1
|
Li XL, Zhao YQ, Miao L, An YX, Wu F, Han JY, Han JY, Tay FR, Mu Z, Jiao Y, Wang J. Strategies for promoting neurovascularization in bone regeneration. Mil Med Res 2025; 12:9. [PMID: 40025573 PMCID: PMC11874146 DOI: 10.1186/s40779-025-00596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/26/2025] [Indexed: 03/04/2025] Open
Abstract
Bone tissue relies on the intricate interplay between blood vessels and nerve fibers, both are essential for many physiological and pathological processes of the skeletal system. Blood vessels provide the necessary oxygen and nutrients to nerve and bone tissues, and remove metabolic waste. Concomitantly, nerve fibers precede blood vessels during growth, promote vascularization, and influence bone cells by secreting neurotransmitters to stimulate osteogenesis. Despite the critical roles of both components, current biomaterials generally focus on enhancing intraosseous blood vessel repair, while often neglecting the contribution of nerves. Understanding the distribution and main functions of blood vessels and nerve fibers in bone is crucial for developing effective biomaterials for bone tissue engineering. This review first explores the anatomy of intraosseous blood vessels and nerve fibers, highlighting their vital roles in bone embryonic development, metabolism, and repair. It covers innovative bone regeneration strategies directed at accelerating the intrabony neurovascular system over the past 10 years. The issues covered included material properties (stiffness, surface topography, pore structures, conductivity, and piezoelectricity) and acellular biological factors [neurotrophins, peptides, ribonucleic acids (RNAs), inorganic ions, and exosomes]. Major challenges encountered by neurovascularized materials during their clinical translation have also been highlighted. Furthermore, the review discusses future research directions and potential developments aimed at producing bone repair materials that more accurately mimic the natural healing processes of bone tissue. This review will serve as a valuable reference for researchers and clinicians in developing novel neurovascularized biomaterials and accelerating their translation into clinical practice. By bridging the gap between experimental research and practical application, these advancements have the potential to transform the treatment of bone defects and significantly improve the quality of life for patients with bone-related conditions.
Collapse
Affiliation(s)
- Xin-Ling Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Qing Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Li Miao
- Department of Stomatology, The Seventh Medical Center of PLA General Hospital, Beijing, 100700, China
| | - Yan-Xin An
- Department of General Surgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, China
| | - Fan Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jin-Yu Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jing-Yuan Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Franklin R Tay
- Graduate School of Augusta University, Augusta, GA, 30912, USA
| | - Zhao Mu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yang Jiao
- Department of Stomatology, The Seventh Medical Center of PLA General Hospital, Beijing, 100700, China.
| | - Jing Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Li Y, Lin Y, Chen Z, Ji W, Liu H. Deficiency of ATF2 retards senescence induced by replication stress and pamidronate in mouse jaw bone marrow stem cells. Cell Signal 2025; 127:111579. [PMID: 39733927 DOI: 10.1016/j.cellsig.2024.111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
The aging process is associated with a loss of bone mass and an accumulation of senescent cells, which is under epigenetic control. Morphological and molecular analysis revealed a notable reduction in bone mass and alveolar crest height in aged mice, accompanied by increased levels of senescent mouse jaw bone marrow stem cells (mJBMSCs). To investigate whether specific transcription factors are involved, assay for transposase-accessible chromatin with sequencing (ATAC-seq) was performed on mJBMSCs isolated from 2-, 4-, 8-, and 20-month-old mice. In 20-month-old mJBMSCs, increased chromatin accessibility was observed alongside elevated expression of activating transcription factor 2 (ATF2) in both cells and alveolar bone. Silencing Atf2 in mJBMSCs failed to reverse physiological aging, but delayed replication stress and pamidronate (PAM) induced senescence. The analysis of ATAC-seq and RNA sequencing indicated that the differentially expressed genes upregulated by PAM but downregulated by ATF2 deficiency were related to some key biological processes, including negative regulation of cell proliferation, inflammatory response, adipogenesis, and cellular senescence. The dual-luciferase assay was conducted to demonstrate that ATF2 enhances Cdkn2a transcription by binding to its promoter region. Our findings suggest significant chromatin alterations in aged mJBMSCs, positioning ATF2 as a potential target for combating externally induced senescence.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yuxiu Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Cariology and Endodontics, School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Cariology and Endodontics, School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Wei Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Huan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
3
|
Wichlas F, Wenzel M, Hofmann V, Trieb K, Deluca A, Tempfer H, Wagner A, Traweger A, Senck S, Deininger C. Significantly increased bone volume in a critical-sized defect model in the rat animal model by transplantation of a stand-alone vascularized periosteal flap. Eur J Trauma Emerg Surg 2025; 51:121. [PMID: 40019514 PMCID: PMC11870878 DOI: 10.1007/s00068-025-02770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/11/2025] [Indexed: 03/01/2025]
Abstract
PURPOSE The repair of bony non-unions remains challenging and often requires graft material due to limited availability of autologous bone. The aim of this study was to investigate the potency of a stand-alone pedicled periosteal flap (PF) versus a ligated periosteal flap (PFx), an empty defect and a crossover group in terms of newly formed bone in a 5 mm critical-sized defect in the rat femur diaphysis. METHODS The following 4 treatment groups were formed out of a total of 36 male Sprague Dawley rats: Pedicled periosteal flap, ligated periosteal flap, crossover (each n = 10) and empty defect group (n = 6). A prospective randomized plate osteosynthesis was performed. The periosteal flap was dissected along with the supplying vessel from the medial femoral condyle with the aid of magnifying glasses and fixed to the plate and to the defect with a suture. Regular radiographic and µ-CT examinations were performed to determine bone volume inside the defect, as well as descriptive histological examinations. RESULTS Newly formed bone tissue was measured by Bone Volume / Tissue Volume. The significant highest ratio to the control group was detected in the PF group after 10 weeks (18.77%) compared to the crossover- (11.28%; p = 0.0436), the PFx- (10.98%; p = 0.0411), and the control group (10.47%; p = 0.0293). No relevant differences were found in the descriptive histological examination. CONCLUSION According to the observed results, bony healing of non-union defects can be supported with a pedicled periosteal flap. The superiority of the pedicled compared to the ligated periosteal flap suggests that the improved blood flow within the defect area is an essential component of the healing phase itself.
Collapse
Affiliation(s)
- Florian Wichlas
- Department of Orthopedics and Traumatology, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, Salzburg, 5020, Austria
| | - Maximilian Wenzel
- Department of Orthopedics and Traumatology, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, Salzburg, 5020, Austria
| | - Valeska Hofmann
- Department of Traumatology and Reconstructive Surgery, BG Trauma Center Tübingen, Eberhard Karls University, Schnarrenbergstraße 95, 72076, Tübingen, Tübingen, Germany
| | - Klemens Trieb
- Department of Orthopedics and Traumatology, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, Salzburg, 5020, Austria
| | - Amelie Deluca
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Strubergasse 22, Salzburg, 5020, Austria
| | - Herbert Tempfer
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Strubergasse 22, Salzburg, 5020, Austria
| | - Andrea Wagner
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Strubergasse 22, Salzburg, 5020, Austria
| | - Andreas Traweger
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Strubergasse 22, Salzburg, 5020, Austria
| | - Sascha Senck
- University of Applied Sciences Upper Austria, Roseggerstraße 15, Wels, 4600, Austria
| | - Christian Deininger
- Department of Orthopedics and Traumatology, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, Salzburg, 5020, Austria.
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Strubergasse 22, Salzburg, 5020, Austria.
| |
Collapse
|
4
|
Sharan K, Brandt C, Yusuf MA, Singh P, Halder N, Edwards ME, Mangu SVVSR, Das A, Mishra A, Kumar SS, Sharma A, Gupta A, Liu XS, Guo EX, Monani UR, Ponnalagu D, Ivanov II, Lal G, Clare S, Dougan G, Yadav VK. Rapid and relaying deleterious effects of a gastrointestinal pathogen, Citrobacter rodentium, on bone, an extra-intestinal organ. iScience 2025; 28:111802. [PMID: 39967874 PMCID: PMC11834125 DOI: 10.1016/j.isci.2025.111802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/04/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025] Open
Abstract
Enteropathogenic infections cause pathophysiological changes in the host but their effects beyond the gastrointestinal tract are undefined. Here, using Citrobacter rodentium infection in mouse, which mimics human diarrheal enteropathogenic Escherichia coli, we show that gastrointestinal infection negatively affects bone remodeling, leading to compromised bone architecture. Transmission of infection through fecal-oral route from Citrobacter rodentium-infected to non-infected mice caused bone loss in non-infected cage mates. Mice with B cell deficiency (Igh6-/- mice) failed to clear C. rodentium infection and exhibited more severe and long-term bone loss compared to WT mice. Unbiased cytokine profiling showed an increase in circulating tumor necrosis factor α (TNFα) levels following Citrobacter rodentium infection, and immunoneutralization of TNFα prevented infection-induced bone loss completely in WT and immunocompromised mice. These findings reveal rapid, relaying, and modifiable effects of enteropathogenic infections on an extraintestinal organ-bone, and provide insights into the mechanism(s) through which these infections affect extraintestinal organ homeostasis.
Collapse
Affiliation(s)
- Kunal Sharan
- Mouse Genetics Project, Wellcome Sanger Institute, Hinxton, Saffron Walden, UK
- Department of Molecular Nutrition, CSIR-CFTRI, Mysore, Karnataka, India
| | - Cordelia Brandt
- Host-Pathogen Interaction Group, Wellcome Sanger Institute, Hinxton, Saffron Walden, UK
| | - Mohd Aslam Yusuf
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Parminder Singh
- National Institute of Immunology, New Delhi, New Delhi, India
| | - Namrita Halder
- National Centre for Cell Science, Pune, Maharastra, India
| | - Madeline E. Edwards
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - SVVS Ravi Mangu
- Department of Molecular Nutrition, CSIR-CFTRI, Mysore, Karnataka, India
| | - Abhilipsa Das
- Department of Molecular Nutrition, CSIR-CFTRI, Mysore, Karnataka, India
| | - Amrita Mishra
- National Centre for Cell Science, Pune, Maharastra, India
| | - Shashi S. Kumar
- Center for Motor Neuron Biology & Disease, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Amita Sharma
- Pediatric Kidney Foundation, New Delhi, New Delhi, India
| | - Alka Gupta
- Reproductive Biology Laboratory, National Institute of Immunology, New Delhi, New Delhi, India
| | - Xiaowei S. Liu
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward X. Guo
- Bone Biomechanics Laboratory, Columbia University, New York, NY, USA
| | - Umrao R. Monani
- Center for Motor Neuron Biology & Disease, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | | | - Ivaylo I. Ivanov
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Girdhari Lal
- National Centre for Cell Science, Pune, Maharastra, India
| | - Simon Clare
- Host-Pathogen Interaction Group, Wellcome Sanger Institute, Hinxton, Saffron Walden, UK
| | - Gordon Dougan
- Host-Pathogen Interaction Group, Wellcome Sanger Institute, Hinxton, Saffron Walden, UK
- Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
- Centre for Translational Stem Cell Biology, Hong Kong, China
| | - Vijay K. Yadav
- Mouse Genetics Project, Wellcome Sanger Institute, Hinxton, Saffron Walden, UK
- National Institute of Immunology, New Delhi, New Delhi, India
- Department of Genetics and Development, Columbia University, New York, NY, USA
- Healthy Longevity Program, Department of Pathology, Immunology and Laboratory Medicine, Rutgers University, Newark, NJ, USA
- Center for Cell Signaling, Rutgers University, Newark, NJ, USA
- Center for Immunity and Inflammation, Rutgers University, Newark, NJ, USA
| |
Collapse
|
5
|
Perepletchikova D, Malashicheva A. Communication between endothelial cells and osteoblasts in regulation of bone homeostasis: Notch players. Stem Cell Res Ther 2025; 16:56. [PMID: 39920854 PMCID: PMC11806792 DOI: 10.1186/s13287-025-04176-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
Endothelial cells coat blood vessels and release molecular signals to affect the fate of other cells. Endothelial cells can adjust their behavior in response to the changing microenvironmental conditions. During bone regeneration, bone tissue cells release factors that promote blood vessel growth. Notch is a key signaling that regulates cell fate decisions in many tissues and plays an important role in bone tissue development and homeostasis. Understanding the interplay between angiogenesis and osteogenesis is currently a focus of research efforts in order to facilitate and improve osteogenesis when needed. Our review explores the cellular and molecular mechanisms including Notch-dependent endothelial-MSC communication that drive osteogenesis-angiogenesis processes and their effects on bone remodeling and repair.
