1
|
Nebot E, Martínez R, Kapravelou G, Sánchez C, Llopis J, Aranda P, Porres JM, López-Jurado M, Pietschmann P. Combination of Caloric Restriction and a Mixed Training Protocol as an Effective Strategy to Counteract the Deleterious Effects in Trabecular Bone Microarchitecture Caused by a Diet-Induced Obesity in Sprague Dawley Rats. Nutrients 2022; 14:nu14183672. [PMID: 36145048 PMCID: PMC9504808 DOI: 10.3390/nu14183672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The association of obesity with changes in bone mass is not clear. Obese individuals tend to have an increased bone mineral density, but other studies have shown that obesity is a major risk factor for fractures. The mechanisms of bone response during a weight loss therapy as well as the possible osteoprotective effect of exercise should be analyzed. The aim of this study was to test the effects of a weight-loss program based on the combination of caloric restriction and/or a mixed training protocol on different parameters of bone morphology and functionality in a DIO rat model. Three stages were established over a 21-week period (obesity induction 0–12 w, weight loss intervention 12–15 w, weight maintenance intervention 15–21 w) in 88 male Sprague Dawley rats. Bone microarchitecture, total mineral and elemental composition, and bone metabolism parameters were assessed. Weight loss interventions were associated to healthy changes in body composition, decreasing body fat and increasing lean body mass. On the other hand, obesity was related to a higher content of bone resorption and inflammatory markers, which was decreased by the weight control interventions. Caloric restriction led to marked changes in trabecular microarchitecture, with a significant decrease in total volume but no changes in bone volume (BV). In addition, the intervention diet caused an increase in trabeculae number and a decrease in trabecular spacing. The training protocol increased the pore diameter and reversed the changes in cortical porosity and density of BV induced by the high protein diet at diaphysis level. Regarding the weight-maintenance stage, diminished SMI values indicate the presence of more plate-like spongiosa in sedentary and exercise groups. In conclusion, the lifestyle interventions of caloric restriction and mixed training protocol implemented as weight loss strategies have been effective to counteract some of the deleterious effects caused by a dietary induction of obesity, specifically in trabecular bone morphometric parameters as well as bone mineral content.
Collapse
Affiliation(s)
- Elena Nebot
- Department of Physiology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Rosario Martínez
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), University of Granada, Avda del Conocimiento s/n, 18100 Armilla, Spain
| | - Garyfallia Kapravelou
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), University of Granada, Avda del Conocimiento s/n, 18100 Armilla, Spain
| | - Cristina Sánchez
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), University of Granada, Avda del Conocimiento s/n, 18100 Armilla, Spain
| | - Juan Llopis
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), University of Granada, Avda del Conocimiento s/n, 18100 Armilla, Spain
| | - Pilar Aranda
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), University of Granada, Avda del Conocimiento s/n, 18100 Armilla, Spain
| | - Jesús M. Porres
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), University of Granada, Avda del Conocimiento s/n, 18100 Armilla, Spain
- Correspondence:
| | - María López-Jurado
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), University of Granada, Avda del Conocimiento s/n, 18100 Armilla, Spain
| | - Peter Pietschmann
