1
|
Lemos JVM, Martins JODL, Machado LC, Aragão LR, Verde MEQL, Pessoa CDÓ, Bezerra MJB, Alves APNN, de Barros Silva PG. Digoxin attenuates bisphosphonate related osteonecrosis of the jaws by RORγt-dependent Th17 response in male rats. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:781-793. [PMID: 39304414 DOI: 10.1016/j.oooo.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE The study aimed to evaluate digoxin, an RORγt inhibitor, in Medication-Related Osteonecrosis of the Jaws (MRONJ) in male rats treated with zoledronic acid (ZA). STUDY DESIGN Forty male Wistar rats were divided into a negative control group (0.1 mL/kg saline), a positive control group (ZA, 0.20 mg/kg), and three test groups treated with ZA and digoxin at 1 (DG1), 2 (DG2), or 4 (DG4) mg/kg. These groups received treatment three times weekly. ZA was administered intravenously on days 0, 7, and 14, followed by extraction of the left lower first molar on day 42, a final ZA dose on day 49, and euthanasia on day 70. Analyses included radiographic, histomorphometric, and immunohistochemical evaluation of the mandibles, western blotting of gingiva, and mechanical tests on femurs. Statistical analysis was performed using ANOVA/Bonferroni tests (P < .05). RESULTS Digoxin reduced radiolucency of MRONJ (P < .001), inflammatory cells, empty osteocyte lacunae (P < .001), apoptotic osteoclasts (P < .001), and Caspase-3-positive osteocytes (P = .021). ZA increased immunoreactivity for most markers except c-Fos, while digoxin reduced interleukin 17, TNF-α, IL-6, IL-2, FOXP3, c-Jun, NFκB (P < .001), TGF-β (P = .009), RANKL (P = .035), and OPG (P = .034). Digoxin also reversed RORγt expression (P < .001), increased diarrhea scores (P = .028), renal and cardiac indexes (P < .001), and enhanced femur mechanical properties (P < .013). CONCLUSIONS Digoxin attenuated MRONJ by inhibiting RORγt and reducing the Th17 response.
Collapse
Affiliation(s)
- José Vitor Mota Lemos
- Department of Clinical Dentistry, Division of Oral Pathology, School of Pharmacy, Dentistry and Nursing, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Joyce Ohana de Lima Martins
- Department of Clinical Dentistry, Division of Oral Pathology, School of Pharmacy, Dentistry and Nursing, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | | | - Lara Rabelo Aragão
- Department of Dentistry, Laboratory of Oral Pathology, Unichristus, Fortaleza, Ceará, Brazil
| | | | - Cláudia do Ó Pessoa
- Department of Physiology and Pharmacology at the Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Maria Júlia Barbosa Bezerra
- Department and Laboratory of Molecular Biology and Genetics of the Instituto do Câncer do Ceará, Fortaleza, Ceará, Brazil
| | - Ana Paula Negreiros Nunes Alves
- Department of Clinical Dentistry, Division of Oral Pathology, School of Pharmacy, Dentistry and Nursing, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Paulo Goberlânio de Barros Silva
- Department of Dentistry, Laboratory of Oral Pathology, Unichristus, Fortaleza, Ceará, Brazil; Department of Clinical Dentistry, Division of Oral Pathology, School of Pharmacy, Dentistry and Nursing, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil; Department and Laboratory of Molecular Biology and Genetics of the Instituto do Câncer do Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
2
|
Gallaway G, Surowiec RK, Allen MR, Wallace JM, Pyrak-Nolte LJ, Howarter JA, Siegmund T. A proposal for the combined analysis of bone quantity and quality of human cortical bone by quasi-brittle fracture mechanics. J Biomech 2024; 176:112359. [PMID: 39413449 DOI: 10.1016/j.jbiomech.2024.112359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
Quasi-brittle fracture mechanics is used to evaluate fracture of human cortical bone in aging. The approach is demonstrated using cortical bone bars extracted from one 92-year-old human male cadaver. In-situ fracture mechanics experiments in a 3D X-ray microscope are conducted. The evolution of the fracture process zone is documented. Fully developed fracture process zone lengths at peak load are found to span about three osteon diameters. Crack deflection and arrest at cement lines is a key process to build extrinsic toughness. Strength and toughness are found as size-dependent, not only for laboratory-scale experimental specimens but also for the whole femur. A scaling law for the length fracture process zone is used. Then, size-independent, tissue fracture properties are calculated. Linear elastic fracture mechanics applied to laboratory beam specimens underestimates the tissue toughness by 60%. Tissue fracture properties are used to predict the load capacity of the femur in bending within the range of documented data. The quasi-brittle fracture mechanics approach allows for the assessment of the combined effect of bone quantity and bone quality on fracture risk. However, further work is needed considering a larger range of subjects and in the model validation at the organ length scale.
Collapse
Affiliation(s)
- Glynn Gallaway
- School of Mechanical Engineering, Purdue University, United States of America
| | - Rachel K Surowiec
- Weldon School of Biomedical Engineering, Purdue University, United States of America
| | - Matthew R Allen
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, United States of America; Roudebush Veterans Administration Medical Center, United States of America
| | - Joseph M Wallace
- Weldon School of Biomedical Engineering, Purdue University, United States of America
| | - Laura J Pyrak-Nolte
- Department of Physics and Astronomy, Purdue University, United States of America
| | - John A Howarter
- School of Materials Engineering, Purdue University, United States of America; Environmental and Ecological Engineering, Purdue University, United States of America
| | - Thomas Siegmund
- School of Mechanical Engineering, Purdue University, United States of America.
| |
Collapse
|
3
|
Lodoso-Torrecilla I, Konka J, Kreuzer M, Jimenez-Pique E, Espanol M, Ginebra MP. Quality assessment of regenerated bone in intraosseous and intramuscular scaffolds by spectroscopy and nanoindentation. BIOMATERIALS ADVANCES 2024; 164:213982. [PMID: 39098081 DOI: 10.1016/j.bioadv.2024.213982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/12/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
The efficiency of synthetic bone grafts can be evaluated either in osseous sites, to analyze osteoconduction or ectopically, in intramuscular or subcutaneous sites, to assess osteoinduction. Bone regeneration is usually evaluated in terms of the presence and quantity of newly formed bone, but little information is normally provided on the quality of this bone. Here, we propose a novel approach to evaluate bone quality by the combined use of spectroscopy techniques and nanoindentation. Calcium phosphate scaffolds with different architectures, either foamed or 3D-printed, that were implanted in osseous or intramuscular defects in Beagle dogs for 6 or 12 weeks were analyzed. ATR-FTIR and Raman spectroscopy were performed, and mineral-to-matrix ratio, crystallinity, and mineral and collagen maturity were calculated and mapped for the newly regenerated bone and the mature cortical bone from the same specimen. For all the parameters studied, the newly-formed bone showed lower values than the mature host bone. Hardness and elastic modulus were determined by nanoindentation and, in line with what was observed by spectroscopy, lower values were observed in the regenerated bone than in the cortical bone. While, as expected, all techniques pointed to an increase in the maturity of the newly-formed bone between 6 and 12 weeks, the bone found in the intramuscular samples after 12 weeks presented lower mineralization than the intraosseous counterparts. Moreover, scaffold architecture also played a role in bone maturity, with the foamed scaffolds showing higher mineralization and crystallinity than the 3D-printed scaffolds after 12 weeks.
Collapse
Affiliation(s)
- Irene Lodoso-Torrecilla
- Department of Materials Science and Engineering, Group of Biomaterials, Biomechanics and Tissue Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; Barcelona Research Centre in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Joanna Konka
- Department of Materials Science and Engineering, Group of Biomaterials, Biomechanics and Tissue Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; Barcelona Research Centre in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Martin Kreuzer
- CELLS-ALBA, Carrer de la Llum 2-26, 08290, Cerdanyola del Valles, Barcelona, Spain
| | - Emilio Jimenez-Pique
- Barcelona Research Centre in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; Department of Materials Science and Engineering, CIEFMA Group, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Montserrat Espanol
- Department of Materials Science and Engineering, Group of Biomaterials, Biomechanics and Tissue Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; Barcelona Research Centre in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; Centro de Investigación Biomédica en Red-Bioingeniería, Biomedicina y Nanomedicina (CIBER-BBN), Spain
| | - Maria-Pau Ginebra
- Department of Materials Science and Engineering, Group of Biomaterials, Biomechanics and Tissue Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; Barcelona Research Centre in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; Centro de Investigación Biomédica en Red-Bioingeniería, Biomedicina y Nanomedicina (CIBER-BBN), Spain; Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Carrer Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| |
Collapse
|
4
|
Chavarry NGM, Abreu PVB, Feres-Filho EJ, Pereira DMT, Maia LC, Molon RSD. The effects of sodium alendronate on socket healing after tooth extraction: a systematic review of animal studies. Braz Oral Res 2024; 38:e038. [PMID: 38747825 PMCID: PMC11376628 DOI: 10.1590/1807-3107bor-2024.vol38.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/07/2023] [Indexed: 05/25/2024] Open
Abstract
The aim of this systematic review was to answer the following question: "Does alendronate, a nitrogen-containing bisphosphonate, improve or impair alveolar socket healing after tooth extraction in animal models"? To this end, a systematic review of the literature was carried out in PubMed, Scopus, LILACS, Web of Science, as well as in the gray literature up to May 2023. Preclinical studies that evaluated alveolar healing after tooth extraction and the intake of sodium alendronate compared with placebo were included. Two investigators were responsible for screening the articles independently, extracting the data, and assessing their quality through the SYRCLE's RoB tool for randomized trials in animal studies. The study selection process, study characteristics, risk of bias in studies, impact of alendronate on bone healing, and certainty of evidence were described in text and table formats. Methodological differences among the studies were restricted to the synthesis methods. The synthesis of qualitative results followed the Synthesis Without Meta-analysis (SWiM) reporting guideline. From the 19 included studies, five were considered to have low risk, three were of unclear risk, and eleven presented a high risk of bias. The studies were considered heterogeneous regarding alendronate posology, including its dosage and route of administration. Furthermore, a variety of animal species, different age ranges, diverse teeth extracted, and exposure or not to ovariectomy contributed to the lack of parity of the selected studies. Our results indicated that alendronate monotherapy negatively affects the early phase of wound healing after tooth extraction in preclinical studies, suggesting that the bone resorption process after tooth extraction in animals treated with alendronate might impair the bone healing process of the extraction socket. In conclusion, alendronate administration restrains bone resorption, thereby delaying alveolar socket healing . Future studies should be conducted to validate these findings and to better understand the effects of alendronate therapy on oral tissues.
Collapse
Affiliation(s)
- Nilo Guliberto Martins Chavarry
- Universidade Federal do Rio de Janeiro - UFRJ, School of Dentistry, Department of Periodontology, Rio de Janeiro, RJ, Brazil
| | - Pedro Villas Boas Abreu
- Universidade Federal do Rio de Janeiro - UFRJ, School of Dentistry, Department of Periodontology, Rio de Janeiro, RJ, Brazil
| | - Eduardo Jorge Feres-Filho
- Universidade Federal do Rio de Janeiro - UFRJ, School of Dentistry, Department of Periodontology, Rio de Janeiro, RJ, Brazil
| | | | - Lucianne Cople Maia
- Universidade Federal do Rio de Janeiro - UFRJ, School of Dentistry, Department of Orthodontic and Pediatric Dentistry, Rio de Janeiro, RJ, Brazil
| | - Rafael Scaf De Molon
- Universidade Estadual Paulista - Unesp, School of Dentistry at Araçatuba, Department of Diagnosis and Surgery, Araçatuba, SP, Brazil
| |
Collapse
|
5
|
Mieczkowska A, Mabilleau G. Validation of Fourier Transform Infrared Microspectroscopy for the Evaluation of Enzymatic Cross-Linking of Bone Collagen. Calcif Tissue Int 2023; 113:344-353. [PMID: 37278762 DOI: 10.1007/s00223-023-01105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/26/2023] [Indexed: 06/07/2023]
Abstract
Enzymatic cross-linking of the bone collagen is important to resist to crack growth and to increased flexural strength. In the present study, we proposed a new method for assessment of enzymatic cross-link based on Fourier transform infrared (FTIR) microspectroscopy that takes into account secondary structure of type I collagen. Briefly, femurs were collected from sham or ovariectomized mice and subjected either to high-performance liquid chromatography-mass spectrometry or embedded in polymethylmethacrylate, cut and analyzed by FTIR microspectroscopy. FTIR acquisition was recorded before and after ultraviolet (UV) exposure or acid treatment. In addition, femurs from a second animal study were used to compare gene expression of Plod2 and Lox enzymes and enzymatic cross-links determined by FTIR microspectroscopy. We evidenced here that intensities and areas of subbands located at ~1660, ~1680, and ~1690 cm-1 were positively and significantly associated with the concentration of pyridinoline (PYD), deoxypyridinoline, or immature dihydroxylysinonorleucine/hydroxylysinonorleucine cross-links. Seventy-two hours exposure to UV light significantly reduced by ~86% and ~89% the intensity and area of the ~1660 cm-1 subband. Similarly, 24 h of acid treatment significantly reduced by 78% and 76% the intensity and area of the ~1690 cm-1 subband. Plod2 and Lox expression were also positively associated to the signal of the ~1660 and ~1690 cm-1 subbands. In conclusion, our study provided a new method for decomposing the amide I envelope of bone section that positively correlates with PYD and immature collagen cross-links. This method allows for investigation of tissue distribution of enzymatic cross-links in bone section.
