1
|
Mardiyantoro F, Chiba N, Seong CH, Tada R, Ohnishi T, Nakamura N, Matsuguchi T. Two-sided function of osteopontin during osteoblast differentiation. J Biochem 2025; 177:121-131. [PMID: 39658208 DOI: 10.1093/jb/mvae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Osteopontin (OPN) is expressed in various cell types including osteoblasts. OPN expression level is robustly increased during osteoblast differentiation. Although OPN was initially found as a secretory protein (sOPN), recent reports identified the intracellular isoform of OPN (iOPN). Distinct functions of each OPN isoform in osteoblasts, however, are not well established. Here, using the Tet-On inducible expression system, we examined the role of each OPN isoform during osteoblast differentiation. Induced overexpression of wild type OPN (wtOPN), which includes both sOPN and iOPN, significantly increased matrix mineralization and osteogenic marker gene expression during osteogenic differentiation induced by either ascorbic acid or bone morphogenetic protein (BMP) 9. In contrast, these osteogenic differentiation processes were significantly inhibited by the specific overexpression of iOPN. Furthermore, the addition of recombinant OPN or neutralizing anti-OPN antibody to the culture medium exerted promotive or inhibitory effect on osteoblast differentiation, respectively. These data strongly indicate that iOPN exerts inhibitory effects on osteoblast differentiation, whereas sOPN exerts positive effects. We also found that the secretion process of OPN is positively regulated by c-Jun N-terminal kinase (JNK) activity in osteoblasts.
Collapse
Affiliation(s)
- Fredy Mardiyantoro
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
- Department of Oral and Maxillofacial Surgery, Dentistry Faculty of Brawijaya University, Jalan Veteran 65145, Malang, Indonesia
| | - Norika Chiba
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Chang-Hwan Seong
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
- Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ryohei Tada
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Norifumi Nakamura
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
2
|
Lira dos Santos EJ, Mohamed FF, Kramer K, Foster BL. Dental manifestations of hypophosphatasia: translational and clinical advances. JBMR Plus 2025; 9:ziae180. [PMID: 39872235 PMCID: PMC11770227 DOI: 10.1093/jbmrpl/ziae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/30/2025] Open
Abstract
Hypophosphatasia (HPP) is an inherited error in metabolism resulting from loss-of-function variants in the ALPL gene, which encodes tissue-nonspecific alkaline phosphatase (TNAP). TNAP plays a crucial role in biomineralization of bones and teeth, in part by reducing levels of inorganic pyrophosphate (PPi), an inhibitor of biomineralization. HPP onset in childhood contributes to rickets, including growth plate defects and impaired growth. In adulthood, osteomalacia from HPP contributes to increased fracture risk. HPP also affects oral health. The dentoalveolar complex, that is, the tooth and supporting connective tissues of the surrounding periodontia, include 4 unique hard tissues: enamel, dentin, cementum, and alveolar bone, and all can be affected by HPP. Premature tooth loss of fully rooted teeth is pathognomonic for HPP. Patients with HPP often have complex oral health issues that require multidisciplinary dental care, potentially involving general or pediatric dentists, periodontists, prosthodontists, and orthodontists. The scientific literature to date has relatively few reports on dental care of individuals with HPP. Animal models to study HPP included global Alpl knockout mice, Alpl mutation knock-in mice, and mice with tissue-specific conditional Alpl ablation, allowing for new studies on pathological mechanisms and treatment effects in dental and skeletal tissues. Enzyme replacement therapy (ERT) in the form of injected, recombinant mineralized tissue-targeted TNAP has been available for nearly a decade and changed the prognosis for those with HPP. However, effects of ERT on dental tissues remain poorly defined and limitations of the current ERT have prompted exploration of gene therapy approaches to treat HPP. Preclinical gene therapy studies are promising and may contribute to improved oral health in HPP.
Collapse
Affiliation(s)
- Elis J Lira dos Santos
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Fatma F Mohamed
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, United States
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Kaitrin Kramer
- Cleft Palate-Craniofacial Clinic, Nationwide Children's Hospital, Columbus, OH, 43205, United States
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, United States
| |
Collapse
|
3
|
Zheng T, Pendleton EG, Barrow RP, Maslesa AD, Kner PA, Mortensen LJ. Spatial polarimetric second harmonic generation evaluation of collagen in a hypophosphatasia mouse model. BIOMEDICAL OPTICS EXPRESS 2024; 15:6940-6956. [PMID: 39679410 PMCID: PMC11640570 DOI: 10.1364/boe.529428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 12/17/2024]
Abstract
Polarization-resolved second harmonic generation (pSHG) is a label-free method that has been used in a range of tissue types to describe collagen orientation. In this work, we develop pSHG analysis techniques for investigating cranial bone collagen assembly defects occurring in a mouse model of hypophosphatasia (HPP), a metabolic bone disease characterized by a lack of bone mineralization. After observing differences in bone collagen lamellar sheet structures using scanning electron microscopy, we found similar alterations with pSHG between the healthy and HPP mouse collagen lamellar sheet organization. We then developed a spatial polarimetric gray-level co-occurrence matrix (spGLCM) method to explore polarization-mediated textural differences in the bone collagen mesh. We used our spGLCM method to describe the collagen organizational differences between HPP and healthy bone along the polarimetric axis that may be caused by poorly aligned collagen molecules and a reduction in collagen density. Finally, we applied machine learning classifiers to predict bone disease state using pSHG imaging and spGLCM methods. Comparing random forest (RF) and XGBoost technique on spGLCM, we were able to accurately separate unknown images from the two groups with an averaged F1 score of 92.30%±3.11% by using RF. Our strategy could potentially allow for monitoring of therapeutic efficacy and disease progression in HPP, or even be extended to other collagen-related ailments or tissues.
Collapse
Affiliation(s)
- Tianyi Zheng
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602, USA
| | - Emily G. Pendleton
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Ruth P. Barrow
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Ana D. Maslesa
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Peter A. Kner
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602, USA
| | - Luke J. Mortensen
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Tasevski S, Kyung Nam H, Ghannam A, Moughni S, Atoui T, Mashal Y, Hatch N, Zhang Z. Tissue nonspecific alkaline phosphatase deficiency impairs Purkinje cell development and survival in a mouse model of infantile hypophosphatasia. Neuroscience 2024; 560:357-370. [PMID: 39369942 DOI: 10.1016/j.neuroscience.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Loss-of-function mutations in the tissue-nonspecific alkaline phosphatase (TNAP) gene can result in hypophosphatasia (HPP), an inherited multi-systemic metabolic disorder that is well-known for skeletal and dental hypomineralization. However, emerging evidence shows that both adult and pediatric patients with HPP suffer from cognitive deficits, higher measures of depression and anxiety, and impaired sensorimotor skills. The cerebellum plays an important role in sensorimotor coordination, cognition, and emotion. To date, the impact of TNAP mutation on the cerebellar circuitry development and function remains poorly understood. The main objective of this study was to investigate the roles of TNAP in cerebellar development and function, with a particular focus on Purkinje cells, in a mouse model of infantile HPP. Male and female wild type (WT) and TNAP knockout (KO) mice underwent behavioral testing on postnatal day 13-14 and were euthanized after completion of behavioral tests. Cerebellar tissues were harvested for gene expression and immunohistochemistry analyses. We found that TNAP mutation resulted in significantly reduced body weight, shorter body length, and impaired sensorimotor functions in both male and female KO mice. These developmental and behavioral deficits were accompanied by abnormal Purkinje cell morphology and dysregulation of genes that regulates synaptic transmission, cellular growth, proliferation, and death. In conclusion, inactivation of TNAP via gene deletion causes developmental delays, sensorimotor impairment, and Purkinje cell maldevelopment. These results shed light on a new perspective of cerebellar dysfunction in HPP.
Collapse
Affiliation(s)
- Stefanie Tasevski
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA
| | - Hwa Kyung Nam
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan-Ann Arbor, 1011 N University Ave, Ann Arbor, MI 48109, USA
| | - Amanda Ghannam
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA
| | - Sara Moughni
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA
| | - Tia Atoui
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA
| | - Yara Mashal
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA
| | - Nan Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan-Ann Arbor, 1011 N University Ave, Ann Arbor, MI 48109, USA
| | - Zhi Zhang
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA.
| |
Collapse
|
5
|
Tavitian A, Somech J, Chamlian B, Liberman A, Galindez C, Schipper HM. Craniofacial anomalies in schizophrenia-relevant GFAP.HMOX1 0-12m mice. Anat Rec (Hoboken) 2024; 307:3529-3547. [PMID: 38606671 DOI: 10.1002/ar.25449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Subtle craniofacial dysmorphology has been reported in schizophrenia patients. This dysmorphology includes midline facial elongation, frontonasal anomalies and a sexually dimorphic deviation from normal directional asymmetry of the face, with male patients showing reduced and female patients showing enhanced facial asymmetry relative to healthy control subjects. GFAP.HMOX10-12m transgenic mice (Mus musculus) that overexpress heme oxygenase-1 in astrocytes recapitulate many schizophrenia-relevant neurochemical, neuropathological and behavioral features. As morphogenesis of the brain, skull and face are highly interrelated, we hypothesized that GFAP.HMOX10-12m mice may exhibit craniofacial anomalies similar to those reported in persons with schizophrenia. We examined craniofacial anatomy in male GFAP.HMOX10-12m mice and wild-type control mice at the early adulthood age of 6-8 months. We used computer vision techniques for the extraction and analysis of mouse head shape parameters from systematically acquired 2D digital images, and confirmed our results with landmark-based geometric morphometrics. We performed skull bone morphometry using digital calipers to take linear distance measurements between known landmarks. Relative to controls, adult male GFAP.HMOX10-12m mice manifested craniofacial dysmorphology including elongation of the nasal bones, alteration of head shape anisotropy and reduction of directional asymmetry in facial shape features. These findings demonstrate that GFAP.HMOX10-12m mice exhibit craniofacial anomalies resembling those described in schizophrenia patients, implicating heme oxygenase-1 in their development. As a preclinical mouse model, GFAP.HMOX10-12m mice provide a novel opportunity for the study of the etiopathogenesis of craniofacial and other anomalies in schizophrenia and related disorders.
Collapse
Affiliation(s)
- Ayda Tavitian
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Joseph Somech
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Badrouyk Chamlian
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Adrienne Liberman
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Carmela Galindez
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Hyman M Schipper
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Foster BL, Boyce AM, Millán JL, Kramer K, Ferreira CR, Somerman MJ, Wright JT. Inherited phosphate and pyrophosphate disorders: New insights and novel therapies changing the oral health landscape. J Am Dent Assoc 2024; 155:912-925. [PMID: 39127957 PMCID: PMC11540754 DOI: 10.1016/j.adaj.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Mineral metabolism is critical for proper development of hard tissues of the skeleton and dentition. The dentoalveolar complex includes the following 4 mineralized tissues: enamel, dentin, cementum, and alveolar bone. Developmental processes of these tissues are affected by inherited disorders that disrupt phosphate and pyrophosphate homeostasis, although manifestations are distinct from those in the skeleton. TYPES OF STUDIES REVIEWED The authors discuss original data from experiments and comparative analyses and review articles describing effects of inherited phosphate and pyrophosphate disorders on dental tissues. A particular emphasis is placed on how new therapeutic approaches for these conditions may affect oral health and dental treatments of affected patients. RESULTS Disorders of phosphate and pyrophosphate metabolism can lead to reduced mineralization (hypomineralization) or inappropriate (ectopic) calcification of soft tissues. Disruptions in phosphate levels in X-linked hypophosphatemia and hyperphosphatemic familial tumoral calcinosis and disruptions in pyrophosphate levels in hypophosphatasia and generalized arterial calcification of infancy contribute to dental mineralization defects. Traditionally, there have been few options to ameliorate dental health problems arising from these conditions. New antibody and enzyme replacement therapies bring possibilities to improve oral health in affected patients. PRACTICAL IMPLICATIONS Research over the past 2 decades has exponentially expanded the understanding of mineral metabolism, and has led to novel treatments for mineralization disorders. Newly implemented and emerging therapeutic strategies affect the dentoalveolar complex and interact with aspects of oral health care that must be considered for dental treatment, clinical trial design, and coordination of multidisciplinary care teams.
