1
|
DeVirgiliis L, Goode NJ, McDowell KW, English KL, Novo R, Botros V, Agwu G, Scott JM, Ploutz-Snyder LL. Spaceflight and sport science: Physiological monitoring and countermeasures for the astronaut-athlete on Mars exploration missions. Exp Physiol 2025. [PMID: 40198226 DOI: 10.1113/ep091595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 03/17/2025] [Indexed: 04/10/2025]
Abstract
Long-duration spaceflight impacts essentially every system in the human body, resulting in multisystem deconditioning that might impair the health and performance of crewmembers, particularly on long-duration exploration missions to Mars. In this review, we apply the sport science model of athlete monitoring, testing and training to astronauts; tactical athletes, whose occupation includes physically demanding tasks. We discuss exploration-specific physiological monitoring modalities and provide a brief historical overview of physiological countermeasures to spaceflight. Finally, we suggest countermeasures to protect exploration crew health and performance, including targeted preflight and in-flight exercise training, in-flight exercise hardware and adjunct individualized nutrition and sleep considerations. Mars exploration missions will be exemplars of the astronaut-athlete paradigm. An integrated approach to physiological monitoring and countermeasures will maximize the likelihood of exploration mission success.
Collapse
Affiliation(s)
- Luke DeVirgiliis
- Department of Exercise Science and Sport Science, East Tennessee State University, Johnson City, Tennessee, USA
| | - Nicholas J Goode
- Department of Exercise Science and Sport Science, East Tennessee State University, Johnson City, Tennessee, USA
| | - Kurt W McDowell
- Department of Exercise Science and Sport Science, East Tennessee State University, Johnson City, Tennessee, USA
| | - Kirk L English
- Department of Sport and Exercise Science, Milligan University, Milligan, Tennessee, USA
| | - Robert Novo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Virina Botros
- Albert Dorman Honors College, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Ginika Agwu
- Department of Medicine, CUNY School of Medicine, New York, New York, USA
| | - Jessica M Scott
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | |
Collapse
|
2
|
Holsgrove TP, Ebisch I, Lazaro‐Pacheco D. Do we know more about the mechanobiology of the intervertebral disc in space than on Earth? JOR Spine 2025; 8:e70024. [PMID: 39968355 PMCID: PMC11834163 DOI: 10.1002/jsp2.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/30/2024] [Accepted: 12/01/2024] [Indexed: 02/20/2025] Open
Abstract
This work provides a perspective on the loading protocols used in whole-organ interverterbal disc culture studies using bioreactors. We put this in the context of in vivo spinal loading, and we put forward the case that the majority of previous bioreactor studies have more in common with spinal loading in space than on Earth. Finally, we provide an outlook for the future of bioreactor research, to provide data more relevant to spinal loading on Earth, and maximize the translational potential of findings to the clinical setting.
Collapse
Affiliation(s)
| | - Isabelle Ebisch
- Department of Engineering, Faculty of Environment, Science and EconomyUniversity of ExeterExeterUK
| | - Daniela Lazaro‐Pacheco
- Department of Engineering, Faculty of Environment, Science and EconomyUniversity of ExeterExeterUK
| |
Collapse
|
3
|
Kuznetsov NV, Statsenko Y, Ljubisavljevic M. An Update on Neuroaging on Earth and in Spaceflight. Int J Mol Sci 2025; 26:1738. [PMID: 40004201 PMCID: PMC11855577 DOI: 10.3390/ijms26041738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Over 400 articles on the pathophysiology of brain aging, neuroaging, and neurodegeneration were reviewed, with a focus on epigenetic mechanisms and numerous non-coding RNAs. In particular, this review the accent is on microRNAs, the discovery of whose pivotal role in gene regulation was recognized by the 2024 Nobel Prize in Physiology or Medicine. Aging is not a gradual process that can be easily modeled and described. Instead, multiple temporal processes occur during aging, and they can lead to mosaic changes that are not uniform in pace. The rate of change depends on a combination of external and internal factors and can be boosted in accelerated aging. The rate can decrease in decelerated aging due to individual structural and functional reserves created by cognitive, physical training, or pharmacological interventions. Neuroaging can be caused by genetic changes, epigenetic modifications, oxidative stress, inflammation, lifestyle, and environmental factors, which are especially noticeable in space environments where adaptive changes can trigger aging-like processes. Numerous candidate molecular biomarkers specific to neuroaging need to be validated to develop diagnostics and countermeasures.
Collapse
Affiliation(s)
- Nik V. Kuznetsov
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
| | - Yauhen Statsenko
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Milos Ljubisavljevic
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
4
|
Patel CM, Wiele SV, Kim L, Payne E, Bruno-Garcia M, Devorak A, Kaganov DE, Lau A, Guthold M, Delp MD, Crapo J, Mao XW, Willey JS. Treatment with a superoxide dismutase mimetic for joint preservation during 35 and 75 days in orbit aboard the international space station, and after 120 days recovery on Earth. LIFE SCIENCES IN SPACE RESEARCH 2025; 44:67-78. [PMID: 39864914 DOI: 10.1016/j.lssr.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 01/28/2025]
Abstract
Reduced weight-bearing during spaceflight has been associated with musculoskeletal degradation that risks astronaut health and performance in transit and upon reaching deep space destinations. Previous rodent experiments aboard the international space station (ISS) have identified that the spaceflight-induced molecular arthritic phenotype was characterized with an increase in oxidative stress. This study evaluated if treatment with a superoxide dismutase (SOD) mimetic on orbit could prevent spaceflight-induced damage to the knee and hip articular cartilage, and the menisci in rodents. Cartilage and meniscal degradation in mice were measured via microCT, histology, and transcriptomics after: (1) ∼ 35 days on the ISS, (2) ∼ 35 days on the ISS followed by 120 days weight-bearing readaptation on Earth or (3) ∼ 75 days on the ISS. The study had a limited sample size, so both significant effects and generalized patterns are reported. After 35 days aboard the ISS, cartilage volume at the tibial-femoral cartilage-cartilage contact point decreased, meniscal volume decreased concurrent with an increase in pro-osteoarthritic signaling in the joint soft tissue. Similarly, a decrease in cortical and trabecular bone volume of the tibia was observed. Treatment with the SOD mimetic preserved the trabecular bone, articular cartilage and the menisci after 35 days aboard the ISS, but had limited efficacy retaining that recovery after 120 days of weight bearing, and after 75 days on orbit. Antioxidants including BuOE may serve as a potential countermeasure option to protect musculoskeletal health during spaceflight missions, and continued use may be necessary upon reaching a destination.
Collapse
Affiliation(s)
- Chirayu M Patel
- Department of Radiation Oncology, Wake Forest University School of Medicine. Winston-Salem, NC, USA
| | | | - Leslie Kim
- University of Virginia, Charlottesville, VA, USA
| | - Ethan Payne
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | | | - Anne Devorak
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel E Kaganov
- Department of Radiation Oncology, Wake Forest University School of Medicine. Winston-Salem, NC, USA
| | - Anthony Lau
- Department of Biomedical Engineering, The College of New Jersey, Ewing, NJ, USA
| | - Martin Guthold
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - Michael D Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - James Crapo
- Department of Medicine Division of Pulmonary, Critical Care & Sleep Medicine, National Jewish Health, and University of Colorado Denver, Denver, CO, USA
| | - Xiao W Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest University School of Medicine. Winston-Salem, NC, USA.
| |
Collapse
|
5
|
Pachiyappan JK, Patel M, Roychowdhury P, Nizam I, Seenivasan R, Sudhakar S, Jeyaprakash MR, Karri VVSR, Venkatesan J, Mehta P, Kothandan S, Thirugnanasambandham I, Kuppusamy G. A review of the physiological effects of microgravity and innovative formulation for space travelers. J Pharmacokinet Pharmacodyn 2024; 51:605-620. [PMID: 39162918 DOI: 10.1007/s10928-024-09938-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
During the space travel mission, astronauts' physiological and psychological behavior will alter, and they will start consuming terrestrial drug products. However, factors such as microgravity, radiation exposure, temperature, humidity, strong vibrations, space debris, and other issues encountered, the drug product undergo instability This instability combined with physiological changes will affect the shelf life and diminish the pharmacokinetic and pharmacodynamic profile of the drug product. Consequently, the physicochemical changes will produce a toxic degradation product and a lesser potency dosage form which may result in reduced or no therapeutic action, so the astronaut consumes an additional dose to remain healthy. On long-duration missions like Mars, the drug product cannot be replaced, and the astronaut may relay on the available medications. Sometimes, radiation-induced impurities in the drug product will cause severe problems for the astronaut. So, this review article highlights the current state of various space-related factors affecting the drug product and provides a comprehensive summary of the physiological changes which primarly focus on absorption, distribution, metabolism, and excretion (ADME). Along with that, we insist some of the strategies like novel formulations, space medicine manufacturing from plants, and 3D printed medicine for astronauts in longer-duration missions. Such developments are anticipated to significantly contribute to new developments with applications in both human space exploration and on terrestrial healthcare.
Collapse
Affiliation(s)
- Jey Kumar Pachiyappan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, 643001, Tamil Nadu, India
| | - Manali Patel
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Parikshit Roychowdhury
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, 643001, Tamil Nadu, India
| | - Imrankhan Nizam
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, 643001, Tamil Nadu, India
| | - Raagul Seenivasan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, 643001, Tamil Nadu, India
| | - Swathi Sudhakar
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - M R Jeyaprakash
- Department of Pharmaceutical Analysis, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, 643001, Tamil Nadu, India
| | | | - Jayakumar Venkatesan
- CEO, Harpy Aerospace International Private Limited, Chennai, 600056, Tamil Nadu, India
| | - Priti Mehta
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India.
| | - Sudhakar Kothandan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, 643001, Tamil Nadu, India
| | - Indhumathi Thirugnanasambandham
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, 643001, Tamil Nadu, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, 643001, Tamil Nadu, India.
| |
Collapse
|
6
|
Manna OM, Burgio S, Picone D, Carista A, Pitruzzella A, Fucarino A, Bucchieri F. Microgravity and Human Body: Unraveling the Potential Role of Heat-Shock Proteins in Spaceflight and Future Space Missions. BIOLOGY 2024; 13:921. [PMID: 39596876 PMCID: PMC11591694 DOI: 10.3390/biology13110921] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
In recent years, the increasing number of long-duration space missions has prompted the scientific community to undertake a more comprehensive examination of the impact of microgravity on the human body during spaceflight. This review aims to assess the current knowledge regarding the consequences of exposure to an extreme environment, like microgravity, on the human body, focusing on the role of heat-shock proteins (HSPs). Previous studies have demonstrated that long-term exposure to microgravity during spaceflight can cause various changes in the human body, such as muscle atrophy, changes in muscle fiber composition, cardiovascular function, bone density, and even immune system functions. It has been postulated that heat-shock proteins (HSPs) may play a role in mitigating the harmful effects of microgravity-induced stress. According to past studies, heat-shock proteins (HSPs) are upregulated under simulated microgravity conditions. This upregulation assists in the maintenance of the proper folding and function of other proteins during stressful conditions, thereby safeguarding the physiological systems of organisms from the detrimental effects of microgravity. HSPs could also be used as biomarkers to assess the level of cellular stress in tissues and cells exposed to microgravity. Therefore, modulation of HSPs by drugs and genetic or environmental techniques could prove to be a potential therapeutic strategy to reduce the negative physiological consequences of long-duration spaceflight in astronauts.