Collapse
Affiliation(s)
- Aleksandra Mieczkowska
- Univ Angers, Nantes Université, ONIRIS, Inserm, UMR 1229, RMeS, REGOS, SFR ICAT, Université d'Angers, 49000, Angers, France
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, UMR 1229, RMeS, REGOS, SFR ICAT, Université d'Angers, 49000, Angers, France.
- CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, UF de Pathologie osseuse, 49933, Angers, France.
| |
Collapse
|
6
|
Kamml J, Ke CY, Acevedo C, Kammer DS. The influence of AGEs and enzymatic cross-links on the mechanical properties of collagen fibrils. J Mech Behav Biomed Mater 2023; 143:105870. [PMID: 37156073 PMCID: PMC11522032 DOI: 10.1016/j.jmbbm.2023.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Collagen, one of the main building blocks for various tissues, derives its mechanical properties directly from its structure of cross-linked tropocollagen molecules. The cross-links are considered to be a key component of collagen fibrils as they can change the fibrillar behavior in various ways. For instance, enzymatic cross-links (ECLs), one particular type of cross-links, are known for stabilizing the structure of the fibril and improving material properties, while cross-linking AGEs (Advanced-Glycation Endproducts) have been shown to accumulate and impair the mechanical properties of collageneous tissues. However, the reasons for whether and how a given type of cross-link improves or impairs the material properties remain unknown, and the exact relationship between the cross-link properties and density, and the fibrillar behavior is still not well understood. Here, we use coarse-grained steered molecular models to evaluate the effect of AGEs and ECLs cross-links content on the deformation and failure properties of collagen fibrils. Our simulations show that the collagen fibrils stiffen at high strain levels when the AGEs content exceeds a critical value. In addition, the strength of the fibril increases with AGEs accumulation. By analyzing the forces within the different types of cross-links (AGEs and ECLs) as well as their failure, we demonstrate that a change of deformation mechanism is at the origin of these observations. A high AGEs content reinforces force transfer through AGEs cross-links rather than through friction between sliding tropocollagen molecules, which leads to failure by breaking of bonds within the tropocollagen molecules. We show that this failure mechanism, which is associated with lower energy dissipation, results in more abrupt failure of the collagen fibril. Our results provide a direct and causal link between increased AGEs content, inhibited intra-fibrillar sliding, increased stiffness, and abrupt fibril fracture. Therefore, they explain the mechanical origin of bone brittleness as commonly observed in elderly and diabetic populations. Our findings contribute to a better understanding of the mechanisms underlying impaired tissue behavior due to elevated AGEs content and could enable targeted measures regarding the reduction of specific collagen cross-linking levels.
Collapse
Affiliation(s)
- Julia Kamml
- Institute for Building Materials, ETH Zurich, Switzerland
| | - Chun-Yu Ke
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA
| | - Claire Acevedo
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - David S Kammer
- Institute for Building Materials, ETH Zurich, Switzerland.
| |
Collapse
|
7
|
Pienkowski D, Wood CL, Malluche HH. Trabecular bone microcrack accumulation in patients treated with bisphosphonates for durations up to 16 years. J Orthop Res 2023; 41:1033-1039. [PMID: 36163612 PMCID: PMC10039958 DOI: 10.1002/jor.25441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/21/2022] [Accepted: 09/12/2022] [Indexed: 02/04/2023]
Abstract
This study quantified the length, number, and density of microcracks in bone from patients treated with bisphosphonates as a function of duration. Anterior iliac crest bone samples from 51 osteoporotic Caucasian females continuously treated with oral bisphosphonates for 1-16 years were obtained by bone biopsy. Samples were histologically processed and analyzed for bone area, microcrack number, and microcrack length. The analyses used statistical modeling and considered patient age, bone mineral density, bone volume/total volume, trabecular thickness, and bone turnover as potential covariates. Microcrack density (number of microcracks/total examined bone area) was linearly related (p = 0.018) to bisphosphonate treatment duration. None of the analyzed covariates contributed significantly to the observed relationship between microcrack density and bisphosphonate treatment duration. Observed increases in microcrack density with increasing bisphosphonate treatment duration is important because increasing levels of microcracks may not only affect bone remodeling but also reduce elastic modulus and are suspected to adversely affect other mechanical properties that may influence fracture risk. The present findings add to our prior results showing changes in bone material properties and modulus with bisphosphonate treatment duration and thereby provide a more comprehensive assessment of the relationship between bisphosphonate treatment duration and bone quality. Statement of Clinical Significance: The present findings provide information guiding clinical use of oral bisphosphonates for post-menopausal osteoporosis therapy.
Collapse
Affiliation(s)
- David Pienkowski
- F. Joseph Halcomb III, MD Department of Biomedical Engineering, University of Kentucky, Lexington, KY
| | | | - Hartmut H. Malluche
- Division of Nephrology, Bone & Mineral Metabolism, Department of Medicine, University of Kentucky, Lexington, KY
| |
Collapse
|
8
|
Haider IT, Loundagin LL, Sawatsky A, Kostenuik PJ, Boyd SK, Edwards WB. Twelve Months of Denosumab and/or Alendronate Is Associated With Improved Bone Fatigue Life, Microarchitecture, and Density in Ovariectomized Cynomolgus Monkeys. J Bone Miner Res 2023; 38:403-413. [PMID: 36533719 DOI: 10.1002/jbmr.4758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/25/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Prolonged use of antiresorptives such as the bisphosphonate alendronate (ALN) and the RANKL inhibitor denosumab (DMAb) are associated with rare cases of atypical femoral fracture (AFF). The etiology of AFF is unclear, but it has been hypothesized that potent osteoclast inhibitors may reduce bone fatigue resistance. The purpose of this study was to quantify the relationship between antiresorptive treatment and fatigue life (cycles to failure) in bone from ovariectomized cynomolgus monkeys. We analyzed humeral bone from 30 animals across five treatment groups. Animals were treated for 12 months with subcutaneous (sc) vehicle (VEH), sc DMAb (25 mg/kg/month), or intravenous (iv) ALN (50 μg/kg/month). Another group received 6 months VEH followed by 6 months DMAb (VEH-DMAb), and the final group received 6 months ALN followed by 6 months DMAb (ALN-DMAb). A total of 240 cortical beam samples were cyclically tested in four-point bending at 80, 100, 120, or 140 MPa peak stress. High-resolution imaging and density measurements were performed to evaluate bone microstructure and composition. Samples from the ALN (p = 0.014), ALN-DMAb (p = 0.008), and DMAb (p < 0.001) groups illustrated higher fatigue-life measurements than VEH. For example, at 140 MPa the VEH group demonstrated a median ± interquartile range (IQR) fatigue life of 1987 ± 10593 cycles, while animals in the ALN, ALN-DMAb, and DMAb groups survived 9850 ± 13648 (+395% versus VEH), 10493 ± 16796 (+428%), and 14495 ± 49299 (+629%) cycles, respectively. All antiresorptive treatment groups demonstrated lower porosity, smaller pore size, greater pore spacing, and lower number of canals versus VEH (p < 0.001). Antiresorptive treatment was also associated with greater apparent density, dry density, and ash density (p ≤ 0.03). We did not detect detrimental changes following antiresorptive treatments that would explain their association with AFF. In contrast, 12 months of treatment may have a protective effect against fatigue fractures. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Ifaz T Haider
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lindsay L Loundagin
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Sawatsky
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul J Kostenuik
- Phylon Pharma Services, Newbury Park, CA, USA.,School of Dentistry, University of Michigan (Adjunct), Ann Arbor, MI, USA
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - W Brent Edwards
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
9
|
Moritz N, Liesmäki O, Plyusnin A, Keränen P, Kulkova J. Load-bearing composite fracture-fixation devices with tailored fibre placement for toy-breed dogs. Res Vet Sci 2023; 156:66-80. [PMID: 36791579 DOI: 10.1016/j.rvsc.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/31/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Fibre reinforced composites are attractive materials for hard tissue reconstructions, due to the high strength and low flexural modulus. However, lack of contourability in the operation theatre inhibits their clinical applications. The study presents a novel in situ contourable composite implant system for load-bearing conditions. The implant system consists of a thin bioresorbable shell with several cavities, much like bubble-wrap. The central cavity contains a semi-flexible glass fibre preform prepared using Tailored Fibre Placement method. The preform is either pre-impregnated with a light curable resin, or the resin is injected into the cavity during the surgical procedure, followed by light curing. The semi-flexible glass fibre preforms were also examined as separate devices, "miniplates". Two types of miniplates were scrutinized, a simplified pilot design and a spatially refined, "optimized" design. The optimized miniplates were implemented as biostable and bioresorbable versions. The feasibility of the in situ contourable composite implant system was demonstrated. The potential of Tailored Fibre Placement for the semi-flexible glass fibre preforms and miniplates was confirmed in a series of biomechanical tests. However, structural optimization is required. Antebrachial fractures in toy-breeds of dogs are exemplar veterinary applications of the devices; further applications in veterinary and human patients are foreseen.
Collapse
Affiliation(s)
- Niko Moritz
- Biomedical Engineering Research Group, Biomaterials and Medical Device Research Program, Itäinen Pitkäkatu 4B (PharmaCity), 20520 Turku, Finland; Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Itäinen Pitkäkatu 4B (PharmaCity), 20520 Turku, Finland
| | - Oliver Liesmäki
- Biomedical Engineering Research Group, Biomaterials and Medical Device Research Program, Itäinen Pitkäkatu 4B (PharmaCity), 20520 Turku, Finland; Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Itäinen Pitkäkatu 4B (PharmaCity), 20520 Turku, Finland
| | - Artem Plyusnin
- Biomedical Engineering Research Group, Biomaterials and Medical Device Research Program, Itäinen Pitkäkatu 4B (PharmaCity), 20520 Turku, Finland; Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Itäinen Pitkäkatu 4B (PharmaCity), 20520 Turku, Finland
| | - Pauli Keränen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Julia Kulkova
- Biomedical Engineering Research Group, Biomaterials and Medical Device Research Program, Itäinen Pitkäkatu 4B (PharmaCity), 20520 Turku, Finland; Department of Biomaterials Science and Turku Clinical Biomaterials Centre - TCBC, Institute of Dentistry, University of Turku, Itäinen Pitkäkatu 4B (PharmaCity), 20520 Turku, Finland.
| |
Collapse
|
10
|
Bonicelli A, Tay T, Cobb JP, Boughton OR, Hansen U, Abel RL, Zioupos P. Association between nanoscale strains and tissue level nanoindentation properties in age-related hip-fractures. J Mech Behav Biomed Mater 2023; 138:105573. [PMID: 36525874 DOI: 10.1016/j.jmbbm.2022.105573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/21/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022]
Abstract
Measurement of the properties of bone as a material can happen in various length scales in its hierarchical and composite structure. The aim of this study was to test the tissue level properties of clinically-relevant human bone samples which were collected from donors belonging to three groups: ageing donors who suffered no fractures (Control); untreated fracture patients (Fx-Untreated) and patient who experienced hip fracture despite being treated with bisphosphonates (Fx-BisTreated). Tissue level properties were assessed by (a) nanoindentation and (b) synchrotron tensile tests (STT) where strains were measured at the 'tissue', 'fibril' and 'mineral' levels by using simultaneous Wide-angle - (WAXD) and Small angle- X-ray diffraction (SAXD). The composition was analysed by thermogravimetric analysis and material level endo- and exo-thermic reactions by differential scanning calorimetry (TGA/DSC3+). Irrespective of treatment fracture donors exhibited significantly lower tissue, fibril and mineral strain at the micro and nanoscale respectively and had a higher mineral content than controls. In nanoindentation only nanohardness was significantly greater for Controls and Fx-BisTreated versus Fx-Untreated. The other nanoindentation parameters did not vary significantly across the three groups. There was a highly significant positive correlation (p < 0.001) between organic content and tissue level strain behaviour. Overall hip-fractures were associated with lower STT nanostrains and it was behaviour measured by STT which proved to be a more effective approach for predicting fracture risk because evidently it was able to demonstrate the mechanical deficit for the bone tissue of the donors who had experienced fractures.
Collapse
Affiliation(s)
- Andrea Bonicelli
- School of Natural Sciences, University of Central Lancashire, Preston, PR1 2HE, UK; Musculoskeletal & Medicolegal Research Group, Cranfield Forensic Institute, Defence Academy of the UK, Shrivenham, Swindon, SN6 8LA, UK
| | - Tabitha Tay
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, UK
| | - Justin P Cobb
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, UK
| | - Oliver R Boughton
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, UK
| | - Ulrich Hansen
- The Biomechanics Group, Department of Mechanical Engineering, Faculty of Engineering, London, SW7 2AZ, Imperial College London, London, UK
| | - Richard L Abel
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, UK
| | - Peter Zioupos
- Musculoskeletal & Medicolegal Research Group, Cranfield Forensic Institute, Defence Academy of the UK, Shrivenham, Swindon, SN6 8LA, UK.
| |
Collapse
|
11
|
Brandt IAG, Jessen MH, Rimestad DE, Højgaard MKF, Vestergaard P. Advanced glycation end products and bone - How do we measure them and how do they correlate with bone mineral density and fractures? A systematic review and evaluation of precision of measures. Bone 2022; 165:116569. [PMID: 36174927 DOI: 10.1016/j.bone.2022.116569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/20/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022]
Abstract
The role of advanced glycation end products (AGEs) in bone fragility especially in diabetic bone disease is increasingly recognized and researched. As skeletal frailty in diabetes does not correlate to bone mineral density (BMD) in the same way as in postmenopausal osteoporosis, BMD may not be a suitable measure of bone quality in persons with diabetes. Abundant research exists upon the effect of AGEs on bone, and though full understanding of the mechanisms of actions does not yet exist, there is little doubt of the clinical relevance. Thus, the measurement of AGEs as well as possible treatment effects on AGEs have become issues of interest. The aim of this report is to summarize results of measurements of AGEs. It consists of a systematic review of the existing literature on AGE measurements in clinical research, an evaluation of the precision of skin autofluorescence (SAF) measurement by AGE Reader® (Diagnoptics), and a short commentary on treatment of osteoporosis in patients with and without diabetes with respects to AGEs. We conclude that various AGE measures correlate well, both fluorescent and non-fluorescent and in different tissues, and that more than one target of measure may be used. However, pentosidine has shown good correlation with both bone measures and fracture risk in existing literature and results on SAF as a surrogate measurement is promising as some corresponding associations with fracture risk and bone measures are reported. As SAF measurements performed with the AGE Reader® display high precision and allow for a totally noninvasive procedure, conducting AGE measurements using this method has great potential and further research of its applicability is encouraged.
