1
|
Wang Q, Gao Y, Chen Y, Wang X, Pei Q, Zhang T, Wang C, Pan J. Synergistic Enhancement of Antibacterial and Osteo-Immunomodulatory Activities of Titanium Implants via Dual-Responsive Multifunctional Surfaces. Adv Healthc Mater 2024:e2404260. [PMID: 39690750 DOI: 10.1002/adhm.202404260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Bone implant-associated infections and inflammations, primarily caused by bacteria colonization, frequently result in unsuccessful procedures and pose significant health risks to patients. To mitigate these challenges, the development of engineered implants with spatiotemporal regulation capabilities, designed to inhibit bacterial survival and modulate immune responses in the early stage, while promoting bone defect healing in the late stage is proposed. The implants are functionalized with ε-poly-l-lysine-phenylboronic acid (PP) via dynamic boronic ester bonds, which facilitate its release through a reactive oxygen species (ROS) and pH-responsive strategy, thereby establishing an antibacterial microenvironment on and around the implants. Additionally, the dynamic metal coordination interaction facilitates the loading and sustained release of Sr2+ under an acidic environment, providing immunomodulatory and osteogenic effects. The ROS/pH-responsive feature, coupled with the implant-bone tissue integration process, affords precise spatiotemporal regulation of the Ti-TA-Sr-PP implants. This strategy represents a promising approach for the preparation of advanced bone implants.
Collapse
Affiliation(s)
- Qing Wang
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ya Gao
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yanzheng Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 201100, China
| | - Xuan Wang
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Qingguo Pei
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Taiyu Zhang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Changping Wang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jinsong Pan
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
2
|
Tainio JM, Vanhatupa S, Miettinen S, Massera J. Borosilicate bioactive glasses with added Mg/Sr enhances human adipose-derived stem cells osteogenic commitment and angiogenic properties. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:71. [PMID: 39614975 PMCID: PMC11608307 DOI: 10.1007/s10856-024-06830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/06/2024] [Indexed: 12/22/2024]
Abstract
Bioactive glasses are one of the most promising materials for applications in bone tissue engineering. In this study, the focus was on borosilicate bioactive glasses with composition 47.12 SiO2 - 6.73 B2O3 - 21.77-x-y CaO - 22.65 Na2O - 1.72 P2O5 - x MgO - y SrO (mol%). These compositions are based on silicate S53P4 bioactive glass, from where 12.5% of SiO2 is replaced with B2O3, and additionally, part of CaO is substituted for MgO and/or SrO. The impact of ion release, both as extract and in direct contact, on human adipose-derived stem cells' (hADSCs) viability, proliferation, ECM maturation, osteogenic commitment and endothelial marker expression was assessed. Osteogenic media supplements were utilized with the extracts, and in part of the direct cell/material culturing conditions. While it has been reported in other studies that boron release can induce cytotoxicity, the glasses in this study supported cells viability and proliferation. Moreover, borosilicate's, especially with further Mg/Sr substitutions, upregulated several osteogenic markers (such as RUNX2a, OSTERIX, DLX5, OSTEOPONTIN), as well as angiogenic factors (e.g., vWF and PECAM-1). Furthermore, the studied glasses supported collagen-I production even in the absence of osteogenic supplements, when hADSCs were cultured in contact with the glasses, suggesting that while the bioactive glass degradation products are beneficial for osteogenesis, the glasses surface physico-chemical properties play a significant role on hADSCs differentiation. This study brings critical information on the impact of bioactive glass compositional modification to control glass dissolution and the subsequent influence on stem cells proliferation and differentiation. Furthermore, the role of the material surface chemistry on promoting cell differentiation is reported.