Collapse
Affiliation(s)
- Olga Maria Manna
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy
| | - Stefano Burgio
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy
| | - Domiziana Picone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
| | - Adelaide Carista
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
| | - Alessandro Pitruzzella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
| | - Alberto Fucarino
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
7
|
Behan FP, Bull AMJ, Beck BR, Brooke-Wavell K, Müller R, Vico L, Isaksson H, Harvey NC, Buis A, Sherman K, Jefferson G, Cleather DJ, McGregor A, Bennett AN. Developing an exercise intervention to minimise hip bone mineral density loss following traumatic lower limb amputation: a Delphi study. Br J Sports Med 2024; 58:1251-1257. [PMID: 39227136 PMCID: PMC11671889 DOI: 10.1136/bjsports-2024-108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVE To elicit expert opinion and gain consensus on specific exercise intervention parameters to minimise hip bone mineral density (BMD) loss following traumatic lower limb amputation. METHODS In three Delphi rounds, statements were presented to a panel of 13 experts from six countries. Experts were identified through publications or clinical expertise. Round 1 involved participants rating their agreement with 22 exercise prescription statements regarding BMD loss post amputation using a 5-point Likert scale. Agreement was deemed as 3-4 on the scale (agree/strongly agree). Statements of <50% agreement were excluded. Round 2 repeated remaining statements alongside round 1 feedback. Round 3 allowed reflection on round 2 responses considering group findings and the chance to change or maintain the resp onse. Round 3 statements reaching ≥70% agreement were defined as consensus. RESULTS All 13 experts completed rounds 1, 2 and 3 (100% completion). Round 1 excluded 12 statements and added 1 statement (11 statements for rounds 2-3). Round 3 reached consensus on nine statements to guide future exercise interventions. Experts agreed that exercise interventions should be performed at least 2 days per week for a minimum of 6 months, including at least three different resistance exercises at an intensity of 8-12 repetitions. Interventions should include weight-bearing and multiplanar exercises, involve high-impact activities and be supervised initially. CONCLUSION This expert Delphi process achieved consensus on nine items related to exercise prescription to minimise hip BMD loss following traumatic lower limb amputation. These recommendations should be tested in future interventional trials.
Collapse
Affiliation(s)
- Fearghal P Behan
- Imperial College London, London, UK
- Trinity College Dublin, Dublin, Ireland
| | - Anthony M J Bull
- Department of Bioengineering, Imperial College London, London, UK
| | | | | | - Ralph Müller
- Institute of Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Laurence Vico
- Inserm U1059 SAINBIOSE, Université Jean Monnet Saint-Etienne, Saint-Priest-en-Jarez, France
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | | | | | | | - Daniel J Cleather
- School of Sport, Health and Applied Science, St. Mary's University, Twickenham, London, UK
| | - Alison McGregor
- Surgery and Cancer / Human Performance Group, Imperial College London, London, UK
| | - Alexander N Bennett
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Epsom, UK
| |
Collapse
|
8
|
Lloyd D. The future of in-field sports biomechanics: wearables plus modelling compute real-time in vivo tissue loading to prevent and repair musculoskeletal injuries. Sports Biomech 2024; 23:1284-1312. [PMID: 34496728 DOI: 10.1080/14763141.2021.1959947] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/20/2021] [Indexed: 01/13/2023]
Abstract
This paper explores the use of biomechanics in identifying the mechanistic causes of musculoskeletal tissue injury and degeneration. It appraises how biomechanics has been used to develop training programmes aiming to maintain or recover tissue health. Tissue health depends on the functional mechanical environment experienced by tissues during daily and rehabilitation activities. These environments are the result of the interactions between tissue motion, loading, biology, and morphology. Maintaining health of and/or repairing musculoskeletal tissues requires targeting the "ideal" in vivo tissue mechanics (i.e., loading and deformation), which may be enabled by appropriate real-time biofeedback. Recent research shows that biofeedback technologies may increase their quality and effectiveness by integrating a personalised neuromusculoskeletal modelling driven by real-time motion capture and medical imaging. Model personalisation is crucial in obtaining physically and physiologically valid predictions of tissue biomechanics. Model real-time execution is crucial and achieved by code optimisation and artificial intelligence methods. Furthermore, recent work has also shown that laboratory-based motion capture biomechanical measurements and modelling can be performed outside the laboratory with wearable sensors and artificial intelligence. The next stage is to combine these technologies into well-designed easy to use products to guide training to maintain or recover tissue health in the real-world.
Collapse
Affiliation(s)
- David Lloyd
- School of Health Sciences and Social Work, Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), in the Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Griffith University, Australia
| |
Collapse
|
9
|
Liang X, Jiang S, Su P, Yin C, Jiang W, Gao J, Liu Z, Li Y, Wang W, Qian A, Tian Y. Angelicae dahuricae radix alleviates simulated microgravity induced bone loss by promoting osteoblast differentiation. NPJ Microgravity 2024; 10:91. [PMID: 39353918 PMCID: PMC11445575 DOI: 10.1038/s41526-024-00433-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/22/2024] [Indexed: 10/03/2024] Open
Abstract
Bone loss caused by long-duration spaceflight seriously affects the skeletal health of astronauts. There are many shortcomings in currently available treatments for weightlessness-induced bone loss. The aim of this study was to evaluate the preventive effect of Angelica dahuricae Radix (AR) on simulated microgravity-induced bone loss. Here, we established a hind limb unloading (HLU) mouse model and treated HLU mice with AR (2 g/kg) for 4 weeks. Results indicated that AR significantly inhibited simulated microgravity-induced bone loss. In addition, the components in AR were analyzed using UPLC-MS/MS; results showed that a total of 224 compounds were detected in AR, which mainly contained 7 classes of components. Moreover, the network pharmacological predictions suggested that active ingredients of AR might act on PTGS2 to prevent bone loss. These results elucidate the efficacy of AR in preventing microgravity-induced bone loss and its potential for use in protecting the bone health of astronauts.
Collapse
Affiliation(s)
- Xuechao Liang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, Xi'an Key Laboratory of Special Medicine and Health Engineering, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Shanfeng Jiang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, Xi'an Key Laboratory of Special Medicine and Health Engineering, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Peihong Su
- Shaanxi Provincial Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Chong Yin
- Department of Clinical Laboratory, Academician (expert) workstation, Lab of epigenetics and RNA therapy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P. R. China
| | - Wei Jiang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, China
| | - Junhong Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Zhiyong Liu
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Yuhang Li
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, Xi'an Key Laboratory of Special Medicine and Health Engineering, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Weisi Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, P. R. China
| | - Airong Qian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, Xi'an Key Laboratory of Special Medicine and Health Engineering, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Ye Tian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, Xi'an Key Laboratory of Special Medicine and Health Engineering, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
10
|
Wang N, Zuo Z, Meng T, Liu Y, Zheng X, Ma Y. Salidroside alleviates simulated microgravity-induced bone loss by activating the Nrf2/HO-1 pathway. J Orthop Surg Res 2024; 19:531. [PMID: 39218922 PMCID: PMC11367893 DOI: 10.1186/s13018-024-05030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Bone loss caused by microgravity exposure presents a serious threat to the health of astronauts, but existing treatment strategies have specific restrictions. This research aimed to investigate whether salidroside (SAL) can mitigate microgravity-induced bone loss and its underlying mechanism. METHODS In this research, we used hindlimb unloading (HLU) and the Rotary Cell Culture System (RCCS) to imitate microgravity in vivo and in vitro. RESULTS The results showed that salidroside primarily enhances bone density, microstructure, and biomechanical properties by stimulating bone formation and suppressing bone resorption, thereby preserving bone mass in HLU rats. In MC3T3-E1 cells cultured under simulated microgravity in rotary wall vessel bioreactors, the expression of osteogenic genes significantly increased after salidroside administration, indicating that salidroside can promote osteoblast differentiation under microgravity conditions. Furthermore, the Nrf2 inhibitor ML385 diminished the therapeutic impact of salidroside on microgravity-induced bone loss. Overall, this research provides the first evidence that salidroside can mitigate bone loss induced by microgravity exposure through stimulating the Nrf2/HO-1 pathway. CONCLUSION These findings indicate that salidroside has great potential for treating space-related bone loss in astronauts and suggest that Nrf2/HO-1 is a viable target for counteracting microgravity-induced bone damage.
Collapse
Affiliation(s)
- Nan Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhuan Zuo
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tong Meng
- Department of Orthopedic Surgery, Xi'an City First Hospital, Xi'an, China
| | - Yuliang Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiwei Zheng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongsheng Ma
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
11
|
Wei Y, Wu B, Liu M, Cui CP. The Discovery of a Specific CKIP-1 Ligand for the Potential Treatment of Disuse Osteoporosis. Int J Mol Sci 2024; 25:8870. [PMID: 39201556 PMCID: PMC11354310 DOI: 10.3390/ijms25168870] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Bone homeostasis relies on the delicate balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. The casein kinase 2 interacting protein-1 (CKIP-1), a specific CK2α subunit-interacting protein, has been documented as one of the crucial negative regulators of bone formation. CKIP-1 siRNA therapy has constraints that limit its use in clinical applications. Therefore, it is necessary to explore effective targeting strategies for CKIP-1. In this study, we observed an upregulation of CKIP-1 protein expression in the microgravity environment, while its ubiquitination levels decreased. We further investigated the interaction between CKIP-1 and VHL and found that VHL enhanced CKIP-1 degradation through the ubiquitylation-proteasome system (UPS). Additionally, we discovered a small molecule ligand, named C77, through DNA-encoded library (DEL) screening, which binds to CKIP-1 both in vivo and in vitro, as confirmed by Surface Plasmon Resonance (SPR) and the Cellular Thermal shift assay (CETSA), respectively. Our findings demonstrated the potential of VHL and C77 as guiding factors in the development of CKIP-1-based Proteolysis-Targeting Chimeras (PROTACs), which could be future therapeutic interventions in disuse osteoporosis.
Collapse
Affiliation(s)
| | | | | | - Chun-Ping Cui
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; (Y.W.); (B.W.); (M.L.)
| |
Collapse
|
12
|
Rosenthal R, Schneider VS, Jones JA, Sibonga JD. The Case for Bisphosphonate Use in Astronauts Flying Long-Duration Missions. Cells 2024; 13:1337. [PMID: 39195227 PMCID: PMC11352369 DOI: 10.3390/cells13161337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Changes in the structure of bone can occur in space as an adaptive response to microgravity and on Earth due to the adaptive effects to exercise, to the aging of bone cells, or to prolonged disuse. Knowledge of cell-mediated bone remodeling on Earth informs our understanding of bone tissue changes in space and whether these skeletal changes might increase the risk for fractures or premature osteoporosis in astronauts. Comparisons of skeletal health between astronauts and aging humans, however, may be both informative and misleading. Astronauts are screened for a high level of physical fitness and health, are launched with high bone mineral densities, and perform exercise daily in space to combat skeletal atrophy as an adaptive response to reduced weight-bearing function, while the elderly display cellular and tissue pathology as a response to senescence and disuse. Current clinical testing for age-related bone change, applied to astronauts, may not be sufficient for fully understanding risks associated with rare and uniquely induced bone changes. This review aims to (i) highlight cellular analogies between spaceflight-induced and age-related bone loss, which could aid in predicting fractures, (ii) discuss why overreliance on terrestrial clinical approaches may miss potentially irreversible disruptions in trabecular bone microarchitecture induced by spaceflight, and (iii) detail how the cellular effects of the bisphosphonate class of drugs offer a prophylactic countermeasure for suppressing the elevated bone resorption characteristically observed during long-duration spaceflights. Thus the use of the bisphosphonate will help protect the bone from structural changes while in microgravity either along with exercise or alone when exercise is not performed, e.g. after an injury or illness.
Collapse
Affiliation(s)
- Reece Rosenthal
- Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA; (R.R.); (V.S.S.); (J.A.J.)
| | - Victor S. Schneider
- Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA; (R.R.); (V.S.S.); (J.A.J.)
- Space Operations Mission Directorate, Human Research Program, NASA Mary W. Jackson Headquarters, Washington, DC 20546, USA
| | - Jeffrey A. Jones
- Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA; (R.R.); (V.S.S.); (J.A.J.)
| | - Jean D. Sibonga
- Human Health & Performance Directorate, NASA Johnson Space Center, 2101 NASA Parkway SK3, Houston, TX 77058, USA
| |
Collapse
|
13
|
Paladugu P, Ong J, Kumar R, Waisberg E, Zaman N, Kamran SA, Tavakkoli A, Rivolta MC, Nelson N, Yoo T, Douglas VP, Douglas K, Song A, Tso H, Lee AG. Lower body negative pressure as a research tool and countermeasure for the physiological effects of spaceflight: A comprehensive review. LIFE SCIENCES IN SPACE RESEARCH 2024; 42:8-16. [PMID: 39067995 DOI: 10.1016/j.lssr.2024.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/07/2024] [Accepted: 03/31/2024] [Indexed: 07/30/2024]
Abstract
Lower Body Negative Pressure (LBNP) redistributes blood from the upper body to the lower body. LBNP may prove to be a countermeasure for the multifaceted physiological changes endured by astronauts during spaceflight related to cephalad fluid shift. Over more than five decades, beginning with the era of Skylab, advancements in LBNP technology have expanded our understanding of neurological, ophthalmological, cardiovascular, and musculoskeletal adaptations in space, with particular emphasis on mitigating issues such as bone loss. To date however, no comprehensive review has been conducted that chronicles the evolution of this technology or elucidates the broad-spectrum potential of LBNP in managing the diverse physiological challenges encountered in the microgravity environment. Our study takes a chronological perspective, systematically reviewing the historical development and application of LBNP technology in relation to the various pathophysiological impacts of spaceflight. The primary objective is to illustrate how this technology, as it has evolved, offers an increasingly sophisticated lens through which to interpret the systemic effects of space travel on human physiology. We contend that the insights gained from LBNP studies can significantly aid in formulating targeted and effective countermeasures to ensure the health and safety of astronauts. Ultimately, this paper aspires to promote a more cohesive understanding of the broad applicability of LBNP as a countermeasure against multiple bodily effects of space travel, thereby contributing to a safer and more scientifically informed approach to human space exploration.