Collapse
|
12
|
Chronic Pain after Bone Fracture: Current Insights into Molecular Mechanisms and Therapeutic Strategies. Brain Sci 2022; 12:brainsci12081056. [PMID: 36009119 PMCID: PMC9406150 DOI: 10.3390/brainsci12081056] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/20/2022] [Accepted: 08/06/2022] [Indexed: 12/12/2022] Open
Abstract
Bone fracture following traumatic injury or due to osteoporosis is characterized by severe pain and motor impairment and is a major cause of global mortality and disability. Fracture pain often originates from mechanical distortion of somatosensory nerve terminals innervating bones and muscles and is maintained by central sensitization. Chronic fracture pain (CFP) after orthopedic repairs is considered one of the most critical contributors to interference with the physical rehabilitation and musculoskeletal functional recovery. Analgesics available for CFP in clinics not only have poor curative potency but also have considerable side effects; therefore, it is important to further explore the pathogenesis of CFP and identify safe and effective therapies. The typical physiopathological characteristics of CFP are a neuroinflammatory response and excitatory synaptic plasticity, but the specific molecular mechanisms involved remain poorly elucidated. Recent progress has deepened our understanding of the emerging properties of chemokine production, proinflammatory mediator secretion, caspase activation, neurotransmitter release, and neuron-glia interaction in initiating and sustaining synaptogenesis, synaptic strength, and signal transduction in central pain sensitization, indicating the possibility of targeting neuroinflammation to prevent and treat CFP. This review summarizes current literature on the excitatory synaptic plasticity, microgliosis, and microglial activation-associated signaling molecules and discusses the unconventional modulation of caspases and stimulator of interferon genes (STING) in the pathophysiology of CFP. We also review the mechanisms of action of analgesics in the clinic and their side effects as well as promising therapeutic candidates (e.g., specialized pro-resolving mediators, a caspase-6 inhibitor, and a STING agonist) for pain relief by the attenuation of neuroinflammation with the aim of better managing patients undergoing CFP in the clinical setting.
Collapse
|
13
|
Surowiec RK, Allen MR, Wallace JM. Bone hydration: How we can evaluate it, what can it tell us, and is it an effective therapeutic target? Bone Rep 2022; 16:101161. [PMID: 35005101 PMCID: PMC8718737 DOI: 10.1016/j.bonr.2021.101161] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/22/2022] Open
Abstract
Water constitutes roughly a quarter of the cortical bone by volume yet can greatly influence mechanical properties and tissue quality. There is a growing appreciation for how water can dynamically change due to age, disease, and treatment. A key emerging area related to bone mechanical and tissue properties lies in differentiating the role of water in its four different compartments, including free/pore water, water loosely bound at the collagen/mineral interfaces, water tightly bound within collagen triple helices, and structural water within the mineral. This review summarizes our current knowledge of bone water across the four functional compartments and discusses how alterations in each compartment relate to mechanical changes. It provides an overview on the advent of- and improvements to- imaging and spectroscopic techniques able to probe nano-and molecular scales of bone water. These technical advances have led to an emerging understanding of how bone water changes in various conditions, of which aging, chronic kidney disease, diabetes, osteoporosis, and osteogenesis imperfecta are reviewed. Finally, it summarizes work focused on therapeutically targeting water to improve mechanical properties.
Collapse
Affiliation(s)
- Rachel K. Surowiec
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Matthew R. Allen
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| |
Collapse
|
14
|
Ural A. Biomechanical mechanisms of atypical femoral fracture. J Mech Behav Biomed Mater 2021; 124:104803. [PMID: 34479108 DOI: 10.1016/j.jmbbm.2021.104803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 11/26/2022]
Abstract
Antiresorptives such as bisphosphonates (BP) and denosumab are commonly used osteoporosis treatments that are effective in preventing osteoporotic fractures by suppressing bone turnover. Although these treatments reduce fracture risk, their long-term use has been associated with atypical femoral fracture (AFF), a rare potential side effect. Despite its rare occurrence, AFF has had a disproportionately significant adverse impact on society due to its severe outcomes such as loss of function and delayed healing. These severe outcomes have led to the decrease in the use and prescription of osteoporosis treatment drugs due to patient anxiety and clinician reluctance. This creates the risk for increasing osteoporotic fracture rates in the population. The existing information on the pathogenesis of AFF primarily relies on retrospective observational studies. However, these studies do not explain the underlying mechanisms that contribute to AFF, and therefore the mechanistic origins of AFF are still poorly understood. The purpose of this review is to outline the current state of knowledge of the mechanical mechanisms of AFF. The review focuses on three major potential mechanical mechanisms of AFF based on the current literature which are (1) macroscale femoral geometry which influences the stress/strain distribution in the femur under loading; (2) bone matrix composition, potentially altered by long-term remodeling suppression by BPs, which directly influences the material properties of bone and its mechanical behavior; and (3) microstructure, potentially altered by long-term remodeling suppression by BPs, which impacts fracture resistance through interaction with crack propagation. In addition, this review presents the critical knowledge gaps in understanding AFF and also discusses approaches to closing the knowledge gap in understanding the underlying mechanisms of AFF.
Collapse
Affiliation(s)
- Ani Ural
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA, 19085, USA.
| |
Collapse
|
15
|
Frank M, Grabos A, Reisinger AG, Burr DB, Pahr DH, Allen MR, Thurner PJ. Effects of anti-resorptive treatment on the material properties of individual canine trabeculae in cyclic tensile tests. Bone 2021; 150:115995. [PMID: 33940224 DOI: 10.1016/j.bone.2021.115995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 01/22/2023]
Abstract
Osteoporosis is defined as a decrease of bone mass and strength, as well as an increase in fracture risk. It is conventionally treated with antiresorptive drugs, such as bisphosphonates (BPs) and selective estrogen receptor modulators (SERMs). Although both drug types successfully decrease the risk of bone fractures, their effect on bone mass and strength is different. For instance, BP treatment causes an increase of bone mass, stiffness and strength of whole bones, whereas SERM treatment causes only small (4%) increases of bone mass, but increased bone toughness. Such improved mechanical behavior of whole bones can be potentially related to the bone mass, bone structure or material changes. While bone mass and architecture have already been investigated previously, little is known about the mechanical behavior at the tissue/material level, especially of trabecular bone. As such, the goal of the work presented here was to fill this gap by performing cyclic tensile tests in a wet, close to physiologic environment of individual trabeculae retrieved from the vertebrae of beagle dogs treated with alendronate (a BP), raloxifene (a SERM) or without treatments. Identification of material properties was performed with a previously developed rheological model and of mechanical properties via fitting of envelope curves. Additionally, tissue mineral density (TMD) and microdamage formation were analyzed. Alendronate treatment resulted in a higher trabecular tissue stiffness and strength, associated with higher levels of TMD. In contrast, raloxifene treatment caused a higher trabecular toughness, pre-dominantly in the post-yield region. Microdamage formation during testing was not affected by either anti-resorptive treatment regimens. These findings highlight that the improved mechanical behavior of whole bones after anti-resorptive treatment is at least partly caused by improved material properties, with different mechanisms for alendronate and raloxifene. This study further shows the power of performing a mechanical characterization of trabecular bone at the level of individual trabeculae for better understanding of clinically relevant mechanical behavior of bone.
Collapse
Affiliation(s)
- Martin Frank
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Gumpendorfer Straße 7, 1060 Vienna, Austria.
| | - Andreas Grabos
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Gumpendorfer Straße 7, 1060 Vienna, Austria; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 340 West 10th Street Fairbanks Hall, Suite 6200, Indianapolis, USA
| | - Andreas G Reisinger
- Department of Anatomy and Biomechanics, Division Biomechanics, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria.
| | - David B Burr
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 340 West 10th Street Fairbanks Hall, Suite 6200, Indianapolis, USA.
| | - Dieter H Pahr
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Gumpendorfer Straße 7, 1060 Vienna, Austria; Department of Anatomy and Biomechanics, Division Biomechanics, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria.
| | - Matthew R Allen
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 340 West 10th Street Fairbanks Hall, Suite 6200, Indianapolis, USA.
| | - Philipp J Thurner
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Gumpendorfer Straße 7, 1060 Vienna, Austria.
| |
Collapse
|
16
|
Coffman AA, Basta-Pljakic J, Guerra RM, Ebetino FH, Lundy MW, Majeska RJ, Schaffler MB. A Bisphosphonate With a Low Hydroxyapatite Binding Affinity Prevents Bone Loss in Mice After Ovariectomy and Reverses Rapidly With Treatment Cessation. JBMR Plus 2021; 5:e10476. [PMID: 33869992 PMCID: PMC8046044 DOI: 10.1002/jbm4.10476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/04/2021] [Indexed: 12/30/2022] Open
Abstract
Bisphosphonates (BPs) are a mainstay of osteoporosis treatment; however, concerns about bone health based on oversuppression of remodeling remain. Long‐term bone remodeling suppression adversely affects bone material properties with microdamage accumulation and reduced fracture toughness in animals and increases in matrix mineralization and atypical femur fractures in patients. Although a “drug holiday” from BPs to restore remodeling and improve bone quality seems reasonable, clinical BPs have long functional half‐lives because of their high hydroxyapatite (HAP) binding affinities. This places a practical limit on the reversibility and effectiveness of a drug holiday. BPs with low HAP affinity and strong osteoclast inhibition potentially offer an alternative approach; their antiresorptive effect should reverse rapidly when dosing is discontinued. This study tested this concept using NE‐58025, a BP with low HAP affinity and moderate osteoclast inhibition potential. Young adult female C57Bl/6 mice were ovariectomized (OVX) and treated with NE‐58025, risedronate, or PBS vehicle for 3 months to test effectiveness in preventing long‐term bone loss. Bone microarchitecture, histomorphometry, and whole‐bone mechanical properties were assessed. To test reversibility, OVX mice were similarly treated for 3 months, treatment was stopped, and bone was assessed up to 3 months post‐treatment. NE‐58025 and RIS inhibited long‐term OVX‐induced bone loss, but NE‐58025 antiresorptive effects were more pronounced. Withdrawing NE‐58025 treatment led to the rapid onset of trabecular resorption with a 200% increase in osteoclast surface and bone loss within 1 month. Cessation of risedronate treatment did not lead to increases in resorption indices or bone loss. These results show that NE‐58025 prevents OVX‐induced bone loss, and its effects reverse quickly following cessation treatment in vivo. Low‐HAP affinity BPs may have use as reversible, antiresorptive agents with a rapid on/off profile, which may be useful for maintaining bone health with long‐term BP treatment. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Abigail A Coffman
- Department of Biomedical Engineering The City College of New York New York NY USA
| | - Jelena Basta-Pljakic
- Department of Biomedical Engineering The City College of New York New York NY USA
| | - Rosa M Guerra
- Department of Biomedical Engineering The City College of New York New York NY USA
| | - Frank H Ebetino
- Department of Chemistry University of Rochester Rochester NY USA.,BioVinc, LLC Pasadena CA USA
| | - Mark W Lundy
- BioVinc, LLC Pasadena CA USA.,Department of Anatomy and Cell Biology Indiana University Indianapolis IN USA
| | - Robert J Majeska
- Department of Biomedical Engineering The City College of New York New York NY USA
| | - Mitchell B Schaffler
- Department of Biomedical Engineering The City College of New York New York NY USA
| |
Collapse
|
17
|
Whyne CM, Ferguson D, Clement A, Rangrez M, Hardisty M. Biomechanical Properties of Metastatically Involved Osteolytic Bone. Curr Osteoporos Rep 2020; 18:705-715. [PMID: 33074529 DOI: 10.1007/s11914-020-00633-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW Skeletal metastasis involves the uncoupling of physiologic bone remodeling resulting in abnormal bone turnover and radical changes in bony architecture, density, and quality. Bone strength assessment and fracture risk prediction are critical in clinical treatment decision-making. This review focuses on bone tissue and structural mechanisms altered by osteolytic metastasis and the resulting changes to its material and mechanical behavior. RECENT FINDINGS Both organic and mineral phases of bone tissue are altered by osteolytic metastatic disease, with diminished bone quality evident at multiple length-scales. The mechanical performance of bone with osteolytic lesions is influenced by a combination of tissue-level and structural changes. This review considers the effects of osteolytic metastasis on bone biomechanics demonstrating its negative impact at tissue and structural levels. Future studies need to assess the cumulative impact of cancer treatments on metastatically involved bone quality, and its utility in directing multimodal treatment planning.