Collapse
Affiliation(s)
| | - Anna Malashicheva
- Institute of Cytology Russian Academy of Science, St. Petersburg, Russia, 194064.
| |
Collapse
|
6
|
Wang L, Ruan M, Bu Q, Zhao C. Signaling Pathways Driving MSC Osteogenesis: Mechanisms, Regulation, and Translational Applications. Int J Mol Sci 2025; 26:1311. [PMID: 39941080 PMCID: PMC11818554 DOI: 10.3390/ijms26031311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are crucial for skeletal development, homeostasis, and repair, primarily through their differentiation into osteoblasts and other skeletal lineage cells. Key signaling pathways, including Wnt, TGF-β/BMP, PTH, Hedgehog, and IGF, act as critical regulators of MSC osteogenesis, playing pivotal roles in maintaining bone homeostasis and facilitating regeneration. These pathways interact in distinct ways at various stages of bone development, mineralization, and remodeling. This review provides an overview of the molecular mechanisms by which these pathways regulate MSC osteogenesis, their influence on bone tissue formation, and their implications in bone diseases and therapeutic strategies. Additionally, we explore the potential applications of these pathways in bone tissue engineering, with a particular focus on promoting the use of MSCs as seed cells for bone defect repair. Ultimately, this review aims to highlight potential avenues for advancing bone biology research, treating bone disorders, and enhancing regenerative medicine.
Collapse
Affiliation(s)
| | | | | | - Chengzhu Zhao
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
7
|
Buchanan C, Chen S, Yuan Y, Guo T, Feng J, Zhang M, Carey G, Howard I, Sanchez J, Ho TV, Chai Y. Loss of Runx2 in Gli1 + osteogenic progenitors prevents bone loss following ovariectomy. JBMR Plus 2025; 9:ziae141. [PMID: 39996169 PMCID: PMC11848843 DOI: 10.1093/jbmrpl/ziae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 02/26/2025] Open
Abstract
Osteoporosis is a metabolic bone disorder characterized by low bone mass and bone mineral density. It is the most prevalent bone disease and a common cause of fracture in aging adults. Low bone mass, as seen in osteoporosis, results from an imbalance between osteoblast and osteoclast activity. Gli1+ cells are indispensable to the maintenance of bone tissue homeostasis. These cells give rise to osteoprogenitors and are present at the osteogenic fronts of long bones in adult mice. Runx2 is a key regulator of osteogenesis and plays a crucial role in osteoblastic differentiation and maturation during development. However, its function in maintaining adult bone tissue homeostasis remains unclear. In this study, we investigated the role of Runx2 in maintaining adult bone homeostasis in the context of ovariectomy-induced estrogen deficiency, a model for postmenopausal osteoporosis. Our results show that deletion of Runx2 in the Gli1+ osteogenic progenitor population prevents loss of both cortical and trabecular bone mass and mineralization after ovariectomy. At the cellular level, loss of Runx2 leads to a decrease in osteoclast activity. Our study indicates that Runx2 is essential for maintaining adult bone tissue homeostasis by regulating osteoclast differentiation.
Collapse
Affiliation(s)
- Connor Buchanan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Shuo Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Mingyi Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Grace Carey
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Ishmael Howard
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Janet Sanchez
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
8
|
Panebianco CJ, Essaidi M, Barnes E, Williams A, Vancíková K, Labberté MC, Brama P, Nowlan NC, Boerckel JD. Dynamics of postnatal bone development and epiphyseal synostosis in the caprine autopod. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.26.630423. [PMID: 39763848 PMCID: PMC11703179 DOI: 10.1101/2024.12.26.630423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Bones develop to structurally balance strength and mobility. Bone developmental dynamics are influenced by whether an animal is ambulatory at birth (i.e., precocial). Precocial species, such as goats, develop advanced skeletal maturity in utero, making them useful models for studying the dynamics of bone formation under mechanical load. Here, we used microcomputed tomography and histology to characterize postnatal bone development in the autopod of the caprine lower forelimb. The caprine autopod features two toes, fused by metacarpal synostosis (i.e., bone fusion) prior to birth. Our analysis focused on the phalanges 1 (P1) and metacarpals of the goat autopod from birth through adulthood (3.5 years). P1 cortical bone densified rapidly after birth (half-life using one-phase exponential decay model (τ1/2 = 1.6 ± 0.4 months), but the P1 cortical thickness increased continually through adulthood (τ1/2 = 7.2 ± 2.7 mo). Upon normalization by body mass, the normalized polar moment of inertia of P1 cortical bone was constant over time, suggestive of structural load adaptation. P1 trabecular bone increased in trabecular number (τ1/2 = 6.7 ± 2.8 mo) and thickness (τ1/2 = 6.6 ± 2.0 mo) until skeletal maturity, while metacarpal trabeculae grew primarily through trabecular thickening (τ1/2 = 7.9 ± 2.2 mo). Unlike prenatal fusion of the metacarpal diaphysis, synostosis of the epiphyses occurred postnatally, prior to growth plate closure, through a unique fibrocartilaginous endochondral ossification. These findings implicate ambulatory loading in postnatal bone development of precocial goats and identify a novel postnatal synostosis event in the caprine metacarpal epiphysis.
Collapse
Affiliation(s)
- Christopher J. Panebianco
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Maha Essaidi
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Elijah Barnes
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- School of Science, Technology, Engineering, and Mathematics, Alabama State University, Montgomery, AL, USA
| | - Ashley Williams
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- School of Science, Technology, Engineering, and Mathematics, Alabama State University, Montgomery, AL, USA
| | - Karin Vancíková
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Margot C. Labberté
- Translational Research Unit, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Pieter Brama
- Translational Research Unit, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Niamh C. Nowlan
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Joel D. Boerckel
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Xu X, Feng J, Lin T, Liu R, Chen Z. miR-181a/MSC-Loaded Nano-Hydroxyapatite/Collagen Accelerated Bone Defect Repair in Rats by Targeting Ferroptosis Pathway. J Funct Biomater 2024; 15:385. [PMID: 39728185 DOI: 10.3390/jfb15120385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Background: The reparative regeneration of jawbone defects poses a significant challenge within the field of dentistry. Despite being the gold standard, autogenous bone materials are not without drawbacks, including a heightened risk of postoperative infections. Consequently, the development of innovative materials that can surpass the osteogenic capabilities of autologous bone has emerged as a pivotal area of research. Methods: Mesenchymal stem cells (MSCs), known for their multilineage differentiation potential, were isolated from human umbilical cords and transfected with miR-181a. The osteogenic differentiation of miR-181a/MSC was investigated. Then, physicochemical properties of miR-181a/MSC-loaded nano-hydroxyapatite (nHAC) scaffolds were characterized, and their efficacy and underlying mechanism in rat calvarial defect repair were explored. Results: miR-181a overexpression in MSCs significantly promoted osteogenic differentiation, as evidenced by increased alkaline phosphatase activity and expression of osteogenic markers. The miR-181a/MSC-loaded nHAC scaffolds exhibited favorable bioactivity and accelerated bone tissue repair and collagen secretion in vivo. Mechanistic studies reveal that miR-181a directly targeted the TP53/SLC7A11 pathway, inhibiting ferroptosis and enhancing the osteogenic capacity of MSCs. Conclusions: The study demonstrates that miR-181a/MSC-loaded nHAC scaffolds significantly enhance the repair of bone defects by promoting osteogenic differentiation and inhibiting ferroptosis. These findings provide novel insights into the molecular mechanisms regulating MSC osteogenesis and offer a promising therapeutic strategy for bone defect repair.
Collapse
Affiliation(s)
- Xiongjun Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Junming Feng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Tianze Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Runheng Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Zhuofan Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
10
|
Urbaniak MM, Rudnicka K, Płociński P, Chmiela M. Exploring the Osteoinductive Potential of Bacterial Pyomelanin Derived from Pseudomonas aeruginosa in a Human Osteoblast Model. Int J Mol Sci 2024; 25:13406. [PMID: 39769171 PMCID: PMC11678243 DOI: 10.3390/ijms252413406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Alkaptonuria (AKU) is a genetically determined disease associated with disorders of tyrosine metabolism. In AKU, the deposition of homogentisic acid polymers contributes to the pathological ossification of cartilage tissue. The controlled use of biomimetics similar to deposits observed in cartilage during AKU potentially may serve the development of new bone regeneration therapy based on the activation of osteoblasts. The proposed biomimetic is pyomelanin (PyoM), a polymeric biomacromolecule synthesized by Pseudomonas aeruginosa. This work presents comprehensive data on the osteoinductive, pro-regenerative, and antibacterial properties, as well as the cytocompatibility, of water-soluble (PyoMsol) or water-insoluble (PyoMinsol) PyoM. Both variants of PyoM support osteoinductive processes as well as the maturation of osteoblasts in cell cultures in vitro due to the upregulation of bone-formation markers, osteocalcin (OC), and alkaline phosphatase (ALP). Furthermore, the cytokines involved in these processes were elevated in cell cultures of osteoblasts exposed to PyoM: tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10. The PyoM variants are cytocompatible in a wide concentration range and limit the doxorubicin-induced apoptosis of osteoblasts. This cytoprotective PyoM activity is correlated with an increased migration of osteoblasts. Moreover, PyoMsol and PyoMinsol exhibit antibacterial activity against staphylococci isolated from infected bones. The osteoinductive, pro-regenerative, and antiapoptotic effects achieved through PyoM stimulation prompt the development of new biocomposites modified with this bacterial biopolymer for medical use.
Collapse
Affiliation(s)
- Mateusz M. Urbaniak
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St, 90-237 Łódź, Poland; (M.M.U.); (K.R.); (P.P.)
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 12 Tamka St, 91-403 Łódź, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St, 90-237 Łódź, Poland; (M.M.U.); (K.R.); (P.P.)
| | - Przemysław Płociński
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St, 90-237 Łódź, Poland; (M.M.U.); (K.R.); (P.P.)
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St, 90-237 Łódź, Poland; (M.M.U.); (K.R.); (P.P.)
| |
Collapse
|
11
|
Zhang Z, Boggavarapu NR, Muhr LSA, Garcia-Serrango A, Aeppli TRJ, Nava TS, Zhao Y, Gutierrez-Farewik EM, Kulachenko A, Sävendahl L, Zaman F. Genomic Effects of Biomechanical Loading in Adolescent Human Growth Plate Cartilage: A Pilot Study. Cartilage 2024:19476035241302954. [PMID: 39655393 PMCID: PMC11629350 DOI: 10.1177/19476035241302954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVE The genomic effects of biomechanical loading on human growth plate cartilage are unknown so far. To address this, we used rare human growth plate biopsies obtained from children undergoing epiphysiodesis and exposed them to precisely controlled mechanical loading using a microloading device. The biopsies were cultured 24 hours after mechanical loading, followed by RNA-sequencing analyses to decipher the genomic regulation. DESIGN We conducted RNA-seq analysis of human growth plate cartilage obtained from three patients cultured ex vivo and subjected to cyclical mechanical loading with peak 0.4 N with frequency 0.77 Hz during a 30-second duration, using a specialized microloading device. RESULTS Gene ontology analysis revealed novel data showing three significantly upregulated signaling pathways, including notch, oxytocin, and tight junction, and three significantly downregulated signaling pathways, including lysosome, sphingolipid metabolism, and peroxisome proliferator-activated receptor (PPAR) in human growth plate cartilage. Moreover, we found 15 significantly regulated genes within these signaling pathways from all three patients. These genes included PSEN2, HEY1, and NCOR2 from the notch signaling; CACNB1 and PPP3R2 from the oxytocin signaling; ACTR3C, WHAMM, and ARHGEF18 from the tight junction signaling; ARSA, SMPD1, and CD68 from the lysosome signaling; ARSA and SMPD1 from the sphingolipid metabolism signaling; and SLC27A4 and AQP7 from the PPAR signaling pathway. In addition, 20 significantly upregulated genes and six significantly downregulated genes shared between two patient samples were identified. CONCLUSION Our study provides the first-ever transcriptomic data of mechanical loading of human growth plate cartilage. These findings can potentially provide genetic targets for future investigations in physiological and pathological bone growth conditions.