Collapse
Affiliation(s)
- Phani Paladugu
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Sidney Kimmel Medical College, Philadelphia, PA, United States
| | - Joshua Ong
- Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Rahul Kumar
- University of Miami, Coral Gables, FL, United States
| | - Ethan Waisberg
- University College Dublin School of Medicine, Belfield, Dublin, Ireland
| | - Nasif Zaman
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, United States
| | - Sharif Amit Kamran
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, United States
| | - Alireza Tavakkoli
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, United States
| | | | - Nicolas Nelson
- Sidney Kimmel Medical College, Philadelphia, PA, United States
| | - Taehwan Yoo
- Sidney Kimmel Medical College, Philadelphia, PA, United States
| | | | - Konstantinos Douglas
- First Department of Ophthalmology, Gennimatas General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Amy Song
- University of Illinois College of Medicine, Chicago, IL, United States
| | - Hanna Tso
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, United States; Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, United States; The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States; Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, United States; Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, United States; University of Texas MD Anderson Cancer Center, Houston, TX, United States; Texas A&M College of Medicine, TX, United States; Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, United States.
| |
Collapse
|
14
|
Żyłka M, Górski G, Żyłka W, Gala-Błądzińska A. Numerical analysis of blood flow in the abdominal aorta under simulated weightlessness and earth conditions. Sci Rep 2024; 14:15978. [PMID: 38987416 PMCID: PMC11237043 DOI: 10.1038/s41598-024-66961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
Blood flow through the abdominal aorta and iliac arteries is a crucial area of research in hemodynamics and cardiovascular diseases. To get in to the problem, this study presents detailed analyses of blood flow through the abdominal aorta, together with left and right iliac arteries, under Earth gravity and weightless conditions, both at the rest stage, and during physical activity. The analysis were conducted using ANSYS Fluent software. The results indicate, that there is significantly less variation in blood flow velocity under weightless conditions, compared to measurement taken under Earth Gravity conditions. Study presents, that the maximum and minimum blood flow velocities decrease and increase, respectively, under weightless conditions. Our model for the left iliac artery revealed higher blood flow velocities during the peak of the systolic phase (systole) and lower velocities during the early diastolic phase (diastole). Furthermore, we analyzed the shear stress of the vessel wall and the mean shear stress over time. Additionally, the distribution of oscillatory shear rate, commonly used in hemodynamic analyses, was examined to assess the effects of blood flow on the blood vessels. Countermeasures to mitigate the negative effects of weightlessness on astronauts health are discussed, including exercises performed on the equipment aboard the space station. These exercises aim to maintain optimal blood flow, prevent the formation of atherosclerotic plaques, and reduce the risk of cardiovascular complications.
Collapse
Affiliation(s)
- Marta Żyłka
- The Faculty of Mechanical Engineering and Aeronautics, Department of Aerospace Engineering, Rzeszow University of Technology, av. Powstańców Warszawy 8, 35-959, Rzeszów, Poland.
| | - Grzegorz Górski
- Institute of Physics, College of Natural Sciences, University of Rzeszów, ul. Pigonia 1, 35-310, Rzeszów, Poland
| | - Wojciech Żyłka
- Institute of Materials Engineering, College of Natural Sciences, University of Rzeszów, ul. Pigonia 1, 35-310, Rzeszów, Poland
| | - Agnieszka Gala-Błądzińska
- Institute of Medical Sciences, Medical College of Rzeszow University, Al. mjr. W. Kopisto 2a, 35-959, Rzeszów, Poland
- Internal Medicine, Nephrology and Endocrinology Clinic, St. Queen Jadwiga Clinical District Hospital No. 2 in Rzeszow, ul. Lwowska 60, 35-301, Rzeszów, Poland
| |
Collapse
|
15
|
Hiasa M, Endo I, Matsumoto T. Bone-fat linkage via interleukin-11 in response to mechanical loading. J Bone Miner Metab 2024; 42:447-454. [PMID: 38324177 DOI: 10.1007/s00774-023-01493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/10/2023] [Indexed: 02/08/2024]
Abstract
Positive regulators of bone formation, such as mechanical loading and PTH, stimulate and negative regulators, such as aging and glucocorticoid excess, suppress IL-11 gene transcription in osteoblastic cells. Signal transduction from mechanical loading and PTH stimulation involves two pathways: one is Ca2+-ERK-CREB pathway which facilitates binding of ∆FosB/JunD to the AP-1 site to enhance IL-11 gene transcription, and the other is Smad1/5 phosphorylation that promotes IL-11 gene transcription via SBE binding and complex formation with ∆FosB/JunD. The increased IL-11 suppresses Sost expression via IL-11Rα-STAT1/3-HDAC4/5 pathway and enhances Wnt signaling in the bone to stimulate bone formation. Thus, IL-11 mediates stimulatory and inhibitory signals of bone formation by affecting Wnt signaling. Physiologically important stimulation of bone formation is exercise-induced mechanical loading, but exercise simultaneously requires energy source for muscle contraction. Exercise-induced stimulation of IL-11 expression in the bone increases the secretion of IL-11 from the bone. The increased circulating IL-11 acts like a hormone to enhance adipolysis as an energy source with a reduction in adipogenic differentiation via a suppression of Dkk1/2 expression in the adipose tissue. Such bone-fat linkage can be a mechanism whereby exercise increases bone mass and, at the same time, maintains energy supply from the adipose tissue.
Collapse
Affiliation(s)
- Masahiro Hiasa
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Dentistry, Tokushima, 770-8503, Japan
| | - Itsuro Endo
- Department of Endocrinology, Metabolism and Hematology, Tokushima University Graduate School of Medical Sciences, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503,, Japan
| | - Toshio Matsumoto
- Department of Endocrinology, Metabolism and Hematology, Tokushima University Graduate School of Medical Sciences, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503,, Japan.
| |
Collapse
|
16
|
Kimura Y, Nakai Y, Ino Y, Akiyama T, Moriyama K, Aiba T, Ohira T, Egashira K, Yamamoto Y, Takeda Y, Inaba Y, Ryo A, Saito T, Kumagai K, Hirano H. Changes in the astronaut serum proteome during prolonged spaceflight. Proteomics 2024; 24:e2300328. [PMID: 38185763 DOI: 10.1002/pmic.202300328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/01/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024]
Abstract
The molecular mechanisms associated with spaceflight-induced biological adaptations that may affect many healthy tissue functions remain poorly understood. In this study, we analyzed temporal changes in the serum proteome of six astronauts during prolonged spaceflight missions using quantitative comprehensive proteome analysis performed with the data-independent acquisition method of mass spectrometry (DIA-MS). All six astronauts participated in a spaceflight mission for approximately 6 months and showed a decreasing trend in T-scores at almost all sites where dual-energy X-ray absorptiometry scans were performed. DIA-MS successfully identified 624 nonredundant proteins in sera and further quantitative analysis for each sampling point provided information on serum protein profiles closely related to several time points before (pre-), during (in-), and after (post-) spaceflight. Changes in serum protein levels between spaceflight and on the ground suggest that abnormalities in bone metabolism are induced in astronauts during spaceflight. Furthermore, changes in the proteomic profile occurring during spaceflight suggest that serum levels of bone metabolism-related proteins, namely ALPL, COL1A1, SPP1, and POSTN, could serve as highly responsive indicators of bone metabolism status in spaceflight missions. This study will allow us to accelerate research to improve our understanding of the molecular mechanisms of biological adaptations associated with prolonged spaceflight.
Collapse
Affiliation(s)
- Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Yusuke Nakai
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Yoko Ino
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Tomoko Akiyama
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Kayano Moriyama
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Tatsuya Aiba
- Japan Aerospace Exploration Agency, Tsukuba, Japan
| | - Takashi Ohira
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kenji Egashira
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
- R&D Headquarters, LION Corporation, Tokyo, Japan
| | - Yu Yamamoto
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
- R&D Headquarters, LION Corporation, Tokyo, Japan
| | - Yuriko Takeda
- Department of Biostatistics, Yokohama City University School of Medicine, Yokohama, Japan
| | - Yutaka Inaba
- Department of Orthopaedic Surgery, Yokohama City University School of Medicine, Yokohama, Japan
| | - Akihide Ryo
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | | | - Ken Kumagai
- Department of Orthopaedic Surgery, Yokohama City University School of Medicine, Yokohama, Japan
| | - Hisashi Hirano
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| |
Collapse
|
17
|
Sauhta R, Makkar D, Siwach PS. The Sequential Therapy in Osteoporosis. Indian J Orthop 2023; 57:150-162. [PMID: 38107815 PMCID: PMC10721775 DOI: 10.1007/s43465-023-01067-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Background Osteoporosis management often involves a sequential treatment approach to optimize patient outcomes and minimize fracture risks. This strategy is tailored to individual patient characteristics, treatment responses, and fracture risk profiles. Methods A thorough literature review was systematically executed using prominent databases, including PubMed and EMBASE. The primary aim was to identify original articles and clinical trials evaluating the effectiveness of sequential therapy with anti-osteoporosis drugs, focusing on the period from 1995 to 2023. The analysis encompassed an in-depth examination of osteoporosis drugs, delineating their mechanisms of action, side effects, and current trends as elucidated in the literature. Results and Discussion Our study yielded noteworthy insights into the optimal sequencing of pharmacologic agents for the long-term treatment of patients necessitating multiple drugs. Notably, the achievement of optimal improvements in bone mass is observed when commencing treatment with an anabolic medication, followed by the subsequent utilization of an antiresorptive drug. This stands in contrast to initiating therapy with a bisphosphonate, which may potentially diminish outcomes in the post-anabolic intervention period. Furthermore, it has been discerned that caution should be exercised against transitioning from denosumab to PTH homologs due to the adverse effects of heightened bone turnover and sustained weakening of bone structure. Despite the absence of fracture data substantiating the implementation of integrated anabolic/antiresorptive pharmacotherapy, the incorporation of denosumab and teriparatide presents a potential avenue worthy of consideration for individuals at a heightened vulnerability to fragility fractures. Conclusions A judiciously implemented sequential treatment strategy in osteoporosis offers a flexible and tailored approach to address diverse clinical scenarios, optimizing fracture prevention and patient outcomes.
Collapse
Affiliation(s)
- Ravi Sauhta
- Department Orthopedics and Joint
Replacement, Artemis Hospitals, Gurgaon, India
| | | | | |
Collapse
|
18
|
Kemp TD, Besler BA, Gabel L, Boyd SK. Predicting Bone Adaptation in Astronauts during and after Spaceflight. Life (Basel) 2023; 13:2183. [PMID: 38004323 PMCID: PMC10672697 DOI: 10.3390/life13112183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
A method was previously developed to identify participant-specific parameters in a model of trabecular bone adaptation from longitudinal computed tomography (CT) imaging. In this study, we use these numerical methods to estimate changes in astronaut bone health during the distinct phases of spaceflight and recovery on Earth. Astronauts (N = 16) received high-resolution peripheral quantitative CT (HR-pQCT) scans of their distal tibia prior to launch (L), upon their return from an approximately six-month stay on the international space station (R+0), and after six (R+6) and 12 (R+12) months of recovery. To model trabecular bone adaptation, we determined participant-specific parameters at each time interval and estimated their bone structure at R+0, R+6, and R+12. To assess the fit of our model to this population, we compared static and dynamic bone morphometry as well as the Dice coefficient and symmetric distance at each measurement. In general, modeled and observed static morphometry were highly correlated (R2> 0.94) and statistically different (p < 0.0001) but with errors close to HR-pQCT precision limits. Dynamic morphometry, which captures rates of bone adaptation, was poorly estimated by our model (p < 0.0001). The Dice coefficient and symmetric distance indicated a reasonable local fit between observed and predicted bone volumes. This work applies a general and versatile computational framework to test bone adaptation models. Future work can explore and test increasingly sophisticated models (e.g., those including load or physiological factors) on a participant-specific basis.