Collapse
Affiliation(s)
- Cari M Whyne
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, University of Toronto, Toronto, Canada.
- Department of Surgery, University of Toronto, Toronto, Canada.
- Biomedical Engineering, University of Toronto, Toronto, Canada.
| | - Dallis Ferguson
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
- Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Allison Clement
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Mohammedayaz Rangrez
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Michael Hardisty
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
18
|
Zimmermann EA, Fiedler IAK, Busse B. Breaking new ground in mineralized tissue: Assessing tissue quality in clinical and laboratory studies. J Mech Behav Biomed Mater 2020; 113:104138. [PMID: 33157423 DOI: 10.1016/j.jmbbm.2020.104138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
Mineralized tissues, such as bone and teeth, have extraordinary mechanical properties of both strength and toughness. This mechanical behavior originates from deformation and fracture resistance mechanisms in their multi-scale structure. The term quality describes the matrix composition, multi-scale structure, remodeling dynamics, water content, and micro-damage accumulation in the tissue. Aging and disease result in changes in the tissue quality that may reduce strength and toughness and lead to elevated fracture risk. Therefore, the capability to measure the quality of mineralized tissues provides critical information on disease progression and mechanical integrity. Here, we provide an overview of clinical and laboratory-based techniques to assess the quality of mineralized tissues in health and disease. Current techniques used in clinical settings include radiography-based (radiographs, dual energy x-ray absorptiometry, EOS) and x-ray tomography-based methods (high resolution peripheral quantitative computed tomography, cone beam computed tomography). In the laboratory, tissue quality can be investigated in ex vivo samples with x-ray imaging (micro and nano-computed tomography, x-ray microscopy), electron microscopy (scanning/transmission electron imaging (SEM/STEM), backscattered scanning electron microscopy, Focused Ion Beam-SEM), light microscopy, spectroscopy (Raman spectroscopy and Fourier transform infrared spectroscopy) and assessment of mechanical behavior (mechanical testing, fracture mechanics and reference point indentation). It is important for clinicians and basic science researchers to be aware of the techniques available in different types of research. While x-ray imaging techniques translated to the clinic have provided exceptional advancements in patient care, the future challenge will be to incorporate high-resolution laboratory-based bone quality measurements into clinical settings to broaden the depth of information available to clinicians during diagnostics, treatment and management of mineralized tissue pathologies.
Collapse
Affiliation(s)
| | - Imke A K Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
19
|
Quantitative and qualitative bone imaging: A review of synchrotron radiation microtomography analysis in bone research. J Mech Behav Biomed Mater 2020; 110:103887. [DOI: 10.1016/j.jmbbm.2020.103887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/13/2020] [Accepted: 05/25/2020] [Indexed: 01/07/2023]
|
20
|
Burr DB. Fifty years of bisphosphonates: What are their mechanical effects on bone? Bone 2020; 138:115518. [PMID: 32622873 DOI: 10.1016/j.bone.2020.115518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
After fifty years of experience with several generations of bisphosphonates (BPs), and 25 years after these drugs were approved for use in humans, their mechanical effects on bone are still not fully understood. Certainly, these drugs have transformed the treatment of osteoporosis in both men and women. There is no question that they do prevent fractures related to low bone mass, and there is widespread agreement that they increase strength and stiffness of the vertebrae. There is less consensus, however, about their effects on cortical bone, or on bone tissue properties in either trabecular or cortical bone, or their effects with longer periods of treatment. The consensus of most studies, both those based on ovariectomized and intact animal models and on testing of human bone, is that long-term treatment and/or high doses with certain BPs make the bone tissue more brittle and less tough. This translates into reduced energy to fracture and potentially a shorter bone fatigue life. Many studies have been done, but Interpretation of the results of these studies is complicated by variations in which BP is used, the animal model used, dose, duration, and methods of testing. Duration effects and effects on impact properties of bone are gaps that should be filled with additional testing.
Collapse
Affiliation(s)
- David B Burr
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America; Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, Indianapolis, IN 46202, United States of America.
| |
Collapse
|
21
|
Coates BA, Silva MJ. An animal trial to study damage and repair in ovariectomized rabbits. J Biomech 2020; 108:109866. [PMID: 32635993 PMCID: PMC10095491 DOI: 10.1016/j.jbiomech.2020.109866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/19/2020] [Accepted: 05/28/2020] [Indexed: 01/28/2023]
Abstract
Microdamage accumulates in bone matrix and is repaired through bone remodeling. Conditions such as osteoporosis and treatment with antiresorptive bisphosphonates can influence this remodeling process. In order to study microdamage accrual and repair in the context of osteoporosis and osteon structures, we set out to modify the rabbit forelimb fatigue model. New Zealand White rabbits (N = 43, 10 months old) received either ovariectomy (OVX) or sham surgeries and were used for forelimb fatigue loading. OVX increased fluorochrome labeling of intracortical and periosteal bone of the ulna, without changes in bone mass. Monotonic and cyclic loading of the forelimb did not reveal any statistical differences between stiffness, ultimate force, or displacement to failure between sham and OVX rabbits. Two levels of fatigue loading, chosen to represent "low" and "moderate" fatigue (25% and 40% of total displacement to failure, respectively), were used on OVX forelimbs to examine microdamage creation. However, neither group showed increased damage burden as compared to non-loaded controls. Following fatigue loading rabbit ulnae had increased intracortical remodeling and periosteal lamellar bone formation in "moderate" fatigue limbs, although no basic multicellular units or microdamage-targeted remodeling was observed. In summary, we adapted the rabbit forelimb fatigue model to accommodate OVX animals. However, loading parameters that could induce repeatable microdamage burden were not identified. Thus, while increased intracortical remodeling and periosteal bone formation were induced by our fatigue loading regimen, this preliminary study did not establish conditions to allow future study of the interactions between microdamage accrual and repair.
Collapse
Affiliation(s)
- Brandon A Coates
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States.
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States
| |
Collapse
|
22
|
Demirtas A, Rajapakse CS, Ural A. Assessment of the multifactorial causes of atypical femoral fractures using a novel multiscale finite element approach. Bone 2020; 135:115318. [PMID: 32173503 DOI: 10.1016/j.bone.2020.115318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022]
Abstract
Atypical femoral fracture (AFF), which is a low energy fracture in the subtrochanteric or diaphysis region of the femur, has multifactorial causes that span macro- to microscale mechanisms including femoral geometry, cortical bone composition and structure. However, the extent of individual and combined influence of these factors on AFF is still not well understood. As a result, the aim of this study is to develop a multiscale fracture mechanics-based finite element modeling framework that is capable of quantifying the individual and combined influence of macroscale femoral geometrical properties as well as cortical bone microscale material properties and structure on AFF. In this study, three different femoral geometries with two different cortical bone microstructures, and two different material property distributions were investigated by first determining the critical AFF locations in the femur using macroscale stress analysis and then performing coupled macro-microscale fracture simulations. The simulation results showed that femoral geometry led to substantial differences in crack growth independent of cortical microstructure and tissue level material properties. The results suggest that multiple femoral geometrical properties, including neck-shaft angle and curvature, may contribute to the fracture behavior at AFF sites rather than a single macroscale geometrical feature. Osteonal area had a significant effect on microcrack propagation at AFF sites independent of microscale material property distribution and femoral geometry. In addition, cortical bone tissue level material heterogeneity improved the fracture resistance independent of femoral geometry and cortical microstructure. In summary, the computational approach developed in this study identified the individual, combined, and relative influence of multiscale factors on AFF risk. The new framework developed in this study could help identify the governing multiscale mechanisms of AFF and bring additional insight into the possible association of long-term bisphosphate treatment with AFF.
Collapse
Affiliation(s)
- Ahmet Demirtas
- Department of Mechanical Engineering, Villanova University, Villanova, PA, USA
| | - Chamith S Rajapakse
- Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Ani Ural
- Department of Mechanical Engineering, Villanova University, Villanova, PA, USA.
| |
Collapse
|
23
|
Lee SS, Kim SM, Kim YS, Lee SK. Extensive protein expression changes induced by pamidronate in RAW 264.7 cells as determined by IP-HPLC. PeerJ 2020; 8:e9202. [PMID: 32509464 PMCID: PMC7246033 DOI: 10.7717/peerj.9202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022] Open
Abstract
Background Bisphosphonate therapy has become a popular treatment for osteoporosis, Paget’s disease, multiple myeloma, osteogenesis imperfecta, myocardial infarction, and cancer despite its serious side effects. Bisphosphonate-induced molecular signaling changes in cells are still not clearly elucidated. Methods As bisphosphonates are primarily engulfed by macrophages, we treated RAW 264.7 cells (a murine macrophage cell line) with pamidronate and investigated global protein expressional changes in cells by immunoprecipitation high performance liquid chromatography (IP-HPLC) using 218 antisera. Results Pamidronate upregulated proliferation-activating proteins associated with p53/Rb/E2F and Wnt/β-catenin pathways, but downregulated the downstream of RAS signaling, pAKT1/2/3, ERK-1, and p-ERK-1, and subsequently suppressed cMyc/MAX/MAD network. However, in situ proliferation index of pamidronate-treated RAW264.7 cells was slightly increased by 3.2% vs. non-treated controls. Pamidronate-treated cells showed increase in the expressions of histone- and DNA methylation-related proteins but decrease of protein translation-related proteins. NFkB signaling was also suppressed as indicated by the down-regulations of p38 and p-p38 and the up-regulation of mTOR, while the protein expressions related to cellular protection, HSP-70, NRF2, JNK-1, and LC3 were upregulated. Consequently, pamidronate downregulated the protein expressions related to immediate inflammation,cellular differentiation, survival, angiogenesis, and osteoclastogenesis, but upregulated PARP-1 and FAS-mediated apoptosis proteins. These observations suggest pamidronate affects global protein expressions in RAW 264.7 cells by stimulating cellular proliferation, protection, and apoptosis but suppressing immediate inflammation, differentiation, osteoclastogenesis, and angiogenesis. Accordingly, pamidronate appears to affect macrophages in several ways eliciting not only its therapeutic effects but also atypical epigenetic modification, protein translation, RAS and NFkB signalings. Therefore, our observations suggest pamidronate-induced protein expressions are dynamic, and the affected proteins should be monitored by IP-HPLC to achieve the therapeutic goals during treatment.
Collapse
Affiliation(s)
- Sang Shin Lee
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung, Gangwondo, South Korea
| | - Soung Min Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Seoul National University, Seoul, South Korea
| | - Yeon Sook Kim
- Department of Dental Hygiene, College of Health & Medical Sciences, Cheongju University, Cheongju, South Korea
| | - Suk Keun Lee
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung, Gangwondo, South Korea
| |
Collapse
|
24
|
Taylor EA, Donnelly E, Yao X, Johnson ML, Amugongo SK, Kimmel DB, Lane NE. Sequential Treatment of Estrogen Deficient, Osteopenic Rats with Alendronate, Parathyroid Hormone (1-34), or Raloxifene Alters Cortical Bone Mineral and Matrix Composition. Calcif Tissue Int 2020; 106:303-314. [PMID: 31784772 DOI: 10.1007/s00223-019-00634-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/11/2019] [Indexed: 12/26/2022]
Abstract
Anti-resorptive and anabolic treatments can be used sequentially to treat osteoporosis, but their effects on bone composition are incompletely understood. Osteocytes may influence bone tissue composition with sequential therapies because bisphosphonates diffuse into the canalicular network and anabolic treatments increase osteocyte lacunar size. Cortical bone composition of osteopenic, ovariectomized (OVX) rats was compared to that of Sham-operated rats and OVX rats given monotherapy or sequential regimens of single approved anti-osteoporosis medications. Adult female Sprague-Dawley rats were OVX (N = 37) or Sham-OVXd (N = 6). After 2 months, seven groups of OVX rats were given three consecutive 3-month periods of treatment with vehicle (V), h-PTH (1-34) (P), alendronate (A), or raloxifene (R), using the following orders: VVV, PVV, RRR, RPR, AAA, AVA, and APA. Compositional properties around osteocyte lacunae of the left tibial cortex were assessed from Raman spectra in perilacunar and non-perilacunar bone matrix regions. Sequential treatments involving parathyroid hormone (PTH) caused lower mean collagen maturity relative to monotherapies. Mean mineral:matrix ratio was 2.2% greater, mean collagen maturity was 1.4% greater, and mean carbonate:phosphate ratio was 2.2% lower in the perilacunar than in the non-perilacunar bone matrix region (all P < 0.05). These data demonstrate cortical bone tissue composition differences around osteocytes caused by sequential treatment with anti-osteoporosis medications. We speculate that the region-specific differences demonstrate the ability of osteocytes to alter bone tissue composition adjacent to lacunae.
Collapse
Affiliation(s)
- Erik A Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
- Research Division, Hospital for Special Surgery, New York, NY, USA
| | - Xiaomei Yao
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Mark L Johnson
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Sarah K Amugongo
- Center for Musculoskeletal Health, University of California Davis Medical Center, Sacramento, CA, USA
| | - Donald B Kimmel
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Nancy E Lane
- Center for Musculoskeletal Health, University of California Davis Medical Center, Sacramento, CA, USA.