Collapse
Affiliation(s)
- Zhengpei Zhang
- Division of Paediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Nageswara Rao Boggavarapu
- Division of Obstetrics and Gynaecology, Department of Women’s and Children’s Health, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Laila Sara Arroyo Muhr
- Center for Cervical Cancer Elimination, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden
| | - Ainhoa Garcia-Serrango
- Center for Cervical Cancer Elimination, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden
| | - Tim RJ Aeppli
- Division of Paediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Tobia Sebastiano Nava
- KTH MoveAbility Lab, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yunhan Zhao
- Division of Paediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Elena M. Gutierrez-Farewik
- KTH MoveAbility Lab, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Artem Kulachenko
- Material and Structural Mechanics, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Lars Sävendahl
- Division of Paediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Farasat Zaman
- Division of Paediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
12
|
Xu Z, Wang J, Gao L, Zhang W. Hydrogels in Alveolar Bone Regeneration. ACS Biomater Sci Eng 2024; 10:7337-7351. [PMID: 39571179 DOI: 10.1021/acsbiomaterials.4c01359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Alveolar bone defects caused by oral trauma, alveolar fenestration, periodontal disease, and congenital malformations can severely affect oral function and facial aesthetics. Despite the successful clinical applications of bone grafts or bone substitutes, optimal alveolar bone regeneration continues to be challenging due to the complex oral environment and its unique physiological functions. Hydrogels that serve as promising candidates for tissue regeneration are under development to meet the specific needs for increased bone regeneration capacity and improved operational efficiency in alveolar bone repair. In this review, we emphasize the considerations in hydrogel design for alveolar bone regeneration and summarize the latest applications of hydrogels in prevalent clinical diseases related to alveolar bone defects. The future perspectives and challenges for the application of hydrogels in the field of alveolar bone regeneration are also discussed. Deepening our understanding of these biomaterials will facilitate the advent of novel inventions to improve the outcome of alveolar bone tissue regeneration.
Collapse
Affiliation(s)
- Zhuoran Xu
- Shanghai Key Laboratory of Stomatology, Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Junyi Wang
- Shanghai Key Laboratory of Stomatology, Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Liheng Gao
- Shanghai Key Laboratory of Stomatology, Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Wenjie Zhang
- Shanghai Key Laboratory of Stomatology, Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
13
|
Li J, Li K, Zhang Y, Li X, Wang H. Regulation mechanism of endochondral ossification in Rana zhenhaiensis during metamorphosis based on histomorphology and transcriptome analyses. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101286. [PMID: 38996694 DOI: 10.1016/j.cbd.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
Endochondral ossification plays a crucial role in the limb development of amphibians. This study explored the ossification sequence in the hindlimb of Rana zhenhaiensis tadpoles and the correlation between thyroid hormones (THs) and endochondral ossification via histomorphology and transcriptional analyses. Our results suggest that ossification of the femur and tibiofibula was initiated during the period of high THs activity (metamorphosis climax). In addition, the results of differentially expressed gene analyses in the hindlimb and tail showed that systemic factors, transcription factors, and locally secreted factors interacted with each other during the metamorphosis climax to regulate the occurrence of endochondral ossification. These results will enrich the morphological data of anurans and provide scientific reference for the evolutionary history of vertebrates.
Collapse
Affiliation(s)
- Jiayi Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Kaiyue Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yue Zhang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
14
|
Hao Y, Meng Q, Chang L, Qiu M, Han J, Wang Z, Li C, Ma J, Zhang X. IL-4 promotes chondrogenesis of bone marrow mesenchymal stem cells and blockade of IL-4Rα retards the endochondral ossification during rat embryonic bone development. Basic Clin Pharmacol Toxicol 2024; 135:693-704. [PMID: 39396908 DOI: 10.1111/bcpt.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/19/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024]
Abstract
Interleukin-4 (IL-4)/IL-4 receptor alpha (IL-4Rα) signalling pathways play important roles in the complex process of bone formation and bone remodelling. However, whether IL-4/IL-4Rα participates in skeletogenesis during embryonic development is not completely understood. We used the anti-IL-4Rα monoclonal antibody (anti-IL-4Rα mAb) as a powerful investigational tool to evaluate the potential roles of IL-4/IL-4Rα in the chondrogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) in vitro. Simultaneously, we explored the effect of IL-4/IL-4Rα on bone ossification during rat embryo-fetal development. In this study, we found that, compared to the control group, IL-4 can significantly promote the chondrogenic differentiation of BMSCs. Furthermore, following exposure to anti-IL-4Rα mAb in pregnant rats, unexpected phenomena were observed in fetal bone development, including non-ossification of the fetal sternum, an incomplete ossification centre in long bones and a reduced number of ossification points in digit (toe) bones. To further investigate the underlying mechanism of the phenotype, we studied the rat sternum as the target organ, starting from different time points of sternum development in the embryonic stage. The results indicated that the retardation mainly occurred in the middle and late stages of embryonic development. This retardation was characterized by the inhibition of the differentiation process of mesenchymal stem cells into chondrocytes, resulting in reduced angiogenesis near the ossification centre, failure of osteoblasts to invade the centre of the cartilage body with the blood vessels and delayed formation of the primary ossification centre (POC). Overall, our study demonstrated the significant function of IL-4/IL-4Rα in chondrogenic differentiation of BMSCs and bone ossification during embryo-fetal development.
Collapse
Affiliation(s)
- Yimeng Hao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Qinghe Meng
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, China
| | - Leilei Chang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Minglong Qiu
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianxin Han
- Liaoning Qianyi Testing Technology Development Co. Ltd., Benxi, Liaoning, China
| | - Zhiqin Wang
- Liaoning Qianyi Testing Technology Development Co. Ltd., Benxi, Liaoning, China
| | - Changwei Li
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Ma
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Oryan A, Afzali SA, Maffulli N. Manipulation of signaling pathways in bone tissue engineering and regenerative medicine: Current knowledge, novel strategies, and future directions. Injury 2024; 55:111976. [PMID: 39454294 DOI: 10.1016/j.injury.2024.111976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/21/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
During osteogenesis, a large number of bioactive molecules, macromolecules, cells, and cellular signals are activated to induce bone growth and development. The activation of molecular pathways leads to the occurrence of cellular events, ultimately resulting in observable changes. Therefore, in the studies of bone tissue engineering and regenerative medicine, it is essential to target fundamental events to exploit the mechanisms involved in osteogenesis. In this context, signaling pathways are activated during osteogenesis and trigger the activation of numerous other processes involved in osteogenesis. Direct influence of signaling pathways should allow to manipulate the signaling pathways themselves and impact osteogenesis. A combination of sequential cascades takes place to drive the progression of osteogenesis. Also, the occurrence of these processes and, more generally, cellular and molecular processes related to osteogenesis necessitate the presence of transcription factors and their activity. The present review focuses on outlining several signaling pathways and transcription factors influencing the development of osteogenesis, and describes various methods of their manipulation to induce and enhance bone formation.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Seyed Ali Afzali
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Nicola Maffulli
- Department of Orthopaedic and Trauma Surgery, Faculty of Medicine and Psychology, Sant'Andrea Hospital Sapienza University of Rome, Rome, Italy; Centre for Sport and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK; Faculty of Medicine, School of Pharmacy and Bioengineering, Keele University, Stoke on Trent ST47QB, UK
| |
Collapse
|
16
|
Sautchuk R, Martinez J, Catheline SE, Eliseev RA. Cyclophilin D, regulator of the mitochondrial permeability transition, impacts bone development and fracture repair. Bone 2024; 189:117258. [PMID: 39299628 DOI: 10.1016/j.bone.2024.117258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Mitochondrial Permeability Transition Pore (MPTP) and its key positive regulator, Cyclophilin D (CypD), control activity of cell oxidative metabolism important for differentiation of stem cells of various lineages including osteogenic lineage. Our previous work (Sautchuk et al., 2022) showed that CypD gene, Ppif, is transcriptionally repressed during osteogenic differentiation by regulatory Smad transcription factors in BMP canonical pathway, a major driver of osteoblast (OB) differentiation. Such a repression favors closure of the MPTP, priming OBs to higher usage of mitochondrial oxidative metabolism. The physiological role of CypD/MPTP regulation was demonstrated by its inverse correlation with BMP signaling in aging and bone fracture healing in addition to the negative effect of CypD gain-of-function (GOF) on bone maintenance. Here we show evidence that CypD GOF also negatively affects bone development and growth as well as fracture healing in adult mice. Developing craniofacial and long bones presented with delayed ossification and decreased growth rate, respectively, whereas in fracture, bony callus volume was diminished. Given that Genome Wide Association Studies showed that PPIF locus is associated with both body height and bone mineral density, our new data provide functional evidence for the role of PPIF gene product, CypD, and thus MPTP in bone growth and repair.
Collapse
Affiliation(s)
- Rubens Sautchuk
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14624, USA
| | - John Martinez
- Department of Biology, University of Rochester, Rochester, NY 14642, USA
| | - Sarah E Catheline
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14624, USA
| | - Roman A Eliseev
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14624, USA; Department of Pharmacology & Physiology, University of Rochester, Rochester, NY 14624, USA; Department of Pathology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
17
|
Cheng X, Huang L, Wang H, Lei S, Chan C, Yang X, Huang Y. The combination of odontogenic stem cells and mandibular advancement promotes the length of the mandible in adult rats by facilitating the development of condylar cartilage. Stem Cell Res Ther 2024; 15:441. [PMID: 39563452 DOI: 10.1186/s13287-024-04055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Mandibular retraction is a prevalent dental and maxillofacial deformity that negatively affects patients' functional health and facial aesthetics. It has been challenging to achieve optimal outcomes for patients who have passed the peak of growth and development using only functional orthopedic treatment. There is a pressing need to explore innovative methods to promote the adaptive remodeling of adult condylar cartilage and the mandible in response to external stimuli. This study aimed to investigate the impact of varying injection frequencies of stem cells from the apical papilla (SCAPs) on the growth and development of condylar cartilage and the mandible, as well as their potential for adaptive remodeling. METHODS The study was conducted on 8-week-old adult male Sprague-Dawley rats. The effects of SCAPs injection and different durations of mandibular advancement (MA) on the adaptive remodeling of condylar cartilage and the mandible were assessed. After the initial experimental findings, various injection frequencies of SCAPs were applied to determine the most effective conditions for promoting the growth and adaptive remodeling of condylar cartilage and the mandible during an 8-week period of mandibular advancement. RESULTS The study found that rats with extended mandibular lead times (8 weeks) or an appropriately increased frequency of mandibular leading time (once every 2 weeks or once every 1 week) exhibited increased lengths of the mandibular body and ascending branch, and a thickened full layer of condylar cartilage. The highest proportions of the proliferative layer, mature layer, and hypertrophic layer were observed in these rats. Additionally, there was a significant increase in the expression levels of SOX9 and COL2A1. CONCLUSION The data from this study suggest that adult rats, even after missing their peak growth period, retain the potential for continued growth and development of their condylar cartilage. By prolonging the duration of mandibular advancement and administering injections of stem cells from the apical papilla (SCAPs), it is possible to stimulate the growth and development of the mandibular condyle.
Collapse
Affiliation(s)
- Xin Cheng
- School of Stomatology, Jinan University, Guangzhou, 510632, China
| | - Liangching Huang
- School of Stomatology, Jinan University, Guangzhou, 510632, China
| | - Huijuan Wang
- School of Stomatology, Jinan University, Guangzhou, 510632, China
| | - SiLong Lei
- School of Stomatology, Jinan University, Guangzhou, 510632, China
| | - Chichong Chan
- School of Stomatology, Jinan University, Guangzhou, 510632, China
| | - Xuesong Yang
- Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, 510632, China.
- International School, Guangzhou Huali College, Zengcheng, Guangzhou, 511325, China.
| | - Yue Huang
- School of Stomatology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
18
|
Hanaki S, Yamada D, Takao T, Iwai R, Takarada T. Efficient Production of Chondrocyte Particles from Human iPSC-Derived Chondroprogenitors Using a Plate-Based Cell Self-Aggregation Technique. Int J Mol Sci 2024; 25:12063. [PMID: 39596131 PMCID: PMC11594242 DOI: 10.3390/ijms252212063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
The limited capacity of articular cartilage for self-repair is a critical challenge in orthopedic medicine. Here, we aimed to develop a simplified method of generating chondrocyte particles from human-induced pluripotent stem cell-derived expandable limb-bud mesenchymal cells (ExpLBM) using a cell self-aggregation technique (CAT). ExpLBM cells were induced to form chondrocyte particles through a stepwise differentiation protocol performed on a CAT plate (prevelex-CAT®), which enables efficient and consistent production of an arbitrary number of uniformly sized particles. Histological and immunohistochemical analyses confirmed that the generated chondrocyte particles expressed key cartilage markers, such as type II collagen and aggrecan, but not hypertrophic markers, such as type X collagen. Additionally, when these particles were transplanted into osteochondral defects in rats with X-linked severe combined immunodeficiency, they demonstrated successful engraftment and extracellular matrix production, as evidenced by Safranin O and Toluidine Blue staining. These data suggest that the plate-based CAT system offers a robust and scalable approach to produce a large number of chondrocyte particles in a simplified and efficient manner, with potential application to cartilage regeneration. Future studies will focus on refining the system and exploring its clinical applications to the treatment of cartilage defects.
