06/15/2018] [Indexed: 11/21/2022]
Abstract
Breast cancer tumors have a tendency to metastasize to the bone. After development of a bone metastasis, the median survival time is 40 months. Currently, little is known about the modifiable risk factors for developing bone metastases in women diagnosed with breast cancer. One possible modifiable risk factor is increased bone resorption. Increased bone resorption is caused by an imbalance between osteoblasts and osteoclasts favoring osteoclast-driven bone resorption. Osteoclast activity results in the release of growth factors from the bony matrix that are requirement for successful breast cancer tumor cell proliferation within the bone. Mice studies have shown that mice that have been genetically engineered to have higher bone mineral density, and thus lower bone resorption, have a decreased incidence of bone metastases. Alternatively, mice genetically engineered to have lower bone mineral density or increased bone resorption have a higher incidence of bone metastases. In human studies, antiosteoporotic drugs have been shown to decrease osteoclast activity and prevent bone metastases. These studies suggest that increased osteoclast activity, which results in low bone mineral density, may be a modifiable risk factor for developing bone metastases in women with breast cancer. Women undergoing chemotherapy for breast cancer develop low bone mineral density in response to the direct effects of chemotherapeutic drugs on bone cells-including osteoclasts, osteoblasts, and osteocytes-and through the decrease in circulating estrogen as a result of chemotherapy-induced ovarian dysfunction. Therefore, it is important for future studies to determine the risk of developing bone metastases associated with increasing bone resorption as measured by low or decreasing bone mineral density in women diagnosed with breast cancer, as well as to determine the best intervention(s) to promote a balance between osteoclasts and osteoblasts to favor osteoblast activity during chemotherapy treatment.
Collapse
|
27
|
Fan CM, Su YW, Howe PR, Xian CJ. Long Chain Omega-3 Polyunsaturated Fatty Acid Supplementation Protects Against Adriamycin and Cyclophosphamide Chemotherapy-Induced Bone Marrow Damage in Female Rats. Int J Mol Sci 2018; 19:ijms19020484. [PMID: 29415482 PMCID: PMC5855706 DOI: 10.3390/ijms19020484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 01/15/2023] Open
Abstract
Although bone marrow and bone toxicities have been reported in breast cancer survivors, preventative strategies are yet to be developed. Clinical studies suggest consumption of long chain omega-3 polyunsaturated fatty acids (LCn3PUFA) can attenuate age-related bone loss, and recent animal studies also revealed benefits of LCn3PUFA in alleviating bone marrow and bone toxicities associated with methotrexate chemotherapy. Using a female rat model for one of the most commonly used anthracycline-containing breast cancer chemotherapy regimens (adriamycin + cyclophosphamide) (AC) chemotherapy, this study investigated potential effects of daily LCn3PUFA consumption in preserving bone marrow and bone microenvironment during chemotherapy. AC treatment for four cycles significantly reduced bone marrow cellularity and increased marrow adipocyte contents. It increased trabecular bone separation but no obvious changes in bone volume or bone cell densities. LCn3PUFA supplementation (375 mg/100 g/day) attenuated AC-induced bone marrow cell depletion and marrow adiposity. It also partially attenuated AC-induced increases in trabecular bone separation and the cell sizes and nuclear numbers of osteoclasts formed ex vivo from bone marrow cells isolated from AC-treated rats. This study suggests that LCn3PUFA supplementation may have beneficial effects in preventing bone marrow damage and partially protecting the bone during AC cancer chemotherapy.
Collapse
Affiliation(s)
- Chia-Ming Fan
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia.
| | - Yu-Wen Su
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia.
| | - Peter R Howe
- Clinical Nutrition Research Centre, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia.
- Institute for Resilient Regions, University of Southern Queensland, Springfield, QLD 4300, Australia.
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
28
|
Abstract
Methotrexate (MTX) is a commonly used chemotherapeutic agent that kills cancer cells by binding dihydrofolate reductase (DHFR) as a competitive inhibitor. Due to its non-selectivity, MTX also impairs normal (non-cancerous) cell function and causes long-term damage to healthy tissue. These consequences have been investigated extensively in bone-derived cells due to their sensitivity to the drug. While DHFR likely plays a role in normal cell response to MTX, research in this area is limited. Moreover, how MTX sensitivity differs among cell types responsible for maintaining connective tissues is unknown. The goal of this study was to investigate the role of DHFR and subsequent nucleotide synthesis in normal cell response to MTX. We also sought to compare adverse effects of MTX among normal cell types to identify sensitive populations and resistant cell sources for regenerative procedures targeting patients undergoing chemotherapy. DHFR overexpression or exogenous amino acid + nucleoside delivery rescued normal cells from adverse MTX effects. Conversely, DHFR knockdown impaired MTX-treated adipose-derived stem cell (ASC) osteogenesis. Proliferation of ASCs and bone marrow stem cells was more resistant to MTX than that of terminally differentiated osteoblasts. However, stem cells became susceptible to the drug after beginning differentiation. These results suggest that the ability of stem cells to survive and to maintain their surrounding tissues likely depends on whether they are in a "stem" state when exposed to MTX. Therapeutic strategies that delay the differentiation of stem cells until clearance of the drug may produce more favorable outcomes in the long-term health of treated tissues.