- Health Center, University of California At Davis, 4625 Second Avenue, Suite 2006, Sacramento, CA, 95817, USA.
| |
Collapse
|
25
|
Seeman E, Martin TJ. Antiresorptive and anabolic agents in the prevention and reversal of bone fragility. Nat Rev Rheumatol 2020; 15:225-236. [PMID: 30755735 DOI: 10.1038/s41584-019-0172-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bone volume, microstructure and its material composition are maintained by bone remodelling, a cellular activity carried out by bone multicellular units (BMUs). BMUs are focally transient teams of osteoclasts and osteoblasts that respectively resorb a volume of old bone and then deposit an equal volume of new bone at the same location. Around the time of menopause, bone remodelling becomes unbalanced and rapid, and an increased number of BMUs deposit less bone than they resorb, resulting in bone loss, a reduction in bone volume and microstructural deterioration. Cortices become porous and thin, and trabeculae become thin, perforated and disconnected, causing bone fragility. Antiresorptive agents reduce fracture risk by reducing the rate of bone remodelling so that fewer BMUs are available to remodel bone. Bone fragility is not abolished by these drugs because existing microstructural deterioration is not reversed, unsuppressed remodelling continues producing microstructural deterioration and unremodelled bone that becomes more mineralized can become brittle. Anabolic agents reduce fracture risk by stimulating new bone formation, which partly restores bone volume and microstructure. To guide fracture prevention, this Review provides an overview of the structural basis of bone fragility, the mechanisms of remodelling and how anabolic and antiresorptive agents target remodelling defects.
Collapse
Affiliation(s)
- Ego Seeman
- Departments of Endocrinology and Medicine, Austin Health, University of Melbourne, Melbourne, Victoria, Australia. .,Mary MacKillop Institute of Health Research, Australian Catholic University, Melbourne, Victoria, Australia.
| | - T J Martin
- Department of Medicine and St Vincent's Institute, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
6'-Methoxy Raloxifene-analog enhances mouse bone properties with reduced estrogen receptor binding. Bone Rep 2020; 12:100246. [PMID: 32016137 PMCID: PMC6992940 DOI: 10.1016/j.bonr.2020.100246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 02/08/2023] Open
Abstract
Raloxifene (RAL) is an FDA-approved drug used to treat osteoporosis in postmenopausal women. RAL suppresses bone loss primarily through its role as a selective estrogen receptor modulator (SERM). This hormonal estrogen therapy promotes unintended side effects, such as hot flashes and increased thrombosis risk, and prevents the drug from being used in some patient populations at-risk for fracture, including children with bone disorders. It has recently been demonstrated that RAL can have significant positive effects on overall bone mechanical properties by binding to collagen and increasing bone tissue hydration in a cell-independent manner. A Raloxifene-Analog (RAL-A) was synthesized by replacing the 6-hydroxyl substituent with 6-methoxy in effort to reduce the compound's binding affinity for estrogen receptors (ER) while maintaining its collagen-binding ability. It was hypothesized that RAL-A would improve the mechanical integrity of bone in a manner similar to RAL, but with reduced estrogen receptor binding. Molecular assessment showed that while RAL-A did reduce ER binding, downstream ER signaling was not completely abolished. In-vitro, RAL-A performed similarly to RAL and had an identical concentration threshold on osteocyte cell proliferation, differentiation, and function. To assess treatment effect in-vivo, wildtype (WT) and heterozygous (OIM+/−) female mice from the Osteogenesis Imperfecta (OI) murine model were treated with either RAL or RAL-A from 8 weeks to 16 weeks of age. There was an untreated control group for each genotype as well. Bone microarchitecture was assessed using microCT, and mechanical behavior was assessed using 3-point bending. Results indicate that both compounds produced analogous gains in tibial trabecular and cortical microarchitecture. While WT mechanical properties were not drastically altered with either treatment, OIM+/− mechanical properties were significantly enhanced, most notably, in post-yield properties including bone toughness. This proof-of-concept study shows promising results and warrants the exploration of additional analog iterations to further reduce ER binding and improve fracture resistance.
Collapse
|
27
|
Haider IT, Schneider PS, Edwards WB. The Role of Lower-Limb Geometry in the Pathophysiology of Atypical Femoral Fracture. Curr Osteoporos Rep 2019; 17:281-290. [PMID: 31410718 DOI: 10.1007/s11914-019-00525-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSEOF REVIEW The etiology of atypical femoral fracture (AFF) is likely multifactorial. In this review, we examined the recent literature investigating the role of lower-limb geometry in the pathophysiology of AFF. RECENT FINDINGS Increased femoral bowing was associated with prevalent AFF and a greater likelihood of a diaphyseal versus a subtrochanteric AFF location. Femoral neck geometry or hip alignment may also be related to AFF, but findings remain equivocal. Differences in femoral geometry may, in part, be responsible for the high rate of AFF in Asian compared with Caucasian populations. Finally, simulation studies suggest that lower-limb geometry influences AFF risk via its effects on mechanical strain of the lateral femoral cortex. Femoral geometry, and bowing in particular, is related to prevalent AFF, but more prospective investigation is needed to determine whether measurements of geometry can be used for clinical risk stratification.
Collapse
Affiliation(s)
- Ifaz T Haider
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, KNB 418, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, HRIC 3A08, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada
| | - Prism S Schneider
- McCaig Institute for Bone and Joint Health, University of Calgary, HRIC 3A08, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada
- Department of Surgery; Department of Community Health Sciences, Cumming School of Medicine, Foothills Campus, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, KNB 418, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada.
- McCaig Institute for Bone and Joint Health, University of Calgary, HRIC 3A08, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada.
| |
Collapse
|
28
|
Powell KM, Skaggs C, Pulliam A, Berman A, Allen MR, Wallace JM. Zoledronate and Raloxifene combination therapy enhances material and mechanical properties of diseased mouse bone. Bone 2019; 127:199-206. [PMID: 31233931 PMCID: PMC7036744 DOI: 10.1016/j.bone.2019.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 01/15/2023]
Abstract
Current interventions to reduce skeletal fragility are insufficient at enhancing both the quantity and quality of bone when attempting to improve overall mechanical integrity. Bisphosphonates, such as Zoledronate (ZOL), are used to treat a variety of bone disorders by increasing bone mass to decrease fracture risk, but long-term use has been shown in some settings to compromise bone quality. Alternatively, Raloxifene (RAL) has recently been demonstrated to improve tissue quality and overall mechanical properties in a cell-independent manner by binding to collagen and increasing tissue hydration. We hypothesized that a combination of RAL and ZOL would improve mechanical and material properties of bone more than either monotherapy alone by enhancing both quantity and quality. In this study, wildtype (WT) and heterozygous (OIM+/-) male mice from the Osteogenesis Imperfecta (OI) murine model were treated with either RAL, ZOL, or both from 8 weeks to 16 weeks of age. Using the OIM model allows for investigation of therapeutic effects on a quality-based bone disease. Combination treatment resulted in higher trabecular architecture, cortical mechanical properties, and cortical fracture toughness in diseased mouse bone. Two fracture toughness properties, which are direct measures of the tissue's ability to resist the initiation and propagation of a crack, were significantly improved with combination treatment in OIM+/- compared to control. There was no significant effect on fracture toughness with either monotherapy alone in either genotype. Following the mass-based effects of ZOL, trabecular bone volume fraction was significantly higher with combination treatment in both genotypes. Combination treatment resulted in higher ultimate stress in both genotypes. RAL and combination treatment in OIM+/- also increased resilience compared to the control. In conclusion, this study demonstrates the beneficial effects of using combination drug treatments to increase bone mass while simultaneously improving tissue quality, especially to enhance the mechanical integrity of diseased bone. Combination therapies could be a potential method to improve bone health and combat skeletal fragility on both the microscopic and macroscopic levels.
Collapse
Affiliation(s)
- Katherine M Powell
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Cayla Skaggs
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Alexis Pulliam
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Alycia Berman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
29
|
Heveran CM, Schurman CA, Acevedo C, Livingston EW, Howe D, Schaible EG, Hunt HB, Rauff A, Donnelly E, Carpenter RD, Levi M, Lau AG, Bateman TA, Alliston T, King KB, Ferguson VL. Chronic kidney disease and aging differentially diminish bone material and microarchitecture in C57Bl/6 mice. Bone 2019; 127:91-103. [PMID: 31055118 PMCID: PMC6760860 DOI: 10.1016/j.bone.2019.04.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/15/2019] [Accepted: 04/26/2019] [Indexed: 12/31/2022]
Abstract
Chronic kidney disease (CKD) is a common disease of aging and increases fracture risk over advanced age alone. Aging and CKD differently impair bone turnover and mineralization. We thus hypothesize that the loss of bone quality would be greatest with the combination of advanced age and CKD. We evaluated bone from young adult (6 mo.), middle-age (18 mo.), and old (24 mo.) male C57Bl/6 mice three months following either 5/6th nephrectomy, to induce CKD, or Sham procedures. CKD exacerbated losses of cortical and trabecular microarchitecture associated with aging. Aging and CKD each resulted in thinner, more porous cortices and fewer and thinner trabeculae. Bone material quality was also reduced with CKD, and these changes to bone material were distinct from those due to age. Aging reduced whole-bone flexural strength and modulus, micrometer-scale nanoindentation modulus, and nanometer-scale tissue and collagen strain (small-angle x-ray scattering [SAXS]. By contrast, CKD reduced work to fracture and variation in bone tissue modulus and composition (Raman spectroscopy), and increased percent collagen strain. The increased collagen strain burden was associated with loss of toughness in CKD. In addition, osteocyte lacunae became smaller, sparser, and more disordered with age for Sham mice, yet these age-related changes were not clearly observed in CKD. However, for CKD, larger lacunae positively correlated with increased serum phosphate levels, suggesting that osteocytes play a role in systemic mineral homeostasis. This work demonstrates that CKD reduces bone quality, including microarchitecture and bone material properties, and that loss of bone quality with age is compounded by CKD. These findings may help reconcile why bone mass does not consistently predict fracture in the CKD population, as well as why older individuals with CKD are at high risk of fragility.
Collapse
Affiliation(s)
- Chelsea M Heveran
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, United States of America
| | - Charles A Schurman
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, United States of America
| | - Claire Acevedo
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, United States of America
| | - Eric W Livingston
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, United States of America
| | - Danielle Howe
- Department of Biomedical Engineering, The College of New Jersey, Ewing, NJ, United States of America
| | - Eric G Schaible
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Heather B Hunt
- Department of Materials Science & Engineering, Cornell University, Ithaca, NY, United States of America
| | - Adam Rauff
- Department of Bioengineering, University of Colorado, Denver, CO, United States of America
| | - Eve Donnelly
- Department of Materials Science & Engineering, Cornell University, Ithaca, NY, United States of America
| | - R Dana Carpenter
- Department of Mechanical Engineering, University of Colorado, Denver, CO, United States of America
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington D.C., United States of America
| | - Anthony G Lau
- Department of Biomedical Engineering, The College of New Jersey, Ewing, NJ, United States of America
| | - Ted A Bateman
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, United States of America
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, United States of America
| | - Karen B King
- Department of Orthopaedics, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, United States of America.
| |
Collapse
|
30
|
Shah FA, Ruscsák K, Palmquist A. 50 years of scanning electron microscopy of bone-a comprehensive overview of the important discoveries made and insights gained into bone material properties in health, disease, and taphonomy. Bone Res 2019; 7:15. [PMID: 31123620 PMCID: PMC6531483 DOI: 10.1038/s41413-019-0053-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023] Open
Abstract
Bone is an architecturally complex system that constantly undergoes structural and functional optimisation through renewal and repair. The scanning electron microscope (SEM) is among the most frequently used instruments for examining bone. It offers the key advantage of very high spatial resolution coupled with a large depth of field and wide field of view. Interactions between incident electrons and atoms on the sample surface generate backscattered electrons, secondary electrons, and various other signals including X-rays that relay compositional and topographical information. Through selective removal or preservation of specific tissue components (organic, inorganic, cellular, vascular), their individual contribution(s) to the overall functional competence can be elucidated. With few restrictions on sample geometry and a variety of applicable sample-processing routes, a given sample may be conveniently adapted for multiple analytical methods. While a conventional SEM operates at high vacuum conditions that demand clean, dry, and electrically conductive samples, non-conductive materials (e.g., bone) can be imaged without significant modification from the natural state using an environmental scanning electron microscope. This review highlights important insights gained into bone microstructure and pathophysiology, bone response to implanted biomaterials, elemental analysis, SEM in paleoarchaeology, 3D imaging using focused ion beam techniques, correlative microscopy and in situ experiments. The capacity to image seamlessly across multiple length scales within the meso-micro-nano-continuum, the SEM lends itself to many unique and diverse applications, which attest to the versatility and user-friendly nature of this instrument for studying bone. Significant technological developments are anticipated for analysing bone using the SEM.