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Lee S, Shin YA, Cho J, Park DH, Kim C. Moderate-Intensity Exercise Preserves Bone Mineral Density and Improves Femoral Trabecular Bone Microarchitecture in Middle-Aged Mice. J Bone Metab 2022; 29:103-111. [PMID: 35718927 PMCID: PMC9208899 DOI: 10.11005/jbm.2022.29.2.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background Aging leads to significant bone loss and elevated osteoporosis risk. Exercise slows age-related bone loss; however, the effects of various moderate-intensity exercise training volumes on bone metabolism remain unclear. This study aimed to determine the degree to which different volumes of moderate-intensity aerobic exercise training influence bone mineral density (BMD), bone mineral content (BMC), femoral trabecular bone microarchitecture, and cortical bone in middle-aged mice. Methods Twenty middle-aged male C57BL/6 mice were randomly assigned 8 weeks of either (1) non-exercise (CON); (2) moderate-intensity with high-volume exercise (EX_MHV); or (3) moderate-intensity with low-volume exercise (EX_MLV) (N=6–7, respectively). Femoral BMD and BMC were evaluated using dual energy X-ray absorptiometry, and trabecular and cortical bone were measured using micro-computed tomography. Results Femoral BMD in EX_MHV but not EX_MLV was significantly higher (P<0.05) than in CON. The distal femoral fractional trabecular bone volume/tissue volume (BV/TV, %) was significantly higher (P<0.05) in both EX_MHV and EX_MLV than in CON mice. Increased BV/TV was induced by significantly increased trabecular thickness (mm) and tended to be higher (P<0.10) in BV (mm3) and lower in trabecular separation (mm) in EX_MHV and EX_MLV than in CON. The femoral mid-diaphysis cortical bone was stronger in EX_MLV than EX_MHV. Conclusions Long-term moderate-intensity aerobic exercise with low to high volumes can be thought to have a positive effect on hindlimb BMD and attenuate age-associated trabecular bone loss in the femur. Moderate-intensity aerobic exercise may be an effective and applicable exercise regimen to prevent age-related loss of BMD and BV.
Collapse
Affiliation(s)
- Seungyong Lee
- Department of Physiology, College of Graduate Studies, Midwestern University Arizona College of Osteopathic Medicine, Glendale, AZ, USA
| | - Yun-A Shin
- Department of Prescription and Rehabilitation of Exercise, College of Sport Science, Dankook University, Cheonan, Korea
| | - Jinkyung Cho
- Department of Sport Science, Korea Institute of Sport Science, Seoul, Korea
| | - Dong-Ho Park
- Department of Kinesiology, Inha University, Incheon, Korea
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, Korea
| | - Changsun Kim
- Department of Physical Education, Dongduk Women’s University, Seoul, Korea
| |
Collapse
|
3
|
Hematopoietic Progenitors and the Bone Marrow Niche Shape the Inflammatory Response and Contribute to Chronic Disease. Int J Mol Sci 2022; 23:ijms23042234. [PMID: 35216355 PMCID: PMC8879433 DOI: 10.3390/ijms23042234] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
It is now well understood that the bone marrow (BM) compartment can sense systemic inflammatory signals and adapt through increased proliferation and lineage skewing. These coordinated and dynamic alterations in responding hematopoietic stem and progenitor cells (HSPCs), as well as in cells of the bone marrow niche, are increasingly viewed as key contributors to the inflammatory response. Growth factors, cytokines, metabolites, microbial products, and other signals can cause dysregulation across the entire hematopoietic hierarchy, leading to lineage-skewing and even long-term functional adaptations in bone marrow progenitor cells. These alterations may play a central role in the chronicity of disease as well as the links between many common chronic disorders. The possible existence of a form of “memory” in bone marrow progenitor cells is thought to contribute to innate immune responses via the generation of trained immunity (also called innate immune memory). These findings highlight how hematopoietic progenitors dynamically adapt to meet the demand for innate immune cells and how this adaptive response may be beneficial or detrimental depending on the context. In this review, we will discuss the role of bone marrow progenitor cells and their microenvironment in shaping the scope and scale of the immune response in health and disease.