Collapse
Affiliation(s)
- Tannis D. Kemp
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Bryce A. Besler
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Leigh Gabel
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Steven K. Boyd
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
19
|
Behan FP, Bull AMJ, Bennett A. Developing an exercise intervention to improve bone mineral density in traumatic amputees: protocol for a Delphi study. BMJ Open 2023; 13:e073062. [PMID: 37844985 PMCID: PMC10582893 DOI: 10.1136/bmjopen-2023-073062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/20/2023] [Indexed: 10/18/2023] Open
Abstract
INTRODUCTION Lower limb amputation results in reduced bone mineral density (BMD) on the amputated side. Exercise interventions have proven effective in improving BMD. However, such interventions have not been attempted in an amputee population. Exercises designed for people with intact limbs may not be suitable for amputees, due to joint loss and the mechanical interface between the exercise equipment and the femoral neck being mediated through a socket. Therefore, prior to intervention implementation, it would be prudent to leverage biomechanical knowledge and clinical expertise, alongside scientific evidence in related fields, to assist in intervention development. The objective of this study is to elicit expert opinion and gain consensus to define specific exercise prescription parameters to minimise/recover BMD loss in amputees. METHODS AND ANALYSIS The Delphi technique will be used to obtain consensus among international experts; this will be conducted remotely as an e-Delphi process. 10-15 experts from ≥2 continents and ≥5 countries will be identified through published research or clinical expertise. Round 1 will consist of participants being asked to rate their level of agreement with statements related to exercise prescription to improve amputee BMD using a 5-point Likert Scale. Agreement will be deemed as ≥3 on the Likert Scale. Open feedback will be allowed in round 1 and any statement which less than 50% of the experts agree with will be excluded. Round 2 will repeat the remaining statements with the addition of any input from round 1 feedback. Round 3 will allow participants to reflect on their round 2 responses considering statistical representation of group opinion and whether they wish to alter any of their responses accordingly. Statements reaching agreement rates of 70% or above among the experts will be deemed to reach a consensus and will be implemented in a future exercise interventional trial. ETHICS AND DISSEMINATION Ethical approval was received from Imperial College Research Ethics Committee (reference: 6463766). Delphi participants will be asked to provide digital informed consent. The findings will be disseminated through peer-reviewed publications.
Collapse
Affiliation(s)
- Fearghal P Behan
- Department of Bioengineering, Imperial College London, London, UK
| | - Anthony M J Bull
- Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, London, UK
| | - Alexander Bennett
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Loughborough, UK
| |
Collapse
|
20
|
Ge Y, Zhang B, Song J, Cao Q, Bu Y, Li P, Bai Y, Yang C, Xie M. Discovery of Salidroside as a Novel Non-Coding RNA Modulator to Delay Cellular Senescence and Promote BK-Dependent Apoptosis in Cerebrovascular Smooth Muscle Cells of Simulated Microgravity Rats. Int J Mol Sci 2023; 24:14531. [PMID: 37833978 PMCID: PMC10572139 DOI: 10.3390/ijms241914531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023] Open
Abstract
Cardiovascular aging has been reported to accelerate in spaceflights, which is a great potential risk to astronauts' health and performance. However, current exercise routines are not sufficient to reverse the adverse effects of microgravity exposure. Recently, salidroside (SAL), a valuable medicinal herb, has been demonstrated to display an important role for prevention and treatment in cardiovascular and other diseases. In the present work, Sprague-Dawley rats with four-week tail-suspension hindlimb-unloading were used to simulate microgravity effects on the cardiovascular system. We found that intragastrical administration of SAL not only significantly decreased the expressions of senescence biomarkers, such as P65 and P16, but also obviously increased the expressions of BK-dependent apoptotic genes, including the large-conductance calcium-activated K+ channel (BK), Bax, Bcl-2, and cleaved caspase-3, in vascular smooth muscle cells (VSMCs) in vivo and in vitro. In addition, relative non-coding RNAs were screened, and a luciferase assay identified that SAL increased apoptosis by activating LncRNA-FLORPAR, inhibiting miR-193, and then triggering the activity of the BK-α subunit. Our work indicated that SAL is a novel non-coding RNA modulator for regulating the LncRNA-FLORPAR sponging miR-193 pathway, which significantly promoted BK-dependent apoptosis and delayed cerebrovascular aging-like remodeling during simulated microgravity exposure. Our findings may provide a new approach to prevent cardiovascular aging in future spaceflights.
Collapse
Affiliation(s)
- Yiling Ge
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi’an 710032, China; (Y.G.); (B.Z.); (J.S.); (Q.C.); (Y.B.); (P.L.); (Y.B.)
| | - Bin Zhang
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi’an 710032, China; (Y.G.); (B.Z.); (J.S.); (Q.C.); (Y.B.); (P.L.); (Y.B.)
| | - Jibo Song
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi’an 710032, China; (Y.G.); (B.Z.); (J.S.); (Q.C.); (Y.B.); (P.L.); (Y.B.)
| | - Qinglin Cao
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi’an 710032, China; (Y.G.); (B.Z.); (J.S.); (Q.C.); (Y.B.); (P.L.); (Y.B.)
| | - Yingrui Bu
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi’an 710032, China; (Y.G.); (B.Z.); (J.S.); (Q.C.); (Y.B.); (P.L.); (Y.B.)
| | - Peijie Li
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi’an 710032, China; (Y.G.); (B.Z.); (J.S.); (Q.C.); (Y.B.); (P.L.); (Y.B.)
| | - Yungang Bai
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi’an 710032, China; (Y.G.); (B.Z.); (J.S.); (Q.C.); (Y.B.); (P.L.); (Y.B.)
| | - Changbin Yang
- Military Medical Innovation Center, Fourth Military Medical University, Xi’an 710032, China
| | - Manjiang Xie
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi’an 710032, China; (Y.G.); (B.Z.); (J.S.); (Q.C.); (Y.B.); (P.L.); (Y.B.)
| |
Collapse
|
21
|
Hughes JM, Guerriere KI, Popp KL, Castellani CM, Pasiakos SM. Exercise for optimizing bone health after hormone-induced increases in bone stiffness. Front Endocrinol (Lausanne) 2023; 14:1219454. [PMID: 37790607 PMCID: PMC10544579 DOI: 10.3389/fendo.2023.1219454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/17/2023] [Indexed: 10/05/2023] Open
Abstract
Hormones and mechanical loading co-regulate bone throughout the lifespan. In this review, we posit that times of increased hormonal influence on bone provide opportunities for exercise to optimize bone strength and prevent fragility. Examples include endogenous secretion of growth hormones and sex steroids that modulate adolescent growth and exogenous administration of osteoanabolic drugs like teriparatide, which increase bone stiffness, or its resistance to external forces. We review evidence that after bone stiffness is increased due to hormonal stimuli, mechanoadaptive processes follow. Specifically, exercise provides the mechanical stimulus necessary to offset adaptive bone resorption or promote adaptive bone formation. The collective effects of both decreased bone resorption and increased bone formation optimize bone strength during youth and preserve it later in life. These theoretical constructs provide physiologic foundations for promoting exercise throughout life.
Collapse
Affiliation(s)
- Julie M. Hughes
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Katelyn I. Guerriere
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Kristin L. Popp
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, United States
| | - Colleen M. Castellani
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, United States
| | - Stefan M. Pasiakos
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| |
Collapse
|
22
|
Hajj-Boutros G, Sonjak V, Faust A, Hedge E, Mastrandrea C, Lagacé JC, St-Martin P, Naz Divsalar D, Sadeghian F, Chevalier S, Liu-Ambrose T, Blaber AP, Dionne IJ, Duchesne S, Hughson R, Kontulainen S, Theou O, Morais JA. Impact of 14 Days of Bed Rest in Older Adults and an Exercise Countermeasure on Body Composition, Muscle Strength, and Cardiovascular Function: Canadian Space Agency Standard Measures. Gerontology 2023; 69:1284-1294. [PMID: 37717560 PMCID: PMC10634275 DOI: 10.1159/000534063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023] Open
Abstract
INTRODUCTION Head-down bed rest (HDBR) has long been used as an analog to microgravity, and it also enables studying the changes occurring with aging. Exercise is the most effective countermeasure for the deleterious effects of inactivity. The aim of this study was to investigate the efficacy of an exercise countermeasure in healthy older participants on attenuating musculoskeletal deconditioning, cardiovascular fitness level, and muscle strength during 14 days of HDBR as part of the standard measures of the Canadian Space Agency. METHODS Twenty-three participants (12 males and 11 females), aged 55-65 years, were admitted for a 26-day inpatient stay at the McGill University Health Centre. After 5 days of baseline assessment tests, they underwent 14 days of continuous HDBR followed by 7 days of recovery with repeated tests. Participants were randomized to passive physiotherapy or an exercise countermeasure during the HDBR period consisting of 3 sessions per day of either high-intensity interval training (HIIT) or low-intensity cycling or strength exercises for the lower and upper body. Peak aerobic power (V̇O2peak) was determined using indirect calorimetry. Body composition was assessed by dual-energy X-ray absorptiometry, and several muscle group strengths were evaluated using an adjustable chair dynamometer. A vertical jump was used to assess whole-body power output, and a tilt test was used to measure cardiovascular and orthostatic challenges. Additionally, changes in various blood parameters were measured as well as the effects of exercise countermeasure on these measurements. RESULTS There were no differences at baseline in main characteristics between the control and exercise groups. The exercise group maintained V̇O2peak levels similar to baseline, whereas it decreased in the control group following 14 days of HDBR. Body weight significantly decreased in both groups. Total and leg lean masses decreased in both groups. However, total body fat mass decreased only in the exercise group. Isometric and isokinetic knee extension muscle strength were significantly reduced in both groups. Peak velocity, flight height, and flight time were significantly reduced in both groups with HDBR. CONCLUSION In this first Canadian HDBR study in older adults, an exercise countermeasure helped maintain aerobic fitness and lean body mass without affecting the reduction of knee extension strength. However, it was ineffective in protecting against orthostatic intolerance. These results support HIIT as a promising approach to preserve astronaut health and functioning during space missions, and to prevent deconditioning as a result of hospitalization in older adults.
Collapse
Affiliation(s)
- Guy Hajj-Boutros
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada,
| | - Vita Sonjak
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Andréa Faust
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Eric Hedge
- Department of Kinesiology, Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| | - Carmelo Mastrandrea
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Jean-Christophe Lagacé
- Faculté des Sciences de l'activité Physique, Centre de Recherche sur le Vieillissement, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Philippe St-Martin
- Faculté des Sciences de l'activité Physique, Centre de Recherche sur le Vieillissement, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Donya Naz Divsalar
- Department of Biomedical Physiology and Kinesiology, Aerospace Physiology Laboratory, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Farshid Sadeghian
- Department of Biomedical Physiology and Kinesiology, Aerospace Physiology Laboratory, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Stéphanie Chevalier
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- School of Human Nutrition, McGill University, Montreal, Québec, Canada
| | - Teresa Liu-Ambrose
- Aging, Mobility and Cognitive Neuroscience Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew P Blaber
- Department of Biomedical Physiology and Kinesiology, Aerospace Physiology Laboratory, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Isabelle J Dionne
- Faculté des Sciences de l'activité Physique, Centre de Recherche sur le Vieillissement, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Simon Duchesne
- Department of Radiology and Nuclear Medicine, Université Laval, Quebec City, Québec, Canada
- CERVO Brain Research Center, Quebec City, Québec, Canada
| | - Richard Hughson
- Department of Kinesiology, Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| | - Saija Kontulainen
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Olga Theou
- Division of Geriatric Medicine, Queen Elizabeth II Health Sciences Centre, Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - José A Morais
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Division of Geriatric Medicine, Faculty of Medicine, McGill University, Montreal, Québec, Canada
| |
Collapse
|
23
|
Deymier AC, Deymier PA, Latypov M, Muralidharan K. Effect of stress on the dissolution/crystallization of apatite in aqueous solution: a thermochemical equilibrium study. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220242. [PMID: 37211040 DOI: 10.1098/rsta.2022.0242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/17/2022] [Indexed: 05/23/2023]
Abstract
Bone mineralization is critical to maintaining tissue mechanical function. The application of mechanical stress via exercise promotes bone mineralization via cellular mechanotransduction and increased fluid transport through the collagen matrix. However, due to its complex composition and ability to exchange ions with the surrounding body fluids, bone mineral composition and crystallization is also expected to respond to stress. Here, a combination of data from materials simulations, namely density functional theory and molecular dynamics, and experimental studies were input into an equilibrium thermodynamic model of bone apatite under stress in an aqueous solution based on the theory of thermochemical equilibrium of stressed solids. The model indicated that increasing uniaxial stress induced mineral crystallization. This was accompanied by a decrease in calcium and carbonate integration into the apatite solid. These results suggest that weight-bearing exercises can increase tissue mineralization via interactions between bone mineral and body fluid independent of cell and matrix behaviours, thus providing another mechanism by which exercise can improve bone health. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.