Collapse
Affiliation(s)
- Brian L. Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Alison M. Boyce
- Metabolic Bone Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - José Luis Millán
- Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
| | - Kaitrin Kramer
- Department of Dentistry and Department of Plastic and Reconstructive Surgery, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Carlos R. Ferreira
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - J. Timothy Wright
- Department of Pediatric and Public Health Dentistry, University of North Carolina Adams School of Dentistry, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
Roth DM, Piña JO, MacPherson M, Budden C, Graf D. Physiology and Clinical Manifestations of Pathologic Cranial Suture Widening. Cleft Palate Craniofac J 2024; 61:1750-1759. [PMID: 37271984 PMCID: PMC11468227 DOI: 10.1177/10556656231178438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
Cranial sutures are complex structures integrating mechanical forces with osteogenesis which are often affected in craniofacial syndromes. While premature fusion is frequently described, rare pathological widening of cranial sutures is a comparatively understudied phenomenon. This narrative review aims to bring to light the biologically variable underlying causes of widened sutures and persistent fontanelles leading to a common outcome. The authors herein present four syndromes, selected from a literature review, and their identified biological mechanisms in the context of altered suture physiology, exploring the roles of progenitor cell differentiation, extracellular matrix production, mineralization, and bone resorption. This article illustrates the gaps in understanding of complex craniofacial disorders, and the potential for further unification of genetics, cellular biology, and clinical pillars of health science research to improve treatment outcomes for patients.
Collapse
Affiliation(s)
- Daniela M. Roth
- School of Dentistry, University of Alberta, Edmonton, Canada
| | - Jeremie Oliver Piña
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | | | - Curtis Budden
- Department of Surgery, University of Alberta, Edmonton, Canada
| | - Daniel Graf
- School of Dentistry, University of Alberta, Edmonton, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, Canada
| |
Collapse
|
8
|
Bok S, Sun J, Greenblatt MB. Are osteoblasts multiple cell types? A new diversity in skeletal stem cells and their derivatives. J Bone Miner Res 2024; 39:1386-1392. [PMID: 39052334 PMCID: PMC11425698 DOI: 10.1093/jbmr/zjae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024]
Abstract
Only in the past decade have skeletal stem cells (SSCs), a cell type displaying formal evidence of stemness and serving as the ultimate origin of mature skeletal cell types such as osteoblasts, been defined. Here, we discuss a pair of recent reports that identify that SSCs do not represent a single cell type, but rather a family of related cells that each have characteristic anatomic locations and distinct functions tailored to the physiology of those sites. The distinct functional properties of these SSCs in turn provide a basis for the diseases of their respective locations. This concept emerges from one report identifying a distinct vertebral skeletal stem cell driving the high rate of breast cancer metastasis to the spine over other skeletal sites and a report identifying 2 SSCs in the calvaria that interact to mediate both physiologic calvarial mineralization and pathologic calvarial suture fusion in craniosynostosis. Despite displaying functional differences, these SSCs are each united by shared features including a shared series of surface markers and parallel differentiation hierarchies. We propose that this diversity at the level of SSCs in turn translates into a similar diversity at the level of mature skeletal cell types, including osteoblasts, with osteoblasts derived from different SSCs each displaying different functional and transcriptional characteristics reflecting their cell of origin. In this model, osteoblasts would represent not a single cell type, but rather a family of related cells each with distinct functions, paralleling the functional diversity in SSCs.
Collapse
Affiliation(s)
- Seoyeon Bok
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York NY 10065, United States
| | - Jun Sun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York NY 10065, United States
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York NY 10065, United States
- Skeletal Health and Orthopedic Research Program, Hospital for Special Surgery, New York NY 10065, United States
| |
Collapse
|
9
|
Pendleton EG, Nichenko AS, Mcfaline-Figueroa J, Raymond-Pope CJ, Schifino AG, Pigg TM, Barrow RP, Greising SM, Call JA, Mortensen LJ. Compromised Muscle Properties in a Severe Hypophosphatasia Murine Model. Int J Mol Sci 2023; 24:15905. [PMID: 37958888 PMCID: PMC10649932 DOI: 10.3390/ijms242115905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Hypophosphatasia (HPP) is a rare metabolic bone disorder characterized by low levels of tissue non-specific alkaline phosphatase (TNAP) that causes under-mineralization of the bone, leading to bone deformity and fractures. In addition, patients often present with chronic muscle pain, reduced muscle strength, and an altered gait. In this work, we explored dynamic muscle function in a homozygous TNAP knockout mouse model of severe juvenile onset HPP. We found a reduction in skeletal muscle size and impairment in a range of isolated muscle contractile properties. Using histological methods, we found that the structure of HPP muscles was similar to healthy muscles in fiber size, actin and myosin structures, as well as the α-tubulin and mitochondria networks. However, HPP mice had significantly fewer embryonic and type I fibers than wild type mice, and fewer metabolically active NADH+ muscle fibers. We then used oxygen respirometry to evaluate mitochondrial function and found that complex I and complex II leak respiration were reduced in HPP mice, but that there was no disruption in efficiency of electron transport in complex I or complex II. In summary, the severe HPP mouse model recapitulates the muscle strength impairment phenotypes observed in human patients. Further exploration of the role of alkaline phosphatase in skeletal muscle could provide insight into mechanisms of muscle weakness in HPP.
Collapse
Affiliation(s)
- Emily G. Pendleton
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Anna S. Nichenko
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Jennifer Mcfaline-Figueroa
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602, USA
| | | | - Albino G. Schifino
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Taylor M. Pigg
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Ruth P. Barrow
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Sarah M. Greising
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jarrod A. Call
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Luke J. Mortensen
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602, USA
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
Ohkura N, Nam HK, Liu F, Hatch N. Cranial Neural Crest Specific Deletion of Alpl (TNAP) via P0-Cre Causes Abnormal Chondrocyte Maturation and Deficient Cranial Base Growth. Int J Mol Sci 2023; 24:15401. [PMID: 37895082 PMCID: PMC10607232 DOI: 10.3390/ijms242015401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Bone growth plate abnormalities and skull shape defects are seen in hypophosphatasia, a heritable disorder in humans that occurs due to the deficiency of tissue nonspecific alkaline phosphatase (TNAP, Alpl) enzyme activity. The abnormal development of the cranial base growth plates (synchondroses) and abnormal skull shapes have also been demonstrated in global Alpl-/- mice. To distinguish local vs. systemic effects of TNAP on skull development, we utilized P0-Cre to knockout Alpl only in cranial neural crest-derived tissues using Alpl flox mice. Here, we show that Alpl deficiency using P0-Cre in cranial neural crest leads to skull shape defects and the deficient growth of the intersphenoid synchondrosis (ISS). ISS chondrocyte abnormalities included increased proliferation in resting and proliferative zones with decreased apoptosis in hypertrophic zones. ColX expression was increased, which is indicative of premature differentiation in the absence of Alpl. Sox9 expression was increased in both the resting and prehypertrophic zones of mutant mice. The expression of Parathyroid hormone related protein (PTHrP) and Indian hedgehog homolog (IHH) were also increased. Finally, cranial base organ culture revealed that inorganic phosphate (Pi) and pyrophosphate (PPi) have specific effects on cell signaling and phenotype changes in the ISS. Together, these results demonstrate that the TNAP expression downstream of Alpl in growth plate chondrocytes is essential for normal development, and that the mechanism likely involves Sox9, PTHrP, IHH and PPi.
Collapse
Affiliation(s)
- Naoto Ohkura
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (N.O.); (H.K.N.)
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Hwa Kyung Nam
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (N.O.); (H.K.N.)
| | - Fei Liu
- Department of Biomaterials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Nan Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (N.O.); (H.K.N.)
| |
Collapse
|
11
|
Gerasco JE, Hathaway‐Schrader JD, Poulides NA, Carson MD, Okhura N, Westwater C, Hatch NE, Novince CM. Commensal Microbiota Effects on Craniofacial Skeletal Growth and Morphology. JBMR Plus 2023; 7:e10775. [PMID: 37614301 PMCID: PMC10443078 DOI: 10.1002/jbm4.10775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 08/25/2023] Open
Abstract
Microbes colonize anatomical sites in health to form commensal microbial communities (e.g., commensal gut microbiota, commensal skin microbiota, commensal oral microbiota). Commensal microbiota has indirect effects on host growth and maturation through interactions with the host immune system. The commensal microbiota was recently introduced as a novel regulator of skeletal growth and morphology at noncraniofacial sites. Further, we and others have shown that commensal gut microbes, such as segmented filamentous bacteria (SFB), contribute to noncraniofacial skeletal growth and maturation. However, commensal microbiota effects on craniofacial skeletal growth and morphology are unclear. To determine the commensal microbiota's role in craniofacial skeletal growth and morphology, we performed craniometric and bone mineral density analyses on skulls from 9-week-old female C57BL/6T germ-free (GF) mice (no microbes), excluded-flora (EF) specific-pathogen-free mice (commensal microbiota), and murine-pathogen-free (MPF) specific-pathogen-free mice (commensal microbiota with SFB). Investigations comparing EF and GF mice revealed that commensal microbiota impacted the size and shape of the craniofacial skeleton. EF versus GF mice exhibited an elongated gross skull length. Cranial bone length analyses normalized to skull length showed that EF versus GF mice had enhanced frontal bone length and reduced cranial base length. The shortened cranial base in EF mice was attributed to decreased presphenoid, basisphenoid, and basioccipital bone lengths. Investigations comparing MPF mice and EF mice demonstrated that commensal gut microbes played a role in craniofacial skeletal morphology. Cranial bone length analyses normalized to skull length showed that MPF versus EF mice had reduced frontal bone length and increased cranial base length. The elongated cranial base in MPF mice was due to enhanced presphenoid bone length. This work, which introduces the commensal microbiota as a contributor to craniofacial skeletal growth, underscores that noninvasive interventions in the gut microbiome could potentially be employed to modify craniofacial skeletal morphology. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Joy E. Gerasco
- Department of Oral Health Sciences, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Stomatology‐Division of Periodontics, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Pediatrics‐Division of Endocrinology, College of MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Orthodontics, Adam's School of DentistryUniversity of North CarolinaChapel HillNCUSA
| | - Jessica D. Hathaway‐Schrader
- Department of Oral Health Sciences, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Stomatology‐Division of Periodontics, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Pediatrics‐Division of Endocrinology, College of MedicineMedical University of South CarolinaCharlestonSCUSA
| | - Nicole A. Poulides
- Department of Oral Health Sciences, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Stomatology‐Division of Periodontics, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Pediatrics‐Division of Endocrinology, College of MedicineMedical University of South CarolinaCharlestonSCUSA
| | - Matthew D. Carson
- Department of Oral Health Sciences, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Stomatology‐Division of Periodontics, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Pediatrics‐Division of Endocrinology, College of MedicineMedical University of South CarolinaCharlestonSCUSA
| | - Naoto Okhura
- Department of Orthodontics and Pediatric Dentistry, School of DentistryUniversity of MichiganAnn ArborMIUSA
| | - Caroline Westwater
- Department of Oral Health Sciences, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Microbiology and Immunology, College of MedicineMedical University of South CarolinaCharlestonSCUSA
| | - Nan E. Hatch
- Department of Orthodontics and Pediatric Dentistry, School of DentistryUniversity of MichiganAnn ArborMIUSA
| | - Chad M. Novince
- Department of Oral Health Sciences, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Stomatology‐Division of Periodontics, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Pediatrics‐Division of Endocrinology, College of MedicineMedical University of South CarolinaCharlestonSCUSA
| |
Collapse
|
12
|
Luo L, Guan Z, Jin X, Guan Z, Jiang Y. Identification of kukoamine a as an anti-osteoporosis drug target using network pharmacology and experiment verification. Mol Med 2023; 29:36. [PMID: 36941586 PMCID: PMC10029210 DOI: 10.1186/s10020-023-00625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/16/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Osteoporosis (OP) is a major and growing public health problem characterized by decreased bone mineral density and destroyed bone microarchitecture. Previous studies found that Lycium Chinense Mill (LC) has a potent role in inhibiting bone loss. Kukoamine A (KuA), a bioactive compound extract from LC was responsible for the anti-osteoporosis effect. This study aimed to investigate the anti-osteoporosis effect of KuA isolated from LC in treating OP and its potential molecular mechanism. METHOD In this study, network pharmacology and molecular docking were investigated firstly to find the active ingredients of LC such as KuA, and the target genes of OP by the TCMSP platform. The LC-OP-potential Target gene network was constructed by the STRING database and network maps were built by Cytoscape software. And then, the anti-osteoporotic effect of KuA in OVX-induced osteoporosis mice and MC3T3-E1 cell lines were investigated and the potential molecular mechanism including inflammation level, cell apoptosis, and oxidative stress was analyzed by dual-energy X-ray absorptiometry (DXA), micro-CT, ELISA, RT-PCR, and Western Blotting. RESULT A total of 22 active compounds were screened, and we found KuA was identified as the highest active ingredient. Glycogen Phosphorylase (PYGM) was the target gene associated with a maximum number of active ingredients of LC and regulated KuA. In vivo, KuA treatment significantly increased the bone mineral density and improve bone microarchitecture for example increased BV/TV, Tb.N and Tb.Th but reduced Tb.Sp in tibia and lumber 4. Furthermore, KuA increased mRNA expression of osteoblastic differentiation-related genes in OVX mice and protects against OVX-induced cell apoptosis, oxidative stress level and inflammation level. In vitro, KuA significantly improves osteogenic differentiation and mineralization in cells experiment. In addition, KuA also attenuated inflammation levels, cell apoptosis, and oxidative stress level. CONCLUSION The results suggest that KuA could protect against the development of OP in osteoblast cells and ovariectomized OP model mice and these found to provide a better understanding of the pharmacological activities of KuA again bone loss.