Collapse
Affiliation(s)
- Furqan A. Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Krisztina Ruscsák
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
31
|
Liesmäki O, Plyusnin A, Kulkova J, Lassila LVJ, Vallittu PK, Moritz N. Biostable glass fibre-reinforced dimethacrylate-based composites as potential candidates for fracture fixation plates in toy-breed dogs: Mechanical testing and finite element analysis. J Mech Behav Biomed Mater 2019; 96:172-185. [PMID: 31048259 DOI: 10.1016/j.jmbbm.2019.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 01/02/2019] [Accepted: 04/11/2019] [Indexed: 11/16/2022]
Abstract
In toy-breed dogs (bodyweight <5 kg), the fractures of the radius and ulna are particularly common and can be caused by minimal trauma. While fracture fixation using metallic plates is a feasible treatment modality, the excessive stiffness of these devices produces the underloading of the bone which may result in the adverse bone remodelling and complications in the healing of the fracture. In this study, we investigated bisphenol A glycidylmethacrylate -based glass fibre reinforced composites as potential alternatives to metals in the devices intended for the fracture fixation of the distal radius in toy-breed dogs. Four composites with different glass fibre reinforcements were prepared as rectangular specimens and as fracture fixation plates. These were mechanically tested in three-point and four-point bending. There were two controls: polyether etherketone reinforced with short carbon fibres (specimens and plates) and commercially available stainless-steel plates. Finite element simulations were used for the assessment of the behaviour of the plates. For the control stainless steel plate, the bending strength was 1.358 N*m, superior to that of any of the composite plates. The composite plate with the matrix reinforced with continuous unidirectional glass fibres had the bending strength of 1.081 N*m, which is sufficient in this clinical context. For the plates made of polyether etherketone reinforced with carbon fibres, the strength was 0.280 N*m. Similar conclusions on the biomechanical behaviour of the plates could be made solely based on the results of the finite element simulations, provided the geometries and the material properties are well defined.
Collapse
Affiliation(s)
- Oliver Liesmäki
- Department of Biomaterials Science and Turku Clinical Biomaterials Center - TCBC, Institute of Dentistry, University of Turku, Itäinen Pitkäkatu 4B, FI-20520, Turku, Finland; Biomaterial and Medical Device Research Programme - BioCity Turku, Itäinen Pitkäkatu 4B, FI-20520, Turku, Finland
| | - Artem Plyusnin
- Department of Biomaterials Science and Turku Clinical Biomaterials Center - TCBC, Institute of Dentistry, University of Turku, Itäinen Pitkäkatu 4B, FI-20520, Turku, Finland; Biomaterial and Medical Device Research Programme - BioCity Turku, Itäinen Pitkäkatu 4B, FI-20520, Turku, Finland
| | - Julia Kulkova
- Department of Biomaterials Science and Turku Clinical Biomaterials Center - TCBC, Institute of Dentistry, University of Turku, Itäinen Pitkäkatu 4B, FI-20520, Turku, Finland; Biomaterial and Medical Device Research Programme - BioCity Turku, Itäinen Pitkäkatu 4B, FI-20520, Turku, Finland.
| | - Lippo V J Lassila
- Department of Biomaterials Science and Turku Clinical Biomaterials Center - TCBC, Institute of Dentistry, University of Turku, Itäinen Pitkäkatu 4B, FI-20520, Turku, Finland
| | - Pekka K Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Center - TCBC, Institute of Dentistry, University of Turku, Itäinen Pitkäkatu 4B, FI-20520, Turku, Finland; City of Turku Welfare Division, Oral Health Care, Turku, Finland
| | - Niko Moritz
- Department of Biomaterials Science and Turku Clinical Biomaterials Center - TCBC, Institute of Dentistry, University of Turku, Itäinen Pitkäkatu 4B, FI-20520, Turku, Finland; Biomaterial and Medical Device Research Programme - BioCity Turku, Itäinen Pitkäkatu 4B, FI-20520, Turku, Finland
| |
Collapse
|
32
|
Black DM, Abrahamsen B, Bouxsein ML, Einhorn T, Napoli N. Atypical Femur Fractures: Review of Epidemiology, Relationship to Bisphosphonates, Prevention, and Clinical Management. Endocr Rev 2019; 40:333-368. [PMID: 30169557 DOI: 10.1210/er.2018-00001] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/08/2018] [Indexed: 12/18/2022]
Abstract
Bisphosphonates (BPs) are highly effective in treating osteoporosis and reducing hip, vertebral, and other fractures by as much as 50% to 70%. However, since 2006, atypical femur fractures (AFFs) emerged as potential side effects of BPs and other treatments. These fractures have unusual radiologic features and occur with little trauma. Public concern has led to a >50% decrease in BP usage. AFFs are rare: for each AFF, >1200 fractures, including 135 hip fractures, are prevented. Case definition criteria were updated by the American Society of Bone and Mineral Research in 2014. Many epidemiologic studies have been reported, and although methodologically challenging, generally support a BP-AFF association. However, the magnitude of the association between BPs and AFFs is uncertain: estimates of relative risk for AFFs among BP users vs nonusers range from 1 to 65 with a meta-analysis estimate of 1.7. Although mechanistic studies have proposed several hypotheses explaining how BPs might decrease bone strength, AFF pathogenesis remains uncertain and cannot explain the paradox of efficacy of reduction of common fractures while increasing risk for rare fractures at one site. There are several consistent risk factors, including Asian race (in North America), femoral bowing, and glucocorticoid use, whereas others remain unclear. Consensus is emerging about strategies to prevent AFFs in BP users (including drug holidays after 5 years' use in some patients). In conclusion, AFFs can be devastating, but even under the most pessimistic assumptions, the benefit/risk ratio is highly positive for BPs, particularly during 3 to 5 years of use. As understanding of AFFs increases, it is becoming increasingly possible to maximize BP benefits while minimizing AFF risk.
Collapse
Affiliation(s)
- Dennis M Black
- University of California, San Francisco, San Francisco, California
| | | | | | | | - Nicola Napoli
- Università Campus Bio-Medico di Roma, Rome, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
33
|
Andersen JD, Bünger MH, Rahbek O, Hald JD, Harsløf T, Langdahl BL. Do femoral fractures in adult patients with osteogenesis imperfecta imitate atypical femoral fractures? A case series. Osteoporos Int 2019; 30:513-517. [PMID: 30448959 DOI: 10.1007/s00198-018-4769-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/07/2018] [Indexed: 01/12/2023]
Abstract
Atypical femoral fractures (AFFs) are low-energy femoral fractures with characteristic radiological features and a suspected relation to treatment with bisphosphonate (BP) or denosumab. In osteogenesis imperfecta (OI), BP is currently the drug of choice when medical treatment is indicated. Due to bone deformities, the radiologic appearance of femoral fractures may be different in patients with OI and patients with osteoporosis. We investigated the prevalence and appearance of femoral fractures in a cohort of adult patients with confirmed OI (55 patients, age range 19-69 years, 26 women (47%) and 35 patients (64%) had received BP treatment), who attended the outpatient clinic at Aarhus University Hospital. The fractures were evaluated according to major and minor AFF criteria. In our OI cohort, we found that eight out of 55 patients had suffered a femoral fracture in adult year: five women and three men, aged 25 to 54 years. One patient had OI type I, two had OI type III, four had OI type IV, and one had OI type V. All fractures were associated with no or minimal trauma. Four patients had fractures that fulfilled the criteria of AFFs. Two of the four patients had received long-term BP treatment prior to the fracture and three patients had severe deformities of the femur. Femoral fractures in OI imitate AFFs. This suggests that bone deformity, collagen deficiencies, and alterations in mineralization of bone may cause femoral fractures that imitate AFFs even in the absence of antiresorptive treatment. Bone deformities should be monitored as part of the management of adult patients with OI. Continuous dull or aching pain in the groin or thigh should lead to radiographic examination. The radiologic appearance of femoral fractures may be different in patients with osteogenesis imperfecta (OI) and patients with osteoporosis, thus imitate atypical femoral fractures (AFF). We found that bone deformity, collagen deficiencies, and alterations in bone mineralization may cause femoral fractures that imitate AFFs even in the absence of antiresorptive treatment.
Collapse
Affiliation(s)
- J D Andersen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus N, 8200, Aarhus, Denmark.
| | - M H Bünger
- Department of Pediatric Orthopedics, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus N, 8200, Aarhus, Denmark
| | - O Rahbek
- Department of Pediatric Orthopedics, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus N, 8200, Aarhus, Denmark
| | - J D Hald
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus N, 8200, Aarhus, Denmark
| | - T Harsløf
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus N, 8200, Aarhus, Denmark
| | - B L Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus N, 8200, Aarhus, Denmark
| |
Collapse
|
34
|
Fourier Transform Infrared Spectroscopy of Bone Tissue: Bone Quality Assessment in Preclinical and Clinical Applications of Osteoporosis and Fragility Fracture. Clin Rev Bone Miner Metab 2019. [DOI: 10.1007/s12018-018-9255-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Demirtas A, Ural A. Interaction of Microcracks and Tissue Compositional Heterogeneity in Determining Fracture Resistance of Human Cortical Bone. J Biomech Eng 2018; 140:2680999. [PMID: 29801171 DOI: 10.1115/1.4040123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Indexed: 11/08/2022]
Abstract
Recent studies demonstrated an association between atypical femoral fracture (AFF) and long-term bisphosphonate (BP) use for osteoporosis treatment. Due to BP treatment, bone undergoes alterations including increased microcrack density and reduced tissue compositional heterogeneity. However, the effect of these changes on the fracture response of bone is not well understood. As a result, the goal of the current study is to evaluate the individual and combined effects of microcracks and tissue compositional heterogeneity on fracture resistance of cortical bone using finite element modeling (FEM) of compact tension (CT) specimen tests with varying microcrack density, location, and clustering, and material heterogeneity in three different bone samples. The simulation results showed that an increase in microcrack density improved the fracture resistance irrespective of the local material property heterogeneity and microcrack distribution. A reduction in material property heterogeneity adversely affected the fracture resistance in models both with and without microcracks. When the combined changes in microcrack density and tissue material property heterogeneity representing BP treatment were evaluated, the models corresponding to BP-treated bone demonstrated reduced fracture resistance. The simulation results also showed that although microcrack location and clustering, and microstructure significantly influenced fracture resistance, the trends observed on the effect of microcrack density and tissue material property heterogeneity did not change. In summary, these results provide new information on the interaction of microcracks, tissue material property heterogeneity, and fracture resistance and may improve the understanding of the influence of mechanical changes due to prolonged BP use on the fracture behavior of cortical bone.
Collapse
Affiliation(s)
- Ahmet Demirtas
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085 e-mail:
| | - Ani Ural
- Department of Mechanical Engineering, Villanova University, , Villanova, PA 19085 e-mail:
| |
Collapse
|
36
|
Acevedo C, Sylvia M, Schaible E, Graham JL, Stanhope KL, Metz LN, Gludovatz B, Schwartz AV, Ritchie RO, Alliston TN, Havel PJ, Fields AJ. Contributions of Material Properties and Structure to Increased Bone Fragility for a Given Bone Mass in the UCD-T2DM Rat Model of Type 2 Diabetes. J Bone Miner Res 2018; 33:1066-1075. [PMID: 29342321 PMCID: PMC6011658 DOI: 10.1002/jbmr.3393] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/30/2017] [Accepted: 01/10/2018] [Indexed: 12/18/2022]
Abstract
Adults with type 2 diabetes (T2D) have a higher fracture risk for a given bone quantity, but the mechanisms remain unclear. Using a rat model of polygenic obese T2D, we demonstrate that diabetes significantly reduces whole-bone strength for a given bone mass (μCT-derived BMC), and we quantify the roles of T2D-induced deficits in material properties versus bone structure; ie, geometry and microarchitecture. Lumbar vertebrae and ulnae were harvested from 6-month-old lean Sprague-Dawley rats, obese Sprague-Dawley rats, and diabetic obese UCD-T2DM rats (diabetic for 69 ± 7 days; blood glucose >200 mg/dL). Both obese rats and those with diabetes had reduced whole-bone strength for a given BMC. In obese rats, this was attributable to structural deficits, whereas in UCD-T2DM rats, this was attributable to structural deficits and to deficits in tissue material properties. For the vertebra, deficits in bone structure included thinner and more rod-like trabeculae; for the ulnae, these deficits included inefficient distribution of bone mass to resist bending. Deficits in ulnar material properties in UCD-T2DM rats were associated with increased non-enzymatic crosslinking and impaired collagen fibril deformation. Specifically, small-angle X-ray scattering revealed that diabetes reduced collagen fibril ultimate strain by 40%, and those changes coincided with significant reductions in the elastic, yield, and ultimate tensile properties of the bone tissue. Importantly, the biomechanical effects of these material property deficits were substantial. Prescribing diabetes-specific tissue yield strains in high-resolution finite element models reduced whole-bone strength by a similar amount (and in some cases a 3.4-fold greater amount) as the structural deficits. These findings provide insight into factors that increase bone fragility for a given bone mass in T2D; not only does diabetes associate with less biomechanically efficient bone structure, but diabetes also reduces tissue ductility by limiting collagen fibril deformation, and in doing so, reduces the maximum load capacity of the bone. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Claire Acevedo
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA.,Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Meghan Sylvia
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | - Eric Schaible
- Experimental Systems Group, Advanced Light Source, Berkeley, CA, USA
| | - James L Graham
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, USA.,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Kimber L Stanhope
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, USA.,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Lionel N Metz
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, NSW, Australia
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Robert O Ritchie
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Tamara N Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | - Peter J Havel
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, USA.,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Aaron J Fields
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
37
|
Material heterogeneity, microstructure, and microcracks demonstrate differential influence on crack initiation and propagation in cortical bone. Biomech Model Mechanobiol 2018; 17:1415-1428. [PMID: 29808355 DOI: 10.1007/s10237-018-1035-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/16/2018] [Indexed: 01/10/2023]
Abstract
The recent studies have shown that long-term bisphosphonate use may result in a number of mechanical alterations in the bone tissue including a reduction in compositional heterogeneity and an increase in microcrack density. There are limited number of experimental and computational studies in the literature that evaluated how these modifications affect crack initiation and propagation in cortical bone. Therefore, in this study, the entire crack growth process including initiation and propagation was simulated at the microscale by using the cohesive extended finite element method. Models with homogeneous and heterogeneous material properties (represented at the microscale capturing the variability in material property values and their distribution) as well as different microcrack density and microstructure were compared. The results showed that initiation fracture resistance was higher in models with homogeneous material properties compared to heterogeneous ones, whereas an opposite trend was observed in propagation fracture resistance. The increase in material heterogeneity level up to 10 different material property sets increased the propagation fracture resistance beyond which a decrease was observed while still remaining higher than the homogeneous material distribution. The simulation results also showed that the total osteonal area influenced crack propagation and the local osteonal area near the initial crack affected the crack initiation behavior. In addition, the initiation fracture resistance was higher in models representing bisphosphonate treated bone (low material heterogeneity, high microcrack density) compared to untreated bone models (high material heterogeneity, low microcrack density), whereas an opposite trend was observed at later stages of crack growth. In summary, the results demonstrated that tissue material heterogeneity, microstructure, and microcrack density influenced crack initiation and propagation differently. The findings also elucidate how possible modifications in material heterogeneity and microcrack density due to bisphosphonate treatment may influence the initiation and propagation fracture resistance of cortical bone.