Collapse
Affiliation(s)
- Alix C Deymier
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, USA
| | - Pierre A Deymier
- Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Marat Latypov
- Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721, USA
- Graduate Interdisciplinary Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721, USA
| | - Krishna Muralidharan
- Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
24
|
Zhang Y, Wang L, Kang H, Lin CY, Fan Y. Unlocking the Therapeutic Potential of Irisin: Harnessing Its Function in Degenerative Disorders and Tissue Regeneration. Int J Mol Sci 2023; 24:ijms24076551. [PMID: 37047523 PMCID: PMC10095399 DOI: 10.3390/ijms24076551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Physical activity is well-established as an important protective factor against degenerative conditions and a promoter of tissue growth and renewal. The discovery of Fibronectin domain-containing protein 5 (FNDC5) as the precursor of Irisin in 2012 sparked significant interest in its potential as a diagnostic biomarker and a therapeutic agent for various diseases. Clinical studies have examined the correlation between plasma Irisin levels and pathological conditions using a range of assays, but the lack of reliable measurements for endogenous Irisin has led to uncertainty about its prognostic/diagnostic potential as an exercise surrogate. Animal and tissue-engineering models have shown the protective effects of Irisin treatment in reversing functional impairment and potentially permanent damage, but dosage ambiguities remain unresolved. This review provides a comprehensive examination of the clinical and basic studies of Irisin in the context of degenerative conditions and explores its potential as a therapeutic approach in the physiological processes involved in tissue repair/regeneration.
Collapse
Affiliation(s)
- Yuwei Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Lizhen Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Correspondence:
| | - Hongyan Kang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Chia-Ying Lin
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Department of Biomedical, Chemical & Environmental Engineering, University of Cincinnati, Cincinnati, OH 45267, USA
- Department of Orthopaedic Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100083, China
| |
Collapse
|
25
|
Homo sapiens—A Species Not Designed for Space Flight: Health Risks in Low Earth Orbit and Beyond, Including Potential Risks When Traveling beyond the Geomagnetic Field of Earth. Life (Basel) 2023; 13:life13030757. [PMID: 36983912 PMCID: PMC10051707 DOI: 10.3390/life13030757] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Homo sapiens and their predecessors evolved in the context of the boundary conditions of Earth, including a 1 g gravity and a geomagnetic field (GMF). These variables, plus others, led to complex organisms that evolved under a defined set of conditions and define how humans will respond to space flight, a circumstance that could not have been anticipated by evolution. Over the past ~60 years, space flight and living in low Earth orbit (LEO) have revealed that astronauts are impacted to varying degrees by such new environments. In addition, it has been noted that astronauts are quite heterogeneous in their response patterns, indicating that such variation is either silent if one remained on Earth, or the heterogeneity unknowingly contributes to disease development during aging or in response to insults. With the planned mission to deep space, humans will now be exposed to further risks from radiation when traveling beyond the influence of the GMF, as well as other potential risks that are associated with the actual loss of the GMF on the astronauts, their microbiomes, and growing food sources. Experimental studies with model systems have revealed that hypogravity conditions can influence a variety biological and physiological systems, and thus the loss of the GMF may have unanticipated consequences to astronauts’ systems, such as those that are electrical in nature (i.e., the cardiovascular system and central neural systems). As astronauts have been shown to be heterogeneous in their responses to LEO, they may require personalized countermeasures, while others may not be good candidates for deep-space missions if effective countermeasures cannot be developed for long-duration missions. This review will discuss several of the physiological and neural systems that are affected and how the emerging variables may influence astronaut health and functioning.
Collapse
|
26
|
Liu CJ, Yang X, Wang SH, Wu XT, Mao Y, Shi JW, Fan YB, Sun LW. Preventing Disused Bone Loss through Inhibition of Advanced Glycation End Products. Int J Mol Sci 2023; 24:ijms24054953. [PMID: 36902384 PMCID: PMC10003672 DOI: 10.3390/ijms24054953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Bone loss occurs in astronauts during long-term space flight, but the mechanisms are still unclear. We previously showed that advanced glycation end products (AGEs) were involved in microgravity-induced osteoporosis. Here, we investigated the improvement effects of blocking AGEs formation on microgravity-induced bone loss by using the AGEs formation inhibitor, irbesartan. To achieve this objective, we used a tail-suspended (TS) rat model to simulate microgravity and treated the TS rats with 50 mg/kg/day irbesartan, as well as the fluorochrome biomarkers injected into rats to label dynamic bone formation. To assess the accumulation of AGEs, pentosidine (PEN), non-enzymatic cross-links (NE-xLR), and fluorescent AGEs (fAGEs) were identified in the bone; 8-hydroxydeoxyguanosine (8-OHdG) was analyzed for the reactive oxygen species (ROS) level in the bone. Meanwhile, bone mechanical properties, bone microstructure, and dynamic bone histomorphometry were tested for bone quality assessment, and Osterix and TRAP were immunofluorescences stained for the activities of osteoblastic and osteoclastic cells. Results showed AGEs increased significantly and 8-OHdG expression in bone showed an upward trend in TS rat hindlimbs. The bone quality (bone microstructure and mechanical properties) and bone formation process (dynamic bone formation and osteoblastic cells activities) were inhibited after tail-suspension, and showed a correlation with AGEs, suggesting the elevated AGEs contributed to the disused bone loss. After being treated with irbesartan, the increased AGEs and 8-OHdG expression were significantly inhibited, suggesting irbesartan may reduce ROS to inhibit dicarbonyl compounds, thus suppressing AGEs production after tail-suspension. The inhibition of AGEs can partially alter the bone remodeling process and improve bone quality. Both AGEs accumulation and bone alterations almost occurred in trabecular bone but not in cortical bone, suggesting AGEs effects on bone remodeling under microgravity are dependent on the biological milieu.
Collapse
Affiliation(s)
| | - Xiao Yang
- Correspondence: (X.Y.); (L.-W.S.); Tel.: +86-13811922096 (X.Y.); Fax: +86-10-82339349 (L.-W.S.)
| | | | | | | | | | | | - Lian-Wen Sun
- Correspondence: (X.Y.); (L.-W.S.); Tel.: +86-13811922096 (X.Y.); Fax: +86-10-82339349 (L.-W.S.)
| |
Collapse
|
27
|
Computational modeling for osteogenic potential assessment of physical exercises based on loading-induced mechanobiological environments in cortical bone remodeling. Biomech Model Mechanobiol 2023; 22:281-295. [PMID: 36305993 DOI: 10.1007/s10237-022-01647-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/08/2022] [Indexed: 11/02/2022]
Abstract
Osteoporosis and disuse can cause bone loss which reduces the weight-bearing strength of long bones. Physical exercise or mechanical loading prevents bone loss as it promotes bone modeling through osteogenesis, i.e., new bone formation. Several studies have observed distinct bone remodeling responses to physical exercises; nevertheless, the underlying mechanism behind such responses is not well established. Loading-induced pore-pressure and fluid motion act as mechanobiological stimuli to bone cells namely osteocytes which further initiate osteoactivities. The shape of loading waveforms also affects the poromechanical environment of bone. Accordingly, the present study hypothesizes that loading waveforms associated with physiological exercises may expose the bone to different mechanobiological stimuli resulting in distinct bone remodeling. A poromechanical finite element model is developed to compute pore-pressure and interstitial fluid velocity in femoral cortical bone tissue (healthy and osteoporotic) subjected to loading waveforms of three physiological exercises namely walking, running, and jumping. The model also computes the mechanobiological stimulus as a function of fluid velocity. The outcomes indicate that pore-pressure and fluid velocity decrease significantly in osteoporotic bone tissue in comparison with healthy tissue. Jumping and running both improve pore-pressure and fluid velocity in healthy and osteoporotic tissues, whereas running significantly enhances mechanobiological stimulus in both the tissues which indicates a possible explanation for distinct bone remodeling to different physical exercises. The present work also suggests that running may be recommended as a potential biomechanical therapeutic to prevent bone loss. Overall, the present work contributes to the area of orthopedic research to develop effective designs of prophylactic exercises to improve bone health.
Collapse
|
28
|
Zhang M, Gong H, Zhang M. Prediction of femoral strength of elderly men based on quantitative computed tomography images using machine learning. J Orthop Res 2023; 41:170-182. [PMID: 35393726 DOI: 10.1002/jor.25334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023]
Abstract
Hip fracture is the most common complication of osteoporosis, and its major contributor is compromised femoral strength. This study aimed to develop practical machine learning models based on clinical quantitative computed tomography (QCT) images for predicting proximal femoral strength. Eighty subjects with entire QCT data of the right hip region were randomly selected from the full MrOS cohorts, and their proximal femoral strengths were calculated by QCT-based finite element analysis (QCT/FEA). A total of 50 parameters of each femur were extracted from QCT images as the candidate predictors of femoral strength, including grayscale distribution, regional cortical bone mapping (CBM) measurements, and geometric parameters. These parameters were simplified by using feature selection and dimensionality reduction. Support vector regression (SVR) was used as the machine learning algorithm to develop the prediction models, and the performance of each SVR model was quantified by the mean squared error (MSE), the coefficient of determination (R2 ), the mean bias, and the SD of bias. For feature selection, the best prediction performance of SVR models was achieved by integrating the grayscale value of 30% percentile and specific regional CBM measurements (MSE ≤ 0.016, R2 ≥ 0.93); and for dimensionality reduction, the best prediction performance of SVR models was achieved by extracting principal components with eigenvalues greater than 1.0 (MSE ≤ 0.014, R2 ≥ 0.93). The femoral strengths predicted from the well-trained SVR models were in good agreement with those derived from QCT/FEA. This study provided effective machine learning models for femoral strength prediction, and they may have great potential in clinical bone health assessments.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Engineering Mechanics, Nanling Campus, Jilin University, Changchun, China
| | - He Gong
- Department of Engineering Mechanics, Nanling Campus, Jilin University, Changchun, China
| | - Ming Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
29
|
Chen X, Yang J, Lv H, Che J, Wang J, Zhang B, Shang P. The potential benefits of melatonin in the prevention and treatment of bone loss in response to microgravity. ACTA ASTRONAUTICA 2023; 202:48-57. [DOI: 10.1016/j.actaastro.2022.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
|
30
|
Chen X, Yang J, Lv H, Che J, Wang J, Zhang B, Shang P. The potential benefits of melatonin in the prevention and treatment of bone loss in response to microgravity. ACTA ASTRONAUTICA 2023; 202:48-57. [DOI: org/10.1016/j.actaastro.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
|
31
|
Krittanawong C, Singh NK, Scheuring RA, Urquieta E, Bershad EM, Macaulay TR, Kaplin S, Dunn C, Kry SF, Russomano T, Shepanek M, Stowe RP, Kirkpatrick AW, Broderick TJ, Sibonga JD, Lee AG, Crucian BE. Human Health during Space Travel: State-of-the-Art Review. Cells 2022; 12:cells12010040. [PMID: 36611835 PMCID: PMC9818606 DOI: 10.3390/cells12010040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The field of human space travel is in the midst of a dramatic revolution. Upcoming missions are looking to push the boundaries of space travel, with plans to travel for longer distances and durations than ever before. Both the National Aeronautics and Space Administration (NASA) and several commercial space companies (e.g., Blue Origin, SpaceX, Virgin Galactic) have already started the process of preparing for long-distance, long-duration space exploration and currently plan to explore inner solar planets (e.g., Mars) by the 2030s. With the emergence of space tourism, space travel has materialized as a potential new, exciting frontier of business, hospitality, medicine, and technology in the coming years. However, current evidence regarding human health in space is very limited, particularly pertaining to short-term and long-term space travel. This review synthesizes developments across the continuum of space health including prior studies and unpublished data from NASA related to each individual organ system, and medical screening prior to space travel. We categorized the extraterrestrial environment into exogenous (e.g., space radiation and microgravity) and endogenous processes (e.g., alteration of humans' natural circadian rhythm and mental health due to confinement, isolation, immobilization, and lack of social interaction) and their various effects on human health. The aim of this review is to explore the potential health challenges associated with space travel and how they may be overcome in order to enable new paradigms for space health, as well as the use of emerging Artificial Intelligence based (AI) technology to propel future space health research.