Collapse
|
29
|
Zhao D, Wang C, Zhao Y, Shu B, Jia Y, Liu S, Wang H, Chang J, Dai W, Lu S, Shi Q, Yang Y, Zhang Y, Wang Y. Cyclophosphamide causes osteoporosis in C57BL/6 male mice: suppressive effects of cyclophosphamide on osteoblastogenesis and osteoclastogenesis. Oncotarget 2017; 8:98163-98183. [PMID: 29228681 PMCID: PMC5716721 DOI: 10.18632/oncotarget.21000] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022] Open
Abstract
The clinical evidence indicated that cyclophosphamide (CPD), one of the chemotherapy drugs, caused severe deteriorations in bones of cancer patients. However, the exact mechanisms by which CPD exerts effects on bone remodeling is not yet fully elucidated. Therefore, this study was performed to investigate the role and potential mechanism of CPD in osteoblastogenesis and osteoclastogenesis. Here it was found that CPD treatment (100mg/kg/day) for 7 days led to osteoporosis phenotype in male mice. CPD inhibited osteoblastogenesis as shown by decreasing the number and differentiation of bone mesenchymal stem cells (MSCs) and reducing the formation and activity of osteoblasts. Moreover, CPD suppressed the osteoclastogenesis mediated by receptor activator for nuclear factor-κ B ligand (RANKL) as shown by reducing the maturation and activity of osteoclasts. At the molecular level, CPD exerted inhibitory effect on the expression of components (Cyclin D1, β-catenin, Wnt 1, Wnt10b) of Wnt/β-catenin signaling pathway in MSCs and osteoblasts-specific factors (alkaline phosphatase, Runx2, and osteocalcin). CPD also down-regulated the expression of the components (tumor necrosis factor receptor-associated factor 6, nuclear factor of activated T-cells cytoplasm 1, c-Fos and NF-κB) of RANKL signaling pathway and the factors (matrix metalloproteinase 9, cathepsin K, tartrate-resistant acid phosphates and carbonic anhydrase II) for osteoclastic activity. Taken together, this study demonstrated that the short-term treatment of CPD induced osteoporosis in mice and the underlying mechanism might be attributed to its marked suppression on osteoblastogenesis and osteoclastogenesis, especially the effect of CPD on bone formation might play a dominant role in its detrimental effects on bone remodeling.
Collapse
Affiliation(s)
- Dongfeng Zhao
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Spine Disease Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Chenglong Wang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Spine Disease Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R China.,Central Laboratory of Research, Longhua Hospital, Shanghai, P.R. China
| | - Yongjian Zhao
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Spine Disease Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Bing Shu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Spine Disease Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Youji Jia
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Spine Disease Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R China
| | - Shufen Liu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Spine Disease Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Hongshen Wang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Spine Disease Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Junli Chang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Spine Disease Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Weiwei Dai
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Central Laboratory of Research, Longhua Hospital, Shanghai, P.R. China
| | - Sheng Lu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Spine Disease Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R China
| | - Qi Shi
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Spine Disease Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yanping Yang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Spine Disease Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yan Zhang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Spine Disease Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yongjun Wang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Spine Disease Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
30
|
Su YW, Chen KM, Hassanshahi M, Tang Q, Howe PR, Xian CJ. Childhood cancer chemotherapy-induced bone damage: pathobiology and protective effects of resveratrol and other nutraceuticals. Ann N Y Acad Sci 2017; 1403:109-117. [PMID: 28662275 DOI: 10.1111/nyas.13380] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 11/30/2022]
Abstract
Intensive cancer chemotherapy causes significant bone loss, for which the mechanisms remain unclear and effective treatments are lacking. This is a significant issue particularly for childhood cancers, as the most common ones have a >75% cure rate following chemotherapy; there is an increasing population of survivors who live with chronic bone defects. Studies suggest that these defects are the result of reduced bone from increased marrow fat formation and increased bone resorption following chemotherapy. These changes probably result from altered expression/activation of regulatory molecules or pathways regulating skeletal cell formation and activity. Treatment with methotrexate, an antimetabolite commonly used in childhood oncology, has been shown to increase levels of proinflammatory/pro-osteoclastogenic cytokines (e.g., enhanced NF-κB activation), leading to increased osteoclast formation and bone resorption, as well as to attenuate Wnt signaling, leading to both decreased bone and increased marrow fat formation. In recent years, understanding the mechanisms of action and potential health benefits of selected nutraceuticals, including resveratrol, genistein, icariin, and inflammatory fatty acids, has led to preclinical studies that, in some cases, indicate efficacy in reducing chemotherapy-induced bone defects. We summarize the supporting evidence.
Collapse
Affiliation(s)
- Yu-Wen Su
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ke-Ming Chen
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of People's Liberation Army, Lanzhou, PR China
| | - Mohammadhossein Hassanshahi
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Qian Tang
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Peter R Howe
- Clinical Nutrition Research Centre, University of Newcastle, Callaghan, New South Wales, Australia
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
31
|
Lee AMC, Shandala T, Soo PP, Su YW, King TJ, Chen KM, Howe PR, Xian CJ. Effects of Resveratrol Supplementation on Methotrexate Chemotherapy-Induced Bone Loss. Nutrients 2017; 9:nu9030255. [PMID: 28282956 PMCID: PMC5372918 DOI: 10.3390/nu9030255] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/08/2017] [Indexed: 12/27/2022] Open
Abstract
Intensive cancer chemotherapy is known to cause bone defects, which currently lack treatments. This study investigated the effects of polyphenol resveratrol (RES) in preventing bone defects in rats caused by methotrexate (MTX), a commonly used antimetabolite in childhood oncology. Young rats received five daily MTX injections at 0.75 mg/kg/day. RES was orally gavaged daily for seven days prior to, and during, five-day MTX administration. MTX reduced growth plate thickness, primary spongiosa height, trabecular bone volume, increased marrow adipocyte density, and increased mRNA expression of the osteogenic, adipogenic, and osteoclastogenic factors in the tibial bone. RES at 10 mg/kg was found not to affect bone health in normal rats, but to aggravate the bone damage in MTX-treated rats. However, RES supplementation at 1 mg/kg preserved the growth plate, primary spongiosa, bone volume, and lowered the adipocyte density. It maintained expression of genes involved in osteogenesis and decreased expression of adipogenic and osteoclastogenic factors. RES suppressed osteoclast formation ex vivo of bone marrow cells from the treated rats. These data suggest that MTX can enhance osteoclast and adipocyte formation and cause bone loss, and that RES supplementation at 1 mg/kg may potentially prevent these bone defects.