Collapse
Affiliation(s)
- Shojiro Hanaki
- Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan; (S.H.); (D.Y.); (T.T.)
| | - Daisuke Yamada
- Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan; (S.H.); (D.Y.); (T.T.)
| | - Tomoka Takao
- Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan; (S.H.); (D.Y.); (T.T.)
| | - Ryosuke Iwai
- Institute of Frontier Science and Technology, Okayama University of Science, Okayama 700-0005, Japan;
| | - Takeshi Takarada
- Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan; (S.H.); (D.Y.); (T.T.)
| |
Collapse
|
19
|
Tsadaris SA, Komatsu DE, Grubisic V, Ramos RL, Hadjiargyrou M. A GCaMP reporter mouse with chondrocyte specific expression of a green fluorescent calcium indicator. Bone 2024; 188:117234. [PMID: 39147354 PMCID: PMC11392458 DOI: 10.1016/j.bone.2024.117234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
One of the major processes occurring during the healing of a fractured long bone is chondrogenesis, leading to the formation of the soft callus, which subsequently undergoes endochondral ossification and ultimately bridges the fracture site. Thus, understanding the molecular mechanisms of chondrogenesis can enhance our knowledge of the fracture repair process. One such molecular process is calciun (Ca++) signaling, which is known to play a critical role in the development and regeneration of multiple tissues, including bone, in response to external stimuli. Despite the existence of various mouse models for studying Ca++ signaling, none of them were designed to specifically examine the skeletal system or the various musculoskeletal cell types. As such, we generated a genetically engineered mouse model that is specific to cartilage (crossed with Col2a1 Cre mice) to study chondrocytes. Herein, we report on the characterization of this transgenic mouse line using conditional expression of GCaMP6f, a Ca++-indicator protein. Specifically, this mouse line exhibits increased GCaMP6f fluorescence following Ca++ binding in chondrocytes. Using this model, we show real-time Ca++ signaling in embryos, newborn and adult mice, as well as in fracture calluses. Further, robust expression of GCaMP6f in chondrocytes can be easily detected in embryos, neonates, adults, and fracture callus tissue sections. Finally, we also report on Ca++ signaling pathway gene expression, as well as real-time Ca++ transient measurements in fracture callus chondrocytes. Taken together, these mice provide a new experimental tool to study chondrocyte-specific Ca++ signaling during skeletal development and regeneration, as well as various in vitro perturbations.
Collapse
Affiliation(s)
- Sotirios A Tsadaris
- Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY, USA
| | - David E Komatsu
- Department of Orthopaedics and Rehabilitation, Stony Brook University, Stony Brook, NY, USA
| | - Vladimir Grubisic
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, USA; Center for Biomedical Innovation, College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Raddy L Ramos
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Michael Hadjiargyrou
- Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY, USA.
| |
Collapse
|
20
|
Lin Z, Li Q, Han X, Luo H, Wang Z, Qin Z, Huang Y, Feng Q, Cao X. An injectable and degradable heterogeneous microgel assembly capable of forming a "micro-nest group" for cell condensation and cartilage regeneration. MATERIALS HORIZONS 2024; 11:5438-5450. [PMID: 39189308 DOI: 10.1039/d4mh00724g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Cell condensation, linking the migration and chondrogenic differentiation of MSCs, plays a crucial role in cartilage development. Current cartilage repair strategies are inadequately concerned with this process, leading to a suboptimal quality of regenerated cartilage. Inspired by the "nest flocks" structure of Social Weavers, a degradable heterogeneous microgel assembly (F/S-MA) is developed, which can release SDF-1, to form a "micro-nest group" structure and bond with HAV peptides to promote cell recruitment, condensation and chondrogenic differentiation. First, slow-degrading microgels (S-microgels) grafted with HAV peptides and fast-degrading microgels (F-microgels) loaded with SDF-1 are fabricated by an amidation reaction and Schiff base reaction, respectively. They employ sulfhydryl-modified gelatin as assembling agents to form F/S-MA through a thiol-ene reaction, exhibiting injectability, tissue adhesion, and microporosity. F-microgels undergo rapid degradation, leading to the release of SDF-1 and the formation of a "micro-nest group" in F/S-MA. Consequently, F/S-MA exhibits cell recruitment ability, meanwhile facilitating BMSC condensation through the synergistic effects of the "micro-nest group" and HAV peptides. In vitro experiments prove that F/S-MA enhances the expression of cell-condensation-related markers, ultimately upregulating the secretion of cartilage matrix. Animal experiments show that F/S-MA optimizes the quality of regenerated cartilage by improving cell recruitment and condensation. F/S-MA enhances cell condensation through structural and component design, which will provide new insights for cartilage regeneration.
Collapse
Affiliation(s)
- Zequ Lin
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, China
| | - Qingtao Li
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, China
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China
| | - Xiyuan Han
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, China
| | - Huitong Luo
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, China
| | - Zetao Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, China
| | - Zhihao Qin
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, China
| | - Yue Huang
- School of Stomatology, Jinan University, Guangzhou 510641, China
| | - Qi Feng
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
- School of Stomatology, Jinan University, Guangzhou 510641, China
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
21
|
Dalirsani Z, Davaji M, Salari Sedigh H, Hosseinian S, Ranjbar E, Yaqoubi A, Moghaddam KM, Shafieian R. Comparative Investigation of Photobiomodulation in Diabetes-Impaired Alveolar Bone Healing: A Histomorphometrical and Molecular Study. Photobiomodul Photomed Laser Surg 2024; 42:577-584. [PMID: 39320973 DOI: 10.1089/photob.2023.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Objective: Diabetes mellitus is increasing worldwide. Photobiomodulation (PBM) is proposed as a therapeutic method in various medical concerns. This study aimed to compare the effects of PBM at the wavelengths of 660, 808, or 660 + 808 nm on alveolar bone healing in diabetic rats. Methods: Bilateral maxillary first molars were extracted from diabetic Wistar rats (n = 36). Right-sided sockets were treated by an In-Ga-Al-P laser at 660 nm (7.2 J/cm2, 24 s; DM660), Ga-Al-As laser at 808 nm (7 J/cm2, 14 s; DM808), or a combination of these two sets (DM-dual) (n = 12). Left sides served as controls. On days 7 or 14, specimens were assigned for histomorphometric or real-time PCR analysis of runt-related transcription factor 2, osteocalcin, collagen I, and vascular endothelial growth factor expression. Results: Irradiated sockets of groups DM-808 and DM-dual showed a significant increase in bone tissue and blood vessel establishment as compared to DM-660. Further, group DM-dual exhibited the least amount of fibrotic tissue as compared to the other groups. Conclusions: Within our study limits, the present experiment suggested PBM at 808 nm, alone or combined with 660 nm irradiation, could promote alveolar bone healing, along with minimal fibrosis induction, in diabetic rats.
Collapse
Affiliation(s)
- Zohreh Dalirsani
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Davaji
- Department of Endodontics, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Salari Sedigh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University Mashhad, Mashhad, Iran
| | - Sara Hosseinian
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Esmail Ranjbar
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afshin Yaqoubi
- Faculty of Density, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Reyhaneh Shafieian
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Stem Cells and Regenerative Medicine Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Okoturo E. Review of the Literature on the Current State of Periosteum-Mediated Craniofacial Bone Regeneration. Craniomaxillofac Trauma Reconstr 2024; 17:253-262. [PMID: 39329075 PMCID: PMC11423379 DOI: 10.1177/19433875231214068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Study Design This is an article review on the current state of periosteum-mediated bone regeneration (PMBR). It is a known mandibular reconstruction option in children, and though poorly understood and unpredictable, the concerns of developmental changes to donor and recipient tissues shared by other treatment options are nonexistent. The definitive role of periosteum during bone regeneration remains largely unknown. Objective The objective is to review the literature on the clinical and molecular mechanism evidence of this event. Methods Our search methodology was modeled after the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines. Search strategies were categorized into search 1 for clinical evidence of mandibular regeneration and search 2 for gene expression review for craniofacial regeneration. The quality assessment of each publication was undertaken, and inclusion criteria comprise mandibular continuity defect for search 1 and use of gene expression assay propriety kit for search 2. Results 33 studies were selected for search 1 while four studies with non-human subjects were selected for search 2. Monitoring of PMBR onset was advised at 2 weeks post-operative, and the gene expression results showed an upregulation of genes responsible for angiogenesis, cytokine activities, and immune-inflammatory response in week 1 and skeletal development and signaling pathways in week 2. Conclusions The results suggest that young periosteum has a higher probability of PMBR than adult periosteum, and skeletal morphogenesis regulated by skeletal developmental genes and pathways may characterize the gene expression patterns of PMBR.
Collapse
Affiliation(s)
- Eyituoyo Okoturo
- Lead Research - Molecular Oncology Program, Medical Research Centre, Lagos State University College of Medicine (LASUCOM), Lagos, Nigeria
| |
Collapse
|
23
|
Zhang B, Berilla J, Cho S, Somoza RA, Welter JF, Alexander PE, Baskaran H. Synergistic effects of biological stimuli and flexion induce microcavities promote hypertrophy and inhibit chondrogenesis during in vitro culture of human mesenchymal stem cell aggregates. Biotechnol J 2024; 19:e2400060. [PMID: 39295570 PMCID: PMC11870314 DOI: 10.1002/biot.202400060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/26/2024] [Accepted: 07/30/2024] [Indexed: 09/21/2024]
Abstract
Interzone/cavitation are key steps in early stage joint formation that have not been successfully developed in vitro. Further, current models of endochondral ossification, an important step in early bone formation, lack key morphology morphological structures such as microcavities found during development in vivo. This is possibly due to the lack of appropriate strategies for incorporating chemical and mechanical stimuli that are thought to be involved in joint development. We designed a bioreactor system and investigated the synergic effect of chemical stimuli (chondrogenesis-inducing [CIM] and hypertrophy-inducing medium [HIM]) and mechanical stimuli (flexion) on the growth of human mesenchymal stem cells (hMSCs) based linear aggregates under different conditions over 4 weeks of perfusion culture. Computational studies were used to evaluate tissue stress qualitatively. After harvesting, both Safranin-O and hematoxylin & eosin (H&E) staining histology demonstrated microcavity structures and void structures in the region of higher stresses for tissue aggregates cultured only in HIM under flexion. In comparison to either HIM treatment or flexion only, increased glycosaminoglycan (GAG) content in the extracellular matrix (ECM) at this region indicates the morphological change resembles the early stage of joint cavitation; while decreased type II collagen (Col II), and increased type X collagen (Col X) and vascular endothelial growth factor (VEGF) with a clear boundary in the staining section indicates it resembles the early stage of ossification. Further, cell alignment analysis indicated that cells were mostly oriented toward the direction of flexion in high-stress region only in HIM under flexion, resembling cell morphology in both joint cavitation and hypertrophic cartilage in growth plate. Collectively, our results suggest that flexion and HIM inhibit chondrogenesis and promote hypertrophy and development of microcavities that resemble the early stage of joint cavitation and endochondral ossification. We believe the tissue model described in this work can be used to develop in vitro models of joint tissue for applications such as pathophysiology and drug discovery.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jim Berilla
- Case School of Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sungwoo Cho
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rodrigo A Somoza
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jean F Welter
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Peter E Alexander
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Harihara Baskaran
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
24
|
Wiles CC, Suh SH, Brown KR, Abel RL. The ontogeny of human fetal trabecular bone architecture occurs in a limb-specific manner. Sci Rep 2024; 14:20261. [PMID: 39217219 PMCID: PMC11365959 DOI: 10.1038/s41598-024-67566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
Gestational growth and development of bone is an understudied process compared to soft tissues and has implications for lifelong health. This study investigated growth and development of human fetal limb bone trabecular architecture using 3D digital histomorphometry of microcomputed tomography data from the femora and humeri of 35 skeletons (17 female and 18 male) with gestational ages between 4 and 9 months. Ontogenetic data revealed: (i) fetal trabecular architecture is similar between sexes; (ii) the proximal femoral metaphysis is physically larger, with thicker trabeculae and greater bone volume fraction relative to the humerus, but other aspects of trabecular architecture are similar between the bones; (iii) between 4 and 9 months gestation there is no apparent sexual or limb dimorphism in patterns of growth, but the size of the humerus and femur diverges early in development. Additionally, both bones exhibit significant increases in mean trabecular thickness (and for the femur alone, bone volume fraction) but minimal trabecular reorganisation (i.e., no significant changes in degree of anisotropy, connectivity density, or fractal dimension). Overall, these data suggest that in contrast to data from the axial skeleton, prenatal growth of long bones in the limbs is characterised by size increase, without major reorganizational changes in trabecular architecture.
Collapse
Affiliation(s)
- Crispin Charles Wiles
- MSk Laboratory, Sir Michael Uren Hub, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 7ED, UK.
- Centre for Blast Injury Studies, Department of Bioengineering, Faculty of Engineering, Imperial College London, London, SW7 2AZ, UK.