Collapse
Affiliation(s)
- Chayakrit Krittanawong
- Department of Medicine and Center for Space Medicine, Section of Cardiology, Baylor College of Medicine, Houston, TX 77030, USA
- Translational Research Institute for Space Health, Houston, TX 77030, USA
- Department of Cardiovascular Diseases, New York University School of Medicine, New York, NY 10016, USA
- Correspondence: or (C.K.); (B.E.C.); Tel.: +1-713-798-4951 (C.K.); +1-281-483-0123 (B.E.C.)
| | - Nitin Kumar Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | - Emmanuel Urquieta
- Translational Research Institute for Space Health, Houston, TX 77030, USA
- Department of Emergency Medicine and Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric M. Bershad
- Department of Neurology, Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Scott Kaplin
- Department of Cardiovascular Diseases, New York University School of Medicine, New York, NY 10016, USA
| | - Carly Dunn
- Department of Dermatology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephen F. Kry
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Marc Shepanek
- Office of the Chief Health and Medical Officer, NASA, Washington, DC 20546, USA
| | | | - Andrew W. Kirkpatrick
- Department of Surgery and Critical Care Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Jean D. Sibonga
- Division of Biomedical Research and Environmental Sciences, NASA Lyndon B. Johnson Space Center, Houston, TX 77058, USA
| | - Andrew G. Lee
- Department of Ophthalmology, University of Texas Medical Branch School of Medicine, Galveston, TX 77555, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Ophthalmology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Ophthalmology, Texas A and M College of Medicine, College Station, TX 77807, USA
- Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY 10021, USA
| | - Brian E. Crucian
- National Aeronautics and Space Administration (NASA) Johnson Space Center, Human Health and Performance Directorate, Houston, TX 77058, USA
- Correspondence: or (C.K.); (B.E.C.); Tel.: +1-713-798-4951 (C.K.); +1-281-483-0123 (B.E.C.)
| |
Collapse
|
32
|
Are Skeletal Muscle Changes during Prolonged Space Flights Similar to Those Experienced by Frail and Sarcopenic Older Adults? LIFE (BASEL, SWITZERLAND) 2022; 12:life12122139. [PMID: 36556504 PMCID: PMC9781047 DOI: 10.3390/life12122139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Microgravity exposure causes several physiological and psychosocial alterations that challenge astronauts' health during space flight. Notably, many of these changes are mostly related to physical inactivity influencing different functional systems and organ biology, in particular the musculoskeletal system, dramatically resulting in aging-like phenotypes, such as those occurring in older persons on Earth. In this sense, sarcopenia, a syndrome characterized by the loss in muscle mass and strength due to skeletal muscle unloading, is undoubtedly one of the most critical aging-like adverse effects of microgravity and a prevalent problem in the geriatric population, still awaiting effective countermeasures. Therefore, there is an urgent demand to identify clinically relevant biological markers and to underline molecular mechanisms behind these effects that are still poorly understood. From this perspective, a lesson from Geroscience may help tailor interventions to counteract the adverse effects of microgravity. For instance, decades of studies in the field have demonstrated that in the older people, the clinical picture of sarcopenia remarkably overlaps (from a clinical and biological point of view) with that of frailty, primarily when referred to the physical function domain. Based on this premise, here we provide a deeper understanding of the biological mechanisms of sarcopenia and frailty, which in aging are often considered together, and how these converge with those observed in astronauts after space flight.
Collapse
|
33
|
Seoane-Viaño I, Ong JJ, Basit AW, Goyanes A. To infinity and beyond: Strategies for fabricating medicines in outer space. Int J Pharm X 2022; 4:100121. [PMID: 35782363 PMCID: PMC9240807 DOI: 10.1016/j.ijpx.2022.100121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023] Open
Abstract
Recent advancements in next generation spacecrafts have reignited public excitement over life beyond Earth. However, to safeguard the health and safety of humans in the hostile environment of space, innovation in pharmaceutical manufacturing and drug delivery deserves urgent attention. In this review/commentary, the current state of medicines provision in space is explored, accompanied by a forward look on the future of pharmaceutical manufacturing in outer space. The hazards associated with spaceflight, and their corresponding medical problems, are first briefly discussed. Subsequently, the infeasibility of present-day medicines provision systems for supporting deep space exploration is examined. The existing knowledge gaps on the altered clinical effects of medicines in space are evaluated, and suggestions are provided on how clinical trials in space might be conducted. An envisioned model of on-site production and delivery of medicines in space is proposed, referencing emerging technologies (e.g. Chemputing, synthetic biology, and 3D printing) being developed on Earth that may be adapted for extra-terrestrial use. This review concludes with a critical analysis on the regulatory considerations necessary to facilitate the adoption of these technologies and proposes a framework by which these may be enforced. In doing so, this commentary aims to instigate discussions on the pharmaceutical needs of deep space exploration, and strategies on how these may be met. Space is a hostile environment that threatens human health and drug stability. Data on the behaviour of medicines in space is critical but lacking. Novel drug manufacturing and delivery strategies are needed to safeguard crewmembers’ safety. Chemputing, synthetic biology, and 3D printing are examples of such emerging technologies. A regulatory framework for space medicines must be implemented to assure quality.
Collapse
Affiliation(s)
- Iria Seoane-Viaño
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Paraquasil Group (GI-2109), Faculty of Pharmacy, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
| | - Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK
- Corresponding authors at: Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, The Institute of Materials (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, 15782, Spain
- Corresponding authors at: Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
34
|
Bezerra A, Freitas L, Maciel L, Fonseca H. Bone Tissue Responsiveness To Mechanical Loading-Possible Long-Term Implications of Swimming on Bone Health and Bone Development. Curr Osteoporos Rep 2022; 20:453-468. [PMID: 36401774 DOI: 10.1007/s11914-022-00758-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE OF REVIEW To revisit the bone tissue mechanotransduction mechanisms behind the bone tissue response to mechanical loading and, within this context, explore the possible negative influence of regular swimming practice on bone health, particularly during the growth and development period. RECENT FINDINGS Bone is a dynamic tissue, responsive to mechanical loading and unloading, being these adaptative responses more intense during the growth and development period. Cross-sectional studies usually report a lower bone mass in swimmers compared to athletes engaged in weigh-bearing sports. However, studies with animal models show contradictory findings about the effect of swimming on bone health, highlighting the need for longitudinal studies. Due to its microgravity characteristics, swimming seems to impair bone mass, but mostly at the lower limbs. It is unkown if there is a causal relationship between swimming and low BMD or if other confounding factors, such as a natural selection whithin the sport, are the cause.
Collapse
Affiliation(s)
- Andréa Bezerra
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADE/UP), 4200-450, Porto, Portugal.
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600, Porto, Portugal.
| | - Laura Freitas
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADE/UP), 4200-450, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600, Porto, Portugal
| | - Leonardo Maciel
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADE/UP), 4200-450, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600, Porto, Portugal
- Department of Physiotherapy, Federal University of Sergipe, Campus Lagarto, Lagarto, Brazil
| | - Hélder Fonseca
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADE/UP), 4200-450, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600, Porto, Portugal
| |
Collapse
|
35
|
Abitante TJ, Bouxsein ML, Duda KR, Newman DJ. Potential of Neuromuscular Electrical Stimulation as a Bone Loss Countermeasure in Microgravity. Aerosp Med Hum Perform 2022; 93:774-782. [DOI: 10.3357/amhp.6101.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION: For future long-duration spaceflight missions, additional methods of loading the skeleton may be required to supplement exercise to minimize bone loss. Neuromuscular electrical stimulation (NMES) can elicit muscular contractions that create strain on bone. However,
the potential effectiveness of NMES on the proximal femur during disuse is not known.METHODS: We measured the maximum isometric force of NMES-induced contractions of the rectus femoris and the hamstrings of 10 subjects (5 male, 5 female), sitting with the hips and knees at 90 degrees
of flexion. We employed 2-D biomechanical models of the knee and hip to estimate the hip joint reaction forces, applied these forces to a generic femur finite element analysis model, and qualitatively compared the peak principal strains of the proximal femoral neck to the peak strains modeled
in previous studies for other forms of exercise.RESULTS: The average peak tensile/compressive strains were 1380 ± 719 µε/-2179 ± 1130 µε and 573 ± 345 µε/-900 ± 543 µε for the male and female subjects, respectively.
While results varied between studies, the strains achieved during NMES generally were comparable to those achieved during walking or stairs, with some individuals matching higher intensity activities.DISCUSSION: This study demonstrated that isometric NMES contractions of the thigh
muscles can create strain in the proximal femoral neck similar to that achieved during low impact activities. While NMES alone will unlikely create a sufficient daily strain stimulus to prevent bone loss, it will likely improve the current spaceflight countermeasures by adding more frequent
loading throughout the day.Abitante TJ, Bouxsein ML, Duda KR, Newman DJ. Potential of neuromuscular electrical stimulation as a bone loss countermeasure in microgravity. Aerosp Med Hum Perform. 2022; 93(11):774–782.
Collapse
|
36
|
Yang X, Li P, Lei J, Feng Y, Tang L, Guo J. Integrated Application of Low-Intensity Pulsed Ultrasound in Diagnosis and Treatment of Atrophied Skeletal Muscle Induced in Tail-Suspended Rats. Int J Mol Sci 2022; 23:10369. [PMID: 36142280 PMCID: PMC9498990 DOI: 10.3390/ijms231810369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Long-term exposure to microgravity leads to muscle atrophy, which is primarily characterized by a loss of muscle mass and strength and reduces one′s functional capability. A weightlessness-induced muscle atrophy model was established using the tail suspension test to evaluate the intervention or therapeutic effect of low-intensity pulsed ultrasound (LIPUS) on muscle atrophy. The rats were divided into five groups at random: the model group (B), the normal control group (NC), the sham-ultrasound control group (SUC), the LIPUS of 50 mW/cm2 radiation group (50 UR), and the LIPUS of 150 mW/cm2 radiation group (150 UR). Body weight, gastrocnemius weight, muscle force, and B-ultrasound images were used to evaluate muscle atrophy status. Results showed that the body weight, gastrocnemius weight, and image entropy of the tail suspension group were significantly lower than those of the control group (p < 0.01), confirming the presence of muscle atrophy. Although the results show that the muscle force and two weights of the rats stimulated by LIPUS are still much smaller than those of the NC group, they are significantly different from those of the pure tail suspension B group (p < 0.01). On day 14, the gastrocnemius forces of the rats exposed to 50 mW/cm2 and 150 mW/cm2 LIPUS were 150% and 165% of those in the B group. The gastrocnemius weights were both 135% of those in the B group. This suggests that ultrasound can, to a certain extent, prevent muscular atrophy.