Collapse
Affiliation(s)
- Alice M C Lee
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5001, Australia.
| | - Tetyana Shandala
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5001, Australia.
| | - Pei Pei Soo
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5001, Australia.
| | - Yu-Wen Su
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5001, Australia.
| | - Tristan J King
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5001, Australia.
| | - Ke-Ming Chen
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of People's Liberation Army, Lanzhou 730050, China.
| | - Peter R Howe
- Clinical Nutrition Research Centre, University of Newcastle, Callaghan NSW 2308, Australia.
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5001, Australia.
| |
Collapse
|
32
|
The role of R-spondins and their receptors in bone metabolism. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:93-100. [DOI: 10.1016/j.pbiomolbio.2016.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/27/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022]
|
33
|
Fan C, Georgiou KR, McKinnon RA, Keefe DMK, Howe PRC, Xian CJ. Combination chemotherapy with cyclophosphamide, epirubicin and 5-fluorouracil causes trabecular bone loss, bone marrow cell depletion and marrow adiposity in female rats. J Bone Miner Metab 2016; 34:277-90. [PMID: 26056019 DOI: 10.1007/s00774-015-0679-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 04/19/2015] [Indexed: 12/16/2022]
Abstract
The introduction of anthracyclines to adjuvant chemotherapy has increased survival rates among breast cancer patients. Cyclophosphamide, epirubicin and 5-fluorouracil (CEF) combination therapy is now one of the preferred regimens for treating node-positive breast cancer due to better survival with less toxicity involved. Despite the increasing use of CEF, its potential in causing adverse skeletal effects remains unclear. Using a mature female rat model mimicking the clinical setting, this study examined the effects of CEF treatment on bone and bone marrow in long bones. Following six cycles of CEF treatment (weekly intravenous injections of cyclophosphamide at 10 mg/kg, epirubicin at 2.5 mg/kg and 5-flurouracil at 10 mg/kg), a significant reduction in trabecular bone volume was observed at the metaphysis, which was associated with a reduced serum level of bone formation marker alkaline phosphatase (ALP), increased trends of osteoclast density and osteoclast area at the metaphysis, as well as an increased size of osteoclasts being formed from the bone marrow cells ex vivo. Moreover, a severe reduction of bone marrow cellularity was observed following CEF treatment, which was accompanied by an increase in marrow adipose tissue volume. This increase in marrow adiposity was associated with an expansion in adipocyte size but not in marrow adipocyte density. Overall, this study indicates that six cycles of CEF chemotherapy may induce some bone loss and severe bone marrow damage. Mechanisms for CEF-induced bone/bone marrow pathologies and potential preventive strategies warrant further investigation.
Collapse
Affiliation(s)
- Chiaming Fan
- School of Pharmacy and Medical Sciences, and Sansom Institute for Health Research, University of South Australia, City East Campus, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Kristen R Georgiou
- School of Pharmacy and Medical Sciences, and Sansom Institute for Health Research, University of South Australia, City East Campus, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Ross A McKinnon
- School of Pharmacy and Medical Sciences, and Sansom Institute for Health Research, University of South Australia, City East Campus, GPO Box 2471, Adelaide, SA, 5001, Australia
- Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Bedford Park, SA, 5042, Australia
| | - Dorothy M K Keefe
- School of Pharmacy and Medical Sciences, and Sansom Institute for Health Research, University of South Australia, City East Campus, GPO Box 2471, Adelaide, SA, 5001, Australia
- SA Cancer Service, SA Cancer Clinical Network, SA Health, Adelaide, SA, 5000, Australia
- Centre of Cancer Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Peter R C Howe
- Clinical Nutrition Research Centre, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, and Sansom Institute for Health Research, University of South Australia, City East Campus, GPO Box 2471, Adelaide, SA, 5001, Australia.
| |
Collapse
|
34
|
Zhou R, Yuan Z, Liu J, Liu J. Calcitonin gene-related peptide promotes the expression of osteoblastic genes and activates the WNT signal transduction pathway in bone marrow stromal stem cells. Mol Med Rep 2016; 13:4689-96. [PMID: 27082317 PMCID: PMC4878536 DOI: 10.3892/mmr.2016.5117] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 01/15/2016] [Indexed: 12/15/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is known to induce osteoblastic differentiation and alkaline phosphatase activity in bone marrow stromal stem cells (BMSCs). However, it has remained elusive whether this effect is mediated by CGRP receptors directly or whether other signaling pathways are involved. The present study assessed the possible involvement of the Wnt/β-catenin signaling pathway in the activation of CGRP signaling during the differentiation of BMSCs. First, the differentiation of BMSCs was induced in vitro and the expression of CGRP receptors was examined by western blot analysis. The effects of exogenous CGRP and LiCl, a stimulator of the Wnt/β-catenin signaling pathway, on the osteoblastic differentiation of BMSCs were assessed; furthermore, the expression of mRNA and proteins involved in the Wnt/β-catenin signaling pathway was assessed using quantitative PCR and western blot analyses. The results revealed that CGRP receptors were expressed throughout the differentiation of BMSCs, at days 7 and 14. Incubation with CGRP and LiCl led to the upregulation of the expression of osteoblastic genes associated with the Wnt/β-catenin pathway, including the mRNA of c-myc, cyclin D1, Lef1, Tcf7 and β-catenin as well as β-catenin protein. However, the upregulation of these genes and β-catenin protein was inhibited by CGRP receptor antagonist or secreted frizzled-related protein, an antagonist of the Wnt/β-catenin pathway. The results of the present study therefore suggested that the Wnt/β-catenin signaling pathway may be involved in CGRP- and LiCl-promoted osteoblastic differentiation of BMSCs.