- Warwick Medical School, University of Warwick, Coventry, CV4 8JE, UK.
| | - Sarah Holly Suh
- MSk Laboratory, Sir Michael Uren Hub, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 7ED, UK
| | - Katharine Robson Brown
- Jean Golding Institute for Data Science, University of Bristol, Bristol, BS8 IUU, UK
- School of Engineering, University of Bristol, Bristol, BS8 1UU, UK
- Department of Mechanical Engineering, University of Bristol, Bristol, BS8 1UB, UK
| | - Richard Leslie Abel
- MSk Laboratory, Sir Michael Uren Hub, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 7ED, UK
| |
Collapse
|
25
|
Zhang HR, Wang YH, Xiao ZP, Yang G, Xu YR, Huang ZT, Wang WZ, He F. E3 ubiquitin ligases: key regulators of osteogenesis and potential therapeutic targets for bone disorders. Front Cell Dev Biol 2024; 12:1447093. [PMID: 39211390 PMCID: PMC11358089 DOI: 10.3389/fcell.2024.1447093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Ubiquitination is a crucial post-translational modification of proteins that mediates the degradation or functional regulation of specific proteins. This process participates in various biological processes such as cell growth, development, and signal transduction. E3 ubiquitin ligases play both positive and negative regulatory roles in osteogenesis and differentiation by ubiquitination-mediated degradation or stabilization of transcription factors, signaling molecules, and cytoskeletal proteins. These activities affect the proliferation, differentiation, survival, and bone formation of osteoblasts (OBs). In recent years, advances in genomics, transcriptomics, and proteomics have led to a deeper understanding of the classification, function, and mechanisms of action of E3 ubiquitin ligases. This understanding provides new insights and approaches for revealing the molecular regulatory mechanisms of bone formation and identifying therapeutic targets for bone metabolic diseases. This review discusses the research progress and significance of the positive and negative regulatory roles and mechanisms of E3 ubiquitin ligases in the process of osteogenic differentiation. Additionally, the review highlights the role of E3 ubiquitin ligases in bone-related diseases. A thorough understanding of the role and mechanisms of E3 ubiquitin ligases in osteogenic differentiation could provide promising therapeutic targets for bone tissue engineering based on stem cells.
Collapse
Affiliation(s)
- Heng-Rui Zhang
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Yang-Hao Wang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhen-Ping Xiao
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
- Department of Pain and Rehabilitation, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Guang Yang
- Department of Trauma Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yun-Rong Xu
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Zai-Tian Huang
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Wei-Zhou Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fei He
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| |
Collapse
|
26
|
Yaya-Quezada C, Fanney L, Patel V, Taragin BH, Williams BA, Simoni P, Nguyen JC. Imaging of the Pediatric Knee. Semin Musculoskelet Radiol 2024; 28:462-476. [PMID: 39074728 DOI: 10.1055/s-0044-1786152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
During normal development, imaging findings in the immature knee joint may mimic pathology or indicate transient sites of weakness, prone to injury. This article reviews the development of the knee joint, age- and maturation-dependent imaging considerations, and various developmental variants that can be encountered, subdivided into those that involve the tibiofemoral and patellofemoral compartments, soft tissues, and osseous components. The tibiofemoral compartment section reviews the focal periphyseal edema zone (FOPE), ossification variants of the femoral condyles, distal femoral metaphyseal cortical irregularity from periosteal traction, and the metaphyseal subperiosteal stripe, which should be distinguished from pathologic mimickers such as endochondral ossification dysfunction, osteochondritis dissecans (OCD), fibroosseous lesion, periosteal and subcortical pathologies. The patellofemoral compartment section includes a review of partite patella, dorsolateral defect, variant trochlear morphology, and maturation-dependent sites of transient weakness that are prone to injury from repetitive overuse (Sinding-Larsen-Johansson syndrome and Osgood-Schlatter disease) and avulsion fractures (patellar sleeve and tibial tubercle avulsions). Finally, soft tissue (discoid lateral meniscus, meniscal flounce, anterior cruciate ligament variants) and osseous components (meniscal ossicle, fabella, and cyamella) are reviewed.
Collapse
Affiliation(s)
- Carlos Yaya-Quezada
- Section of Musculoskeletal Imaging, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lewis Fanney
- Section of Musculoskeletal Imaging, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Eastern Virginia Medical School, Norfolk, Virginia
| | - Vandan Patel
- Section of Musculoskeletal Imaging, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Drexel University College of Medicine, Philadelphia, Pennsylvania
- Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Benjamin H Taragin
- Section of Musculoskeletal Imaging, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brendan A Williams
- Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Paolo Simoni
- Queen Fabiola Children's University Hospital, Brussels, Belgium
| | - Jie C Nguyen
- Section of Musculoskeletal Imaging, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
27
|
Pi HJ, Huang B, Yuan Q, Jing JJ. Neural regulation of mesenchymal stem cells in craniofacial bone: development, homeostasis and repair. Front Physiol 2024; 15:1423539. [PMID: 39135707 PMCID: PMC11318092 DOI: 10.3389/fphys.2024.1423539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Mesenchymal stem cells endow various functions, including proliferation, multipotency, migration, etc. Craniofacial bones originate from the cranial neural crest and are developed mainly through intramembranous ossification, which are different from long bones. There are varied mesenchymal stem cells existing in the craniofacial bone, including Gli1 + cells, Axin2 + cells, Prx1 + cells, etc. Nerves distributed in craniofacial area are also derived from the neural crest, and the trigeminal nerve is the major sensory nerve in craniofacial area. The nerves and the skeleton are tightly linked spatially, and the skeleton is broadly innervated by sensory and sympathetic nerves, which also participate in bone development, homeostasis and healing process. In this review, we summarize mesenchymal stem cells located in craniofacial bone or, to be more specific, in jaws, temporomandibular joint and cranial sutures. Then we discuss the research advance concerning neural regulation of mesenchymal stem cells in craniofacial bone, mainly focused on development, homeostasis and repair. Discovery of neural regulation of mesenchymal stem cells may assist in treatment in the craniofacial bone diseases or injuries.
Collapse
Affiliation(s)
| | | | - Quan Yuan
- *Correspondence: Quan Yuan, ; Jun-Jun Jing,
| | | |
Collapse
|
28
|
Jiang L, Liu X, Liu L, Su L, Lu Z, Zhang H, Guo Y, Zhang W, Zhang S, Xu W, Zhang J, Zhang K, Zhan Y, Xie X, Li R, Dong X, Jin H, Zhang B, Li Y. Knocking out FAM20C in pre-osteoblasts leads to up-regulation of osteoclast differentiation to affect long bone development. Gene 2024; 915:148396. [PMID: 38552750 DOI: 10.1016/j.gene.2024.148396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/23/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Family with sequence similarity 20 member C (FAM20C) is a Golgi casein kinase that phosphorylates extracellularly-secreted regulatory proteins involved in bone development and mineralization, but its specific role in bone development is still largely unknown. In this study, to examine the specific mechanisms that FAM20C influences bone development, we cross-bred Osx-Cre with FAM20Cflox/flox mice to establish a Osx-Cre; FAM20Cflox/flox knockout (oKO) mouse model; FAM20C was KO in pre-osteoblasts. oKO development was examined at 1-10 weeks, in which compared to control FAM20Cflox/flox, they had lower body weights and bone tissue mineralization. Furthermore, oKO had lower bone volume fractions, thickness, and trabecular numbers, along with higher degrees of trabecular separation. These mice also had decreased femoral metaphyseal cartilage proliferation layer, along with thickened hypertrophic layer and increased apoptotic cell counts. Transcriptomic analysis found that differentially-expressed genes in oKO were concentrated in the osteoclast differentiation pathway, in line with increased osteoclast presence. Additionally, up-regulation of osteoclast-related, and down-regulation of osteogenesis-related genes, were identified, in which the most up-regulated genes were signal regulatory protein β-1 family (Sirpb1a-c) and mitogen-activated protein kinase 13. Overall, FAM20C KO in pre-osteoblasts leads to abnormal long bone development, likely due to subsequent up-regulation of osteoclast differentiation-associated genes.
Collapse
Affiliation(s)
- Lili Jiang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinpeng Liu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University (Guangdong Provincial Stomatological Hospital), Guangzhou, Guangdong, China
| | - Lixue Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lide Su
- Department of Cardiovascular Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, Fujian, China
| | - Zeyu Lu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Zhang
- School of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuyao Guo
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenxuan Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shujian Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenxia Xu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiahui Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuanbo Zhan
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaohua Xie
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Runhang Li
- School of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinhe Dong
- School of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Jin
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Bin Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang, China.
| | - Ying Li
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
29
|
Ko K, Choi S, Jo M, Kim C, Boonpraman N, Youm J, Yi SS. NOX4 and its association with myeloperoxidase and osteopontin in regulating endochondral ossification. J Vet Sci 2024; 25:e49. [PMID: 38910308 PMCID: PMC11291435 DOI: 10.4142/jvs.24076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 06/25/2024] Open
Abstract
IMPORTANCE Endochondral ossification plays an important role in skeletal development. Recent studies have suggested a link between increased intracellular reactive oxygen species (ROS) and skeletal disorders. Moreover, previous studies have revealed that increasing the levels of myeloperoxidase (MPO) and osteopontin (OPN) while inhibiting NADPH oxidase 4 (NOX4) can enhance bone growth. This investigation provides further evidence by showing a direct link between NOX4 and MPO, OPN in bone function. OBJECTIVE This study investigates NOX4, an enzyme producing hydrogen peroxide, in endochondral ossification and bone remodeling. NOX4's role in osteoblast formation and osteogenic signaling pathways is explored. METHODS Using NOX4-deficient (NOX4-/-) and ovariectomized (OVX) mice, we identify NOX4's potential mediators in bone maturation. RESULTS NOX4-/- mice displayed significant differences in bone mass and structure. Compared to the normal Control and OVX groups. Hematoxylin and eosin staining showed NOX4-/- mice had the highest trabecular bone volume, while OVX had the lowest. Proteomic analysis revealed significantly elevated MPO and OPN levels in bone marrow-derived cells in NOX4-/- mice. Immunohistochemistry confirmed increased MPO, OPN, and collagen II (COLII) near the epiphyseal plate. Collagen and chondrogenesis analysis supported enhanced bone development in NOX4-/- mice. CONCLUSIONS AND RELEVANCE Our results emphasize NOX4's significance in bone morphology, mesenchymal stem cell proteomics, immunohistochemistry, collagen levels, and chondrogenesis. NOX4 deficiency enhances bone development and endochondral ossification, potentially through increased MPO, OPN, and COLII expression. These findings suggest therapeutic implications for skeletal disorders.
Collapse
Affiliation(s)
- Kayoung Ko
- BK21 Four Project, Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Seohee Choi
- BK21 Four Project, Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Miri Jo
- BK21 Four Project, Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Chaeyoung Kim
- BK21 Four Project, Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Napissara Boonpraman
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA
| | - Jihyun Youm
- Department of Gerontology, Graduate School of East-West Medical Science, Kyunghee University, Yongin 17104, Korea
| | - Sun Shin Yi
- BK21 Four Project, Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
- iConnectome Co., LTD, Cheonan 31168, Korea.
| |
Collapse
|
30
|
Yılmaz D, Marques FC, Fischer Y, Zimmermann S, Hwang G, Atkins PR, Mathavan N, Singh A, de Souza PP, Kuhn GA, Wehrle E, Müller R. Elucidating the mechano-molecular dynamics of TRAP activity using CRISPR/Cas9 mediated fluorescent reporter mice. Heliyon 2024; 10:e32949. [PMID: 39021958 PMCID: PMC11252717 DOI: 10.1016/j.heliyon.2024.e32949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/22/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Osteoclasts are essential for bone remodeling by adapting their resorptive activity in response to their mechanical in vivo environment. However, the molecular mechanisms underlying this process remain unclear. Here, we demonstrated the role of tartrate-resistant acid phosphatase (TRAP, Acp5), a key enzyme secreted by osteoclasts, in bone remodeling and mechanosensitivity. Using CRISPR/Cas9 reporter mice, we demonstrated bone cell reporter (BCRIbsp/Acp5) mice feature fluorescent TRAP-deficient osteoclasts and examined their activity during mechanically driven trabecular bone remodeling. Although BCRIbsp/Acp5 mice exhibited trabecular bone impairments and reduced resorption capacity in vitro, RNA sequencing revealed unchanged levels of key osteoclast-associated genes such as Ctsk, Mmp9, and Calcr. These findings, in conjunction with serum carboxy-terminal collagen crosslinks (CTX) and in vivo mechanical loading outcomes collectively indicated an unaltered bone resorption capacity of osteoclasts in vivo. Furthermore, we demonstrated similar mechanoregulation during trabecular bone remodeling in BCRIbsp/Acp5 and wild-type (WT) mice. Hence, this study provides valuable insights into the dynamics of TRAP activity in the context of bone remodeling and mechanosensation.