Collapse
Affiliation(s)
- Xuebing Yang
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi’an 710119, China
| | - Pan Li
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi’an 710119, China
| | - Jiying Lei
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi’an 710119, China
- Junior Middle Department, Shanxi Modern Bilingual School, Taiyuan 030031, China
| | - Yichen Feng
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi’an 710119, China
| | - Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi’an 710119, China
| | - Jianzhong Guo
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
37
|
Frett T, Lecheler L, Speer M, Marcos D, Pesta D, Tegtbur U, Schmitz MT, Jordan J, Green DA. Comparison of trunk muscle exercises in supine position during short arm centrifugation with 1 g at centre of mass and upright in 1 g. Front Physiol 2022; 13:955312. [PMID: 36060705 PMCID: PMC9428406 DOI: 10.3389/fphys.2022.955312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
Spaceflight is associated with reduced antigravitational muscle activity, which results in trunk muscle atrophy and may contribute to post-flight postural and spinal instability. Exercise in artificial gravity (AG) performed via short-arm human centrifugation (SAHC) is a promising multi-organ countermeasure, especially to mitigate microgravity-induced postural muscle atrophy. Here, we compared trunk muscular activity (mm. rectus abdominis, ext. obliques and multifidi), cardiovascular response and tolerability of trunk muscle exercises performed during centrifugation with 1 g at individual center of mass on a SAHC against standard upright exercising. We recorded heart rate, blood pressure, surface trunk muscle activity, motion sickness and rating of perceived exertion (BORG) of 12 participants (8 male/4 female, 34 ± 7 years, 178.4 ± 8.2 cm, 72.1 ± 9.6 kg). Heart rate was significantly increased (p < 0.001) during exercises without differences in conditions. Systolic blood pressure was higher (p < 0.001) during centrifugation with a delayed rise during exercises in upright condition. Diastolic blood pressure was lower in upright (p = 0.018) compared to counter-clockwise but not to clockwise centrifugation. Target muscle activation were comparable between conditions, although activity of multifidi was lower (clockwise: p = 0.003, counter-clockwise: p < 0.001) and rectus abdominis were higher (clockwise: p = 0.0023, counter-clockwise: < 0.001) during centrifugation in one exercise type. No sessions were terminated, BORG scoring reflected a relevant training intensity and no significant increase in motion sickness was reported during centrifugation. Thus, exercising trunk muscles during centrifugation generates comparable targeted muscular and heart rate response and appears to be well tolerated. Differences in blood pressure were relatively minor and not indicative of haemodynamic challenge. SAHC-based muscle training is a candidate to reduce microgravity-induced inter-vertebral disc pathology and trunk muscle atrophy. However, further optimization is required prior to performance of a training study for individuals with trunk muscle atrophy/dysfunction.
Collapse
Affiliation(s)
- Timo Frett
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
- *Correspondence: Timo Frett,
| | - Leopold Lecheler
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | | | | | - Dominik Pesta
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Uwe Tegtbur
- Hannover Medical School, Institutes of Sports Medicine, Hannover, Germany
| | - Marie-Therese Schmitz
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
- Informatics and Epidemiology, Institute of Medical Biometry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jens Jordan
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
- Chair of Aerospace Medicine, University of Cologne, Cologne, Germany
| | - David Andrew Green
- European Space Agency, Cologne, Germany
- King’s College London, London, United Kingdom
- Space Medicine Team, European Astronaut Centre, European Space Agency, Cologne, Germany
- KBRwyle GmbH, Cologne, Germany
| |
Collapse
|
38
|
Gabel L, Liphardt AM, Hulme PA, Heer M, Zwart SR, Sibonga JD, Smith SM, Boyd SK. Incomplete recovery of bone strength and trabecular microarchitecture at the distal tibia 1 year after return from long duration spaceflight. Sci Rep 2022; 12:9446. [PMID: 35773442 PMCID: PMC9247070 DOI: 10.1038/s41598-022-13461-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
Determining the extent of bone recovery after prolonged spaceflight is important for understanding risks to astronaut long-term skeletal health. We examined bone strength, density, and microarchitecture in seventeen astronauts (14 males; mean 47 years) using high-resolution peripheral quantitative computed tomography (HR-pQCT; 61 μm). We imaged the tibia and radius before spaceflight, at return to Earth, and after 6- and 12-months recovery and assessed biomarkers of bone turnover and exercise. Twelve months after flight, group median tibia bone strength (F.Load), total, cortical, and trabecular bone mineral density (BMD), trabecular bone volume fraction and thickness remained − 0.9% to − 2.1% reduced compared with pre-flight (p ≤ 0.001). Astronauts on longer missions (> 6-months) had poorer bone recovery. For example, F.Load recovered by 12-months post-flight in astronauts on shorter (< 6-months; − 0.4% median deficit) but not longer (− 3.9%) missions. Similar disparities were noted for total, trabecular, and cortical BMD. Altogether, nine of 17 astronauts did not fully recover tibia total BMD after 12-months. Astronauts with incomplete recovery had higher biomarkers of bone turnover compared with astronauts whose bone recovered. Study findings suggest incomplete recovery of bone strength, density, and trabecular microarchitecture at the weight-bearing tibia, commensurate with a decade or more of terrestrial age-related bone loss.
Collapse
Affiliation(s)
- Leigh Gabel
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Anna-Maria Liphardt
- Department of Internal Medicine, Rheumatology and Immunology, German Centre for Immune Therapy, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Paul A Hulme
- McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Martina Heer
- IU International University of Applied Sciences Erfurt and Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany
| | - Sara R Zwart
- Department of Preventive Medicine and Population Health, University of Texas Medical Branch, Galveston, TX, USA
| | - Jean D Sibonga
- Human Heath and Performance Directorate, NASA Lyndon B. Johnson Space Center, Houston, USA
| | - Scott M Smith
- Human Heath and Performance Directorate, NASA Lyndon B. Johnson Space Center, Houston, USA
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada. .,Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
39
|
αKlotho decreases after reduced weight-bearing from both spaceflight and hindlimb unloading. NPJ Microgravity 2022; 8:18. [PMID: 35654945 PMCID: PMC9163032 DOI: 10.1038/s41526-022-00203-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Alpha(α)Klotho, a soluble transmembrane protein, facilitates calcium-phosphorus homeostasis through feedback between bone and kidney and is a potential systemic biomarker for bone-kidney health during spaceflight. We determined if: (1) plasma αKlotho was reduced after both spaceflight aboard the ISS and hindlimb unloading (HU); and (2) deficiency could be reversed with exercise. Both spaceflight and HU lowered circulating plasma αKlotho: plasma αKlotho recovered with exercise after HU.
Collapse
|
40
|
Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrão ME, McAdam JS, O’Bryan SM, Ramos S, Roberts LM, Vega RB, Goodpaster BH, Bamman MM, Buford TW. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. Compr Physiol 2022; 12:3193-3279. [PMID: 35578962 PMCID: PMC9186317 DOI: 10.1002/cphy.c200033] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Liliana C. Baptista
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Margaret B. Bell
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin Drummer
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara A. Harper
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manoel E. Lixandrão
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy S. McAdam
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samia M. O’Bryan
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sofhia Ramos
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Lisa M. Roberts
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rick B. Vega
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Bret H. Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Marcas M. Bamman
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Thomas W. Buford
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
41
|
Xu M, Du J, Cui J, Zhang S, Zhang S, Deng M, Zhang W, Li H, Yu Z. Cell-Free Fat Extract Prevents Tail Suspension–Induced Bone Loss by Inhibiting Osteocyte Apoptosis. Front Bioeng Biotechnol 2022; 10:818572. [PMID: 35174144 PMCID: PMC8842243 DOI: 10.3389/fbioe.2022.818572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: As the space field has developed and our population ages, people engaged in space travel and those on prolonged bed rest are at increasing risk for bone loss and fractures. Disuse osteoporosis occurs frequently in these instances, for which the currently available anti-osteoporosis agents are far from satisfactory and have undesirable side effects. CEFFE is a cell-free fraction isolated from nanofat that is enriched with a variety of growth factors, and we aim to investigate its potential therapeutic effects on disuse osteoporosis. Methods: A tail suspension–induced osteoporosis model was applied in this study. Three weeks after tail suspension, CEFFE was intraperitoneally injected, and PBS was used as a control. The trabecular and cortical bone microstructures of the tibia in each group were assessed by μCT after 4 weeks of administration. Osteocyte lacunar-canalicularity was observed by HE and silver staining. In vitro, MLO-Y4 cell apoptosis was induced by reactive oxygen species (ROSUP). TUNEL staining and flow cytometry were used to detect apoptosis. CCK-8 was used to detect cell proliferation, and Western blotting was used to detect MAPK signaling pathway changes. Results: CEFFE increased the bone volume (BV/TV) and trabecular number (Tb.N) of the trabecular bone and increased the thickness of the cortical bone. HE and silver staining results showed that CEFFE reduced the number of empty lacunae and improved the lacuna-canalicular structure. CEFFE promoted osteocyte proliferative capacity in a dose-dependent manner. CEFFE protected MLO-Y4 from apoptosis by activating the serine/threonine-selective protein kinase (ERK) signaling pathways. Conclusion: CEFFE attenuated immobilization-induced bone loss by decreasing osteocyte apoptosis. CEFFE increased the survival of osteocytes and inhibited osteocyte apoptosis by activating the ERK signaling pathway in vitro.
Collapse
Affiliation(s)
- Mingming Xu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth Peoples Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingke Du
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth Peoples Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Junqi Cui
- Department of Pathology, Shanghai Ninth Peoples Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangyan Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth Peoples Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuhong Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth Peoples Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingwu Deng
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjie Zhang
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanjun Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth Peoples Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Hanjun Li, ; Zhifeng Yu,
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth Peoples Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Hanjun Li, ; Zhifeng Yu,
| |
Collapse
|
42
|
Numerical characterization of astronaut CaOx renal stone incidence rates to quantify in-flight and post-flight relative risk. NPJ Microgravity 2022; 8:2. [PMID: 35091560 PMCID: PMC8799707 DOI: 10.1038/s41526-021-00187-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022] Open
Abstract
Changes in urine chemistry potentially alter the risk of renal stone formation in astronauts. Quantifying spaceflight renal stone incidence risk compared to pre-flight levels remains a significant challenge for assessing the appropriate vehicle, mission, and countermeasure design. A computational biochemistry model representing CaOx crystal precipitation, growth, and agglomeration is combined with a probabilistic analysis to predict the in- and post-flight CaOx renal stone incidence risk ratio (IRR) relative to pre-flight values using 1517 astronaut 24-h urine chemistries. Our simulations predict that in-flight fluid intake alone would need to increase from current prescriptions of 2.0–2.5 L/day to ~3.2 L/day to approach the CaOx IRR of the pre-flight population. Bone protective interventions would reduce CaOx risk to pre-flight levels if Ca excretion alone is reduced to <150 mg/day or if current levels are diminished to 190 mg/day in combination with increasing fluid intake to 2.5–2.7 L/day. This analysis provides a quantitative risk assessment that can influence the critical balance between engineering and astronaut health requirements.
Collapse
|
43
|
Che J, Ren W, Chen X, Wang F, Zhang G, Shang P. PTH 1-34 promoted bone formation by regulating iron metabolism in unloading-induced bone loss. Front Endocrinol (Lausanne) 2022; 13:1048818. [PMID: 36818465 PMCID: PMC9933505 DOI: 10.3389/fendo.2022.1048818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/31/2022] [Indexed: 02/05/2023] Open
Abstract
PTH 1-34 (teriparatide) is approved by FDA for the treatment of postmenopausal osteoporosis. Iron overload is a major contributing factor for bone loss induced by unloading. Whether iron metabolism is involved in the regulation of PTH 1-34 on unloading-induced osteoporosis has not yet been reported. Here, we found that PTH 1-34 attenuated bone loss in unloading mice. PTH 1-34 regulated the disturbance of iron metabolism in unloading mice by activating Nrf2 and further promoting hepcidin expression in the liver. In addition, the Nrf2 inhibitor selectively blocked hepcidin expression in the liver of unloading mice, which neutralized the inhibitory effect of PTH 1-34 on bone loss and the recovery of iron metabolism in unloading mice. Finally, we found that PTH 1-34 promoted the differentiation and inhibited apoptosis of osteoblasts by regulating iron metabolism and maintaining redox balance under unloading conditions. Our results suggested that PTH 1-34 promoted bone formation by regulating iron metabolism under unloading conditions.