Collapse
Affiliation(s)
- Liying Luo
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhiyuan Guan
- Department of Orthopedics, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Xiao Jin
- Department of Rheumatology and Immunology, The First People's Hospital of Xuzhou, Xuzhou, Jiangsu, 221002, People's Republic of China.
| | - Zhiqiang Guan
- Department of Dermatology, Xuzhou Municipal Hospital Affiliated With Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China.
| | - Yanyun Jiang
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Lanthanum promoting bone formation by regulating osteogenesis, osteoclastogenesis and angiogenesis. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
14
|
Koh AJ, Nam HK, Michalski MN, Do J, McCauley LK, Hatch NE. Anabolic actions of parathyroid hormone in a hypophosphatasia mouse model. Osteoporos Int 2022; 33:2423-2433. [PMID: 35871207 PMCID: PMC9568459 DOI: 10.1007/s00198-022-06496-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
UNLABELLED Hypophosphatasia, the rare heritable disorder caused by TNAP enzyme mutations, presents wide-ranging severity of bone hypomineralization and skeletal abnormalities. Intermittent PTH (1-34) increased long bone volume in Alpl-/- mice but did not alter the skull phenotype. PTH may have therapeutic value for adults with TNAP deficiency-associated osteoporosis. INTRODUCTION Hypophosphatasia is the rare heritable disorder caused by mutations in the tissue non-specific alkaline phosphatase (TNAP) enzyme leading to TNAP deficiency. Individuals with hypophosphatasia commonly present with bone hypomineralization and skeletal abnormalities. The purpose of this study was to determine the impact of intermittent PTH on the skeletal phenotype of TNAP-deficient Alpl-/- mice. METHODS Alpl-/- and Alpl+/+ (wild-type; WT) littermate mice were administered PTH (1-34) (50 µg/kg) or vehicle control from days 4 to 12 and skeletal analyses were performed including gross measurements, micro-CT, histomorphometry, and serum biochemistry. RESULTS Alpl-/- mice were smaller with shorter tibial length and skull length compared to WT mice. Tibial BV/TV was reduced in Alpl-/- mice and daily PTH (1-34) injections significantly increased BV/TV and BMD but not TMD in both WT and Alpl-/- tibiae. Trabecular spacing was not different between genotypes and was decreased by PTH in both genotypes. Serum P1NP was unchanged while TRAcP5b was significantly lower in Alpl-/- vs. WT mice, with no PTH effect, and no differences in osteoclast numbers. Skull height and width were increased in Alpl-/- vs. WT mice, and PTH increased skull width in WT but not Alpl-/- mice. Frontal skull bones in Alpl-/- mice had decreased BV/TV, BMD, and calvarial thickness vs. WT with no significant PTH effects. Lengths of cranial base bones (basioccipital, basisphenoid, presphenoid) and lengths of synchondroses (growth plates) between the cranial base bones, plus bone of the basioccipitus, were assessed. All parameters were reduced (except lengths of synchondroses, which were increased) in Alpl-/- vs. WT mice with no PTH effect. CONCLUSION PTH increased long bone volume in the Alpl-/- mice but did not alter the skull phenotype. These data suggest that PTH can have long bone anabolic activity in the absence of TNAP, and that PTH may have therapeutic value for individuals with hypophosphatasia-associated osteoporosis.
Collapse
Affiliation(s)
- Amy J Koh
- Department of Periodontology and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Hwa Kyung Nam
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Megan N Michalski
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Justin Do
- Department of Periodontology and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Laurie K McCauley
- Department of Periodontology and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Pathology, School of Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Nan E Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Xu Y, Chen S, Huang L, Han W, Shao Y, Chen M, Zhang Y, He R, Xie B. Epimedin C Alleviates Glucocorticoid-Induced Suppression of Osteogenic Differentiation by Modulating PI3K/AKT/RUNX2 Signaling Pathway. Front Pharmacol 2022; 13:894832. [PMID: 35860032 PMCID: PMC9291512 DOI: 10.3389/fphar.2022.894832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 12/03/2022] Open
Abstract
Secondary osteoporosis is triggered mostly by glucocorticoid (GC) therapy. Dexamethasone (DEX) was reported to inhibit osteogenic differentiation in zebrafish larvae and MC3T3-E1 cells in prior research. In this research, we primarily examined the protective impacts of epimedin C on the osteogenic inhibition impact of MC3T3-E1 cells and zebrafish larvae mediated by DEX. The findings illustrated no apparent toxicity for MC3T3-E1 cells after administering epimedin C at increasing dosages from 1 to 60 μM and no remarkable proliferation in MC3T3-E1 cells treated using DEX. In MC3T3-E1 cells that had been treated using DEX, we discovered that epimedin C enhanced alkaline phosphatase activities and mineralization. Epimedin C could substantially enhance the protein expression of osterix (OSX), Runt-related transcription factor 2 (RUNX2), and alkaline phosphatase (ALPL) in MC3T3-E1 cells subjected to DEX treatment. Additionally, epimedin C stimulated PI3K and AKT signaling pathways in MC3T3-E1 cells that had been treated using DEX. Furthermore, in a zebrafish larvae model, epimedin C was shown to enhance bone mineralization in DEX-mediated bone impairment. We also found that epimedin C enhanced ALPL activity and mineralization in MC3T3-E1 cells treated using DEX, which may be reversed by PI3K inhibitor (LY294002). LY294002 can also reverse the protective impact of epimedin C on DEX-mediated bone impairment in zebrafish larval. These findings suggested that epimedin C alleviated the suppressive impact of DEX on the osteogenesis of zebrafish larval and MC3T3-E1 cells via triggering the PI3K and AKT signaling pathways. Epimedin C has significant potential in the development of innovative drugs for the treatment of glucocorticoid-mediated osteoporosis.
Collapse
Affiliation(s)
- Yongxiang Xu
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Shichun Chen
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Linxuan Huang
- Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Weichao Han
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Yingying Shao
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Minyi Chen
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Yusheng Zhang
- Department of Pharmacy, The First People’s Hospital of Foshan (The Affiliated Foshan Hospital of Sun Yat-Sen University), Foshan, China
| | - Ruirong He
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
- *Correspondence: Ruirong He, ; Baocheng Xie,
| | - Baocheng Xie
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
- *Correspondence: Ruirong He, ; Baocheng Xie,
| |
Collapse
|
16
|
Luo Q, Gao Z, Xiao Q, Song E. One-Step Determination of Alkaline Phosphatase in Human Serum Based on Manganese (IV) Dioxide/Manganese (II)-Mediated Nuclear Magnetic Resonance (NMR) Relaxation. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2076108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Qin Luo
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhenping Gao
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Qinni Xiao
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Nam HK, Emmanouil E, Hatch NE. Deletion of the Pyrophosphate Generating Enzyme ENPP1 Rescues Craniofacial Abnormalities in the TNAP−/− Mouse Model of Hypophosphatasia and Reveals FGF23 as a Marker of Phenotype Severity. FRONTIERS IN DENTAL MEDICINE 2022; 3. [PMID: 35909501 PMCID: PMC9336114 DOI: 10.3389/fdmed.2022.846962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hypophosphatasia is a rare heritable metabolic disorder caused by deficient Tissue Non-specific Alkaline Phosphatase (TNAP) enzyme activity. A principal function of TNAP is to hydrolyze the tissue mineralization inhibitor pyrophosphate. ENPP1 (Ectonucleotide Pyrophosphatase/Phosphodiesterase 1) is a primary enzymatic generator of pyrophosphate and prior results showed that elimination of ENPP1 rescued bone hypomineralization of skull, vertebral and long bones to different extents in TNAP null mice. Current TNAP enzyme replacement therapy alleviates skeletal, motor and cognitive defects but does not eliminate craniosynostosis in pediatric hypophosphatasia patients. To further understand mechanisms underlying craniosynostosis development in hypophosphatasia, here we sought to determine if craniofacial abnormalities including craniosynostosis and skull shape defects would be alleviated in TNAP null mice by genetic ablation of ENPP1. Results show that homozygous deletion of ENPP1 significantly diminishes the incidence of craniosynostosis and that skull shape abnormalities are rescued by hemi- or homozygous deletion of ENPP1 in TNAP null mice. Skull and long bone hypomineralization were also alleviated in TNAP−/−/ENPP1−/− compared to TNAP−/−/ENPP1+/+ mice, though loss of ENPP1 in combination with TNAP had different effects than loss of only TNAP on long bone trabeculae. Investigation of a relatively large cohort of mice revealed that the skeletal phenotypes of TNAP null mice were markedly variable. Because FGF23 circulating levels are known to be increased in ENPP1 null mice and because FGF23 influences bone, we measured serum intact FGF23 levels in the TNAP null mice and found that a subset of TNAP−/−/ENPP1+/+ mice exhibited markedly high serum FGF23. Serum FGF23 levels also correlated to mouse body measurements, the incidence of craniosynostosis, skull shape abnormalities and skull bone density and volume fraction. Together, our results demonstrate that balanced expression of TNAP and ENPP1 enzymes are essential for microstructure and mineralization of both skull and long bones, and for preventing craniosynostosis. The results also show that FGF23 rises in the TNAP−/− model of murine lethal hypophosphatasia. Future studies are required to determine if the rise in FGF23 is a cause, consequence, or marker of disease phenotype severity.
Collapse
|
18
|
Lesciotto KM, Tomlinson L, Leonard S, Richtsmeier JT. Embryonic and Early Postnatal Cranial Bone Volume and Tissue Mineral Density Values for C57BL/6J Laboratory Mice. Dev Dyn 2022; 251:1196-1208. [PMID: 35092111 PMCID: PMC9250594 DOI: 10.1002/dvdy.458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/27/2022] Open
Abstract
Background Laboratory mice are routinely used in craniofacial research based on the relatively close genetic relationship and conservation of developmental pathways between humans and mice. Since genetic perturbations and disease states may have localized effects, data from individual cranial bones are valuable for the interpretation of experimental assays. We employ high‐resolution microcomputed tomography to characterize cranial bones of C57BL/6J mice at embryonic day (E) 15.5 and E17.5, day of birth (P0), and postnatal day 7 (P7) and provide estimates of individual bone volume and tissue mineral density (TMD). Results Average volume and TMD values are reported for individual bones. Significant differences in volume and TMD during embryonic ages likely reflect early mineralization of cranial neural crest‐derived and intramembranously forming bones. Although bones of the face and vault had higher TMD values during embryonic ages, bones of the braincase floor had significantly higher TMD values by P7. Conclusions These ontogenetic data on cranial bone volume and TMD serve as a reference standard for future studies using mice bred on a C57BL/6J genetic background. Our findings also highlight the importance of differentiating “control” data from mice that are presented as “unaffected” littermates, particularly when carrying a single copy of a cre‐recombinase gene. Higher average volume and density of cranial neural crest‐derived and intramembranously‐forming bones during embryonic development. Higher average density in bones of the braincase floor during early postnatal development. Ontogenetic data on cranial bone volume and TMD serve as a reference standard for mice bred on a C57BL/6J genetic background.
Collapse
Affiliation(s)
- Kate M Lesciotto
- College of Osteopathic Medicine, Sam Houston State University, Conroe, TX, USA
| | | | - Steven Leonard
- College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
19
|
Goettsch C, Strzelecka-Kiliszek A, Bessueille L, Quillard T, Mechtouff L, Pikula S, Canet-Soulas E, Luis MJ, Fonta C, Magne D. TNAP as a therapeutic target for cardiovascular calcification: a discussion of its pleiotropic functions in the body. Cardiovasc Res 2022; 118:84-96. [PMID: 33070177 PMCID: PMC8752354 DOI: 10.1093/cvr/cvaa299] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular calcification (CVC) is associated with increased morbidity and mortality. It develops in several diseases and locations, such as in the tunica intima in atherosclerosis plaques, in the tunica media in type 2 diabetes and chronic kidney disease, and in aortic valves. In spite of the wide occurrence of CVC and its detrimental effects on cardiovascular diseases (CVD), no treatment is yet available. Most of CVC involve mechanisms similar to those occurring during endochondral and/or intramembranous ossification. Logically, since tissue-nonspecific alkaline phosphatase (TNAP) is the key-enzyme responsible for skeletal/dental mineralization, it is a promising target to limit CVC. Tools have recently been developed to inhibit its activity and preclinical studies conducted in animal models of vascular calcification already provided promising results. Nevertheless, as its name indicates, TNAP is ubiquitous and recent data indicate that it dephosphorylates different substrates in vivo to participate in other important physiological functions besides mineralization. For instance, TNAP is involved in the metabolism of pyridoxal phosphate and the production of neurotransmitters. TNAP has also been described as an anti-inflammatory enzyme able to dephosphorylate adenosine nucleotides and lipopolysaccharide. A better understanding of the full spectrum of TNAP's functions is needed to better characterize the effects of TNAP inhibition in diseases associated with CVC. In this review, after a brief description of the different types of CVC, we describe the newly uncovered additional functions of TNAP and discuss the expected consequences of its systemic inhibition in vivo.