Collapse
Affiliation(s)
- Dilara Yılmaz
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | | | | | | | - Gaonhae Hwang
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Penny R. Atkins
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
- Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, USA
| | | | - Amit Singh
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Pedro P.C. de Souza
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
- Innovation in Biomaterials Laboratory, School of Dentistry, Federal University of Goiás, Goiânia, Brazil
| | - Gisela A. Kuhn
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Esther Wehrle
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
- AO Research Institute Davos, Davos Platz, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
31
|
Cai R, Jiang Q, Chen D, Feng Q, Liang X, Ouyang Z, Liao W, Zhang R, Fang H. Identification of osteoblastic autophagy-related genes for predicting diagnostic markers in osteoarthritis. iScience 2024; 27:110130. [PMID: 38952687 PMCID: PMC11215306 DOI: 10.1016/j.isci.2024.110130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/15/2024] [Accepted: 05/24/2024] [Indexed: 07/03/2024] Open
Abstract
The development of osteoarthritis (OA) involves subchondral bone lesions, but the role of osteoblastic autophagy-related genes (ARGs) in osteoarthritis is unclear. Through integrated analysis of single-cell dataset, Bulk RNA dataset, and 367 ARGs extracted from GeneCards, 40 ARGs were found. By employing multiple machine learning algorithms and PPI networks, three key genes (DDIT3, JUN, and VEGFA) were identified. Then the RF model constructed from these genes indicated great potential as a diagnostic tool. Furthermore, the model's effectiveness in predicting OA has been confirmed through external validation datasets. Moreover, the expression of ARGs was examined in osteoblasts subject to excessive mechanical stress, human and mouse tissues. Finally, the role of ARGs in OA was confirmed through co-culturing explants and osteoblasts. Thus, osteoblastic ARGs could be crucial in OA development, providing potential diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Rulong Cai
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qijun Jiang
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Urology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
| | - Dongli Chen
- Department of Ultrasound, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Qi Feng
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xinzhi Liang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhaoming Ouyang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Weijian Liao
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Rongkai Zhang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hang Fang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
32
|
Zhang S, Hao W, Chen D, Chen S, Li Z, Zhong F, Wang H, Wang J, Zheng Z, Zhan Z, Dai G, Liu H. Intermittent administration of PTH for the treatment of inflammatory bone loss does not enhance entheseal pathological new bone formation. Biochem Biophys Res Commun 2024; 711:149888. [PMID: 38603833 DOI: 10.1016/j.bbrc.2024.149888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
OBJECTIVE To investigate the effect of intermittent parathyroid hormone (iPTH) administration on pathological new bone formation during treatment of ankylosing spondylitis-related osteoporosis. METHODS Animal models with pathological bone formation caused by hypothetical AS pathogenesis received treatment with iPTH. We determined the effects of iPTH on bone loss and the formation of pathological new bone with micro-computed tomography (micro-CT) and histological examination. In addition, the tamoxifen-inducible conditional knockout mice (CAGGCre-ERTM; PTHflox/flox, PTH-/-) was established to delete PTH and investigate the effect of endogenous PTH on pathological new bone formation. RESULTS iPTH treatment significantly improved trabecular bone mass in the modified collagen-induced arthritis (m-CIA) model and unbalanced mechanical loading models. Meanwhile, iPTH treatment did not enhance pathological new bone formation in all types of animal models. Endogenous PTH deficiency had no effects on pathological new bone formation in unbalanced mechanical loading models. CONCLUSION Experimental animal models of AS treated with iPTH show improvement in trabecular bone density, but not entheseal pathological bone formation,indicating it may be a potential treatment for inflammatory bone loss does in AS.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China
| | - Wenjun Hao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China
| | - Dongying Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Siwen Chen
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China
| | - Zihao Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China
| | - Fangling Zhong
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China
| | - Haitao Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China
| | - Jianru Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China
| | - Zhongping Zhan
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Guo Dai
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China.
| | - Hui Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
33
|
Wang J, Meng B, Wang X, Lei W, Zhao X. In vivo study of a novel 3D-printed motion-preservation artificial cervical corpectomy construct: short-term imaging and biocompatibility evaluations in a goat model. J Orthop Surg Res 2024; 19:318. [PMID: 38807224 PMCID: PMC11571649 DOI: 10.1186/s13018-024-04786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Nonfusion technologies, such as motion-preservation devices, have begun a new era of treatment options in spine surgery. Motion-preservation approaches mainly include total disc replacement for anterior cervical discectomy and fusion. However, for multisegment fusion, such as anterior cervical corpectomy and fusion, the options are more limited. Therefore, we designed a novel 3D-printed motion-preservation artificial cervical corpectomy construct (ACCC) for multisegment fusion. The aim of this study was to explore the feasibility of ACCC in a goat model. METHODS Goats were treated with anterior C3 corpectomy and ACCC implantation and randomly divided into two groups evaluated at 3 or 6 months. Radiography, 3D CT reconstruction and MRI evaluations were performed. Biocompatibility was evaluated using micro-CT and histology. RESULTS Postoperatively, all goats were in good condition, with free neck movement. Implant positioning was optimal. The relationship between facet joints was stable. The range of motion of the C2-C4 segments during flexion-extension at 3 and 6 months postoperatively was 7.8° and 7.3°, respectively. The implants were wrapped by new bone tissue, which had grown into the porous structure. Cartilage tissue, ossification centres, new blood vessels, and bone mineralization were observed at the porous metal vertebrae-bone interface and in the metal pores. CONCLUSIONS The ACCC provided stabilization while preserving the motion of the functional spinal unit and promoting bone regeneration and vascularization. In this study, the ACCC was used for anterior cervical corpectomy and fusion (ACCF) in a goat model. We hope that this study will propel further research of motion-preservation devices.
Collapse
Affiliation(s)
- Jian Wang
- Department of Orthopaedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
- Department of Orthopaedics, Affiliated Hospital of NCO School of Army Medical University, Shijiazhuang, 050047, Hebei Province, China
| | - Bing Meng
- Department of Orthopaedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xinli Wang
- Department of Orthopaedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Wei Lei
- Department of Orthopaedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Xiong Zhao
- Department of Orthopaedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
34
|
Luo Y, Zheng S, Xiao W, Zhang H, Li Y. Pannexins in the musculoskeletal system: new targets for development and disease progression. Bone Res 2024; 12:26. [PMID: 38705887 PMCID: PMC11070431 DOI: 10.1038/s41413-024-00334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
During cell differentiation, growth, and development, cells can respond to extracellular stimuli through communication channels. Pannexin (Panx) family and connexin (Cx) family are two important types of channel-forming proteins. Panx family contains three members (Panx1-3) and is expressed widely in bone, cartilage and muscle. Although there is no sequence homology between Panx family and Cx family, they exhibit similar configurations and functions. Similar to Cxs, the key roles of Panxs in the maintenance of physiological functions of the musculoskeletal system and disease progression were gradually revealed later. Here, we seek to elucidate the structure of Panxs and their roles in regulating processes such as osteogenesis, chondrogenesis, and muscle growth. We also focus on the comparison between Cx and Panx. As a new key target, Panxs expression imbalance and dysfunction in muscle and the therapeutic potentials of Panxs in joint diseases are also discussed.
Collapse
Affiliation(s)
- Yan Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, 410008, China
| | - Shengyuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, 410008, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hang Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
35
|
Wen L, Liu Z, Zhou L, Liu Z, Li Q, Geng B, Xia Y. Bone and Extracellular Signal-Related Kinase 5 (ERK5). Biomolecules 2024; 14:556. [PMID: 38785963 PMCID: PMC11117709 DOI: 10.3390/biom14050556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Bones are vital for anchoring muscles, tendons, and ligaments, serving as a fundamental element of the human skeletal structure. However, our understanding of bone development mechanisms and the maintenance of bone homeostasis is still limited. Extracellular signal-related kinase 5 (ERK5), a recently identified member of the mitogen-activated protein kinase (MAPK) family, plays a critical role in the pathogenesis and progression of various diseases, especially neoplasms. Recent studies have highlighted ERK5's significant role in both bone development and bone-associated pathologies. This review offers a detailed examination of the latest research on ERK5 in different tissues and diseases, with a particular focus on its implications for bone health. It also examines therapeutic strategies and future research avenues targeting ERK5.
Collapse
Affiliation(s)
- Lei Wen
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- Department of Orthopedics and Trauma Surgery, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Zirui Liu
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Libo Zhou
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Zhongcheng Liu
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Qingda Li
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Bin Geng
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Yayi Xia
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| |
Collapse
|
36
|
Li YB, Zhang HQ, Lu YP, Yang XJ, Wang GD, Wang YY, Tang KL, Huang SY, Xiao GY. Construction of Magnesium Phosphate Chemical Conversion Coatings with Different Microstructures on Titanium to Enhance Osteogenesis and Angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21672-21688. [PMID: 38637290 DOI: 10.1021/acsami.4c03024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Titanium (Ti) and its alloys are widely used as hard tissue substitutes in dentistry and orthopedics, but their low bioactivity leads to undesirable osseointegration defects in the early osteogenic phase. Surface modification is an important approach to overcome these problems. In the present study, novel magnesium phosphate (MgP) coatings with controllable structures were fabricated on the surface of Ti using the phosphate chemical conversion (PCC) method. The effects of the microstructure on the physicochemical and biological properties of the coatings on Ti were researched. The results indicated that accelerators in PCC solution were important factors affecting the microstructure and properties of the MgP coatings. In addition, the coated Ti exhibited excellent hydrophilicity, high bonding strength, and good corrosion resistance. Moreover, the biological results showed that the MgP coatings could improve the spread, proliferation, and osteogenic differentiation of mouse osteoblast cells (MC3T3-E1) and vascular differentiation of human umbilical vein endothelial cells (HUVECs), indicating that the coated Ti samples had a great effect on promoting osteogenesis and angiogenesis. Overall, this study provided a new research idea for the surface modification of conventional Ti to enhance osteogenesis and angiogenesis in different bone types for potential biomedical applications.
Collapse
Affiliation(s)
- Yi-Bo Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Huan-Qing Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Yu-Peng Lu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Xiao-Juan Yang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Guan-Duo Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Yu-Ying Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Kang-le Tang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Sheng-Yun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Gui-Yong Xiao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
37
|
Kikyo N. Circadian Regulation of Bone Remodeling. Int J Mol Sci 2024; 25:4717. [PMID: 38731934 PMCID: PMC11083221 DOI: 10.3390/ijms25094717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Adult bones are continuously remodeled by the balance between bone resorption by osteoclasts and subsequent bone formation by osteoblasts. Many studies have provided molecular evidence that bone remodeling is under the control of circadian rhythms. Circadian fluctuations have been reported in the serum and urine levels of bone turnover markers, such as digested collagen fragments and bone alkaline phosphatase. Additionally, the expressions of over a quarter of all transcripts in bones show circadian rhythmicity, including the genes encoding master transcription factors for osteoblastogenesis and osteoclastogenesis, osteogenic cytokines, and signaling pathway proteins. Serum levels of calcium, phosphate, parathyroid hormone, and calcitonin also display circadian rhythmicity. Finally, osteoblast- and osteoclast-specific knockout mice targeting the core circadian regulator gene Bmal1 show disrupted bone remodeling, although the results have not always been consistent. Despite these studies, however, establishing a direct link between circadian rhythms and bone remodeling in vivo remains a major challenge. It is nearly impossible to repeatedly collect bone materials from human subjects while following circadian changes. In addition, the differences in circadian gene regulation between diurnal humans and nocturnal mice, the main model organism, remain unclear. Filling the knowledge gap in the circadian regulation of bone remodeling could reveal novel regulatory mechanisms underlying many bone disorders including osteoporosis, genetic diseases, and fracture healing. This is also an important question for the basic understanding of how cell differentiation progresses under the influence of cyclically fluctuating environments.