Collapse
|
4
|
Sherk VD, Heveran CM, Foright RM, Johnson GC, Presby DM, Ferguson VL, MacLean PS. Sex differences in the effect of diet, obesity, and exercise on bone quality and fracture toughness. Bone 2021; 145:115840. [PMID: 33418101 PMCID: PMC11313485 DOI: 10.1016/j.bone.2021.115840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/03/2020] [Accepted: 12/30/2020] [Indexed: 11/23/2022]
Abstract
Bone fragility and obesity are both diseases that are multifactorial in etiology and pathology. The contributing role of high fat diet (HFD) versus energy overconsumption on bone health is controversial. Exercise is often prescribed for improving bone health, but it is unclear whether HFD or overconsumption influences skeletal adaptations to exercise. Female and male Wistar rats were fed HFD or low fat diet (LFD) for 10 weeks, starting at 8 weeks of age. Within HFD, rats were labeled Obesity-Resistant (OR) or Obesity-Prone (OP) based on weight and fat gain. Within each diet and phenotype group, rats were randomized to treadmill exercise or sedentary control (SED) for the final 4 weeks. Femurs were assessed for fracture toughness. Cortical lamellar and nonlamellar bone microscale material behavior and chemistry were assessed using nanoindentation and Raman spectroscopy. Female bones had higher fracture toughness and mineral: matrix ratio than male bones. Diet and energy overconsumption affected bone characteristics in a sex-dependent manner, where the divergence between OP and OR in response to HFD occurred more rapidly in males. Diet composition, in general, had a stronger effect on bone quality than overconsumption. HFD dramatically decreased bone size and lamellar mineral:matrix compared to LFD. Effects of short-term exercise training on microscale tissue properties were generally more robust with LFD. Exercise enhanced the contrast between lamellar and nonlamellar bone for nanoindentation modulus but decreased this contrast for plastic work. Our data demonstrate the complexities in the relationship between diet and obesity and highlight the importance of addressing both aspects when characterizing bone quality and fracture resistance.
Collapse
Affiliation(s)
- Vanessa D Sherk
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.
| | - Chelsea M Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, United States of America
| | - Rebecca M Foright
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Ginger C Johnson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - David M Presby
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Virginia L Ferguson
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America; Department of Mechanical Engineering, University of Colorado, Boulder, CO; (5)BioFrontiers Institute, University of Colorado, Boulder, CO, United States of America
| | - Paul S MacLean
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| |
Collapse
|
5
|
Jensen VFH, Mølck AM, Dalgaard M, McGuigan FE, Akesson KE. Changes in bone mass associated with obesity and weight loss in humans: Applicability of animal models. Bone 2021; 145:115781. [PMID: 33285255 DOI: 10.1016/j.bone.2020.115781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/05/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022]
Abstract
The implications of obesity and weight loss for human bone health are not well understood. Although the bone changes associated with weight loss are similar in humans and rodents, that is not the case for obesity. In humans, obesity is generally associated with increased bone mass, an outcome which is exacerbated by advanced age and menopause. In rodents, by contrast, bone mass decreases in proportion to severity and duration of obesity, and is influenced by sex, age and mechanical load. Despite these discrepancies, rodents are frequently used to model the situation in humans. In this review, we summarise the existing knowledge of the effects of obesity and weight loss on bone mass in humans and rodents, focusing on the translatability of findings from animal models. We then describe how animal models should be used to broaden the understanding of the relationship between obesity, weight loss, and skeletal health in humans. Specifically, we highlight the aspects of study design that should be considered to optimise translatability of the rodent models of obesity and weight loss. Notably, the sex, age, and nutritional status of the animals should ideally match those of interest in humans. With these caveats in mind, and depending on the research question asked, our review underscores that animal models can provide valuable information for obesity and weight-management research.
Collapse
Affiliation(s)
- Vivi F H Jensen
- Lund University, Department of Clinical Sciences Malmö and Skåne University Hospital, Department of Orthopedics, Inga Marie Nilssons Gata 22, 205 02 Malmö, Sweden.