Collapse
Affiliation(s)
- Claudia Goettsch
- Department of Internal Medicine I, Cardiology, Medical Faculty, RWTH Aachen
University, Aachen, Germany
| | - Agnieszka Strzelecka-Kiliszek
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental
Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Laurence Bessueille
- Institute of Molecular and Supramolecular Chemistry and Biochemistry
(ICBMS), UMR CNRS 5246, Université Claude Bernard Lyon 1, Bâtiment
Raulin, 43 Bd du 11 novembre 1918, Lyon 69622 Villeurbanne Cedex, France
| | - Thibaut Quillard
- PHY-OS Laboratory, UMR 1238 INSERM, Université de Nantes, CHU
de Nantes, France
| | - Laura Mechtouff
- Stroke Department, Hospices Civils de Lyon, France
- CREATIS Laboratory, CNRS UMR 5220, Inserm U1044, Université Claude Bernard
Lyon 1, Lyon, France
| | - Slawomir Pikula
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental
Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Emmanuelle Canet-Soulas
- CarMeN Laboratory, Univ Lyon, INSERM, INRA, INSA Lyon, Université Claude
Bernard Lyon 1, Lyon, France
| | - Millan Jose Luis
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery
Institute, La Jolla, CA 92037, USA
| | - Caroline Fonta
- Brain and Cognition Research Center CerCo, CNRS UMR5549, Université de
Toulouse, France
| | - David Magne
- Institute of Molecular and Supramolecular Chemistry and Biochemistry
(ICBMS), UMR CNRS 5246, Université Claude Bernard Lyon 1, Bâtiment
Raulin, 43 Bd du 11 novembre 1918, Lyon 69622 Villeurbanne Cedex, France
| |
Collapse
|
20
|
Inoue A, Kiyoshima T, Yoshizaki K, Nakatomi C, Nakatomi M, Ohshima H, Shin M, Gao J, Tsuru K, Okabe K, Nakamura I, Honda H, Matsuda M, Takahashi I, Jimi E. Deletion of epithelial cell-specific p130Cas impairs the maturation stage of amelogenesis. Bone 2022; 154:116210. [PMID: 34592494 DOI: 10.1016/j.bone.2021.116210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/02/2022]
Abstract
Amelogenesis consists of secretory, transition, maturation, and post-maturation stages, and the morphological changes of ameloblasts at each stage are closely related to their function. p130 Crk-associated substrate (Cas) is a scaffold protein that modulates essential cellular processes, including cell adhesion, cytoskeletal changes, and polarization. The expression of p130Cas was observed from the secretory stage to the maturation stage in ameloblasts. Epithelial cell-specific p130Cas-deficient (p130CasΔepi-) mice exhibited enamel hypomineralization with chalk-like white mandibular incisors in young mice and attrition in aged mouse molars. A micro-computed tomography analysis and Vickers micro-hardness testing showed thinner enamel, lower enamel mineral density and hardness in p130CasΔepi- mice in comparison to p130Casflox/flox mice. Scanning electron microscopy, and an energy dispersive X-ray spectroscopy analysis indicated the disturbance of the enamel rod structure and lower Ca and P contents in p130CasΔepi- mice, respectively. The disorganized arrangement of ameloblasts, especially in the maturation stage, was observed in p130CasΔepi- mice. Furthermore, expression levels of enamel matrix proteins, such as amelogenin and ameloblastin in the secretory stage, and functional markers, such as alkaline phosphatase and iron accumulation, and Na+/Ca2++K+-exchanger in the maturation stage were reduced in p130CasΔepi- mice. These findings suggest that p130Cas plays important roles in amelogenesis (197 words).
Collapse
Affiliation(s)
- Akane Inoue
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Keigo Yoshizaki
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Chihiro Nakatomi
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Mitsushiro Nakatomi
- Department of Human, Information and Life Sciences, School of Health Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Masashi Shin
- Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, 2-5-1 Tamura, Sawara-ku, Fukuoka 814-0175, Japan; Oral Medicine Center, Fukuoka Dental College, 2-5-1 Tamura, Sawara-ku, Fukuoka 814-0175, Japan
| | - Jing Gao
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kanji Tsuru
- Section of Bioengineering, Fukuoka Dental College, 2-5-1 Tamura, Sawara-ku, Fukuoka 814-0175, Japan
| | - Koji Okabe
- Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, 2-5-1 Tamura, Sawara-ku, Fukuoka 814-0175, Japan
| | - Ichiro Nakamura
- Department of Rehabilitation, Yugawara Hospital, Japan Community Health Care Organization, 2-21-6 Chuo, Yugawara, Ashigara-shimo, Kanagawa 259-0396, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Miho Matsuda
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ichiro Takahashi
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eijiro Jimi
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
21
|
Kinoshita Y, Mohamed FF, Amadeu de Oliveira F, Narisawa S, Miyake K, Foster BL, Millán JL. Gene Therapy Using Adeno-Associated Virus Serotype 8 Encoding TNAP-D 10 Improves the Skeletal and Dentoalveolar Phenotypes in Alpl -/- Mice. J Bone Miner Res 2021; 36:1835-1849. [PMID: 34076297 PMCID: PMC8446309 DOI: 10.1002/jbmr.4382] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022]
Abstract
Hypophosphatasia (HPP) is caused by loss-of-function mutations in the ALPL gene that encodes tissue-nonspecific alkaline phosphatase (TNAP), whose deficiency results in the accumulation of extracellular inorganic pyrophosphate (PPi ), a potent mineralization inhibitor. Skeletal and dental hypomineralization characterizes HPP, with disease severity varying from life-threatening perinatal or infantile forms to milder forms that manifest in adulthood or only affect the dentition. Enzyme replacement therapy (ERT) using mineral-targeted recombinant TNAP (Strensiq/asfotase alfa) markedly improves the life span, skeletal phenotype, motor function, and quality of life of patients with HPP, though limitations of ERT include frequent injections due to a short elimination half-life of 2.28 days and injection site reactions. We tested the efficacy of a single intramuscular administration of adeno-associated virus 8 (AAV8) encoding TNAP-D10 to increase the life span and improve the skeletal and dentoalveolar phenotypes in TNAP knockout (Alpl-/- ) mice, a murine model for severe infantile HPP. Alpl-/- mice received 3 × 1011 vector genomes/body of AAV8-TNAP-D10 within 5 days postnatal (dpn). AAV8-TNAP-D10 elevated serum ALP activity and suppressed plasma PPi . Treatment extended life span of Alpl-/- mice, and no ectopic calcifications were observed in the kidneys, aorta, coronary arteries, or brain in the 70 dpn observational window. Treated Alpl-/- mice did not show signs of rickets, including bowing of long bones, enlargement of epiphyses, or fractures. Bone microstructure of treated Alpl-/- mice was similar to wild type, with a few persistent small cortical and trabecular defects. Histology showed no measurable osteoid accumulation but reduced bone volume fraction in treated Alpl-/- mice versus controls. Treated Alpl-/- mice featured normal molar and incisor dentoalveolar tissues, with the exceptions of slightly reduced molar enamel and alveolar bone density. Histology showed the presence of cementum and normal periodontal ligament attachment. These results support gene therapy as a promising alternative to ERT for the treatment of HPP. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Yuka Kinoshita
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Fatma F Mohamed
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Flavia Amadeu de Oliveira
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sonoko Narisawa
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Koichi Miyake
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
22
|
Hasegawa A, Nakamura-Takahashi A, Kasahara M, Saso N, Narisawa S, Millán JL, Samura O, Sago H, Okamoto A, Umezawa A. Prenatal enzyme replacement therapy for Akp2 -/- mice with lethal hypophosphatasia. Regen Ther 2021; 18:168-175. [PMID: 34277899 PMCID: PMC8267436 DOI: 10.1016/j.reth.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/28/2021] [Accepted: 06/06/2021] [Indexed: 11/21/2022] Open
Abstract
Hypophosphatasia (HPP) is a congenital skeletal disease. Impairment of bone mineralization and seizures are due to a deficiency of tissue-nonspecific alkaline phosphatase (TNAP). Enzyme replacement therapy (ERT) is available as a highly successful treatment for pediatric-onset HPP. However, the potential for prenatal ERT has not been fully investigated to date. In this study, we assessed outcomes and maternal safety using a combinational approach with prenatal and postnatal administration of recombinant TNAP in Akp2−/− mice as a model of infantile HPP. For the prenatal ERT, we administered subcutaneous injections of recombinant TNAP to pregnant mice from embryonic day 11.5–14.5 until delivery, and then sequentially to Akp2−/− pups from birth to day 18. For the postnatal ERT, we injected Akp2−/− pups from birth until day 18. Prenatal ERT did not cause any ectopic mineralization in heterozygous maternal mice. Both prenatal and postnatal ERT preserved growth, survival rate and improved bone calcification in Akp2−/− mice. However, the effects of additional prenatal treatment to newborn mice appeared to be minimal, and the difference between prenatal and postnatal ERT was subtle. Further improvement of the prenatal ERT schedule and long-term observation will be required. The present paper sets a standard for such future studies.
Collapse
Affiliation(s)
- Akihiro Hasegawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan.,Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | | | | | - Nana Saso
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Sonoko Narisawa
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Osamu Samura
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Haruhiko Sago
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| |
Collapse
|
23
|
Wheelis SE, Biguetti CC, Natarajan S, Arteaga A, Allami JE, Chandrashekar BL, Garlet G, Rodrigues DC. Cellular and Molecular Dynamics during Early Oral Osseointegration: A Comprehensive Characterization in the Lewis Rat. ACS Biomater Sci Eng 2021; 7:2392-2407. [PMID: 33625829 PMCID: PMC8796703 DOI: 10.1021/acsbiomaterials.0c01420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE There is a need to improve the predictability of osseointegration in implant dentistry. Current literature uses a variety of in vivo titanium (Ti) implantation models to investigate failure modes and test new materials and surfaces. However, these models produce a variety of results, making comparison across studies difficult. The purpose of this study is to validate an oral osseointegration in the Lewis rat to provide a reproducible baseline to track the inflammatory response and healing of Ti implants. METHODS Ti screws (0.76 mm Ø × 2 mm length) were implanted into the maxillary diastema of 52 adult male Lewis rats. Peri-implant tissues were evaluated 2, 7, 14, and 30 days after implantation (n = 13). Seven of the 13 samples underwent microtomographic analysis, histology, histomorphometry, and immunohistochemistry to track healing parameters. The remaining six samples underwent quantitative polymerase chain reaction (qPCR) to evaluate gene expression of inflammation and bone remodeling markers over time. RESULTS This model achieved a 78.5% success rate. Successful implants had a bone to implant contact (BIC)% of 68.86 ± 3.15 at 30 days on average. Histologically, healing was similar to other rodent models: hematoma and acute inflammation at 2 days, initial bone formation at 7, advanced bone formation and remodeling at 14, and bone maturation at 30. qPCR indicated the highest expression of bone remodeling and inflammatory markers 2-7 days, before slowly declining to nonsurgery control levels at 14-30 days. CONCLUSION This model combines cost-effectiveness and simplicity of a rodent model, while maximizing BIC, making it an excellent candidate for evaluation of new surfaces.