Collapse
Affiliation(s)
- Nobuaki Kikyo
- Stem Cell Institute, Minneapolis, MN 55455, USA;
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
38
|
Ueda H, Iimura T, Inami S, Moridaira H, Yazawa T, Seo Y, Taneichi H. Histology and chronological magnetic resonance images of congenital spinal deformity: An experimental study in mice model. BMC Musculoskelet Disord 2024; 25:334. [PMID: 38671403 PMCID: PMC11046745 DOI: 10.1186/s12891-024-07460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The natural history of the congenital spinal deformity and its clinical magnitude vary widely in human species. However, we previously reported that the spinal deformities of congenital scoliosis mice did not progress throughout our observational period according to soft X-ray and MRI data. In this study, congenital vertebral and intervertebral malformations in mice were assessed via magnetic resonance (MR) and histological images. METHODS Congenital spinal anomalies were chronologically assessed via soft X-ray and 7 T MR imaging. MR images were compared to the histological images to validate the findings around the malformations. RESULTS Soft X-ray images showed the gross alignment of the spine and the contour of the malformed vertebrae, with the growth plate and cortical bone visible as higher density lines, but could not be used to distinguish the existence of intervertebral structures. In contrast, MR images could be used to distinguish each structure, including the cortical bone, growth plate, cartilaginous end plate, and nucleus pulposus, by combining the signal changes on T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI). The intervertebral structure adjacent to the malformed vertebrae also exhibited various abnormalities, such as growth plate and cartilaginous end plate irregularities, nucleus pulposus defects, and bone marrow formation. In the chronological observation, the thickness and shape of the malformed structures on T1WI did not change. CONCLUSIONS Spinal malformations in mice were chronologically observed via 7 T MRI and histology. MR images could be used to distinguish the histological structures of normal and malformed mouse spines. Malformed vertebrae were accompanied by adjacent intervertebral structures that corresponded to the fully segmented structures observed in human congenital scoliosis, but the intervertebral conditions varied. This study suggested the importance of MRI and histological examinations of human congenital scoliosis patients with patterns other than nonsegmenting patterns, which may be used to predict the prognosis of patients with spinal deformities associated with malformed vertebrae.
Collapse
Affiliation(s)
- Haruki Ueda
- Department of Orthopaedic Surgery, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi, Japan.
| | - Takuya Iimura
- Department of Orthopaedic Surgery, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi, Japan
| | - Satoshi Inami
- Department of Orthopaedic Surgery, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi, Japan
| | - Hiroshi Moridaira
- Department of Orthopaedic Surgery, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi, Japan
| | - Takuya Yazawa
- Department of Pathology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi, Japan
| | - Yoshiteru Seo
- Department of Homeostatic Regulation, National Institute for Physiological Sciences, 38, Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
| | - Hiroshi Taneichi
- Department of Orthopaedic Surgery, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi, Japan
| |
Collapse
|
39
|
Yao Q, He T, Liao JY, Liao R, Wu X, Lin L, Xiao G. Noncoding RNAs in skeletal development and disorders. Biol Res 2024; 57:16. [PMID: 38644509 PMCID: PMC11034114 DOI: 10.1186/s40659-024-00497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/09/2024] [Indexed: 04/23/2024] Open
Abstract
Protein-encoding genes only constitute less than 2% of total human genomic sequences, and 98% of genetic information was previously referred to as "junk DNA". Meanwhile, non-coding RNAs (ncRNAs) consist of approximately 60% of the transcriptional output of human cells. Thousands of ncRNAs have been identified in recent decades, and their essential roles in the regulation of gene expression in diverse cellular pathways associated with fundamental cell processes, including proliferation, differentiation, apoptosis, and metabolism, have been extensively investigated. Furthermore, the gene regulation networks they form modulate gene expression in normal development and under pathological conditions. In this review, we integrate current information about the classification, biogenesis, and function of ncRNAs and how these ncRNAs support skeletal development through their regulation of critical genes and signaling pathways in vivo. We also summarize the updated knowledge of ncRNAs involved in common skeletal diseases and disorders, including but not limited to osteoporosis, osteoarthritis, rheumatoid arthritis, scoliosis, and intervertebral disc degeneration, by highlighting their roles established from in vivo, in vitro, and ex vivo studies.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Rongdong Liao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lijun Lin
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
40
|
Chen Z, Zhao Q, Chen L, Gao S, Meng L, Liu Y, Wang Y, Li T, Xue J. MAGP2 promotes osteogenic differentiation during fracture healing through its crosstalk with the β-catenin pathway. J Cell Physiol 2024; 239:e31183. [PMID: 38348695 DOI: 10.1002/jcp.31183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 04/12/2024]
Abstract
Osteogenic differentiation is important for fracture healing. Microfibrial-associated glycoprotein 2 (MAGP2) is found to function as a proangiogenic regulator in bone formation; however, its role in osteogenic differentiation during bone repair is not clear. Here, a mouse model of critical-sized femur fracture was constructed, and the adenovirus expressing MAGP2 was delivered into the fracture site. Mice with MAGP2 overexpression exhibited increased bone mineral density and bone volume fraction (BV/TV) at Day 14 postfracture. Within 7 days postfracture, overexpression of MAGP2 increased collagen I and II expression at the fracture callus, with increasing chondrogenesis. MAGP2 inhibited collagen II level but elevated collagen I by 14 days following fracture, accompanied by increased endochondral bone formation. In mouse osteoblast precursor MC3T3-E1 cells, MAGP2 treatment elevated the expression of osteoblastic factors (osterix, BGLAP and collagen I) and enhanced ALP activity and mineralization through activating β-catenin signaling after osteogenic induction. Besides, MAGP2 could interact with lipoprotein receptor-related protein 5 (LRP5) and upregulated its expression. Promotion of osteogenic differentiation and β-catenin activation mediated by MAGP2 was partially reversed by LRP5 knockdown. Interestingly, β-catenin/transcription factor 4 (TCF4) increased MAGP2 expression probably by binding to MAGP2 promoter. These findings suggest that MAGP2 may interact with β-catenin/TCF4 to enhance β-catenin/TCF4's function and activate LRP5-activated β-catenin signaling pathway, thus promoting osteogenic differentiation for fracture repair. mRNA sequencing identified the potential targets of MAGP2, providing novel insights into MAGP2 function and the directions for future research.
Collapse
Affiliation(s)
- Zhiguang Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qi Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lianghong Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Songlan Gao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lingshuai Meng
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yingjie Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tiegang Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
41
|
Guo W, Lu B, Liu F, Jin D, Wu S, Zhou S, Li Z, Lv Y, Zhao Z, Zhang J, Li Y. Comprehensive repair of the alveolar cleft using cortical and cancellous bone layers: A retrospective study. J Craniomaxillofac Surg 2024; 52:310-315. [PMID: 38212164 DOI: 10.1016/j.jcms.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 10/11/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
To retrospectively review the clinical effect of comprehensive treatment of alveolar cleft (CTAC) using the mandible as the bone source. Patients with alveolar clefts who met the inclusion criteria were subjected to a CTAC protocol that included the following: (1) preoperative orthodontic treatment for creating good soft-tissue conditions; (2) 'area-like grafting' with subperiosteal osteogenic chin bone instead of cartilaginous osteogenic iliac bone; (3) simulation of normal bone anatomy via a sandwich-like bone graft consisting of 'cortical bone + cancellous bone + cortical bone'; and (4) strong internal fixation to ensure initial bone block stability. At 6 months postoperatively, the titanium plate was removed and cone-beam computed tomography was performed to evaluate the surgical results. A total of 54 patients underwent treatment with the CTAC protocol. The average age at the initial operation was 10.3 ± 2.1 years, and the average hospital stay was 2.8 ± 0.6 days. At 6 months postoperatively, 49 patients (90.7%) showed good clinical results. The transplanted bone block formed a 'cortical bone + cancellous bone + cortical bone' structure similar to that of the normal jawbone. A mature bone bridge formed, and the impacted permanent teeth continued to erupt and enter the bone graft area. CTAC is a comprehensive restorative solution for alveolar cleft repair that integrates multiple concepts, including orthodontics, embryology, anatomy, and improvements to surgical methods. The method is easy to perform, causes little surgical trauma, and shows a stable success rate, and is thus worth promoting.
Collapse
Affiliation(s)
- Weiwei Guo
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Bin Lu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Fuwei Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Dan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Simo Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Shanluo Zhou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Zhiye Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Yaoguang Lv
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Zhihe Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Junrui Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China.
| | - Yunpeng Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China.
| |
Collapse
|
42
|
Huang X, Lou Y, Duan Y, Liu H, Tian J, Shen Y, Wei X. Biomaterial scaffolds in maxillofacial bone tissue engineering: A review of recent advances. Bioact Mater 2024; 33:129-156. [PMID: 38024227 PMCID: PMC10665588 DOI: 10.1016/j.bioactmat.2023.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Maxillofacial bone defects caused by congenital malformations, trauma, tumors, and inflammation can severely affect functions and aesthetics of maxillofacial region. Despite certain successful clinical applications of biomaterial scaffolds, ideal bone regeneration remains a challenge in maxillofacial region due to its irregular shape, complex structure, and unique biological functions. Scaffolds that address multiple needs of maxillofacial bone regeneration are under development to optimize bone regeneration capacity, costs, operational convenience. etc. In this review, we first highlight the special considerations of bone regeneration in maxillofacial region and provide an overview of the biomaterial scaffolds for maxillofacial bone regeneration under clinical examination and their efficacy, which provide basis and directions for future scaffold design. Latest advances of these scaffolds are then discussed, as well as future perspectives and challenges. Deepening our understanding of these scaffolds will help foster better innovations to improve the outcome of maxillofacial bone tissue engineering.
Collapse
Affiliation(s)
- Xiangya Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yaxin Lou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yihong Duan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - He Liu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jun Tian
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
43
|
Zhang X, Deng C, Qi S. Periosteum Containing Implicit Stem Cells: A Progressive Source of Inspiration for Bone Tissue Regeneration. Int J Mol Sci 2024; 25:2162. [PMID: 38396834 PMCID: PMC10889827 DOI: 10.3390/ijms25042162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The periosteum is known as the thin connective tissue covering most bone surfaces. Its extrusive bone regeneration capacity was confirmed from the very first century-old studies. Recently, pluripotent stem cells in the periosteum with unique physiological properties were unveiled. Existing in dynamic contexts and regulated by complex molecular networks, periosteal stem cells emerge as having strong capabilities of proliferation and multipotential differentiation. Through continuous exploration of studies, we are now starting to acquire more insight into the great potential of the periosteum in bone formation and repair in situ or ectopically. It is undeniable that the periosteum is developing further into a more promising strategy to be harnessed in bone tissue regeneration. Here, we summarized the development and structure of the periosteum, cell markers, and the biological features of periosteal stem cells. Then, we reviewed their pivotal role in bone repair and the underlying molecular regulation. The understanding of periosteum-related cellular and molecular content will help enhance future research efforts and application transformation of the periosteum.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Department of Prosthodontics, Shanghai Stomatological Hospital, School of Stomatology, Fudan University, Shanghai 200001, China;
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Chen Deng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Shengcai Qi
- Department of Prosthodontics, Shanghai Stomatological Hospital, School of Stomatology, Fudan University, Shanghai 200001, China;
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| |
Collapse
|
44
|
Wu M, Wu S, Chen W, Li YP. The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease. Cell Res 2024; 34:101-123. [PMID: 38267638 PMCID: PMC10837209 DOI: 10.1038/s41422-023-00918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Transforming growth factor-βs (TGF-βs) and bone morphometric proteins (BMPs) belong to the TGF-β superfamily and perform essential functions during osteoblast and chondrocyte lineage commitment and differentiation, skeletal development, and homeostasis. TGF-βs and BMPs transduce signals through SMAD-dependent and -independent pathways; specifically, they recruit different receptor heterotetramers and R-Smad complexes, resulting in unique biological readouts. BMPs promote osteogenesis, osteoclastogenesis, and chondrogenesis at all differentiation stages, while TGF-βs play different roles in a stage-dependent manner. BMPs and TGF-β have opposite functions in articular cartilage homeostasis. Moreover, TGF-β has a specific role in maintaining the osteocyte network. The precise activation of BMP and TGF-β signaling requires regulatory machinery at multiple levels, including latency control in the matrix, extracellular antagonists, ubiquitination and phosphorylation in the cytoplasm, nucleus-cytoplasm transportation, and transcriptional co-regulation in the nuclei. This review weaves the background information with the latest advances in the signaling facilitated by TGF-βs and BMPs, and the advanced understanding of their diverse physiological functions and regulations. This review also summarizes the human diseases and mouse models associated with disordered TGF-β and BMP signaling. A more precise understanding of the BMP and TGF-β signaling could facilitate the development of bona fide clinical applications in treating bone and cartilage disorders.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Shali Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
45
|
Hayasaka O, Shibukawa M, Kamei H. Cellular Energy Sensor Sirt1 Augments Mapk Signaling to Promote Hypoxia/Reoxygenation-Induced Catch-up Growth in Zebrafish Embryo. Zoolog Sci 2024; 41:21-31. [PMID: 38587514 DOI: 10.2108/zs230059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/23/2023] [Indexed: 04/09/2024]
Abstract
Animal growth is blunted in adverse environments where catabolic metabolism dominates; however, when the adversity disappears, stunted animals rapidly catch up to age-equivalent body size. This phenomenon is called catch-up growth, which we observe in various animals. Since growth retardation and catch-up growth are sequential processes, catabolism or stress response molecules may remain active, especially immediately after growth resumes. Sirtuins (Sirt1-7) deacetylate target proteins in a nicotinamide adenine dinucleotide-dependent manner, and these enzymes govern diverse alleys of cellular functions. Here, we investigated the roles of Sirt1 and its close paralog Sirt2 in the hypoxia/reoxygenation-induced catch-up growth model using zebrafish embryos. Temporal blockade of Sirt1/2 significantly reduced the growth rate of the embryos in reoxygenation, but it was not evident in constant normoxia. Subsequent gene knockdown and chemical inhibition experiments demonstrated that Sirt1, but not Sirt2, was required for the catchup growth. Inhibition of Sirt1 significantly reduced the activity of mitogen-activated kinase (Mapk) of embryos in the reoxygenation condition. In addition, co-inhibition of Sirt1- and Igf-signaling did not further reduce the body growth or Mapk activation compared to those of the Igf-signaling-alone-inhibited embryos. Furthermore, in the reoxygenation condition, Sirt1- or Igf-signaling inhibition similarly blunted Mapk activity, especially in anterior tissues and trunk muscle, where the sirt1 expression was evident in the catching-up embryos. These results suggest that the catch-up growth requires Sirt1 action to activate the somatotropic Mapk pathway, likely by modifying the Igf-signaling.