| | - Anne-Marie Mølck
- Novo Nordisk A/S, Department of Safety Sciences, Imaging & Data Management, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Majken Dalgaard
- Novo Nordisk A/S, Department of Safety Sciences, Imaging & Data Management, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Fiona E McGuigan
- Lund University, Department of Clinical Sciences Malmö and Skåne University Hospital, Department of Orthopedics, Inga Marie Nilssons Gata 22, 205 02 Malmö, Sweden
| | - Kristina E Akesson
- Lund University, Department of Clinical Sciences Malmö and Skåne University Hospital, Department of Orthopedics, Inga Marie Nilssons Gata 22, 205 02 Malmö, Sweden
| |
Collapse
|
6
|
High-Intensity Interval Training and α-Linolenic Acid Supplementation Improve DHA Conversion and Increase the Abundance of Gut Mucosa-Associated Oscillospira Bacteria. Nutrients 2021; 13:nu13030788. [PMID: 33673609 PMCID: PMC7997329 DOI: 10.3390/nu13030788] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity, a major public health problem, is the consequence of an excess of body fat and biological alterations in the adipose tissue. Our aim was to determine whether high-intensity interval training (HIIT) and/or α-linolenic acid supplementation (to equilibrate the n-6/n-3 polyunsaturated fatty acids (PUFA) ratio) might prevent obesity disorders, particularly by modulating the mucosa-associated microbiota. Wistar rats received a low fat diet (LFD; control) or high fat diet (HFD) for 16 weeks to induce obesity. Then, animals in the HFD group were divided in four groups: HFD (control), HFD + linseed oil (LO), HFD + HIIT, HFD + HIIT + LO. In the HIIT groups, rats ran on a treadmill, 4 days.week-1. Erythrocyte n-3 PUFA content, body composition, inflammation, and intestinal mucosa-associated microbiota composition were assessed after 12 weeks. LO supplementation enhanced α-linolenic acid (ALA) to docosahexaenoic acid (DHA) conversion in erythrocytes, and HIIT potentiated this conversion. Compared with HFD, HIIT limited weight gain, fat mass accumulation, and adipocyte size, whereas LO reduced systemic inflammation. HIIT had the main effect on gut microbiota β-diversity, but the HIIT + LO association significantly increased Oscillospira relative abundance. In our conditions, HIIT had a major effect on body fat mass, whereas HIIT + LO improved ALA conversion to DHA and increased the abundance of Oscillospira bacteria in the microbiota.
Collapse
|
7
|
Benova A, Tencerova M. Obesity-Induced Changes in Bone Marrow Homeostasis. Front Endocrinol (Lausanne) 2020; 11:294. [PMID: 32477271 PMCID: PMC7235195 DOI: 10.3389/fendo.2020.00294] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022] Open
Abstract
Obesity is characterized by low-grade inflammation, which is accompanied by increased accumulation of immune cells in peripheral tissues including adipose tissue (AT), skeletal muscle, liver and pancreas, thereby impairing their primary metabolic functions in the regulation of glucose homeostasis. Obesity has also shown to have a detrimental effect on bone homeostasis by altering bone marrow and hematopoietic stem cell differentiation and thus impairing bone integrity and immune cell properties. The origin of immune cells arises in the bone marrow, which has been shown to be affected with the obesogenic condition via increased cellularity and shifting differentiation and function of hematopoietic and bone marrow mesenchymal stem cells in favor of myeloid progenitors and increased bone marrow adiposity. These obesity-induced changes in the bone marrow microenvironment lead to dramatic bone marrow remodeling and compromising immune cell functions, which in turn affect systemic inflammatory conditions and regulation of whole-body metabolism. However, there is limited information on the inflammatory secretory factors creating the bone marrow microenvironment and how these factors changed during metabolic complications. This review summarizes recent findings on inflammatory and cellular changes in the bone marrow in relation to obesity and further discuss whether dietary intervention or physical activity may have beneficial effects on the bone marrow microenvironment and whole-body metabolism.