Collapse
Affiliation(s)
| | | | - Shruti Natarajan
- Department of Biological Sciences, University of Texas at Dallas
- Texas A&M College of Dentistry
| | | | | | | | - Gustavo Garlet
- Bauru School of Dentistry, Department of Biological Sciences, University of São Paulo São Paulo, Brazil
| | | |
Collapse
|
24
|
Ustriyana P, Schulte F, Gombedza F, Gil-Bona A, Paruchuri S, Bidlack FB, Hardt M, Landis WJ, Sahai N. Spatial survey of non-collagenous proteins in mineralizing and non-mineralizing vertebrate tissues ex vivo. Bone Rep 2021; 14:100754. [PMID: 33665237 PMCID: PMC7900015 DOI: 10.1016/j.bonr.2021.100754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 11/24/2022] Open
Abstract
Bone biomineralization is a complex process in which type I collagen and associated non-collagenous proteins (NCPs), including glycoproteins and proteoglycans, interact closely with inorganic calcium and phosphate ions to control the precipitation of nanosized, non-stoichiometric hydroxyapatite (HAP, idealized stoichiometry Ca10(PO4)6(OH)2) within the organic matrix of a tissue. The ability of certain vertebrate tissues to mineralize is critically related to several aspects of their function. The goal of this study was to identify specific NCPs in mineralizing and non-mineralizing tissues of two animal models, rat and turkey, and to determine whether some NCPs are unique to each type of tissue. The tissues investigated were rat femur (mineralizing) and tail tendon (non-mineralizing) and turkey leg tendon (having both mineralizing and non-mineralizing regions in the same individual specimen). An experimental approach ex vivo was designed for this investigation by combining sequential protein extraction with comprehensive protein mapping using proteomics and Western blotting. The extraction method enabled separation of various NCPs based on their association with either the extracellular organic collagenous matrix phases or the inorganic mineral phases of the tissues. The proteomics work generated a complete picture of NCPs in different tissues and animal species. Subsequently, Western blotting provided validation for some of the proteomics findings. The survey then yielded generalized results relevant to various protein families, rather than only individual NCPs. This study focused primarily on the NCPs belonging to the small leucine-rich proteoglycan (SLRP) family and the small integrin-binding ligand N-linked glycoproteins (SIBLINGs). SLRPs were found to be associated only with the collagenous matrix, a result suggesting that they are mainly involved in structural matrix organization and not in mineralization. SIBLINGs as well as matrix Gla (γ-carboxyglutamate) protein were strictly localized within the inorganic mineral phase of mineralizing tissues, a finding suggesting that their roles are limited to mineralization. The results from this study indicated that osteocalcin was closely involved in mineralization but did not preclude possible additional roles as a hormone. This report provides for the first time a spatial survey and comparison of NCPs from mineralizing and non-mineralizing tissues ex vivo and defines the proteome of turkey leg tendons as a model for vertebrate mineralization.
Collapse
Key Words
- B, rat bone
- BSP, bone sialoprotein
- DCN, decorin
- E, EDTA extract
- ECM, extracellular matrix
- G, guanidine-HCl-only extract (for non-mineralizing tissues)
- G1, first guanidine-HCl extract
- G2, second guanidine-HCl extract
- Gla, gamma-carboxylated glutamic acid
- MGP, matrix Gla protein
- MT, turkey mineralizing tendon
- Mineralization
- NCP, non-collagenous protein
- NMT, turkey never-mineralizing tendon
- NT, turkey not-yet-mineralized tendon
- Non-collagenous protein
- OCN, osteocalcin
- OPN, osteopontin
- Proteomics
- SIBLING, small integrin-binding ligand N-linked glycoprotein
- SLRP, small leucine-rich proteoglycan
- T, rat tail tendon
- TLT, turkey leg tendon (gastrocnemius)
- TNAP, tissue-nonspecific alkaline phosphatase
- Type I collagen
- Vertebrate
Collapse
Affiliation(s)
- Putu Ustriyana
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
| | - Fabian Schulte
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Farai Gombedza
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Ana Gil-Bona
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sailaja Paruchuri
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Felicitas B. Bidlack
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Markus Hardt
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - William J. Landis
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
| | - Nita Sahai
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
- Department of Geosciences, The University of Akron, Akron, OH 44325, USA
- Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
25
|
Nwafor DC, Brichacek AL, Ali A, Brown CM. Tissue-Nonspecific Alkaline Phosphatase in Central Nervous System Health and Disease: A Focus on Brain Microvascular Endothelial Cells. Int J Mol Sci 2021; 22:5257. [PMID: 34067629 PMCID: PMC8156423 DOI: 10.3390/ijms22105257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022] Open
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is an ectoenzyme bound to the plasma membranes of numerous cells via a glycosylphosphatidylinositol (GPI) moiety. TNAP's function is well-recognized from earlier studies establishing its important role in bone mineralization. TNAP is also highly expressed in cerebral microvessels; however, its function in brain cerebral microvessels is poorly understood. In recent years, few studies have begun to delineate a role for TNAP in brain microvascular endothelial cells (BMECs)-a key component of cerebral microvessels. This review summarizes important information on the role of BMEC TNAP, and its implication in health and disease. Furthermore, we discuss current models and tools that may assist researchers in elucidating the function of TNAP in BMECs.
Collapse
Affiliation(s)
- Divine C. Nwafor
- Department of Neuroscience, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA; (D.C.N.); (A.A.)
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Allison L. Brichacek
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA;
| | - Ahsan Ali
- Department of Neuroscience, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA; (D.C.N.); (A.A.)
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Candice M. Brown
- Department of Neuroscience, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA; (D.C.N.); (A.A.)
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA;
| |
Collapse
|
26
|
Cheng X, Wang L, Wen X, Gao L, Li G, Chang G, Qin S, Zhang D. TNAP is a novel regulator of cardiac fibrosis after myocardial infarction by mediating TGF-β/Smads and ERK1/2 signaling pathways. EBioMedicine 2021; 67:103370. [PMID: 33971401 DOI: 10.1016/j.ebiom.2021.103370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/04/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cardiac fibrosis is the most important pathogenesis leading to cardiac remodeling and heart failure after myocardial infarction (MI). Tissue nonspecific alkaline phosphatase (TNAP) has recently been recognized as a potential prognostic factor for MI. Nevertheless, the role of TNAP in cardiac fibrosis after MI has not been explicitly delineated. METHODS A systematic review and meta-analysis was conducted to assess the effect of serum TNAP levels on mortality in patients with ischemic heart disease (IHD). A correlation analysis was performed to investigate the relationship between serum levels of TNAP and biomarkers of fibrosis. Heart biopsies from patients with MI and a mouse model of MI were used to detect the expression and distribution of TNAP. Furthermore, we established adenovirus-mediated knockdown and overexpression of TNAP, using a combination of in vivo and in vitro studies in mice, to determine the role and mechanism of TNAP in cardiac fibrosis after MI. In the in vitro studies, cardiac fibroblasts were cultured on soft plates. FINDINGS After searching the main databases and performing a detailed assessment of the full-text articles, eight studies with 14,816 individuals were included in the quantitative analysis. We found that a high serum TNAP level was associated with an increased risk of mortality in patients with IHD and MI. The correlation analysis revealed a positive correlation between serum TNAP levels and the concentration of fibrosis biomarkers (PICP/PIIINP). The expression of TNAP was upregulated in the myocardium of patients with MI and in a mouse model of MI, accompanied by fibroblast activation and the deposition of collagen fibers. In the in vivo study, TNAP knockdown ameliorated cardiac fibrosis and improved cardiac function in mice. TNAP overexpression aggravated cardiac fibrosis and worsened cardiac function. In the in vitro study, TNAP promoted cardiac fibroblast differentiation, migration and proliferation. Mechanistically, the pro-fibrotic effect of TNAP on cardiac fibroblasts was at least partially achieved by activating the TGF-β1/Smads and ERK1/2 signaling pathways. INTERPRETATION Based on these findings, TNAP plays an important pro-fibrotic role in cardiac fibrosis after MI by activating TGF-β/Smads and ERK1/2 signaling, indicating that it functions as a potential regulator of and therapeutic target in cardiac fibrosis. FUNDING This work was supported by the National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Xiaocheng Cheng
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Liyou Wang
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Second Ward of Cardiovascular Medicine Department, Ankang City Central Hospital, Ankang, China
| | - Xuesong Wen
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lei Gao
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Guoxing Li
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Guanglei Chang
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shu Qin
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dongying Zhang
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
27
|
Kowal JM, Möller S, Ali D, Figeac F, Barington T, Schmal H, Kassem M. Identification of a clinical signature predictive of differentiation fate of human bone marrow stromal cells. Stem Cell Res Ther 2021; 12:265. [PMID: 33941262 PMCID: PMC8091554 DOI: 10.1186/s13287-021-02338-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/19/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Transplantation of human bone marrow stromal cells (hBMSCs) is a promising therapy for bone regeneration due to their ability to differentiate into bone forming osteoblastic cells. However, transplanted hBMSCs exhibit variable capacity for bone formation resulting in inconsistent clinical outcome. The aim of the study was to identify a set of donor- and cell-related characteristics that detect hBMSCs with optimal osteoblastic differentiation capacity. METHODS We collected hBMSCs from 58 patients undergoing surgery for bone fracture. Clinical profile of the donors and in vitro characteristics of cultured hBMSCs were included in uni- and multivariable analysis to determine their predictive value for osteoblastic versus adipocytic differentiation capacity assessed by quantification of mineralized matrix and mature adipocyte formation, respectively. RESULTS We identified a signature that explained > 50% of variation in osteoblastic differentiation outcome which included the following positive predictors: donor sex (male), absence of osteoporosis diagnosis, intake of vitamin D supplements, higher fraction of CD146+, and alkaline phosphate (ALP+) cells. With the exception of vitamin D and ALP+ cells, these variables were also negative predictors of adipocytic differentiation. CONCLUSIONS Using a combination of clinical and cellular criteria, it is possible to predict differentiation outcome of hBMSCs. This signature may be helpful in selecting donor cells in clinical trials of bone regeneration.
Collapse
Affiliation(s)
- Justyna Magdalena Kowal
- Department of Endocrinology, Odense University Hospital, Odense, Denmark. .,Molecular Endocrinology Unit (KMEB), Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Sören Möller
- OPEN - Open Patient data Explorative Network, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Dalia Ali
- Department of Endocrinology, Odense University Hospital, Odense, Denmark.,Molecular Endocrinology Unit (KMEB), Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Florence Figeac
- Department of Endocrinology, Odense University Hospital, Odense, Denmark.,Molecular Endocrinology Unit (KMEB), Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Torben Barington
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Hagen Schmal
- Department of Orthopedics and Traumatology, Odense University Hospital, Odense, Denmark.,Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Moustapha Kassem
- Department of Endocrinology, Odense University Hospital, Odense, Denmark.,Molecular Endocrinology Unit (KMEB), Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Cellular and Molecular Medicine, Danish Stem Cell Center (DanStem), University of Copenhagen, 2200, Copenhagen, Denmark
| |
Collapse
|
28
|
Zhang Z, Nam HK, Crouch S, Hatch NE. Tissue Nonspecific Alkaline Phosphatase Function in Bone and Muscle Progenitor Cells: Control of Mitochondrial Respiration and ATP Production. Int J Mol Sci 2021; 22:ijms22031140. [PMID: 33498907 PMCID: PMC7865776 DOI: 10.3390/ijms22031140] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 12/23/2022] Open
Abstract
Tissue nonspecific alkaline phosphatase (TNAP/Alpl) is associated with cell stemness; however, the function of TNAP in mesenchymal progenitor cells remains largely unknown. In this study, we aimed to establish an essential role for TNAP in bone and muscle progenitor cells. We investigated the impact of TNAP deficiency on bone formation, mineralization, and differentiation of bone marrow stromal cells. We also pursued studies of proliferation, mitochondrial function and ATP levels in TNAP deficient bone and muscle progenitor cells. We find that TNAP deficiency decreases trabecular bone volume fraction and trabeculation in addition to decreased mineralization. We also find that Alpl−/− mice (global TNAP knockout mice) exhibit muscle and motor coordination deficiencies similar to those found in individuals with hypophosphatasia (TNAP deficiency). Subsequent studies demonstrate diminished proliferation, with mitochondrial hyperfunction and increased ATP levels in TNAP deficient bone and muscle progenitor cells, plus intracellular expression of TNAP in TNAP+ cranial osteoprogenitors, bone marrow stromal cells, and skeletal muscle progenitor cells. Together, our results indicate that TNAP functions inside bone and muscle progenitor cells to influence mitochondrial respiration and ATP production. Future studies are required to establish mechanisms by which TNAP influences mitochondrial function and determine if modulation of TNAP can alter mitochondrial respiration in vivo.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA;
| | - Hwa Kyung Nam
- School of Dentistry, University of Michigan-Ann Arbor, 1011 N University Avenue, Ann Arbor, MI 48103, USA; (H.K.N.); (S.C.)
| | - Spencer Crouch
- School of Dentistry, University of Michigan-Ann Arbor, 1011 N University Avenue, Ann Arbor, MI 48103, USA; (H.K.N.); (S.C.)
| | - Nan E. Hatch
- School of Dentistry, University of Michigan-Ann Arbor, 1011 N University Avenue, Ann Arbor, MI 48103, USA; (H.K.N.); (S.C.)