Collapse
Affiliation(s)
- Jenna M Tainio
- Bioceramics, Bioglasses and Biocomposites Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33720, Finland.
| | - Sari Vanhatupa
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Elämänaukio, Kuntokatu 2, 33520, Tampere, Finland
| | - Jonathan Massera
- Bioceramics, Bioglasses and Biocomposites Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33720, Finland
| |
Collapse
|
3
|
M'Pemba Hennebert P, Amirthalingam S, Kang TH, So KH, Hwang NS. Strontium-Doped Whitlockite Scaffolds for Enhanced Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39567238 DOI: 10.1021/acsami.4c13391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Bone graft substitutes to repair critical-sized bone fractures have experienced significant development over the last few decades. Among them, whitlockite (WH)-based bone grafts have proven to be effective in mediating bone healing. In the current study, a next generation, nature-inspired scaffold was developed with strontium-functionalized whitlockite nanoparticles (nSrWH) to enhance the intrinsic properties of WH. A series of nSrWH (with 2.5, 5, 7.5% Sr atomic substitution) were fabricated using a rapid-mixing wet precipitation route. Subsequently, the functionalized whitlockite was integrated into a gelatin-chondroitin sulfate scaffold and subjected to both in vitro and in vivo studies to investigate its osteogenic potential. Results indicated that nSrWH-containing scaffolds promoted osteogenic differentiation while inhibiting osteoclast activity. The positive impact of nSrWH was found to be dose-dependent, with the 7.5% Sr atomic substitution exhibiting the most significant results. Furthermore, the scaffold induced superior de novo bone regeneration compared to its undoped counterpart in the mouse calvarial critical-sized defect model. Collectively, these findings suggest that nSrWH nanoparticles inherit the beneficial properties of whitlockite, coupled by the therapeutic effects of Sr2+, operating in concert for an overall enhanced bone regeneration. As such, they constitute promising candidates to meet the biomedical requirements for bioactive bone graft substitutes.
Collapse
Affiliation(s)
- Perrine M'Pemba Hennebert
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sivashanmugam Amirthalingam
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Hoon Kang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung-Ha So
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Safarova (Yantsen) Y, Nessipbekova A, Syzdykova A, Olzhayev F, Umbayev B, Kassenova A, Fadeeva IV, Askarova S, Rau JV. Strontium- and Copper-Doped Ceramic Granules in Bone Regeneration-Associated Cellular Processes. J Funct Biomater 2024; 15:352. [PMID: 39590555 PMCID: PMC11595051 DOI: 10.3390/jfb15110352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Pathological bone fracturing is an escalating problem driven by increasing aging and obesity. Bioceramics, particularly tricalcium-phosphate-based materials (TCP), are renowned for their exceptional biocompatibility, osteoconductivity, and ability to promote biomineralization. In the present study, we designed and characterized TCP porous granules doped with strontium (Sr) and copper (Cu) (CuSr TCP). Sr2+ ions were selected as Sr plays a crucial role in early bone formation, osteogenesis, and angiogenesis; Cu2+ ions possess antibacterial properties. MATERIALS The synthesized CuSr TCP granules were characterized by X-ray diffraction. Cytotoxicity and cell proliferation analyses' assays were performed through the lactate dehydrogenase (LDH) activity and CCK-8 viability tests in rat bone marrow-derived mesenchymal stem cells (BM-MSCs). Hemolytic activity was carried out with human red blood cells (RBCs). Early and late osteogenesis were assessed with alkaline phosphatase (ALP) and Alizarin Red S activity in human osteoblast progenitor cells and rat BM-MSCs. The influence of CuSr TCP on angiogenesis was investigated in human umbilical vein endothelial cells (HUVECs). RESULTS We have demonstrated that media enriched with CuSr TCP in concentrations ranging from 0.1 mg/mL to 1 mg/mL were not cytotoxic and did not significantly affect cell proliferation rate motility. Moreover, a concentration of 0.5 mg/mL showed a 2.5-fold increase in the migration potential of BM-MSCs. We also found that CuSr TCP-enriched media slightly increased early osteogenesis. We also found that Sr and Cu substitutions in TCP particles significantly enhanced the measured angiogenic parameters compared to control and unsubstituted TCP granules. CONCLUSION Our results demonstrate that TCP porous granules doped with Sr and Cu are biocompatible, promote osteodifferentiation and angiogenesis, and could be recommended for further in vivo studies.