Collapse
|
8
|
Papageorgiou M, Kerschan-Schindl K, Sathyapalan T, Pietschmann P. Is Weight Loss Harmful for Skeletal Health in Obese Older Adults? Gerontology 2019; 66:2-14. [DOI: 10.1159/000500779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/06/2019] [Indexed: 11/19/2022] Open
|
9
|
Yuan Y, Chen X, Zhang L, Wu J, Guo J, Zou D, Chen B, Sun Z, Shen C, Zou J. The roles of exercise in bone remodeling and in prevention and treatment of osteoporosis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:122-130. [DOI: 10.1016/j.pbiomolbio.2015.11.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 12/23/2022]
|
10
|
Qi Z, Liu W, Lu J. The mechanisms underlying the beneficial effects of exercise on bone remodeling: Roles of bone-derived cytokines and microRNAs. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:131-139. [PMID: 27179638 DOI: 10.1016/j.pbiomolbio.2016.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/02/2016] [Accepted: 05/07/2016] [Indexed: 12/31/2022]
Abstract
Bone remodeling is highly dynamic and complex in response to mechanical loading, such as exercise. In this review, we concluded that a number of individual factors are disturbing the clinical effects of exercise on bone remodeling. We updated the progress made on the differentiation of osteoblasts and osteoclasts in response to mechanical loading, hoping to provide a theoretical basis to improve bone metabolism with exercise. Increasing evidences indicate that bone is not only a structural scaffold but also an endocrine organ, which secretes osteocalcin and FGF23. Both of them have been known as a circulating hormone to promote insulin sensitivity and reduce body fat mass. The effects of exercise on these bone-derived cytokines provide a better understanding of how exercise-induced "osteokine" affects the whole-body homeostasis. Additionally, we discussed recent studies highlighting the post-transcriptional regulation of microRNAs in bone remodeling. We focus on the involvement of the microRNAs in osteoblastogenesis and osteoclastogenesis, and suggest that microRNAs may be critical for exercise-induced bone remodeling.
Collapse
Affiliation(s)
- Zhengtang Qi
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (East China Normal University), Ministry of Education, Shanghai 200241, China; School of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Weina Liu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (East China Normal University), Ministry of Education, Shanghai 200241, China; School of Physical Education and Health, East China Normal University, Shanghai 200241, China.
| | - Jianqiang Lu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
11
|
Macedo AP, Shimano RC, Ferrari DT, Issa JPM, Jordão AA, Shimano AC. Influence of treadmill training on bone structure under osteometabolic alteration in rats subjected to high-fat diet. Scand J Med Sci Sports 2016; 27:167-176. [PMID: 26923426 DOI: 10.1111/sms.12650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2016] [Indexed: 01/02/2023]
Abstract
Nutrition and physical training have important roles in the accumulation and maintenance of bone mass. The aim of this study was to evaluate, in ovariectomized rats (OVX), the effects of treadmill training (T) with high-fat diet (F) on weight gain and bone tissue properties with eight groups (n = 10) for 12 weeks: OVX SC (OVX, sedentary lifestyle, diet control); OVX SF; OVX TC; OVX TF; SH SC (SHAM, sedentary lifestyle, diet control); SH SF; SH TC; and SH TF. Weekly weight gain and final body composition were assessed. After euthanasia, tibiae were analyzed. The trained animals had higher body weight (P = 0.001), bone mineral density (P < 0.001), and trabecular bone (P < 0.001). The animals with a high-fat diet showed higher global fat (P < 0.001), percentage of global fat (P < 0.001) and deformation at impact (P = 0.031) and reduced tibial bone mineral content (P = 0.036). Physical training improves bone microarchitecture, without presenting an increase in impact resistance, and a high-fat diet increases body fat and impairs bone mineralization.