Collapse
Affiliation(s)
- Ri Zhou
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhi Yuan
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jierong Liu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian Liu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
35
|
Low SA, Galliford CV, Yang J, Low PS, Kopeček J. Biodistribution of Fracture-Targeted GSK3β Inhibitor-Loaded Micelles for Improved Fracture Healing. Biomacromolecules 2015; 16:3145-53. [PMID: 26331790 PMCID: PMC4800810 DOI: 10.1021/acs.biomac.5b00777] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bone fractures constitute a major cause of morbidity and mortality especially in the elderly. Complications associated with osteoporosis drugs and the age of the patient slow bone turnover and render such fractures difficult to heal. Increasing the speed of fracture repair by administration of a fracture-targeted bone anabolic agent could find considerable application. Aspartic acid oligopeptides are negatively charged molecules at physiological pH that adsorb to hydroxyapatite, the mineral portion of bone. This general adsorption is the strongest where bone turnover is highest or where hydroxyapatite is freshly exposed. Importantly, both of these conditions are prominent at fracture sites. GSK3β inhibitors are potent anabolic agents that can promote tissue repair when concentrated in a damaged tissue. Unfortunately, they can also cause significant toxicity when administered systemically and are furthermore difficult to deliver due to their strong hydrophobicity. In this paper, we solve both problems by conjugating the hydrophobic GSK3β inhibitor to a hydrophilic aspartic acid octapeptide using a hydrolyzable bond, thereby generating a bone fracture-targeted water-soluble form of the drug. The resulting amphiphile is shown to assemble into micelles, extending its circulation time while maintaining its fracture-targeting abilities. For measurement of pharmacokinetics, an 125I was introduced at the location of the bromine in the GSK3β inhibitor to minimize any structural differences. Biodistribution studies demonstrate a greater than 4-fold increase in fracture accumulation over healthy bone.
Collapse
Affiliation(s)
- Stewart A. Low
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Chris V. Galliford
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Philip S. Low
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Jindřich Kopeček
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
36
|
D'Oronzo S, Stucci S, Tucci M, Silvestris F. Cancer treatment-induced bone loss (CTIBL): pathogenesis and clinical implications. Cancer Treat Rev 2015; 41:798-808. [PMID: 26410578 DOI: 10.1016/j.ctrv.2015.09.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 12/20/2022]
Abstract
Osteopenia and osteoporosis are often long-term complications of anti-neoplastic treatments, defined as "cancer treatment-induced bone loss" (CTIBL). This pathological condition in oncologic patients results in a higher fracture risk than in the general population, and so has a significant negative impact on their quality of life. Hormone treatment is the main actor in this scenario, but not the only one. In fact, chemotherapies, radiotherapy and tyrosine kinase inhibitors may contribute to deregulate bone remodeling via different mechanisms. Thus, the identification of cancer patients at risk for CTIBL is essential for early diagnosis and appropriate intervention, that includes both lifestyle modifications and pharmacological approaches to prevent bone metabolism failure during anti-tumor treatments.
Collapse
Affiliation(s)
- S D'Oronzo
- University of Bari "Aldo Moro", Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, Piazza Giulio Cesare, 11, 70124 Bari, Italy.
| | - S Stucci
- University of Bari "Aldo Moro", Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, Piazza Giulio Cesare, 11, 70124 Bari, Italy.
| | - M Tucci
- University of Bari "Aldo Moro", Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, Piazza Giulio Cesare, 11, 70124 Bari, Italy.
| | - F Silvestris
- University of Bari "Aldo Moro", Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, Piazza Giulio Cesare, 11, 70124 Bari, Italy.
| |
Collapse
|
37
|
King TJ, Shandala T, Lee AM, Foster BK, Chen KM, Howe PR, Xian CJ. Potential Effects of Phytoestrogen Genistein in Modulating Acute Methotrexate Chemotherapy-Induced Osteoclastogenesis and Bone Damage in Rats. Int J Mol Sci 2015; 16:18293-311. [PMID: 26258775 PMCID: PMC4581246 DOI: 10.3390/ijms160818293] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/03/2015] [Indexed: 02/02/2023] Open
Abstract
Chemotherapy-induced bone damage is a frequent side effect which causes diminished bone mineral density and fracture in childhood cancer sufferers and survivors. The intensified use of anti-metabolite methotrexate (MTX) and other cytotoxic drugs has led to the need for a mechanistic understanding of chemotherapy-induced bone loss and for the development of protective treatments. Using a young rat MTX-induced bone loss model, we investigated potential bone protective effects of phytoestrogen genistein. Oral gavages of genistein (20 mg/kg) were administered daily, for seven days before, five days during, and three days after five once-daily injections (sc) of MTX (0.75 mg/kg). MTX treatment reduced body weight gain and tibial metaphyseal trabecular bone volume (p < 0.001), increased osteoclast density on the trabecular bone surface (p < 0.05), and increased the bone marrow adipocyte number in lower metaphyseal bone (p < 0.001). Genistein supplementation preserved body weight gain (p < 0.05) and inhibited ex vivo osteoclast formation of bone marrow cells from MTX-treated rats (p < 0.001). However, MTX-induced changes in bone volume, trabecular architecture, metaphyseal mRNA expression of pro-osteoclastogenic cytokines, and marrow adiposity were not significantly affected by the co-administration of genistein. This study suggests that genistein may suppress MTX-induced osteoclastogenesis; however, further studies are required to examine its potential in protecting against MTX chemotherapy-induced bone damage.