Collapse
|
38
|
Abstract
PURPOSE OF THE REVIEW Bisphosphonates have well-established effects on suppressing bone resorption and slowing bone loss, yet the effects on bone mechanical properties are less clear. We review recent data from pre-clinical and clinical experiments that assessed mechanical properties of bisphosphonate-treated specimens. RECENT FINDINGS Pre-clinical work has utilized new techniques to show reduced fatigue life and transfer of stress from the mineral to collagen. Several notable studies have examined mechanical properties of tissue from patients treated with bisphosphonates with mixed results. Pre-clinical data suggest effects on mechanics may be independent of remodeling suppression. The direct effect of bisphosphonates on bone mechanics remains unclear but recent work has set a solid foundation for the coming years.
Collapse
Affiliation(s)
- Matthew R Allen
- Departments of Anatomy and Cell Biology, Medicine-Nephrology and Orthopaedic Surgery, Indiana University School of Medicine, 635 Barnhill Dr., MS 5035, Indianapolis, IN, 46202, USA.
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
39
|
Fatigue as the missing link between bone fragility and fracture. Nat Biomed Eng 2018; 2:62-71. [DOI: 10.1038/s41551-017-0183-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023]
|
40
|
Hunckler MD, Chu ED, Baumann AP, Curtis TE, Ravosa MJ, Allen MR, Roeder RK. The fracture toughness of small animal cortical bone measured using arc-shaped tension specimens: Effects of bisphosphonate and deproteinization treatments. Bone 2017; 105:67-74. [PMID: 28826844 DOI: 10.1016/j.bone.2017.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 01/22/2023]
Abstract
Small animal models, and especially transgenic models, have become widespread in the study of bone mechanobiology and metabolic bone disease, but test methods for measuring fracture toughness on multiple replicates or at multiple locations within a single small animal bone are lacking. Therefore, the objective of this study was to develop a method to measure cortical bone fracture toughness in multiple specimens and locations along the diaphysis of small animal bones. Arc-shaped tension specimens were prepared from the mid-diaphysis of rabbit ulnae and loaded to failure to measure the radial fracture toughness in multiple replicates per bone. The test specimen dimensions, crack length, and maximum load met requirements for measuring the plane strain fracture toughness. Experimental groups included a control group, bisphosphonate treatment group, and an ex vivo deproteinization treatment following bisphosphonate treatment (5 rabbits/group and 15 specimens/group). The fracture toughness of ulnar cortical bone from rabbits treated with zoledronic acid for six months exhibited no difference compared with the control group. Partially deproteinized specimens exhibited significantly lower fracture toughness compared with both the control and bisphosphonate treatment groups. The deproteinization treatment increased tissue mineral density (TMD) and resulted in a negative linear correlation between the measured fracture toughness and TMD. Fracture toughness measurements were repeatable with a coefficient of variation of 12-16% within experimental groups. Retrospective power analysis of the control and deproteinization treatment groups indicated a minimum detectable difference of 0.1MPa·m1/2. Therefore, the overall results of this study suggest that arc-shaped tension specimens offer an advantageous new method for measuring the fracture toughness in small animal bones.
Collapse
Affiliation(s)
- Michael D Hunckler
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ethan D Chu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Andrew P Baumann
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Tyler E Curtis
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Matthew J Ravosa
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ryan K Roeder
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
41
|
Lloyd AA, Gludovatz B, Riedel C, Luengo EA, Saiyed R, Marty E, Lorich DG, Lane JM, Ritchie RO, Busse B, Donnelly E. Atypical fracture with long-term bisphosphonate therapy is associated with altered cortical composition and reduced fracture resistance. Proc Natl Acad Sci U S A 2017; 114:8722-8727. [PMID: 28760963 PMCID: PMC5565436 DOI: 10.1073/pnas.1704460114] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Bisphosphonates are the most widely prescribed pharmacologic treatment for osteoporosis and reduce fracture risk in postmenopausal women by up to 50%. However, in the past decade these drugs have been associated with atypical femoral fractures (AFFs), rare fractures with a transverse, brittle morphology. The unusual fracture morphology suggests that bisphosphonate treatment may impair toughening mechanisms in cortical bone. The objective of this study was to compare the compositional and mechanical properties of bone biopsies from bisphosphonate-treated patients with AFFs to those from patients with typical osteoporotic fractures with and without bisphosphonate treatment. Biopsies of proximal femoral cortical bone adjacent to the fracture site were obtained from postmenopausal women during fracture repair surgery (fracture groups, n = 33) or total hip arthroplasty (nonfracture groups, n = 17). Patients were allocated to five groups based on fracture morphology and history of bisphosphonate treatment [+BIS Atypical: n = 12, BIS duration: 8.2 (3.0) y; +BIS Typical: n = 10, 7.7 (5.0) y; +BIS Nonfx: n = 5, 6.4 (3.5) y; -BIS Typical: n = 11; -BIS Nonfx: n = 12]. Vibrational spectroscopy and nanoindentation showed that tissue from bisphosphonate-treated women with atypical fractures was harder and more mineralized than that from bisphosphonate-treated women with typical osteoporotic fractures. In addition, fracture mechanics measurements showed that tissue from patients treated with bisphosphonates had deficits in fracture toughness, with lower crack-initiation toughness and less crack deflection at osteonal boundaries than that of bisphosphonate-naïve patients. Together, these results suggest a deficit in intrinsic and extrinsic toughening mechanisms, which contribute to AFFs in patients treated with long-term bisphosphonates.
Collapse
Affiliation(s)
- Ashley A Lloyd
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14850
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, NSW 2052, Australia
| | - Christoph Riedel
- Department of Osteology and Biomechanics, University Medical Center Hamburg, D-22529 Hamburg, Germany
| | - Emma A Luengo
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14850
| | - Rehan Saiyed
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021
| | - Eric Marty
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021
| | - Dean G Lorich
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021
- Orthopedic Surgery, Weill Medical College, Cornell University, New York, NY 10065
- Medical Orthopedic Trauma Service, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 10065
| | - Joseph M Lane
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021
- Orthopedic Surgery, Weill Medical College, Cornell University, New York, NY 10065
- Medical Orthopedic Trauma Service, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 10065
| | - Robert O Ritchie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg, D-22529 Hamburg, Germany
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14850;
- Research Division, Hospital for Special Surgery, New York, NY 10021
| |
Collapse
|
42
|
Allen MR, McNerny E, Aref M, Organ JM, Newman CL, McGowan B, Jang T, Burr DB, Brown DM, Hammond M, Territo PR, Lin C, Persohn S, Jiang L, Riley AA, McCarthy BP, Hutchins GD, Wallace JM. Effects of combination treatment with alendronate and raloxifene on skeletal properties in a beagle dog model. PLoS One 2017; 12:e0181750. [PMID: 28793321 PMCID: PMC5549927 DOI: 10.1371/journal.pone.0181750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 07/06/2017] [Indexed: 12/18/2022] Open
Abstract
A growing number of studies have investigated combination treatment as an approach to treat bone disease. The goal of this study was to investigate the combination of alendronate and raloxifene with a particular focus on mechanical properties. To achieve this goal we utilized a large animal model, the beagle dog, used previously by our laboratory to study both alendronate and raloxifene monotherapies. Forty-eight skeletally mature female beagles (1–2 years old) received daily oral treatment: saline vehicle (VEH), alendronate (ALN), raloxifene (RAL) or both ALN and RAL. After 6 and 12 months of treatment, all animals underwent assessment of bone material properties using in vivo reference point indentation (RPI) and skeletal hydration using ultra-short echo magnetic resonance imaging (UTE-MRI). End point measures include imaging, histomorphometry, and mechanical properties. Bone formation rate was significantly lower in iliac crest trabecular bone of animals treated with ALN (-71%) and ALN+RAL (-81%) compared to VEH. In vivo assessment of properties by RPI yielded minimal differences between groups while UTE-MRI showed a RAL and RAL+ALN treatment regimens resulted in significantly higher bound water compared to VEH (+23 and +18%, respectively). There was no significant difference among groups for DXA- or CT-based measures lumbar vertebra, or femoral diaphysis. Ribs of RAL-treated animals were smaller and less dense compared to VEH and although mechanical properties were lower the material-level properties were equivalent to normal. In conclusion, we present a suite of data in a beagle dog model treated for one year with clinically-relevant doses of alendronate and raloxifene monotherapies or combination treatment with both agents. Despite the expected effects on bone remodeling, our study did not find the expected benefit of ALN to BMD or structural mechanical properties, and thus the viability of the combination therapy remains unclear.
Collapse
Affiliation(s)
- Matthew R. Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Orthopedics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, Indiana, United States of America
- * E-mail:
| | - Erin McNerny
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Mohammad Aref
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jason M. Organ
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, Indiana, United States of America
| | - Christopher L. Newman
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Brian McGowan
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Tim Jang
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - David B. Burr
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Orthopedics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, Indiana, United States of America
| | - Drew M. Brown
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Max Hammond
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, Indiana, United States of America
| | - Paul R. Territo
- Department of Radiology and Imaging Sciences Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Chen Lin
- Department of Radiology and Imaging Sciences Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Scott Persohn
- Department of Radiology and Imaging Sciences Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Lei Jiang
- Department of Radiology and Imaging Sciences Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Amanda A. Riley
- Department of Radiology and Imaging Sciences Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Brian P. McCarthy
- Department of Radiology and Imaging Sciences Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Gary D. Hutchins
- Department of Radiology and Imaging Sciences Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Joseph M. Wallace
- Department of Orthopedics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, Indiana, United States of America
| |
Collapse
|
43
|
Sato H, Kondo N, Nakatsue T, Wada Y, Fujisawa J, Kazama JJ, Kuroda T, Suzuki Y, Nakano M, Endo N, Narita I. High and pointed type of femoral localized reaction frequently extends to complete and incomplete atypical femoral fracture in patients with autoimmune diseases on long-term glucocorticoids and bisphosphonates. Osteoporos Int 2017; 28:2367-2376. [PMID: 28409215 DOI: 10.1007/s00198-017-4038-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/03/2017] [Indexed: 01/22/2023]
Abstract
UNLABELLED Once a localized reaction (beaking) was detected, discontinuation of bisphosphonates (BPs) and switching to vitamin D supplementation or teriparatide therapy effectively improved its shape. When the localized reaction was high, of the pointed type, and/or accompanied by prodromal pain, the risks of complete and incomplete atypical femoral fracture increased and consideration of prophylactic fixation for such patients was required. INTRODUCTION Femoral localized reaction (localized periosteal thickening of the lateral cortex, beaking) is reported to precede atypical femoral fractures (AFFs) and to develop in 8-10% of patients with autoimmune diseases taking BPs and glucocorticoids. The aims of the present study were to retrospectively investigate the shapes of localized reaction to consider how to manage the condition. METHODS Twenty femora of 12 patients with autoimmune diseases who were on BPs and glucocorticoids exhibited femoral localized reaction. The heights of localized reaction were measured and the shapes classified as pointed, arched, and other. Localized reaction changes were divided into three categories: deterioration, no change, and improvement. A severe form of localized reaction was defined; this was associated with prodromal pain, de novo complete AFF, or incomplete AFF with a fracture line at the localized reaction. RESULTS The mean height of localized reaction was 2.3 ± 0.8 mm (range, 1.0-3.7 mm) and the pointed type was 35%. Localized reaction was significantly higher (3.3 ± 0.8 vs. 2.1 ± 0.7 mm; p = 0.003) and the pointed type more common (78 vs. 27%; p = 0.035) in those with the severe form of localized reaction. Seven patients with localized reactions discontinued BPs just after localized reaction was detected, but five continued on BPs for 2 years. Localized reaction deterioration was more common in patients who continued than discontinued BPs (100 vs. 29%; p = 0.027). After 2 years, all patients had discontinued BPs and localized reaction did not deteriorate further in any patient. CONCLUSIONS Once a localized reaction was detected, discontinuation of BPs and switching to vitamin D supplementation or teriparatide therapy effectively improved it. When the localized reaction was high, of the pointed type, and/or accompanied by prodromal pain, the risks of complete and incomplete AFF increased and consideration of prophylactic fixation for such patients was required.
Collapse
Affiliation(s)
- H Sato
- Health Administration Center, Niigata University, 2-8050 Ikarashi, Nishiku, Niigata City, 950-2181, Japan.