- Correspondence: ; Tel.: +1-734-764-6567
| |
Collapse
|
29
|
Preventive Effects of Chrysanthemum coronarium L. Extract on Bone Metabolism In Vitro and In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6975646. [PMID: 33293993 PMCID: PMC7688366 DOI: 10.1155/2020/6975646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/14/2020] [Accepted: 11/09/2020] [Indexed: 12/29/2022]
Abstract
Osteoporosis is characterized by decreased bone mass and bone microarchitectural failure, leading to an enhanced risk of bone fractures. Chrysanthemum coronarium L. (CC) is a natural plant with powerful antioxidant activity. This study investigated the antiosteoporotic effects of CC extracts in in vitro cell cultures and in vivo bone loss animal models. CC stimulated osteoblast differentiation and mineralized bone formation by osteoblasts by increasing the expression of bone formation markers (alkaline phosphatase, osteoprotegerin, and osteoprotegerin/receptor activator nuclear factor-κB ligand ratio) in the murine preosteoblastic cell line MC3T3-E1. Additionally, CC was found to inhibit osteoclast differentiation by downregulating bone resorption markers (tartrate-resistant acid phosphatase, cathepsin K, dendritic cell-specific transmembrane protein, and calcitonin receptor) in the murine macrophage-like cell line RAW264.7. CC prevented ovariectomy-induced bone loss, preserved trabecular microarchitecture, and improved serum bone turnover markers in an osteoporotic mouse model. These findings suggest that CC extract may be considered as a natural therapeutic or preventive agent for osteoporotic bone loss.
Collapse
|
30
|
Tissue-Nonspecific Alkaline Phosphatase-A Gatekeeper of Physiological Conditions in Health and a Modulator of Biological Environments in Disease. Biomolecules 2020; 10:biom10121648. [PMID: 33302551 PMCID: PMC7763311 DOI: 10.3390/biom10121648] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 12/15/2022] Open
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is a ubiquitously expressed enzyme that is best known for its role during mineralization processes in bones and skeleton. The enzyme metabolizes phosphate compounds like inorganic pyrophosphate and pyridoxal-5′-phosphate to provide, among others, inorganic phosphate for the mineralization and transportable vitamin B6 molecules. Patients with inherited loss of function mutations in the ALPL gene and consequently altered TNAP activity are suffering from the rare metabolic disease hypophosphatasia (HPP). This systemic disease is mainly characterized by impaired bone and dental mineralization but may also be accompanied by neurological symptoms, like anxiety disorders, seizures, and depression. HPP characteristically affects all ages and shows a wide range of clinical symptoms and disease severity, which results in the classification into different clinical subtypes. This review describes the molecular function of TNAP during the mineralization of bones and teeth, further discusses the current knowledge on the enzyme’s role in the nervous system and in sensory perception. An additional focus is set on the molecular role of TNAP in health and on functional observations reported in common laboratory vertebrate disease models, like rodents and zebrafish.
Collapse
|
31
|
Genetic background dependent modifiers of craniosynostosis severity. J Struct Biol 2020; 212:107629. [PMID: 32976998 DOI: 10.1016/j.jsb.2020.107629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022]
Abstract
Craniosynostosis severity varies in patients with identical genetic mutations. To understand causes of this phenotypic variation, we backcrossed the FGFR2+/C342Y mouse model of Crouzon syndrome onto congenic C57BL/6 and BALB/c backgrounds. Coronal suture fusion was observed in C57BL/6 (88% incidence, p < .001 between genotypes) but not in BALB/c FGFR2+/C342Y mutant mice at 3 weeks after birth, establishing that that the two models differ in phenotype severity. To begin identifying pre-existing modifiers of craniosynostosis severity, we compared transcriptome signatures of cranial tissues from C57BL/6 vs. BALB/c FGFR2+/+ mice. We separately analyzed frontal bone with coronal suture tissue from parietal bone with sagittal suture tissues because the coronal suture but not the sagittal suture fuses in FGFR2+/C342Y mice. The craniosynostosis associated Twist and En1 transcription factors were down-regulated, while Runx2 was up-regulated, in C57BL/6 compared to BALB/c tissues, which could predispose to craniosynostosis. Transcriptome analyses under the GO term MAPK cascade revealed that genes associated with calcium ion channels, angiogenesis, protein quality control and cell stress response were central to transcriptome differences associated with genetic background. FGFR2 and HSPA2 protein levels plus ERK1/2 activity were higher in cells isolated from C57BL/6 than BALB/c cranial tissues. Notably, the HSPA2 protein chaperone is central to craniofacial genetic epistasis, and we find that FGFR2 protein is abnormally processed in primary cells from FGFR2+/C342Y but not FGFR2+/+ mice. Therefore, we propose that differences in protein quality control responses may contribute to genetic background influences on craniosynostosis phenotype severity.
Collapse
|
32
|
Siismets EM, Hatch NE. Cranial Neural Crest Cells and Their Role in the Pathogenesis of Craniofacial Anomalies and Coronal Craniosynostosis. J Dev Biol 2020; 8:jdb8030018. [PMID: 32916911 PMCID: PMC7558351 DOI: 10.3390/jdb8030018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/29/2022] Open
Abstract
Craniofacial anomalies are among the most common of birth defects. The pathogenesis of craniofacial anomalies frequently involves defects in the migration, proliferation, and fate of neural crest cells destined for the craniofacial skeleton. Genetic mutations causing deficient cranial neural crest migration and proliferation can result in Treacher Collins syndrome, Pierre Robin sequence, and cleft palate. Defects in post-migratory neural crest cells can result in pre- or post-ossification defects in the developing craniofacial skeleton and craniosynostosis (premature fusion of cranial bones/cranial sutures). The coronal suture is the most frequently fused suture in craniosynostosis syndromes. It exists as a biological boundary between the neural crest-derived frontal bone and paraxial mesoderm-derived parietal bone. The objective of this review is to frame our current understanding of neural crest cells in craniofacial development, craniofacial anomalies, and the pathogenesis of coronal craniosynostosis. We will also discuss novel approaches for advancing our knowledge and developing prevention and/or treatment strategies for craniofacial tissue regeneration and craniosynostosis.
Collapse
Affiliation(s)
- Erica M. Siismets
- Oral Health Sciences PhD Program, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA;
| | - Nan E. Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Correspondence: ; Tel.: +1-734-647-6567
| |
Collapse
|
33
|
Funato N. New Insights Into Cranial Synchondrosis Development: A Mini Review. Front Cell Dev Biol 2020; 8:706. [PMID: 32850826 PMCID: PMC7432265 DOI: 10.3389/fcell.2020.00706] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/13/2020] [Indexed: 11/24/2022] Open
Abstract
The synchondroses formed via endochondral ossification in the cranial base are an important growth center for the neurocranium. Abnormalities in the synchondroses affect cranial base elongation and the development of adjacent regions, including the craniofacial bones. In the central region of the cranial base, there are two synchondroses present—the intersphenoid synchondrosis and the spheno-occipital synchondrosis. These synchondroses consist of mirror image bipolar growth plates. The cross-talk of several signaling pathways, including the parathyroid hormone-like hormone (PTHLH)/parathyroid hormone-related protein (PTHrP), Indian hedgehog (Ihh), Wnt/β-catenin, and fibroblast growth factor (FGF) pathways, as well as regulation by cilium assembly and the transcription factors encoded by the RUNX2, SIX1, SIX2, SIX4, and TBX1 genes, play critical roles in synchondrosis development. Deletions or activation of these gene products in mice causes the abnormal ossification of cranial synchondrosis and skeletal elements. Gene disruption leads to both similar and markedly different abnormalities in the development of intersphenoid synchondrosis and spheno-occipital synchondrosis, as well as in the phenotypes of synchondroses and skeletal bones. This paper reviews the development of cranial synchondroses, along with its regulation by the signaling pathways and transcription factors, highlighting the differences between intersphenoid synchondrosis and spheno-occipital synchondrosis.
Collapse
Affiliation(s)
- Noriko Funato
- Department of Signal Gene Regulation, Tokyo Medical and Dental University, Tokyo, Japan.,Research Core, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
34
|
Nam HK, Vesela I, Schutte SD, Hatch NE. Viral delivery of tissue nonspecific alkaline phosphatase diminishes craniosynostosis in one of two FGFR2C342Y/+ mouse models of Crouzon syndrome. PLoS One 2020; 15:e0234073. [PMID: 32470062 PMCID: PMC7259715 DOI: 10.1371/journal.pone.0234073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
Craniosynostosis is the premature fusion of cranial bones. The goal of this study was to determine if delivery of recombinant tissue nonspecific alkaline phosphatase (TNAP) could prevent or diminish the severity of craniosynostosis in a C57BL/6 FGFR2C342Y/+ model of neonatal onset craniosynostosis or a BALB/c FGFR2C342Y/+ model of postnatal onset craniosynostosis. Mice were injected with a lentivirus encoding a mineral targeted form of TNAP immediately after birth. Cranial bone fusion as well as cranial bone volume, mineral content and density were assessed by micro CT. Craniofacial shape was measured with calipers. Alkaline phosphatase, alanine amino transferase (ALT) and aspartate amino transferase (AST) activity levels were measured in serum. Neonatal delivery of TNAP diminished craniosynostosis severity from 94% suture obliteration in vehicle treated mice to 67% suture obliteration in treated mice, p<0.02) and the incidence of malocclusion from 82.4% to 34.7% (p<0.03), with no effect on cranial bone in C57BL/6 FGFR2C342Y/+ mice. In contrast, treatment with TNAP increased cranial bone volume (p< 0.01), density (p< 0.01) and mineral content (p< 0.01) as compared to vehicle treated controls, but had no effect on craniosynostosis or malocclusion in BALB/c FGFR2C342Y/+ mice. These results indicate that postnatal recombinant TNAP enzyme therapy diminishes craniosynostosis severity in the C57BL/6 FGFR2C342Y/+ neonatal onset mouse model of Crouzon syndrome, and that effects of exogenous TNAP are genetic background dependent.
Collapse
Affiliation(s)
- Hwa Kyung Nam
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Iva Vesela
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sara Dean Schutte
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nan E. Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
35
|
Bessueille L, Briolay A, Como J, Mebarek S, Mansouri C, Gleizes M, El Jamal A, Buchet R, Dumontet C, Matera EL, Mornet E, Millan JL, Fonta C, Magne D. Tissue-nonspecific alkaline phosphatase is an anti-inflammatory nucleotidase. Bone 2020; 133:115262. [PMID: 32028019 PMCID: PMC7185042 DOI: 10.1016/j.bone.2020.115262] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/16/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is necessary for skeletal mineralization by its ability to hydrolyze the mineralization inhibitor inorganic pyrophosphate (PPi), which is mainly generated from extracellular ATP by ectonucleotide pyrophosphatase phosphodiesterase 1 (NPP1). Since children with TNAP deficiency develop bone metaphyseal auto-inflammations in addition to rickets, we hypothesized that TNAP also exerts anti-inflammatory effects relying on the hydrolysis of pro-inflammatory adenosine nucleotides into the anti-inflammatory adenosine. We explored this hypothesis in bone metaphyses of 7-day-old Alpl+/- mice (encoding TNAP), in mineralizing hypertrophic chondrocytes and osteoblasts, and non-mineralizing mesenchymal stem cells (MSCs) and neutrophils, which express TNAP and are present, or can be recruited in the metaphysis. Bone metaphyses of 7-day-old Alpl+/- mice had significantly increased levels of Il-1β and Il-6 and decreased levels of the anti-inflammatory Il-10 cytokine as compared with Alpl+/+ mice. In bone metaphyses, murine hypertrophic chondrocytes and osteoblasts, Alpl mRNA levels were much higher than those of the adenosine nucleotidases Npp1, Cd39 and Cd73. In hypertrophic chondrocytes, inhibition of TNAP with 25 μM of MLS-0038949 decreased the hydrolysis of AMP and ATP. However, TNAP inhibition did not significantly modulate ATP- and adenosine-associated effects in these cells. We observed that part of TNAP proteins in hypertrophic chondrocytes was sent from the cell membrane to matrix vesicles, which may explain why TNAP participated in the hydrolysis of ATP but did not significantly modulate its autocrine pro-inflammatory effects. In MSCs, TNAP did not participate in ATP hydrolysis nor in secretion of inflammatory mediators. In contrast, in neutrophils, TNAP inhibition with MLS-0038949 significantly exacerbated ATP-associated activation and secretion of IL-1β, and extended cell survival. Collectively, these results demonstrate that TNAP is a nucleotidase in both hypertrophic chondrocytes and neutrophils, and that this nucleotidase function is associated with autocrine effects on inflammation only in neutrophils.