Collapse
Affiliation(s)
- Yuliya Safarova (Yantsen)
- National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave. 53, 010000 Astana, Kazakhstan; (A.N.); (A.S.); (F.O.); (B.U.); (A.K.); (S.A.)
| | - Assem Nessipbekova
- National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave. 53, 010000 Astana, Kazakhstan; (A.N.); (A.S.); (F.O.); (B.U.); (A.K.); (S.A.)
| | - Aizhan Syzdykova
- National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave. 53, 010000 Astana, Kazakhstan; (A.N.); (A.S.); (F.O.); (B.U.); (A.K.); (S.A.)
| | - Farkhad Olzhayev
- National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave. 53, 010000 Astana, Kazakhstan; (A.N.); (A.S.); (F.O.); (B.U.); (A.K.); (S.A.)
| | - Bauyrzhan Umbayev
- National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave. 53, 010000 Astana, Kazakhstan; (A.N.); (A.S.); (F.O.); (B.U.); (A.K.); (S.A.)
| | - Aliya Kassenova
- National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave. 53, 010000 Astana, Kazakhstan; (A.N.); (A.S.); (F.O.); (B.U.); (A.K.); (S.A.)
| | - Inna V. Fadeeva
- A. A. Baikov Institute of Metallurgy and Material Science RAS, Leninskie, 49, 119334 Moscow, Russia;
| | - Sholpan Askarova
- National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave. 53, 010000 Astana, Kazakhstan; (A.N.); (A.S.); (F.O.); (B.U.); (A.K.); (S.A.)
| | - Julietta V. Rau
- Instituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, ISM-CNR, Via del Fosso del Cavaliere 100, 00133 Rome, Italy;
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, 119048 Moscow, Russia
| |
Collapse
|
5
|
Cárdenas-Escudero J, Galán-Madruga D, Cáceres JO. Laser-Induced Breakdown Spectroscopy as an Accurate Forensic Tool for Bone Classification and Individual Reassignment. APPLIED SPECTROSCOPY 2024:37028241277897. [PMID: 39360518 DOI: 10.1177/00037028241277897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
This article provides a detailed discussion of the evidence available to date on the application of laser-induced breakdown spectroscopy (LIBS) and supervised classification methods for the individual reassignment of commingled bone remains. Specialized bone chemistry studies have demonstrated the suitability of bone elemental composition as a distinct individual identifier. Given the widely documented ability of the LIBS technique to provide elemental emission spectra that are considered elemental fingerprints of the samples analyzed, the analytical potential of this technique has been assessed for the investigation of the contexts of commingled bone remains for their individual reassignment. The LIBS bone analysis consists of the direct ablation of micrometric portions of bone samples, either on their surface or within their internal structure. To produce reliable, accurate, and robust bone classifications, however, the available evidence suggests that LIBS spectral information must be processed by appropriate methods. When comparing the performance of seven different supervised classification methods using spectrochemical LIBS data for individual reassociation, those employing artificial intelligence-based algorithms produce analytically conclusive results, concretely individual reassociations with 100% accuracy, sensitivity, and robustness. Compared to LIBS, other techniques used for the purpose of interest exhibit limited performance in terms of robustness, sensitivity, and accuracy, as well as variations in these results depending on the type of bones used in the classification. The available literature supports the suitability of the LIBS technique for reliable individual reassociation of bone remains in a fast, simple, and cost-effective manner without the need for complicated sample processing.