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuoku, Niigata City, 951-8510, Japan.
| | - N Kondo
- Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuoku, Niigata City, 951-8510, Japan
| | - T Nakatsue
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuoku, Niigata City, 951-8510, Japan
| | - Y Wada
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuoku, Niigata City, 951-8510, Japan
| | - J Fujisawa
- Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuoku, Niigata City, 951-8510, Japan
| | - J J Kazama
- Department of Nephrology and Hypertention, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, 960-1295, Japan
| | - T Kuroda
- Health Administration Center, Niigata University, 2-8050 Ikarashi, Nishiku, Niigata City, 950-2181, Japan
| | - Y Suzuki
- Health Administration Center, Niigata University, 2-8050 Ikarashi, Nishiku, Niigata City, 950-2181, Japan
| | - M Nakano
- Department of Medical Technology, School of Health Sciences, Faculty of Medicine, Niigata University, 2-746 Asahimachi-Dori, Chuoku, Niigata City, 951-8518, Japan
| | - N Endo
- Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuoku, Niigata City, 951-8510, Japan
| | - I Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuoku, Niigata City, 951-8510, Japan
| |
Collapse
|
44
|
Meixner CN, Aref MW, Gupta A, McNerny EMB, Brown D, Wallace JM, Allen MR. Raloxifene Improves Bone Mechanical Properties in Mice Previously Treated with Zoledronate. Calcif Tissue Int 2017; 101:75-81. [PMID: 28246928 PMCID: PMC5459622 DOI: 10.1007/s00223-017-0257-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/16/2017] [Indexed: 12/18/2022]
Abstract
Bisphosphonates represent the gold-standard pharmaceutical agent for reducing fracture risk. Long-term treatment with bisphosphonates can result in tissue brittleness which in rare clinical cases manifests as atypical femoral fracture. Although this has led to an increasing call for bisphosphonate cessation, few studies have investigated therapeutic options for follow-up treatment. The goal of this study was to test the hypothesis that treatment with raloxifene, a drug that has cell-independent effects on bone mechanical material properties, could reverse the compromised mechanical properties that occur following zoledronate treatment. Skeletally mature male C57Bl/6J mice were treated with vehicle (VEH), zoledronate (ZOL), or ZOL followed by raloxifene (RAL; 2 different doses). At the conclusion of 8 weeks of treatment, femora were collected and assessed with microCT and mechanical testing. Trabecular BV/TV was significantly higher in all treated animals compared to VEH with both RAL groups having significantly higher BV/TV compared to ZOL (+21%). All three drug-treated groups had significantly more cortical bone area, higher cortical thickness, and greater moment of inertia at the femoral mid-diaphysis compared to VEH with no difference among the three treated groups. All three drug-treated groups had significantly higher ultimate load compared to VEH-treated animals (+14 to 18%). Both doses of RAL resulted in significantly higher displacement values compared to ZOL-treated animals (+25 to +50%). In conclusion, the current work shows beneficial effects of raloxifene in animals previously treated with zoledronate. The higher mechanical properties of raloxifene-treated animals, combined with similar cortical bone geometry compared to animals treated with zoledronate, suggest that the raloxifene treatment is enhancing mechanical material properties of the tissue.
Collapse
Affiliation(s)
- Cory N Meixner
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, MS 5035, 635 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - Mohammad W Aref
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, MS 5035, 635 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - Aryaman Gupta
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, MS 5035, 635 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - Erin M B McNerny
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, MS 5035, 635 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - Drew Brown
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, MS 5035, 635 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - Joseph M Wallace
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, USA
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, MS 5035, 635 Barnhill Dr., Indianapolis, IN, 46202, USA.
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
45
|
Role of cortical bone in hip fracture. BONEKEY REPORTS 2017; 6:867. [PMID: 28277562 DOI: 10.1038/bonekey.2016.82] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/03/2016] [Indexed: 12/23/2022]
Abstract
In this review, I consider the varied mechanisms in cortical bone that help preserve its integrity and how they deteriorate with aging. Aging affects cortical bone in two ways: extrinsically through its effects on the individual that modify its mechanical loading experience and 'milieu interieur'; and intrinsically through the prolonged cycle of remodelling and renewal extending to an estimated 20 years in the proximal femur. Healthy femoral cortex incorporates multiple mechanisms that help prevent fracture. These have been described at multiple length scales from the individual bone mineral crystal to the scale of the femur itself and appear to operate hierarchically. Each cortical bone fracture begins as a sub-microscopic crack that enlarges under mechanical load, for example, that imposed by a fall. In these conditions, a crack will enlarge explosively unless the cortical bone is intrinsically tough (the opposite of brittle). Toughness leads to microscopic crack deflection and bridging and may be increased by adequate regulation of both mineral crystal size and the heterogeneity of mineral and matrix phases. The role of osteocytes in optimising toughness is beginning to be worked out; but many osteocytes die in situ without triggering bone renewal over a 20-year cycle, with potential for increasing brittleness. Furthermore, the superolateral cortex of the proximal femur thins progressively during life, so increasing the risk of buckling during a fall. Besides preserving or increasing hip BMD, pharmaceutical treatments have class-specific effects on the toughness of cortical bone, although dietary and exercise-based interventions show early promise.
Collapse
|
46
|
Aref MW, McNerny EMB, Brown D, Jepsen KJ, Allen MR. Zoledronate treatment has different effects in mouse strains with contrasting baseline bone mechanical phenotypes. Osteoporos Int 2016; 27:3637-3643. [PMID: 27439372 PMCID: PMC5543625 DOI: 10.1007/s00198-016-3701-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/06/2016] [Indexed: 12/16/2022]
Abstract
UNLABELLED Two strains of mice with distinct bone morphologies and mechanical properties were treated with zoledronate. Our results show a different response to drug treatment in the two strains providing evidence that baseline properties of structure/material may influence response to zoledronate. INTRODUCTION Bisphosphonates are highly effective in reducing fracture risk, yet some individuals treated with these agents still experience fracture. The goal of this study was to test the hypothesis that genotype influences the effect of zoledronate on bone mechanical properties. METHODS Skeletally mature male mice from genetic backgrounds known to have distinct baseline post-yield properties (C57/B6, high post-yield displacement; A/J, low post-yield displacement) were treated for 8 weeks with saline (VEH) or zoledronate (ZOL, 0.06 mg/kg subcutaneously once every 4 weeks) in a 2 × 2 study design. Ex vivo μCT and mechanical testing (4-pt bending) were conducted on the femur to assess morphological and mechanical differences. RESULTS Significant drug and/or genotype effects were found for several mechanical properties and significant drug × genotype interactions were found for measures of strength (ultimate force) and brittleness (total displacement, strain to failure). Treatment with ZOL affected bone biomechanical measures of brittleness (total displacement (-25 %) and strain to failure (-23 %)) in B6 mice significantly differently than in A/J mice. This was driven by unique drug × genotype effects on bone geometry in B6 animals yet likely also reflected changes to the tissue properties. CONCLUSION These data may support the concept that properties of the bone geometry and/or tissue at the time of treatment initiation play a role in determining the bone's mechanical response to zoledronate treatment.
Collapse
Affiliation(s)
- M W Aref
- Department of Anatomy and Cell Biology, MS 5035, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - E M B McNerny
- Department of Anatomy and Cell Biology, MS 5035, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - D Brown
- Department of Anatomy and Cell Biology, MS 5035, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - K J Jepsen
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - M R Allen
- Department of Anatomy and Cell Biology, MS 5035, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN, 46202, USA.
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
47
|
Demirtas A, Curran E, Ural A. Assessment of the effect of reduced compositional heterogeneity on fracture resistance of human cortical bone using finite element modeling. Bone 2016; 91:92-101. [PMID: 27451083 DOI: 10.1016/j.bone.2016.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 06/29/2016] [Accepted: 07/18/2016] [Indexed: 01/11/2023]
Abstract
The recent reports of atypical femoral fracture (AFF) and its possible association with prolonged bisphosphonate (BP) use highlighted the importance of a thorough understanding of mechanical modifications in bone due to bisphosphonate treatment. The reduced compositional heterogeneity is one of the modifications in bone due to extensive suppression of bone turnover. Although experimental evaluations suggested that compositional changes lead to a reduction in the heterogeneity of elastic properties, there is limited information on the extent of influence of reduced heterogeneity on fracture resistance of cortical bone. As a result, the goal of the current study is to evaluate the influence of varying the number of unique elastic and fracture properties for osteons, interstitial bone, and cement lines on fracture resistance across seven different human cortical bone specimens using finite element modeling. Fracture resistance of seven human cortical bone samples under homogeneous and three different heterogeneous material levels was evaluated using a compact tension test setup. The simulation results predicted that the crack volume was the highest for the models with homogeneous material properties. Increasing heterogeneity resulted in a lower amount of crack volume indicating an increase in fracture resistance of cortical bone. This reduction was observed up to a certain level of heterogeneity after which further beneficial effects of heterogeneity diminished suggesting a possible optimum level of heterogeneity for the bone tissue. The homogeneous models demonstrated limited areas of damage with extensive crack formation. On the other hand, the heterogeneity in the material properties led to increased damage volume and a more variable distribution of damage compared to the homogeneous models. This resulted in uncracked regions which tended to have less damage accumulation preventing extensive crack propagation. The results also showed that the percent osteonal area was inversely correlated with crack volume and more evenly distributed osteons led to a lower amount of crack growth for all levels of material heterogeneity. In summary, this study developed a new computational modeling approach that directly evaluated the influence of heterogeneity in elastic and fracture material properties on fracture resistance of cortical bone. The results established new information that showed the adverse effects of reduced heterogeneity on fracture resistance in cortical bone and demonstrated the nonlinear relationship between heterogeneity and fracture resistance. This new computational modeling approach provides a tool that can be used to improve the understanding of the effects of material level changes due to prolonged BP use on the overall bone fracture behavior. It may also bring additional insight into the causes of unusual fractures, such as AFF and their possible association with long term BP use.
Collapse
Affiliation(s)
- Ahmet Demirtas
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA, United States
| | - Erin Curran
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA, United States
| | - Ani Ural
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA, United States.
| |
Collapse
|
48
|
|
49
|
Olejnik C, Falgayrac G, During A, Cortet B, Penel G. Doses effects of zoledronic acid on mineral apatite and collagen quality of newly-formed bone in the rat's calvaria defect. Bone 2016; 89:32-39. [PMID: 27168397 DOI: 10.1016/j.bone.2016.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/18/2016] [Accepted: 05/05/2016] [Indexed: 01/12/2023]
Abstract
Due to their inhibitory effects on resorption, bisphosphonates are widely used in the treatment of diseases associated to an extensive bone loss. Yet, little is known about bisphosphonates effects on newly-formed bone quality. In the present study, adult male Sprague-Dawley rats (n=80) with a bone defect calvaria area were used and short-term effects of zoledronic acid (ZA) were studied on the healing bone area. Three ZA treatments were tested by using either: 1°) a low single dose (120μgZA/kg, n=10; equivalent to human osteoporosis treatment), 2°) a low fractionated doses (20μgZA/kg daily for 6days either a total of 120μg/kg, n=15), and 3°) a high fractionated doses, (100μgZA/kg weekly for 6weeks, n=15; equivalent to 6months of human bone metastasis treatment). For each treatment, a control "vehicle" treatment was performed (with an identical number of rats). After ZA administration, the intrinsic bone material properties were evaluated by quantitative backscattered electron imaging (qBEI) and Raman microspectroscopy. Neither single nor fractionated low ZA doses modify the intrinsic bone material properties of the newly-formed bone compared to their respective control animals. On the opposite, the high ZA treatment resulted in a significant decrease of the crystallinity (-25%, P< 0.05) and of the hydroxyproline-to-proline ratio (-30%, P<0.05) in newly-formed bones. Moreover, with the high ZA treatment, the crystallinity was positively correlated with the hydroxyproline-to-proline ratio (ρ=0.78, P<0.0001). The present data highlight new properties for ZA on bone formation in a craniofacial defect model. As such, ZA at high doses disrupted the apatite crystal organization. In addition, we report here for the first time that high ZA doses decreased the hydroxyproline-to-proline ratio suggesting that ZA may affect the early collagen organization during the bone healing.
Collapse
Affiliation(s)
- Cécile Olejnik
- Université de Lille, EA 4490 PMOI, F-59000 Lille, France; Faculté de Chirurgie Dentaire, Place de Verdun, F-59000 Lille, France; Service d'Odontologie, Centre Abel Caumartin, CHRU de Lille, F-59000 Lille, France.
| | - Guillaume Falgayrac
- Université de Lille, EA 4490 PMOI, F-59000 Lille, France; Faculté de Chirurgie Dentaire, Place de Verdun, F-59000 Lille, France
| | - Alexandrine During
- Université de Lille, EA 4490 PMOI, F-59000 Lille, France; Faculté de Chirurgie Dentaire, Place de Verdun, F-59000 Lille, France
| | - Bernard Cortet
- Université de Lille, EA 4490 PMOI, F-59000 Lille, France; Service de Rhumatologie, Hôpital Roger Salengro, CHRU de Lille, F-59000 Lille, France
| | - Guillaume Penel
- Université de Lille, EA 4490 PMOI, F-59000 Lille, France; Faculté de Chirurgie Dentaire, Place de Verdun, F-59000 Lille, France; Service d'Odontologie, Centre Abel Caumartin, CHRU de Lille, F-59000 Lille, France
| |
Collapse
|
50
|
Burr DB. Bone Biomechanics and Bone Quality: Effects of Pharmaceutical Agents Used to Treat Osteoporosis. Clin Rev Bone Miner Metab 2016. [DOI: 10.1007/s12018-016-9217-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|