Collapse
Affiliation(s)
- L Bessueille
- Univ Lyon; University Lyon 1; ICBMS, UMR CNRS 5246, F-69622 Lyon, France
| | - A Briolay
- Univ Lyon; University Lyon 1; ICBMS, UMR CNRS 5246, F-69622 Lyon, France
| | - J Como
- Univ Lyon; University Lyon 1; ICBMS, UMR CNRS 5246, F-69622 Lyon, France
| | - S Mebarek
- Univ Lyon; University Lyon 1; ICBMS, UMR CNRS 5246, F-69622 Lyon, France
| | - C Mansouri
- Univ Lyon; University Lyon 1; ICBMS, UMR CNRS 5246, F-69622 Lyon, France
| | - M Gleizes
- Centre de recherche cerveau et cognition (CERCO), UMR CNRS 5549 université de Toulouse, UPS, France
| | - A El Jamal
- Univ Lyon; University Lyon 1; ICBMS, UMR CNRS 5246, F-69622 Lyon, France
| | - R Buchet
- Univ Lyon; University Lyon 1; ICBMS, UMR CNRS 5246, F-69622 Lyon, France
| | - C Dumontet
- Anticancer Antibodies, CRCL, INSERM U1052, CNRS UMR 5286, CLB, UCBL, Lyon, France
| | - E L Matera
- Anticancer Antibodies, CRCL, INSERM U1052, CNRS UMR 5286, CLB, UCBL, Lyon, France
| | - E Mornet
- Service de biologie, unité de génétique constitutionnelle, centre hospitalier de Versailles, Le Chesnay, France
| | - J L Millan
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - C Fonta
- Centre de recherche cerveau et cognition (CERCO), UMR CNRS 5549 université de Toulouse, UPS, France
| | - D Magne
- Univ Lyon; University Lyon 1; ICBMS, UMR CNRS 5246, F-69622 Lyon, France.
| |
Collapse
|
36
|
Xu H, Lenhart SA, Chu EY, Chavez MB, Wimer HF, Dimori M, Somerman MJ, Morello R, Foster BL, Hatch NE. Dental and craniofacial defects in the Crtap -/- mouse model of osteogenesis imperfecta type VII. Dev Dyn 2020; 249:884-897. [PMID: 32133710 DOI: 10.1002/dvdy.166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Inactivating mutations in the gene for cartilage-associated protein (CRTAP) cause osteogenesis imperfecta type VII in humans, with a phenotype that can include craniofacial defects. Dental and craniofacial manifestations have not been a focus of case reports to date. We analyzed the craniofacial and dental phenotype of Crtap-/- mice by skull measurements, micro-computed tomography (micro-CT), histology, and immunohistochemistry. RESULTS Crtap-/- mice exhibited a brachycephalic skull shape with fusion of the nasofrontal suture and facial bones, resulting in mid-face retrusion and a class III dental malocclusion. Loss of CRTAP also resulted in decreased dentin volume and decreased cellular cementum volume, though acellular cementum thickness was increased. Periodontal dysfunction was revealed by decreased alveolar bone volume and mineral density, increased periodontal ligament (PDL) space, ectopic calcification within the PDL, bone-tooth ankylosis, altered immunostaining of extracellular matrix proteins in bone and PDL, increased pSMAD5, and more numerous osteoclasts on alveolar bone surfaces. CONCLUSIONS Crtap-/- mice serve as a useful model of the dental and craniofacial abnormalities seen in individuals with osteogenesis imperfecta type VII.
Collapse
Affiliation(s)
- He Xu
- Department of Pediatric Dentistry, Peking University and School and Hospital of Stomatology, Beijing, China.,National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Sydney A Lenhart
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily Y Chu
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Michael B Chavez
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Helen F Wimer
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Milena Dimori
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Martha J Somerman
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Roy Morello
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Division of Genetics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Nan E Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
37
|
Yao W, Wei X, Guo H, Cheng D, Li H, Sun L, Wang S, Guo D, Yang Y, Si J. Tributyltin reduces bone mineral density by reprograming bone marrow mesenchymal stem cells in rat. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 73:103271. [PMID: 31627035 DOI: 10.1016/j.etap.2019.103271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Tributyltin (TBT), a proven endocrine disrupter, was widely used in industry and agriculture. Previous research showed that TBT could alter the balance between osteogenesis and adipogenesis, which may have significant consequences for bone health. Herein, we exposed male rats to TBT chloride (TBTCl) to evaluate the deleterious effects of TBT on bone. Exposure to 50 μg kg-1 TBT resulted in a significant decrease in bone mineral density (BMD) at the femur diaphysis region in the rat. A dose-dependent increase in lipid accumulation and adipocyte number was observed in the bone marrow (BM) of the femur. Meanwhile, TBTCl treatment significantly enhanced the expression of PPARγ and attenuated the expression of Runx2 and β-catenin in BM. In addition, serum ALP activity of TBT-exposed rats also showed a dose-dependent decrease. These results suggest that TBT could reduce BMD via inhibition of the Wnt/β-catenin pathway and skew the adipo-osteogenic balance in the BM of rats.
Collapse
Affiliation(s)
- Wenhuan Yao
- Institute of Preventive Medicine, Shandong University, Jinan, China; Department of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Xinglong Wei
- Institute of Preventive Medicine, Shandong University, Jinan, China; Department of Environmental Health, School of Public Health, Shandong University, Jinan, China
| | - Hao Guo
- Institute of Preventive Medicine, Shandong University, Jinan, China; Department of Environmental Health, School of Public Health, Shandong University, Jinan, China
| | - Dong Cheng
- Institute of Preventive Medicine, Shandong University, Jinan, China; Department of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Hui Li
- Institute of Preventive Medicine, Shandong University, Jinan, China; Department of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Limin Sun
- Orthopedics Department, Shandong Provincial Third Hospital, Jinan, China
| | - Shu'e Wang
- Institute of Preventive Medicine, Shandong University, Jinan, China; Department of Environmental Health, School of Public Health, Shandong University, Jinan, China
| | - Dongmei Guo
- Institute of Preventive Medicine, Shandong University, Jinan, China; Department of Environmental Health, School of Public Health, Shandong University, Jinan, China
| | - Yanli Yang
- Department of Environmental Health, School of Public Health, Shandong University, Jinan, China
| | - Jiliang Si
- Institute of Preventive Medicine, Shandong University, Jinan, China; Department of Environmental Health, School of Public Health, Shandong University, Jinan, China.
| |
Collapse
|
38
|
Silva AS, Santos LF, Mendes MC, Mano JF. Multi-layer pre-vascularized magnetic cell sheets for bone regeneration. Biomaterials 2019; 231:119664. [PMID: 31855623 DOI: 10.1016/j.biomaterials.2019.119664] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/27/2019] [Accepted: 12/01/2019] [Indexed: 12/14/2022]
Abstract
The lack of effective strategies to produce vascularized 3D bone transplants in vitro, hampers the development of thick-constructed bone, limiting the translational of lab-based engineered system to clinical practices. Cell sheet (CS) engineering techniques provide an excellent microenvironment for vascularization since the technique can maintain the intact cell matrix, crucial for angiogenesis. In an attempt to develop hierarchical vascularized 3D cellular constructs, we herein propose the construction of stratified magnetic responsive heterotypic CSs by making use of iron oxide nanoparticles previously internalized within cells. Magnetic force-based CS engineering allows for the construction of thick cellular multilayers. Results show that osteogenesis is achieved due to a synergic effect of human umbilical vein endothelial cells (HUVECs) and adipose-derived stromal cells (ASCs), even in the absence of osteogenic differentiating factors. Increased ALP activity, matrix mineralization, osteopontin and osteocalcin detection were achieved over a period of 21 days for the heterotypic CS conformation (ASCs/HUVECs/ASCs), over the homotypic one (ASCs/ASCs), corroborating our findings. Moreover, the validated crosstalk between BMP-2 and VEGF releases triggers not only the recruitment of blood vessels, as demonstrated in an in vivo CAM assay, as well as the osteogenesis of the 3D cell construct. The in vivo angiogenic profile also demonstrated preserved human vascular structures and human cells showed the ability to migrate and integrate within the chick vasculature.
Collapse
Affiliation(s)
- Ana S Silva
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Lúcia F Santos
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Maria C Mendes
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
39
|
Anti-Osteoporotic Effects of Combined Extract of Lycii Radicis Cortex and Achyranthes japonica in Osteoblast and Osteoclast Cells and Ovariectomized Mice. Nutrients 2019; 11:nu11112716. [PMID: 31717518 PMCID: PMC6893723 DOI: 10.3390/nu11112716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/14/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is characterized by low bone density and quality with high risk of bone fracture. Here, we investigated anti-osteoporotic effects of natural plants (Lycii Radicis Cortex (LRC) and Achyranthes japonica (AJ)) in osteoblast and osteoclast cells in vitro and ovariectomized mice in vivo. Combined LRC and AJ enhanced osteoblast differentiation and mineralized bone-forming osteoblasts by the up-regulation of bone metabolic markers (Alpl, Runx2 and Bglap) in the osteoblastic cell line MC3T3-E1. However, LRC and AJ inhibited osteoclast differentiation of monocytes isolated from mouse bone marrow. In vivo experiments showed that treatment of LRC+AJ extract prevented OVX-induced trabecular bone loss and osteoclastogenesis in an osteoporotic animal model. These results suggest that LRC+AJ extract may be a good therapeutic agent for the treatment and prevention of osteoporotic bone loss.
Collapse
|
40
|
Mitxitorena I, Infante A, Gener B, Rodríguez CI. Suitability and limitations of mesenchymal stem cells to elucidate human bone illness. World J Stem Cells 2019; 11:578-593. [PMID: 31616536 PMCID: PMC6789184 DOI: 10.4252/wjsc.v11.i9.578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/31/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Functional impairment of mesenchymal stem cells (MSCs), osteoblast progenitor cells, has been proposed to be a pathological mechanism contributing to bone disorders, such as osteoporosis (the most common bone disease) and other rare inherited skeletal dysplasias. Pathological bone loss can be caused not only by an enhanced bone resorption activity but also by hampered osteogenic differentiation of MSCs. The majority of the current treatment options counteract bone loss, and therefore bone fragility by blocking bone resorption. These so-called antiresorptive treatments, in spite of being effective at reducing fracture risk, cannot be administered for extended periods due to security concerns. Therefore, there is a real need to develop osteoanabolic therapies to promote bone formation. Human MSCs emerge as a suitable tool to study the etiology of bone disorders at the cellular level as well as to be used for cell therapy purposes for bone diseases. This review will focus on the most relevant findings using human MSCs as an in vitro cell model to unravel pathological bone mechanisms and the application and outcomes of human MSCs in cell therapy clinical trials for bone disease.
Collapse
Affiliation(s)
- Izaskun Mitxitorena
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo 48903, Bizkaia, Spain
| | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo 48903, Bizkaia, Spain
| | - Blanca Gener
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo 48903, Bizkaia, Spain
- Service of Genetics, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo 48903, Bizkaia, Spain
- Centre for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid 28005, Spain
| | - Clara I Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo 48903, Bizkaia, Spain
| |
Collapse
|
41
|
Dillon S, Staines KA, Millán JL, Farquharson C. How To Build a Bone: PHOSPHO1, Biomineralization, and Beyond. JBMR Plus 2019; 3:e10202. [PMID: 31372594 PMCID: PMC6659447 DOI: 10.1002/jbm4.10202] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/15/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022] Open
Abstract
Since its characterization two decades ago, the phosphatase PHOSPHO1 has been the subject of an increasing focus of research. This work has elucidated PHOSPHO1's central role in the biomineralization of bone and other hard tissues, but has also implicated the enzyme in other biological processes in health and disease. During mineralization PHOSPHO1 liberates inorganic phosphate (Pi) to be incorporated into the mineral phase through hydrolysis of its substrates phosphocholine (PCho) and phosphoethanolamine (PEA). Localization of PHOSPHO1 within matrix vesicles allows accumulation of Pi within a protected environment where mineral crystals may nucleate and subsequently invade the organic collagenous scaffold. Here, we examine the evidence for this process, first discussing the discovery and characterization of PHOSPHO1, before considering experimental evidence for its canonical role in matrix vesicle–mediated biomineralization. We also contemplate roles for PHOSPHO1 in disorders of dysregulated mineralization such as vascular calcification, along with emerging evidence of its activity in other systems including choline synthesis and homeostasis, and energy metabolism. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Scott Dillon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh, Easter Bush Midlothian UK
| | | | - José Luis Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA USA
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh, Easter Bush Midlothian UK
| |
Collapse
|
42
|
Park E, Kim J, Kim MC, Yeo S, Kim J, Park S, Jo M, Choi CW, Jin HS, Lee SW, Li WY, Lee JW, Park JH, Huh D, Jeong SY. Anti-Osteoporotic Effects of Kukoamine B Isolated from Lycii Radicis Cortex Extract on Osteoblast and Osteoclast Cells and Ovariectomized Osteoporosis Model Mice. Int J Mol Sci 2019; 20:ijms20112784. [PMID: 31174394 PMCID: PMC6600412 DOI: 10.3390/ijms20112784] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022] Open
Abstract
Osteoporosis is an abnormal bone remodeling condition characterized by decreased bone density, which leads to high risks of fracture. Previous study has demonstrated that Lycii Radicis Cortex (LRC) extract inhibits bone loss in ovariectomized (OVX) mice by enhancing osteoblast differentiation. A bioactive compound, kukoamine B (KB), was identified from fractionation of an LRC extract as a candidate component responsible for an anti-osteoporotic effect. This study investigated the anti-osteoporotic effects of KB using in vitro and in vivo osteoporosis models. KB treatment significantly increased the osteoblastic differentiation and mineralized nodule formation of osteoblastic MC3T3-E1 cells, while it significantly decreased the osteoclast differentiation of primary-cultured monocytes derived from mouse bone marrow. The effects of KB on osteoblastic and osteoclastic differentiations under more physiological conditions were also examined. In the co-culture of MC3T3-E1 cells and monocytes, KB promoted osteoblast differentiation but did not affect osteoclast differentiation. In vivo experiments revealed that KB significantly inhibited OVX-induced bone mineral density loss and restored the impaired bone structural properties in osteoporosis model mice. These results suggest that KB may be a potential therapeutic candidate for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Eunkuk Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Jeonghyun Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Mun-Chang Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Subin Yeo
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Jieun Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Seulbi Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Miran Jo
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Chun Whan Choi
- Natural Products Research Institute, Gyeonggi Institute of Science & Technology Promotion, Suwon 16229, Korea.