Collapse
Affiliation(s)
- Oki Hayasaka
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Mukaze Shibukawa
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Ikedamohando Co., Ltd., Nakaniikawa-gun, Toyama 930-0365, Japan
| | - Hiroyasu Kamei
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan,
| |
Collapse
|
46
|
Park JS, Kim DY, Hong HS. FGF2/HGF priming facilitates adipose-derived stem cell-mediated bone formation in osteoporotic defects. Heliyon 2024; 10:e24554. [PMID: 38304814 PMCID: PMC10831751 DOI: 10.1016/j.heliyon.2024.e24554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Aims The activity of adipose-derived stem cells (ADSCs) is susceptible to the physiological conditions of the donor. Therefore, employing ADSCs from donors of advanced age or with diseases for cell therapy necessitates a strategy to enhance therapeutic efficacy before transplantation. This study aims to investigate the impact of supplementing Fibroblast Growth Factor 2 (FGF2) and Hepatocyte Growth Factor (HGF) on ADSC-mediated osteogenesis under osteoporotic conditions and to explore the underlying mechanisms of action. Main methods Adipose-derived stem cells (ADSCs) obtained from ovariectomized (OVX) rats were cultured ex vivo. These cells were cultured in an osteogenic medium supplemented with FGF2 and HGF and subsequently autologously transplanted into osteoporotic femur defects using Hydroxyapatite-Tricalcium Phosphate. The assessment of bone formation was conducted four weeks post-transplantation. Key findings Osteoporosis detrimentally affects the viability and osteogenic differentiation potential of ADSCs, often accompanied by a deficiency in FGF2 and HGF signaling. However, priming with FGF2 and HGF facilitated the formation of immature osteoblasts from OVX ADSCs in vitro, promoting the expression of osteoblastogenic proteins, including Runx-2, osterix, and ALP, during the early phase of osteogenesis. Furthermore, FGF2/HGF priming augmented the levels of VEGF and SDF-1α in the microenvironment of OVX ADSCs under osteogenic induction. Importantly, transplantation of OVX ADSCs primed with FGF2/HGF for 6 days significantly enhanced bone formation compared to non-primed cells. The success of bone regeneration was confirmed by the expression of type-1 collagen and osteocalcin in the bone tissue of the deficient area. Significance Our findings corroborate that priming with FGF2/HGF can improve the differentiation potential of ADSCs. This could be applied in autologous stem cell therapy for skeletal disease in the geriatric population.
Collapse
Affiliation(s)
- Jeong Seop Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Do Young Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Hyun Sook Hong
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
- East-West Medical Research Institute, Kyung Hee University, Seoul, 02447, South Korea
- Kyung Hee Institute of Regenerative Medicine (KIRM), Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, 02447, South Korea
| |
Collapse
|
47
|
Xue M, Huang N, Luo Y, Yang X, Wang Y, Fang M. Combined Transcriptomics and Metabolomics Identify Regulatory Mechanisms of Porcine Vertebral Chondrocyte Development In Vitro. Int J Mol Sci 2024; 25:1189. [PMID: 38256262 PMCID: PMC10816887 DOI: 10.3390/ijms25021189] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Porcine body length is closely related to meat production, growth, and reproductive performance, thus playing a key role in the profitability of the pork industry. Cartilage development is critical to longitudinal elongation of individual vertebrae. This study isolated primary porcine vertebral chondrocytes (PVCs) to clarify the complex mechanisms of elongation. We used transcriptome and target energy metabolome technologies to confirm crucial genes and metabolites in primary PVCs at different differentiation stages (0, 4, 8, and 12 days). Pairwise comparisons of the four stages identified 4566 differentially expressed genes (DEGs). Time-series gene cluster and functional analyses of these DEGs revealed four clusters related to metabolic processes, cartilage development, vascular development, and cell cycle regulation. We constructed a transcriptional regulatory network determining chondrocyte maturation. The network indicated that significantly enriched transcription factor (TF) families, including zf-C2H2, homeobox, TF_bZIP, and RHD, are important in cell cycle and differentiation processes. Further, dynamic network biomarker (DNB) analysis revealed that day 4 was the tipping point for chondrocyte development, consistent with morphological and metabolic changes. We found 24 DNB DEGs, including the TFs NFATC2 and SP7. Targeted energy metabolome analysis showed that most metabolites were elevated throughout chondrocyte development; notably, 16 differentially regulated metabolites (DRMs) were increased at three time points after cell differentiation. In conclusion, integrated metabolome and transcriptome analyses highlighted the importance of amino acid biosynthesis in chondrocyte development, with coordinated regulation of DEGs and DRMs promoting PVC differentiation via glucose oxidation. These findings reveal the regulatory mechanisms underlying PVC development and provide an important theoretical reference for improving pork production.
Collapse
Affiliation(s)
- Mingming Xue
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.X.); (Y.L.); (X.Y.)
| | - Ning Huang
- Sanya Research Institute, China Agricultural University, Sanya 572025, China; (N.H.); (Y.W.)
| | - Yabiao Luo
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.X.); (Y.L.); (X.Y.)
| | - Xiaoyang Yang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.X.); (Y.L.); (X.Y.)
| | - Yubei Wang
- Sanya Research Institute, China Agricultural University, Sanya 572025, China; (N.H.); (Y.W.)
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.X.); (Y.L.); (X.Y.)
- Sanya Research Institute, China Agricultural University, Sanya 572025, China; (N.H.); (Y.W.)
| |
Collapse
|
48
|
Argov-Argaman N, Altman H, Janssen JN, Daeem S, Raz C, Mesilati-Stahy R, Penn S, Monsonego-Ornan E. Effect of milk fat globules on growth and metabolism in rats fed an unbalanced diet. Front Nutr 2024; 10:1270171. [PMID: 38274212 PMCID: PMC10808575 DOI: 10.3389/fnut.2023.1270171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/23/2023] [Indexed: 01/27/2024] Open
Abstract
We assessed the effects of supplementing milk fat globules (MFG) on the growth and development of the skeleton in rats fed a Western unbalanced diet (UBD). The UBD is high in sugar and fat, low in protein, fiber, and micronutrients, and negatively impacts health. The MFG-a complex lipid-protein assembly secreted into milk-has a unique structure and composition, which differs significantly from isolated and processed dietary ingredients. Rats consuming the UBD exhibited growth retardation and disrupted bone structural and mechanical parameters; these were improved by supplementation with small MFG. The addition of small MFG increased the efficiency of protein utilization for growth, and improved trabecular and cortical bone parameters. Furthermore, consumption of UBD led to a decreased concentration of saturated fatty acids and increased levels of polyunsaturated fatty acids (PUFA), particularly omega-6 PUFA, in the serum, liver, and adipose tissue. The addition of small MFG restored PUFA concentration and the ratio of omega-6 to omega-3 PUFA in bone marrow and adipose tissue. Finally, large but not small MFG supplementation affected the cecal microbiome in rats. Overall, our results suggest that natural structure MFG supplementation can improve metabolism and bone development in rats fed an UBD, with the effects depending on MFG size. Moreover, the benefits of small MFG to bone development and metabolism were not mediated by the microbiome, as the detrimental effects of an UBD on the microbiome were not mitigated by MFG supplementation.
Collapse
Affiliation(s)
- Nurit Argov-Argaman
- Department of Animal Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hodaya Altman
- School of Nutrition Science, Institute of Biochemistry, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Seman Daeem
- Department of Animal Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Chen Raz
- Department of Animal Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronit Mesilati-Stahy
- School of Nutrition Science, Institute of Biochemistry, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Svetlana Penn
- School of Nutrition Science, Institute of Biochemistry, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Efrat Monsonego-Ornan
- School of Nutrition Science, Institute of Biochemistry, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
49
|
Zhao Y, Peng X, Wang Q, Zhang Z, Wang L, Xu Y, Yang H, Bai J, Geng D. Crosstalk Between the Neuroendocrine System and Bone Homeostasis. Endocr Rev 2024; 45:95-124. [PMID: 37459436 DOI: 10.1210/endrev/bnad025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 01/05/2024]
Abstract
The homeostasis of bone microenvironment is the foundation of bone health and comprises 2 concerted events: bone formation by osteoblasts and bone resorption by osteoclasts. In the early 21st century, leptin, an adipocytes-derived hormone, was found to affect bone homeostasis through hypothalamic relay and the sympathetic nervous system, involving neurotransmitters like serotonin and norepinephrine. This discovery has provided a new perspective regarding the synergistic effects of endocrine and nervous systems on skeletal homeostasis. Since then, more studies have been conducted, gradually uncovering the complex neuroendocrine regulation underlying bone homeostasis. Intriguingly, bone is also considered as an endocrine organ that can produce regulatory factors that in turn exert effects on neuroendocrine activities. After decades of exploration into bone regulation mechanisms, separate bioactive factors have been extensively investigated, whereas few studies have systematically shown a global view of bone homeostasis regulation. Therefore, we summarized the previously studied regulatory patterns from the nervous system and endocrine system to bone. This review will provide readers with a panoramic view of the intimate relationship between the neuroendocrine system and bone, compensating for the current understanding of the regulation patterns of bone homeostasis, and probably developing new therapeutic strategies for its related disorders.
Collapse
Affiliation(s)
- Yuhu Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhiyu Zhang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230022, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
50
|
Wang Y, Li HY, Guan SY, Yu SH, Zhou YC, Zheng LW, Zhang J. Different Sources of Bone Marrow Mesenchymal Stem Cells: A Comparison of Subchondral, Mandibular, and Tibia Bone-derived Mesenchymal Stem Cells. Curr Stem Cell Res Ther 2024; 19:1029-1041. [PMID: 37937557 DOI: 10.2174/011574888x260686231023091127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/04/2023] [Accepted: 09/01/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Stem cell properties vary considerably based on the source and tissue site of mesenchymal stem cells (MSCs). The mandibular condyle is a unique kind of craniofacial bone with a special structure and a relatively high remodeling rate. MSCs here may also be unique to address specific physical needs. OBJECTIVE The aim of this study was to compare the proliferation and multidirectional differentiation potential among MSCs derived from the tibia (TMSCs), mandibular ramus marrow (MMSCs), and condylar subchondral bone (SMSCs) of rats in vitro. METHODS Cell proliferation and migration were assessed by CCK-8, laser confocal, and cell scratch assays. Histochemical staining and real-time PCR were used to evaluate the multidirectional differentiation potential and DNA methylation and histone deacetylation levels. RESULTS The proliferation rate and self-renewal capacity of SMSCs were significantly higher than those of MMSCs and TMSCs. Moreover, SMSCs possessed significantly higher mineralization and osteogenic differentiation potential. Dnmt2, Dnmt3b, Hdac6, Hdac7, Hdac9, and Hdac10 may be instrumental in the osteogenesis of SMSCs. In addition, SMSCs are distinct from MMSCs and TMSCs with lower adipogenic differentiation and chondrogenic differentiation potential. The multidirectional differentiation capacities of TMSCs were exactly the opposite of those of SMSCs, and the results of MMSCs were intermediate. CONCLUSION This research offers a new paradigm in which SMSCs could be a useful source of stem cells for further application in stem cell-based medical therapies due to their strong cell renewal and osteogenic capacity.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hong-Yu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shu-Yuan Guan
- Department of Stomatology, Medical College, Dalian University, Dalian, 116622, Liaoning, China
| | - Si-Han Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Chuan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li-Wei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Zhang
- Yunnan Key Laboratory of Stomatology, Kunming Medical University School and Hospital of Stomatology, Kunming, China
| |
Collapse
|