Collapse
Affiliation(s)
- Tristan J King
- Sansom Institute for Health Research, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5001, Australia.
- Department of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia.
| | - Tetyana Shandala
- Sansom Institute for Health Research, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5001, Australia.
| | - Alice M Lee
- Sansom Institute for Health Research, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5001, Australia.
| | - Bruce K Foster
- Department of Orthopaedic Surgery, Women's and Children's Hospital, North Adelaide, SA 5006, Australia.
| | - Ke-Ming Chen
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of Chinese People's Liberation Army, Lanzhou 730050, China.
| | - Peter R Howe
- Nutritional Physiology Research Centre, School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.
- Clinical Nutrition Research Centre, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
38
|
Abstract
It is estimated that bone loss occurs in 70 % of all patients dying from cancer, causing a significant disease burden in cancer patients. Bone loss is caused by cancer itself and its metastases, but also by cancer therapies. Of the cancer therapy-induced bone loss, hormone therapies are best known for their bone damaging abilities. However, chemo- and radiotherapy may result in bone loss too. In this review, direct and indirect effects of various chemotherapies (such as methotrexate, imatinib, and taxanes) that cause bone loss are discussed. Furthermore, we discuss bone loss caused by radiotherapy and radionuclides, of which the latter may be reduced with the introduction of the alpha-emitter Radium-223. Finally, agents preventing chemotherapy- or radiotherapy-induced bone loss, in particular denosumab and bisphosphonates, are being reviewed for their efficacy in preventing chemotherapy- and irradiation-induced bone loss in cancer patients.
Collapse
Affiliation(s)
- Michel D Wissing
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands,
| |
Collapse
|
39
|
Methotrexate-Induced Bone Marrow Adiposity Is Mitigated by Folinic Acid Supplementation Through the Regulation of Wnt/β-Catenin Signalling. J Cell Physiol 2014; 230:648-56. [DOI: 10.1002/jcp.24788] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/29/2014] [Indexed: 11/07/2022]
|
40
|
Neuropeptide substance P improves osteoblastic and angiogenic differentiation capacity of bone marrow stem cells in vitro. BIOMED RESEARCH INTERNATIONAL 2014; 2014:596023. [PMID: 25050364 PMCID: PMC4090442 DOI: 10.1155/2014/596023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/16/2014] [Indexed: 01/16/2023]
Abstract
Our previous work showed that implanting a sensory nerve or vascular bundle when constructing vascularized and neurotized bone could promote bone osteogenesis in tissue engineering. This phenomenon could be explained by the regulatory function of neuropeptides. Neuropeptide substance P (SP) has been demonstrated to contribute to bone growth by stimulating the proliferation and differentiation of bone marrow stem cells (BMSCs). However, there have been no prior studies on the association between Wnt signaling and the mechanism of SP in the context of BMSC differentiation. Our results have shown that SP could enhance the differentiation of BMSCs by activating gene and protein expression via the Wnt pathway and by translocating β-catenin, which can be inhibited by Wnt signaling blocker treatment or by the NK-1 antagonist. SP could also increase the growth factor level of bone morphogenetic protein-2 (BMP-2). Additionally, SP could enhance the migration ability of BMSCs, and the promotion of vascular endothelial growth factor (VEGF) expression by SP has been studied. In conclusion, SP could induce osteoblastic differentiation via the Wnt pathway and promote the angiogenic ability of BMSCs. These results indicate that a vascularized and neurotized tissue-engineered construct could be feasible for use in bone tissue engineering strategies.
Collapse
|
41
|
Zhang C, Peng J, Wu S, Jin Y, Xia F, Wang C, Liu K, Sun H, Liu M. Dioscin promotes osteoblastic proliferation and differentiation via Lrp5 and ER pathway in mouse and human osteoblast-like cell lines. J Biomed Sci 2014; 21:30. [PMID: 24742230 PMCID: PMC4014146 DOI: 10.1186/1423-0127-21-30] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/31/2014] [Indexed: 12/30/2022] Open
Abstract
Background Dioscin, a typical steroid saponin, is isolated from Dioscorea nipponica Makino and Dioscorea zingiberensis Wright. It has estrogenic activity and many studies have also reported that dioscorea plants have an effect in preventing and treating osteoporosis. However, the molecular mechanisms underlying their effect on osteoporosis treatment are poorly understood. Therefore, the present study aims to investigate the mechanism (s) by which dioscin promotes osteoblastic proliferation and differentiation in mouse pre-osteoblast like MC3T3-E1 cells and human osteoblast-like MG-63 cells. Results We found that dioscin (0.25 μg/ml, 0.5 μg/ml, and 1.0 μg/ml) promoted MC3T3-E1 cells and MG-63 cells proliferation and differentiation dose dependently. Western blot analysis results showed that estrogen receptor α (ER-α), estrogen receptor β (ER-β), β-catenin and Bcl-2 protein expression increased after MC3T3-E1 cells were treated with dioscin. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated that dioscin could increase the ratio of osteoprotegerin (OPG)/receptor activator of NF-κB ligand (RANKL) and up-regulate the level of Lrp5 and β-catenin. And by RNA interference analysis, we proved that the effect of dioscin increasing the ratio of OPG/RANKL was dependent on Lrp5 pathway. In addition, we also found that these effects of dioscin were abolished by ICI 182, 780 (100 nM), an antagonist of ER, indicating that an ER signaling pathway was also involved. We also found that dioscin (0.25 μg/ml, 0.5 μg/ml, and 1.0 μg/ml) induced MG-63 cells proliferation and differentiation in a dose-dependent manner. Western blot analysis results indicated that ER-α, ER-β and β-catenin protein expression increased after MG-63 cells were treated with dioscin. Conclusions The current study is the first to reveal that dioscin can promote osteoblasts proliferation and differentiation via Lrp5 and ER pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.