Collapse
Affiliation(s)
- A P Macedo
- Bioengineering Laboratory, Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - R C Shimano
- Bioengineering Laboratory, Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - D T Ferrari
- Bioengineering Laboratory, Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - J P M Issa
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - A A Jordão
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - A C Shimano
- Bioengineering Laboratory, Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Cao JJ, Picklo MJ. Involuntary wheel running improves but does not fully reverse the deterioration of bone structure of obese rats despite decreasing adiposity. Calcif Tissue Int 2015; 97:145-55. [PMID: 25903229 DOI: 10.1007/s00223-015-9992-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
Abstract
This study investigated whether exercise or antioxidant supplementation with vitamin C and E during exercise affects bone structure and markers of bone metabolism in obese rat. Sprague-Dawley rats, 6-week old, were fed a normal-fat diet (NF, 10 % kcal as fat) and a high-fat diet (HF, 45 % with extra fat from lard) ad libitum for 14 weeks. Then, rats on the high-fat diet were assigned randomly to three treatment groups for additional 12 weeks with forced exercise: HF; HF + exercise (HF + Ex); and HF with vitamin C (0.5 g ascorbate/kg diet) and vitamin E (0.4 g α-tocopherol acetate/kg diet) supplementation + exercise (HF + Ex + VCE). At the end of the study, body weight and fat (%) were similar among NF, HF + Ex, and HF + Ex + VCE, whereas HF had greater body weight and fat (%) than other groups. Compared to NF, HF had elevated serum leptin, tartrate-resistant acid phosphatase (TRAP), and IGF-1; increased trabecular separation and structural model index; and lowered bone mineral density, trabecular connectivity density, and trabecular number in distal femur, while HF + Ex and HF + Ex + VCE had elevated serum TRAP and decreased bone volume/total volume and trabecular number of distal femurs. Compared to HF, HF + Ex and HF + Ex + VCE had decreased serum TRAP and osteocalcin and improved bone structural properties of the distal femur. These findings suggest that exercise, while decreasing body fat, does not fully protect against the negative skeletal effects of existing obesity induced by a high-fat diet. Furthermore, vitamin C and E supplementation has no additional benefits on bone structural properties during exercise.
Collapse
Affiliation(s)
- Jay J Cao
- Grand Forks Human Nutrition Research Center, USDA, Agricultural Research Service, 2420 2nd Ave N, Grand Forks, ND, 58202-9034, USA,
| | | |
Collapse
|
13
|
Ennequin G, Boisseau N, Caillaud K, Chavanelle V, Gerbaix M, Metz L, Etienne M, Walrand S, Masgrau A, Guillet C, Courteix D, Niu A, Li YP, Capel F, Sirvent P. Exercise training and return to a well-balanced diet activate the neuregulin 1/ErbB pathway in skeletal muscle of obese rats. J Physiol 2015; 593:2665-77. [PMID: 25820551 DOI: 10.1113/jp270026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 03/17/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Some studies suggest that neuregulin 1 (NRG1) could be involved in the regulation of skeletal muscle energy metabolism in rodents. Here we assessed whether unbalanced diet is associated with alterations of the NRG1 signalling pathway and whether exercise and diet might restore NRG1 signalling in skeletal muscle of obese rats. We show that diet-induced obesity does not impair NRG1 signalling in rat skeletal muscle. We also report that endurance training and a well-balanced diet activate the NRG1 signalling in skeletal muscle of obese rats, possibly via a new mechanism mediated by the protease ADAM17. These results suggest that some beneficial effects of physical activity and diet in obese rats could be partly explained by stimulation of the NRG1 signalling pathway. ABSTRACT Some studies suggest that the signalling pathway of neuregulin 1 (NRG1), a protein involved in the regulation of skeletal muscle metabolism, could be altered by nutritional and exercise interventions. We hypothesized that diet-induced obesity could lead to alterations of the NRG1 signalling pathway and that chronic exercise could improve NRG1 signalling in rat skeletal muscle. To test this hypothesis, male Wistar rats received a high fat/high sucrose (HF/HS) diet for 16 weeks. At the end of this period, NRG1 and ErbB expression/activity in skeletal muscle was assessed. The obese rats then continued the HF/HS diet or were switched to a well-balanced diet. Moreover, in both groups, half of the animals also performed low intensity treadmill exercise training. After another 8 weeks, NRG1 and ErbB expression/activity in skeletal muscle were tested again. The 16 week HF/HS diet induced obesity, but did not significantly affect the NRG1/ErbB signalling pathway in rat skeletal muscle. Conversely, after the switch to a well-balanced diet, NRG1 cleavage ratio and ErbB4 amount were increased. Chronic exercise training also promoted NRG1 cleavage, resulting in increased ErbB4 phosphorylation. This result was associated with increased protein expression and phosphorylation ratio of the metalloprotease ADAM17, which is involved in NRG1 shedding. Similarly, in vitro stretch-induced activation of ADAM17 in rat myoblasts induced NRG1 cleavage and ErbB4 activation. These results show that low intensity endurance training and well-balanced diet activate the NRG1-ErbB4 pathway, possibly via the metalloprotease ADAM17, in skeletal muscle of diet-induced obese rats.