Collapse
Affiliation(s)
- Jingmin Che
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Weihao Ren
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, China
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Xin Chen
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Fang Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Gejing Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, China
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- *Correspondence: Peng Shang,
| |
Collapse
|
44
|
Hart DA. Learning From Human Responses to Deconditioning Environments: Improved Understanding of the "Use It or Lose It" Principle. Front Sports Act Living 2021; 3:685845. [PMID: 34927066 PMCID: PMC8677937 DOI: 10.3389/fspor.2021.685845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
Physical activity, mobility or patterned mobility (i.e., exercise) is intrinsic to the functioning of Homo sapiens, and required for maintenance of health. Thus, systems such as the musculoskeletal and cardiovascular systems appear to require constant reinforcement or conditioning to maintain integrity. Loss of conditioning or development of chronic deconditioning can have multiple consequences. The study of different types of deconditioning and their prevention or reversal can offer a number of clues to the regulation of these systems and point to how deconditioning poses risk for disease development and progression. From the study of deconditioning associated with spaceflight, a condition not predicted by evolution, prolonged bedrest, protracted sedentary behavior, as well as menopause and obesity and their consequences, provide a background to better understand human heterogeneity and how physical fitness may impact the risks for chronic conditions subsequent to the deconditioning. The effectiveness of optimized physical activity and exercise protocols likely depend on the nature of the deconditioning, the sex and genetics of the individual, whether one is addressing prevention of deconditioning-associated disease or disease-associated progression, and whether it is focused on acute or chronic deconditioning associated with different forms of deconditioning. While considerable research effort has gone into preventing deconditioning, the study of the process of deconditioning and its endpoints can provide clues to the regulation of the affected systems and their contributions to human heterogeneity that have been framed by the boundary conditions of Earth during evolution and the "use it or lose it" principle of regulation. Such information regarding heterogeneity that is elaborated by the study of deconditioning environments could enhance the effectiveness of individualized interventions to prevent deconditions or rescue those who have become deconditioned.
Collapse
Affiliation(s)
- David A Hart
- Bone and Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB, Canada.,Department of Surgery, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Family Practice, Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW We re-evaluated clinical applications of image-to-FE models to understand if clinical advantages are already evident, which proposals are promising, and which questions are still open. RECENT FINDINGS CT-to-FE is useful in longitudinal treatment evaluation and groups discrimination. In metastatic lesions, CT-to-FE strength alone accurately predicts impending femoral fractures. In osteoporosis, strength from CT-to-FE or DXA-to-FE predicts incident fractures similarly to DXA-aBMD. Coupling loads and strength (possibly in dynamic models) may improve prediction. One promising MRI-to-FE workflow may now be tested on clinical data. Evidence of artificial intelligence usefulness is appearing. CT-to-FE is already clinical in opportunistic CT screening for osteoporosis, and risk of metastasis-related impending fractures. Short-term keys to improve image-to-FE in osteoporosis may be coupling FE with fall risk estimates, pool FE results with other parameters through robust artificial intelligence approaches, and increase reproducibility and cross-validation of models. Modeling bone modifications over time and bone fracture mechanics are still open issues.
Collapse
Affiliation(s)
- Enrico Schileo
- Bioengineering and Computing Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Fulvia Taddei
- Bioengineering and Computing Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
46
|
Pollock RD, Hodkinson PD, Smith TG. Oh G: The x, y and z of human physiological responses to acceleration. Exp Physiol 2021; 106:2367-2384. [PMID: 34730860 DOI: 10.1113/ep089712] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/18/2021] [Indexed: 01/06/2023]
Abstract
NEW FINDINGS What is the topic of this review? This review focuses on the main physiological challenges associated with exposure to acceleration in the Gx, Gy and Gz directions and to microgravity. What advances does it highlight? Our current understanding of the physiology of these environments and latest strategies to protect against them are discussed in light of the limited knowledge we have in some of these areas. ABSTRACT The desire to go higher, faster and further has taken us to environments where the accelerations placed on our bodies far exceed or are much lower than that attributable to Earth's gravity. While on the ground, racing drivers of the fastest cars are exposed to high degrees of lateral acceleration (Gy) during cornering. In the air, while within the confines of the lower reaches of Earth's atmosphere, fast jet pilots are routinely exposed to high levels of acceleration in the head-foot direction (Gz). During launch and re-entry of suborbital and orbital spacecraft, astronauts and spaceflight participants are exposed to high levels of chest-back acceleration (Gx), whereas once in space the effects of gravity are all but removed (termed microgravity, μG). Each of these environments has profound effects on the homeostatic mechanisms within the body and can have a serious impact, not only for those with underlying pathology but also for healthy individuals. This review provides an overview of the main challenges associated with these environments and our current understanding of the physiological and pathophysiological adaptations to them. Where relevant, protection strategies are discussed, with the implications of our future exposure to these environments also being considered.
Collapse
Affiliation(s)
- Ross D Pollock
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Peter D Hodkinson
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Thomas G Smith
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK.,Department of Anaesthesia, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
47
|
Usui M, Onizuka S, Sato T, Kokabu S, Ariyoshi W, Nakashima K. Mechanism of alveolar bone destruction in periodontitis - Periodontal bacteria and inflammation. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:201-208. [PMID: 34703508 PMCID: PMC8524191 DOI: 10.1016/j.jdsr.2021.09.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022] Open
Abstract
Periodontal disease is an inflammatory disease caused by periodontopathogenic bacteria, which eventually leads to bone tissue (alveolar bone) destruction as inflammation persists. Periodontal tissues have an immune system against the invasion of these bacteria, however, due to the persistent infection by periodontopathogenic bacteria, the host innate and acquired immunity is impaired, and tissue destruction, including bone tissue destruction, occurs. Osteoclasts are essential for bone destruction. Osteoclast progenitor cells derived from hematopoietic stem cells differentiate into osteoclasts. In addition, bone loss occurs when bone resorption by osteoclasts exceeds bone formation by osteoblasts. In inflammatory bone disease, inflammatory cytokines act on osteoblasts and receptor activator of nuclear factor-κB ligand (RANKL)-producing cells, resulting in osteoclast differentiation and activation. In addition to this mechanism, pathogenic factors of periodontal bacteria and mechanical stress activate osteoclasts and destruct alveolar bone in periodontitis. In this review, we focused on the mechanism of osteoclast activation in periodontitis and provide an overview based on the latest findings.
Collapse
Affiliation(s)
- Michihiko Usui
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Satoru Onizuka
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Tsuyoshi Sato
- Department of Oral and Maxillofacial Surgery, Saitama Medical University, 38 Moro-hongou, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Promotion, Kyushu Dental University, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Wataru Ariyoshi
- Division of Infection and Molecular Biology, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Keisuke Nakashima
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| |
Collapse
|
48
|
Mortreux M, Rosa‐Caldwell ME, Stiehl ID, Sung D, Thomas NT, Fry CS, Rutkove SB. Hindlimb suspension in Wistar rats: Sex-based differences in muscle response. Physiol Rep 2021; 9:e15042. [PMID: 34612585 PMCID: PMC8493566 DOI: 10.14814/phy2.15042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022] Open
Abstract
Ground-based animal models have been used extensively to understand the effects of microgravity on various physiological systems. Among them, hindlimb suspension (HLS), developed in 1979 in rats, remains the gold-standard and allows researchers to study the consequences of total unloading of the hind limbs while inducing a cephalic fluid shift. While this model has already brought valuable insights to space biology, few studies have directly compared functional decrements in the muscles of males and females during HLS. We exposed 28 adult Wistar rats (14 males and 14 females) to 14 days of HLS or normal loading (NL) to better assess how sex impacts disuse-induced muscle deconditioning. Females better maintained muscle function during HLS than males, as shown by a more moderate reduction in grip strength at 7 days (males: -37.5 ± 3.1%, females: -22.4 ± 6.5%, compared to baseline), that remains stable during the second week of unloading (males: -53.3 ± 5.7%, females: -22.4 ± 5.5%, compared to day 0) while the males exhibit a steady decrease over time (effect of sex × loading p = 0.0002, effect of sex × time × loading p = 0.0099). This was further supported by analyzing the force production in response to a tetanic stimulus. Further functional analyses using force production were also shown to correspond to sex differences in relative loss of muscle mass and CSA. Moreover, our functional data were supported by histomorphometric analyzes, and we highlighted differences in relative muscle loss and CSA. Specifically, female rats seem to experience a lesser muscle deconditioning during disuse than males thus emphasizing the need for more studies that will assess male and female animals concomitantly to develop tailored, effective countermeasures for all astronauts.
Collapse
Affiliation(s)
- Marie Mortreux
- Department of NeurologyHarvard Medical School – Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Megan E. Rosa‐Caldwell
- Department of NeurologyHarvard Medical School – Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Ian D. Stiehl
- Department of NeurologyHarvard Medical School – Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of Physics and AstronomyDartmouth CollegeHanoverNew HampshireUSA
| | - Dong‐Min Sung
- Department of NeurologyHarvard Medical School – Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Nicholas T. Thomas
- Department of Athletic Training and Clinical NutritionUniversity of KentuckyLexingtonKentuckyUSA
| | - Christopher S. Fry
- Department of Athletic Training and Clinical NutritionUniversity of KentuckyLexingtonKentuckyUSA
| | - Seward B. Rutkove
- Department of NeurologyHarvard Medical School – Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| |
Collapse
|
49
|
Okada A, Matsumoto T, Ohshima H, Isomura T, Koga T, Yasui T, Kohri K, LeBlanc A, Spector E, Jones J, Shackelford L, Sibonga J. Bisphosphonate Use May Reduce the Risk of Urolithiasis in Astronauts on Long‐Term Spaceflights. JBMR Plus 2021; 6:e10550. [PMID: 35079672 PMCID: PMC8770998 DOI: 10.1002/jbm4.10550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/18/2021] [Indexed: 11/29/2022] Open
Abstract
Long‐duration spaceflight is associated with an increased risk of urolithiasis, and the pain caused by urinary calculi could result in loss of human performance and mission objectives. The present study investigated the risk of urolithiasis in astronauts during 6 months on the International Space Station, and evaluated whether the suppression of bone resorption by the bisphosphonate, alendronate (ALN), can reduce the risk. A total of 17 astronauts were included into the analysis: exercise using the advanced resistive exercise device (ARED) plus weekly oral 70 mg alendronate (ARED+ALN group, n = 7) was compared to resistive exercise alone (ARED group, n = 10). Urine volume decreased in both groups during spaceflight but recovered after return. The ARED group showed increased urinary calcium excretion from the 15th to 30th day of spaceflight, whereas urinary calcium was slightly decreased in the ARED+ALN group. Urinary N‐terminal telopeptide (NTX) and helical peptide (HP) of type I collagen, as bone resorption markers, were elevated in the ARED group during and until 0 days after spaceflight, while there was no elevation in these parameters in the ARED+ALN group. Urinary oxalate and uric acid excretion tended to be higher in the ARED group than in the ARED+ALN group during spaceflight. These results demonstrate that astronauts on long‐duration spaceflights may be at high risk for the formation of urinary calcium oxalate and calcium phosphate stones through increased urinary excretion of oxalate and uric acid, from degraded type I collagen, as well as of calcium from enhanced bone resorption. Our findings suggest that increased bone resorption during spaceflight, as a risk factor for urinary calculus formation, could be effectively prevented by an inhibitor of bone resorption. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Atsushi Okada
- Department of Nephro‐urology Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| | - Toshio Matsumoto
- Fujii Memorial Institute of Medical Sciences Tokushima University Tokushima Japan
| | | | - Tatsuya Isomura
- Institute of Medical Science Tokyo Medical University Tokyo Japan
| | - Tadashi Koga
- Department of Pharmacology St. Marianna University School of Medicine Kawasaki Japan
| | - Takahiro Yasui
- Department of Nephro‐urology Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| | - Kenjiro Kohri
- Department of Nephro‐urology Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| | - Adrian LeBlanc
- Baylor College of Medicine‐ Center for Space Medicine Houston TX USA
| | | | - Jeffrey Jones
- Baylor College of Medicine‐ Center for Space Medicine Houston TX USA
| | | | | |
Collapse
|
50
|
Abstract
History books are rife with examples of the role of nutrition in determining either the success or the failure of human exploration on Earth. With planetary exploration in our future, it is imperative that we understand the role of nutrition in optimizing health before humans can safely take the next giant leaps in space exploration.
Collapse
Affiliation(s)
- Scott M Smith
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, Texas
| | - Sara R Zwart
- University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|