| | | |
Collapse
|
42
|
Mei G, Zou Z, Fu S, Xia L, Zhou J, Zhang Y, Tuo Y, Wang Z, Jin D. Substance P activates the Wnt signal transduction pathway and enhances the differentiation of mouse preosteoblastic MC3T3-E1 cells. Int J Mol Sci 2014; 15:6224-40. [PMID: 24733069 PMCID: PMC4013624 DOI: 10.3390/ijms15046224] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 03/07/2014] [Accepted: 03/24/2014] [Indexed: 01/15/2023] Open
Abstract
Recent experiments have explored the impact of Wnt/β-catenin signaling and Substance P (SP) on the regulation of osteogenesis. However, the molecular regulatory mechanisms of SP on the formation of osteoblasts is still unknown. In this study, we investigated the impact of SP on the differentiation of MC3T3-E1 cells. The osteogenic effect of SP was observed at different SP concentrations (ranging from 10⁻¹⁰ to 10⁻⁸ M). To unravel the underlying mechanism, the MC3T3-E1 cells were treated with SP after the pretreatment by neurokinin-1 (NK1) antagonists and Dickkopf-1 (DKK1) and gene expression levels of Wnt/β-catenin signaling pathway components, as well as osteoblast differentiation markers (collagen type I, alkaline phosphatase, osteocalcin, and Runx2), were measured using quantitative polymerase chain reaction (PCR). Furthermore, protein levels of Wnt/β-catenin signaling pathway were detected using Western blotting and the effects of SP, NK1 antagonist, and DKK1 on β-catenin activation were investigated by immunofluorescence staining. Our data indicated that SP (10⁻⁹ to 10⁻⁸ M) significantly up-regulated the expressions of osteoblastic genes. SP (10⁻⁸ M) also elevated the mRNA level of c-myc, cyclin D1, and lymphocyte enhancer factor-1 (Lef1), as well as c-myc and β-catenin protein levels, but decreased the expression of Tcf7 mRNA. Moreover, SP (10-8 M) promoted the transfer of β-catenin into nucleus. The effects of SP treatment were inhibited by the NK1 antagonist and DKK1. These findings suggest that SP may enhance differentiation of MC3T3-E1 cells via regulation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Gang Mei
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, Guangdong, China.
| | - Zhenlv Zou
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, Guangdong, China.
| | - Su Fu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, Guangdong, China.
| | - Liheng Xia
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, Guangdong, China.
| | - Jian Zhou
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, Guangdong, China.
| | - Yongtao Zhang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, Guangdong, China.
| | - Yonghua Tuo
- Department of Orthopaedic, Wuzhou Red Cross Hospital, Wuzhou 543002, Guangxi, China.
| | - Zhao Wang
- School of Engineering and Materials Science, Queen Mary University of London, Mile End, London E1 4NS, UK.
| | - Dan Jin
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
43
|
Raghu Nadhanan R, Fan CM, Su YW, Howe PRC, Xian CJ. Fish oil in comparison to folinic acid for protection against adverse effects of methotrexate chemotherapy on bone. J Orthop Res 2014; 32:587-96. [PMID: 24346859 DOI: 10.1002/jor.22565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 11/25/2013] [Indexed: 02/04/2023]
Abstract
Methotrexate (MTX) chemotherapy is known to cause bone loss which lacks specific preventative treatments, although clinically folinic acid is often used to reduce MTX toxicity in soft tissues. This study investigated damaging effects of MTX injections (0.75 mg/kg/day for 5 days) in rats and potential protective benefits of fish oil (0.25, 0.5, or 0.75 ml/100 g/day) in comparison to folinic acid (0.75 mg/kg) in the tibial metaphysis. MTX treatment significantly reduced height of primary spongiosa and volume of trabecular bone while reducing density of osteoblasts. Consistently, MTX reduced osteogenic differentiation but increased adipogenesis of bone marrow stromal cells, accompanied by lower mRNA expression of osteogenic transcription factors Runx2 and Osx, but an up-regulation of adipogenesis-related genes FABP4 and PPAR-γ. MTX also increased osteoclast density, bone marrow osteoclast formation, and mRNA expression of proinflammatory cytokines IL-1, IL-6, TNF-α, and RANKL/OPG ratio in bone. Fish oil (0.5 or 0.75 ml/100 g) or folinic acid supplementation preserved bone volume, osteoblast density, and osteogenic differentiation, and suppressed MTX-induced cytokine expression, osteoclastogenesis, and adipogenesis. Thus, fish oil at 0.5 ml/100 g or above is as effective as folinic acid in counteracting MTX-induced bone damage, conserving bone formation, suppressing resorption and marrow adiposity, suggesting its therapeutic potential in preventing bone loss during MTX chemotherapy.