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan 31499, Korea.
| | - Sang Woo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Wan Yi Li
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.
| | - Ji-Won Lee
- Korea Food Research Institute, Seongnam 13539, Korea.
| | - Jin-Hyok Park
- Dongwoodang Pharmacy Co. Ltd., Yeongchen 38819, Korea.
| | - Dam Huh
- Dongwoodang Pharmacy Co. Ltd., Yeongchen 38819, Korea.
| | - Seon-Yong Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| |
Collapse
|
43
|
Nam HK, Vesela I, Siismets E, Hatch NE. Tissue nonspecific alkaline phosphatase promotes calvarial progenitor cell cycle progression and cytokinesis via Erk1,2. Bone 2019; 120:125-136. [PMID: 30342227 PMCID: PMC6360114 DOI: 10.1016/j.bone.2018.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/09/2018] [Accepted: 10/14/2018] [Indexed: 01/09/2023]
Abstract
Bone growth is dependent upon the presence of self-renewing progenitor cell populations. While the contribution of Tissue Nonspecific Alkaline Phosphatase (TNAP) enzyme activity in promoting bone mineralization when expressed in differentiated bone forming cells is well understood, little is known regarding the role of TNAP in bone progenitor cells. We previously found diminished proliferation in the calvarial MC3T3E1 cell line upon suppression of TNAP by shRNA, and in calvarial cells and tissues of TNAP-/- mice. These findings indicate that TNAP promotes cell proliferation. Here we investigate how TNAP mediates this effect. Results show that TNAP is essential for calvarial progenitor cell cycle progression and cytokinesis, and that these effects are mediated by inorganic phosphate and Erk1/2. Levels of active Erk1/2 are significantly diminished in TNAP deficient cranial cells and tissues even in the presence of inorganic phosphate. Moreover, in the absence of TNAP, FGFR2 expression levels are high and FGF2 rescues phospho-Erk1/2 levels and cell cycle abnormalities to a significantly greater extent than inorganic phosphate. Based upon the data we propose a model in which TNAP stimulates Erk1/2 activity via both phosphate dependent and independent mechanisms to promote cell cycle progression and cytokinesis in calvarial bone progenitor cells. Concomitantly, TNAP feeds back to inhibit FGFR2 expression. These results identify a novel mechanism by which TNAP promotes calvarial progenitor cell renewal and indicate that converging pathways exist downstream of FGF signaling and TNAP activity to control craniofacial skeletal development.
Collapse
Affiliation(s)
- Hwa Kyung Nam
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, 1011 N University Avenue, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Iva Vesela
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, 1011 N University Avenue, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Erica Siismets
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, 1011 N University Avenue, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Nan E Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, 1011 N University Avenue, University of Michigan, Ann Arbor, MI 48109-1078, USA.
| |
Collapse
|
44
|
Wu X, Gu Y. Signaling Mechanisms Underlying Genetic Pathophysiology of Craniosynostosis. Int J Biol Sci 2019; 15:298-311. [PMID: 30745822 PMCID: PMC6367540 DOI: 10.7150/ijbs.29183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
Craniosynostosis, is the premature fusion of one or more cranial sutures which is the second most common cranial facial anomalies. The premature cranial sutures leads to deformity of skull shape and restricts the growth of brain, which might elicit severe neurologic damage. Craniosynostosis exhibit close correlations with a varieties of syndromes. During the past two decades, as the appliance of high throughput DNA sequencing techniques, steady progresses has been made in identifying gene mutations in both syndromic and nonsyndromic cases, which allow researchers to better understanding the genetic roles in the development of cranial vault. As the enrichment of known mutations involved in the pathogenic of premature sutures fusion, multiple signaling pathways have been investigated to dissect the underlying mechanisms beneath the disease. In addition to genetic etiology, environment factors, especially mechanics, have also been proposed to have vital roles during the pathophysiological of craniosynostosis. However, the influence of mechanics factors in the cranial development remains largely unknown. In this review, we present a brief overview of the updated genetic mutations and environmental factors identified in both syndromic and nonsyndromic craniosynostosis. Furthermore, potential molecular signaling pathways and its relations have been described.
Collapse
Affiliation(s)
- Xiaowei Wu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, PR. China
- National Engineering Laboratory for Digital and Material Technology of Stomatology,Beijing Key Laboratory of Digital Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, PR. China
| | - Yan Gu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, PR. China
- National Engineering Laboratory for Digital and Material Technology of Stomatology,Beijing Key Laboratory of Digital Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, PR. China
| |
Collapse
|
45
|
Song H, Li Z, Peng Y, Li X, Xu X, Pan J, Niu X. Enzyme-triggeredin situformation of Ag nanoparticles with oxidase-mimicking activity for amplified detection of alkaline phosphatase activity. Analyst 2019; 144:2416-2422. [DOI: 10.1039/c9an00105k] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ALP-triggeredin situformation of Ag NPs with high oxidase-mimicking activity for colorimetric detection of alkaline phosphatase activity.
Collapse
Affiliation(s)
- Hongwei Song
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- China
| | - Zhibo Li
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Yinxian Peng
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- China
| | - Xin Li
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Xuechao Xu
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Jianming Pan
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Xiangheng Niu
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| |
Collapse
|
46
|
Bowden SA, Foster BL. Alkaline Phosphatase Replacement Therapy for Hypophosphatasia in Development and Practice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:279-322. [PMID: 31482504 DOI: 10.1007/978-981-13-7709-9_13] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hypophosphatasia (HPP) is an inherited disorder that affects bone and tooth mineralization characterized by low serum alkaline phosphatase. HPP is caused by loss-of-function mutations in the ALPL gene encoding the protein, tissue-nonspecific alkaline phosphatase (TNSALP). TNSALP is expressed by mineralizing cells of the skeleton and dentition and is associated with the mineralization process. Generalized reduction of activity of the TNSALP leads to accumulation of its substrates, including inorganic pyrophosphate (PPi) that inhibits physiological mineralization. This leads to defective skeletal mineralization, with manifestations including rickets, osteomalacia, fractures, and bone pain, all of which can result in multi-systemic complications with significant morbidity, as well as mortality in severe cases. Dental manifestations are nearly universal among affected individuals and feature most prominently premature loss of deciduous teeth. Management of HPP has been limited to supportive care until the introduction of a TNSALP enzyme replacement therapy (ERT), asfotase alfa (AA). AA ERT has proven to be transformative, improving survival in severely affected infants and increasing overall quality of life in children and adults with HPP. This chapter provides an overview of TNSALP expression and functions, summarizes HPP clinical types and pathologies, discusses early attempts at therapies for HPP, summarizes development of HPP mouse models, reviews design and validation of AA ERT, and provides up-to-date accounts of AA ERT efficacy in clinical trials and case reports, including therapeutic response, adverse effects, limitations, and potential future directions in therapy.
Collapse
Affiliation(s)
- S A Bowden
- Division of Endocrinology, Department of Pediatrics, Nationwide Children's Hospital/The Ohio State University College of Medicine, Columbus, OH, USA.
| | - B L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
47
|
Song H, Wang H, Li X, Peng Y, Pan J, Niu X. Sensitive and selective colorimetric detection of alkaline phosphatase activity based on phosphate anion-quenched oxidase-mimicking activity of Ce(Ⅳ) ions. Anal Chim Acta 2018; 1044:154-161. [DOI: 10.1016/j.aca.2018.09.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
|
48
|
Gámez-Belmonte R, Hernández-Chirlaque C, Sánchez de Medina F, Martínez-Augustin O. Experimental acute pancreatitis is enhanced in mice with tissue nonspecific alkaline phoshatase haplodeficiency due to modulation of neutrophils and acinar cells. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3769-3779. [DOI: 10.1016/j.bbadis.2018.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/31/2018] [Accepted: 09/09/2018] [Indexed: 01/13/2023]
|
49
|
Bowden SA, Foster BL. Profile of asfotase alfa in the treatment of hypophosphatasia: design, development, and place in therapy. Drug Des Devel Ther 2018; 12:3147-3161. [PMID: 30288020 PMCID: PMC6161731 DOI: 10.2147/dddt.s154922] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hypophosphatasia (HPP) is a multi-systemic metabolic disorder caused by loss-of-function mutations in the ALPL gene that encodes the mineralization-associated enzyme, tissue-nonspecific alkaline phosphatase (TNSALP). HPP is characterized by defective bone and dental mineralization, leading to skeletal abnormalities with complications resulting in significant morbidity and mortality. Management of HPP has been limited to supportive care until the introduction of a recently approved enzyme replacement therapy employing bone-targeted recombinant human TNSALP, asfotase alfa (AA). This new therapy has been transformative as it improves survival in severely affected infants, and overall quality of life in children and adults with HPP. This review provides an overview of HPP, focusing on important steps in the development of AA enzyme replacement therapy, including the drug design, preclinical studies in the HPP mouse model, and outcomes from clinical trials and case report publications to date, with special attention given to response to therapy of skeletal manifestations, biochemical features, and other clinical manifestations. The limitations, adverse effects, and outcomes of AA are outlined and the place in therapy for individuals with HPP is discussed.
Collapse
Affiliation(s)
- Sasigarn A Bowden
- Division of Endocrinology, Department of Pediatrics, Nationwide Children's Hospital/The Ohio State University College of Medicine, Columbus, OH 43205, USA,
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
50
|
Global gene expression analysis identifies Mef2c as a potential player in Wnt16-mediated transcriptional regulation. Gene 2018; 675:312-321. [PMID: 29981832 DOI: 10.1016/j.gene.2018.06.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/24/2018] [Indexed: 01/09/2023]
Abstract
Wnt16 is a major Wnt ligand involved in the regulation of postnatal bone homeostasis. Previous studies have shown that Wnt16 promotes bone formation and inhibits bone resorption, suggesting that this molecule could be targeted for therapeutic interventions to treat bone thinning disorders such as osteoporosis. However, the molecular mechanisms by which Wnt16 regulates bone metabolism is not yet fully understood. To better understand the molecular mechanisms by which Wnt16 promotes bone formation and to identify the target genes regulated by Wnt16 in osteoblasts, we treated calvarial osteoblasts purified from C57Bl/6 mice with recombinant Wnt16 and profiled the gene expression changes by RNA-seq at 24 h post-treatment. We also compared gene expression profiles of Wnt16-treated osteoblasts to canonical Wnt3a- and non-canonical Wnt5a-treated osteoblasts. This study identified 576 genes differentially expressed in Wnt16-treated osteoblasts compared to sham-treated controls; these included several members of Wnt pathway (Wnt2b, Wnt7b, Wnt11, Axin2, Sfrp2, Sfrp4, Fzd5 etc.) and TGF-β/BMP signaling pathway (Bmp7, Inhba, Inhbb, Tgfb2 etc.). Wnt16 also regulated a large number of genes with known bone phenotypes. We also found that about 37% (215/576) of the Wnt16 targets overlapped with Wnt3a targets and ~15% (86/576) overlapped with Wnt5a targets, suggesting that Wnt16 activates both canonical and non-canonical Wnt signaling targets in osteoblasts. Transcription factor binding motif enrichment analysis in the promoter regions of Wnt16 targets identified noncanonical Wnt/JNK pathway activated transcription factors Fosl2 and Fosl1 as two of the most significantly enriched transcription factors associated with genes activated by Wnt16 while Mef2c was the most significantly enriched transcription factor associated with genes repressed by Wnt16. We also found that a large number of Mef2c targets overlapped with genes down-regulated by Wnt16 and Mef2c itself was transcriptionally repressed by Wnt16 suggesting that Mef2c plays a role in Wnt16-mediated transcriptional regulation.
Collapse
|