Collapse
Affiliation(s)
- Gaël Ennequin
- Université Clermont Auvergne, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l'Exercice en Conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171, Aubière Cedex, France.,CRNH-Auvergne, Clermont-Ferrand, F-63001, France
| | - Nathalie Boisseau
- Université Clermont Auvergne, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l'Exercice en Conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171, Aubière Cedex, France.,CRNH-Auvergne, Clermont-Ferrand, F-63001, France
| | - Kevin Caillaud
- Université Clermont Auvergne, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l'Exercice en Conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171, Aubière Cedex, France.,CRNH-Auvergne, Clermont-Ferrand, F-63001, France
| | - Vivien Chavanelle
- Université Clermont Auvergne, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l'Exercice en Conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171, Aubière Cedex, France.,CRNH-Auvergne, Clermont-Ferrand, F-63001, France
| | - Maude Gerbaix
- Université Clermont Auvergne, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l'Exercice en Conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171, Aubière Cedex, France.,CRNH-Auvergne, Clermont-Ferrand, F-63001, France
| | - Lore Metz
- Université Clermont Auvergne, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l'Exercice en Conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171, Aubière Cedex, France.,CRNH-Auvergne, Clermont-Ferrand, F-63001, France
| | - Monique Etienne
- Université Clermont Auvergne, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l'Exercice en Conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171, Aubière Cedex, France.,CRNH-Auvergne, Clermont-Ferrand, F-63001, France
| | - Stéphane Walrand
- CRNH-Auvergne, Clermont-Ferrand, F-63001, France.,INRA, UMR 1019, Clermont-Ferrand, F-63001, France.,University Clermont 1, UFR Médecine, Clermont-Ferrand, F-63001, France
| | - Aurélie Masgrau
- CRNH-Auvergne, Clermont-Ferrand, F-63001, France.,INRA, UMR 1019, Clermont-Ferrand, F-63001, France.,University Clermont 1, UFR Médecine, Clermont-Ferrand, F-63001, France
| | - Christelle Guillet
- CRNH-Auvergne, Clermont-Ferrand, F-63001, France.,INRA, UMR 1019, Clermont-Ferrand, F-63001, France.,University Clermont 1, UFR Médecine, Clermont-Ferrand, F-63001, France
| | - Daniel Courteix
- Université Clermont Auvergne, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l'Exercice en Conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171, Aubière Cedex, France.,CRNH-Auvergne, Clermont-Ferrand, F-63001, France
| | - Airu Niu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Centre, Houston, TX, 77030, USA
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Centre, Houston, TX, 77030, USA
| | - Fréderic Capel
- CRNH-Auvergne, Clermont-Ferrand, F-63001, France.,INRA, UMR 1019, Clermont-Ferrand, F-63001, France.,University Clermont 1, UFR Médecine, Clermont-Ferrand, F-63001, France
| | - Pascal Sirvent
- Université Clermont Auvergne, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l'Exercice en Conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171, Aubière Cedex, France.,CRNH-Auvergne, Clermont-Ferrand, F-63001, France
| |
Collapse
|