Collapse
Affiliation(s)
- Rethi Raghu Nadhanan
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, GPO Box 2471, Adelaide, 5001, Australia
| | | | | | | | | |
Collapse
|
44
|
Jiang Y, Zhang Y, Zhang H, Zhu B, Li P, Lu C, Xu Y, Chen W, Lin N. Pravastatin prevents steroid-induced osteonecrosis in rats by suppressing PPARγ expression and activating Wnt signaling pathway. Exp Biol Med (Maywood) 2014; 239:347-55. [PMID: 24510055 DOI: 10.1177/1535370213519215] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Steroid-induced osteonecrosis of the femoral head (steroid-induced ONFH) is characterized by increase of intraosseous pressure because of lipid metabolism disturbance such as elevation of adipogenesis and fat cell hypertrophy in the bone marrow, subsequently leading to disturbances of coagulation-fibrinolysis system in the femoral head and finally resulting in bone ischemia. Pravastatin has been demonstrated to be useful in preventing steroid-induced ONFH in animal models. However, its exact mechanisms acting on this disease have not been fully elucidated. To address this problem, steroid-induced ONFH rat model was constructed to evaluate the effects of pravastatin treatment on the osteonecrotic changes and repair processes. Then, Micro-CT-based micro-angiography was performed to assess the effects of pravastatin treatment on vascularization. In addition, serum lipid levels were detected by haematological examination. After that, the expression of peroxisome proliferator-activated receptor gamma (PPARγ), Wnt3a, low density lipoprotein receptor-related protein 5 (LRP5), β-catenin and runt-related transcription factor 2 (RUNX2) at both mRNA and protein levels were further detected by immunohistochemistry, real-time quantitative PCR, and Western blot analyses. The results, the ratio of empty lacuna, adipose tissue area, and adipocyte perimeter in the bone marrow were dramatically lower in the pravastatin treatment groups than in the model group (all P < 0.05). Moreover, by micro-CT quantification, pravastatin treatment dose-dependently increased vessel volume, vessel surface, percentage of vessel volume, and vessel thickness of the femoral heads of steroid-induced ONFH rats. Importantly, pravastatin treatment could prevent steroid-induced ONFH by suppressing the expression of PPARγ, and increasing the expression of Wnt3a, LRP5, β-catenin, and RUNX2, at both mRNA and protein levels, in the femoral heads of steroid-induced ONFH rats. In conclusion, Pravastatin may prevent steroid-induced ONFH by suppressing PPARγ expression and activating Wnt signaling pathway.
Collapse
Affiliation(s)
- Yini Jiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lee AMC, Morrison JL, Botting KJ, Shandala T, Xian CJ. Effects of Maternal Hypoxia during Pregnancy on Bone Development in Offspring: A Guinea Pig Model. Int J Endocrinol 2014; 2014:916918. [PMID: 24949010 PMCID: PMC4052078 DOI: 10.1155/2014/916918] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 01/21/2023] Open
Abstract
Low birth weight is associated with reduced bone mass and density in adult life. However, effects of maternal hypoxia (MH) on offspring bone development are not known. Objective. The current study investigated the effects of fetal growth restriction induced by MH during the last half of gestation on bone structure and volume in the offspring of the fetus near term and the pup in adolescence. Methods. During 35-62-day gestation (term, 69d), guinea pigs were housed in room air (21% O2; control) or 12% O2 (MH). Offspring femur and tibia were collected at 62d gestation and 120d after birth. Results. MH decreased fetal birth weight but did not affect osteogenic potential pools in the fetal bone marrow. Histological analysis showed no effects of MH on tibial growth plate thickness in either fetal or postnatal offspring, although there was increased VEGF mRNA expression in the growth plate of postnatal offspring. MH did not change primary spongiosa height but lowered collagen-1 mRNA expression in postnatal offspring. There was increased mRNA expression of adipogenesis-related gene (FABP4) in bone from the MH postnatal offspring. Conclusion. MH during late gestation did not change the pool of osteogenic cells before birth or growth plate heights before and after birth. However, MH reduced expression of bone formation marker (collagen-1) and increased expression of fat formation marker (FABP4) in postnatal offspring bone.
Collapse
Affiliation(s)
- Alice M. C. Lee
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, City East Campus, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Janna L. Morrison
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, City East Campus, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Kimberley J. Botting
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, City East Campus, GPO Box 2471, Adelaide, SA 5001, Australia
- Discipline of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Tetyana Shandala
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, City East Campus, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Cory J. Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, City East Campus, GPO Box 2471, Adelaide, SA 5001, Australia
- *Cory J. Xian:
| |
Collapse
|
46
|
Fan C, Garcia M, Scherer M, Tran C, Xian CJ. Potential roles of metallothioneins I and II in protecting bone growth following acute methotrexate chemotherapy. J Chemother 2013; 26:37-48. [PMID: 24090452 DOI: 10.1179/1973947813y.0000000108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Metallothioneins (MTs) are known to participate in protection against oxidative stress. This study assessed the effects of MT-I&II gene knockout on methotrexate (MTX)-induced bone damage in growing mice. MT-I&II knockout (MT⁻/⁻) and wild type (MT⁺/⁺) male mice were injected with saline or 12.5 mg kg⁻¹ MTX for three consecutive days. MTX treatment was shown to cause more severe damage in MT⁻/⁻ mice when compared to MT⁺/⁺ mice, as demonstrated by the more obvious thinning of growth plate, reduced proliferation and increased apoptosis of chondrocytes, and reduced metaphysis heights in the knockout mice. Analysis of total liver glutathione (the most abundant intracellular antioxidant) also revealed significant lower glutathione levels in all MT⁻/⁻ mice. In conclusion, MT⁻/⁻ mice were more susceptible than MT⁺/⁺ mice to MTX-induced bone damages, which may be associated with the reduction of basal antioxidant defence, suggesting a protective role of MTs in the growing skeleton against damages caused by MTX chemotherapy.
Collapse
|
47
|
Vu-Phan D, Grachtchouk V, Yu J, Colby LA, Wicha MS, Koenig RJ. The thyroid cancer PAX8-PPARG fusion protein activates Wnt/TCF-responsive cells that have a transformed phenotype. Endocr Relat Cancer 2013; 20:725-39. [PMID: 24025583 PMCID: PMC3839064 DOI: 10.1530/erc-13-0058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A chromosomal translocation results in the production of a paired box 8-peroxisome proliferator-activated receptor gamma (PAX8-PPARG) fusion protein (PPFP) in ∼35% of follicular thyroid carcinomas. To examine the role of PPFP in thyroid oncogenesis, the fusion protein was stably expressed in the non-transformed rat thyroid cell line PCCL3. PPFP conferred on PCCL3 cells the ability to invade through Matrigel and to form colonies in anchorage-independent conditions. PPFP also increased the fraction of cells with Wnt/TCF-responsive green fluorescent protein reporter gene expression. This Wnt/TCF-activated population was enriched for colony-forming and invading cells. These actions of PPFP required a functional PPARG DNA binding domain (DBD) within PPFP and were further stimulated by PPARG agonists. These data indicate that PPFP, through its PPARG DBD, induces Wnt/TCF pathway activation in a subpopulation of cells, and these cells have properties of cellular transformation including increased invasiveness and anchorage-independent growth.
Collapse
Affiliation(s)
- Dang Vu-Phan
- Cellular and Molecular Biology Graduate Program, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, 48109, USA
| | | | | | | | | | | |
Collapse
|
48
|
Marques C, Teixeira D, Cunha A, Meireles M, Pestana D, Keating E, Calhau C, Monteiro R, Faria A. Methotrexate enhances 3T3-L1 adipocytes hypertrophy. Cell Biol Toxicol 2013; 29:293-302. [PMID: 23955089 DOI: 10.1007/s10565-013-9255-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/05/2013] [Indexed: 11/26/2022]
Abstract
Methotrexate (MTX) is broadly used in the treatment of chronic inflammatory diseases such as rheumatoid arthritis (RA). The prevalence of metabolic syndrome (MeS) in patients with this condition is relatively high. Given the importance of adipose tissue in the development of obesity metabolic complications, this study aimed to investigate the effect of methotrexate on preadipocyte proliferation, adipogenesis, and glucose uptake by adipocytes. 3T3-L1 preadipocytes proliferation was evaluated by sulforhodamine B staining and (3)H-thymidine incorporation, after 24 or 48 h of treatment with MTX (0.1 and 10 μM). Preadipocytes were induced to differentiate with an appropriate adipogenic cocktail in the presence or absence of MTX. Adipogenesis was determined by measuring lipid accumulation after staining with oil red O. (3)H-Deoxyglucose ((3)H-DG) uptake was determined by liquid scintillation counting. MTX treatment reduced culture protein content in a concentration-dependent manner and (3)H-thymidine incorporation (P < 0.05). MTX (0.1 μM) treatment increased lipid accumulation and basal (3)H-DG uptake by adipocytes (P < 0.05). In 0.1 μM MTX-treated adipocytes, insulin stimulation did not result in an increase of (3)H-DG uptake, contrarily to what was observed in control cells. These results demonstrate that methotrexate interferes with adipocyte proliferation and promotes the hypertrophic growth of adipocytes. These molecular effects may have implications on metabolic profile of RA patients treated with MTX.
Collapse
Affiliation(s)
- Cláudia Marques
- Departamento de Bioquímica (U38-FCT), Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Oporto, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Raghu Nadhanan R, Skinner J, Chung R, Su YW, Howe PR, Xian CJ. Supplementation with fish oil and genistein, individually or in combination, protects bone against the adverse effects of methotrexate chemotherapy in rats. PLoS One 2013; 8:e71592. [PMID: 23951199 PMCID: PMC3741109 DOI: 10.1371/journal.pone.0071592] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/08/2013] [Indexed: 01/22/2023] Open
Abstract
Cancer chemotherapy has been shown to induce long-term skeletal side effects such as osteoporosis and fractures; however, there are no preventative treatments. This study investigated the damaging effects of anti-metabolite methotrexate (MTX) subcutaneous injections (0.75 mg/kg BW) for five days and the potential protective benefits of daily oral gavage of fish oil at 0.5 mL/100 g BW (containing 375 mg of n-3 PUFA/100 g BW), genistein (2 mg/100 g BW), or their combination in young adult rats. MTX treatment alone significantly reduced primary spongiosa height and secondary spongiosa trabecular bone volume. Bone marrow stromal cells from the treated rats showed a significant reduction in osteogenic differentiation but an increase in adipogenesis ex vivo. Consistently, stromal cells had significantly higher mRNA levels of adipogenesis-related proliferator activator activated receptor-γ (PPAR-γ) and fatty acid binding protein (FABP4). MTX significantly increased the numbers of bone-resorbing osteoclasts and marrow osteoclast precursor cell pool while significantly enhancing the mRNA expression of receptor activator for nuclear factor kappa B ligand (RANKL), the RANKL/osteoprotegerin (OPG) ratio, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the bone. Supplementary treatment with fish oil and/or genistein significantly preserved trabecular bone volume and osteogenesis but suppressed MTX-induced adipogenesis and increases in osteoclast numbers and pro-osteoclastogenic cytokine expression. Thus, Fish oil and/or genistein supplementation during MTX treatment enabled not only preservation of osteogenic differentiation, osteoblast number and bone volume, but also prevention of MTX treatment-induced increases in bone marrow adiposity, osteoclastogenic cytokine expression and osteoclast formation, and thus bone loss.
Collapse
Affiliation(s)
- Rethi Raghu Nadhanan
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jayne Skinner
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Rosa Chung
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Yu-Wen Su
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Peter R. Howe
- Clinical Nutrition Research Centre, University of Newcastle, Callaghan, New South Wales, Australia
| | - Cory J. Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|