Collapse
Affiliation(s)
- Jafet Cárdenas-Escudero
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
- Analytical Chemistry Department, FCNET, Universidad de Panamá, Ciudad Universitaria, Estafeta Universitaria, 3366, Panama City, Panama
| | - David Galán-Madruga
- National Centre for Environmental Health, Carlos III Health Institute, 28220 Majadahonda, Madrid, Spain
| | - Jorge O Cáceres
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
6
|
Hayann L, da Rocha VF, Cândido MF, Vicente RM, Andrilli LHS, Fukada SY, Brassesco MS, Ciancaglini P, Engel EE, Ramos AP. A nontoxic strontium nanoparticle that holds the potential to act upon osteocompetent cells: An in vitro and in vivo characterization. J Biomed Mater Res A 2024; 112:1518-1531. [PMID: 38488327 DOI: 10.1002/jbm.a.37708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 07/12/2024]
Abstract
Estrogen deficiency, long-term immobilization, and/or aging are commonly related to bone mass loss, thus increasing the risk of fractures. One option for bone replacement in injuries caused by either traumas or pathologies is the use of orthopedic cement based on polymethylmethacrylate (PMMA). Nevertheless, its reduced bioactivity may induce long-term detachment from the host tissue, resulting in the failure of the implant. In view of this problem, we developed an alternative PMMA-based porous cement (pPMMA) that favors cell invasion and improves osteointegration with better biocompatibility. The cement composition was changed by adding bioactive strontium-nanoparticles that mimic the structure of bone apatite. The nanoparticles were characterized regarding their physical-chemical properties, and their effects on osteoblasts and osteoclast cultures were assessed. Initial in vivo tests were also performed using 16 New Zealand rabbits as animal models, in which the pPMMA-cement containing the strontium nanoparticles were implanted. We showed that the apatite nanoparticles in which 90% of Ca2+ ions were substituted by Sr2+ (NanoSr 90%) upregulated TNAP activity and increased matrix mineralization. Moreover, at the molecular level, NanoSr 90% upregulated the mRNA expression levels of, Sp7, and OCN. Runx2 was increased at both mRNA and protein levels. In parallel, in vivo tests revealed that pPMMA-cement containing NanoSr 90%, upregulated two markers of bone maturation, OCN and BMP2, as well as the formation of apatite minerals after implantation in the femur of rabbits. The overall data support that strontium nanoparticles hold the potential to up-regulate mineralization in osteoblasts when associated with synthetic biomaterials.
Collapse
Affiliation(s)
- Larwsk Hayann
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Vitor Freire da Rocha
- Department of Orthopedics and Anesthesiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marina Ferreira Cândido
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Raphael Martini Vicente
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz H S Andrilli
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Sandra Y Fukada
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Pietro Ciancaglini
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Edgard Eduard Engel
- Department of Orthopedics and Anesthesiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Paula Ramos
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
7
|
Sayed O, Abdalla MM, Elsayed A, El-Mahallawy Y, Al-Mahalawy H. Does strontium coated titanium implants enhance the osseointegration in animal models under osteoporotic condition? A systematic review and meta-analysis. BDJ Open 2024; 10:69. [PMID: 39181895 PMCID: PMC11344846 DOI: 10.1038/s41405-024-00220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 08/27/2024] Open
Abstract
PURPOSE The aim of this study was to systematically review the literature to address the effect of strontium modified titanium implants on the osseointegration in the presence of osteoporotic conditions through animal models. MATERIALS AND METHODS The databases (PubMed, Scopus, Web of Science, and EBSCO) were searched electronically, and manual searches were performed till December 2022 to identify preclinical studies on the osseointegration of strontium coated titanium implants in animals with induced osteoporotic conditions. The primary outcomes were the bone-implant contact percentage (BIC%), bone area (BA) from the histomorphometric analysis, and the osseointegration parameters from biomechanical tests; the secondary outcomes were the osseointegration parameters from the micro computed tomography. RESULTS Nineteen articles were included for the quantitative analysis on basis of the inclusion criteria. The results revealed that Sr-modified implants showed a significant 19.05% increase in BIC, and 15.01% increase in BA. The results of biomechanical tests indicated a significant effect in favor of Sr-coated implants. Furthermore, Results of the secondary outcomes supported the significant advantages of Sr-coated implants over the un-coated implants. The overall, systematic analysis of implants osteointegration parameters proved a significant increase in favor of Sr-coated titanium implants (P < 0.01). CONCLUSION The present results provide evidence that strontium-coated titanium implants enhanced the osseointegration in animal models under osteoporotic condition as this surface modification techniques have improved the mechanical and biological properties of the titanium implants.
Collapse
Affiliation(s)
- Osama Sayed
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Fayoum University, Fayoum, Egypt
| | - Mohamed Mahmoud Abdalla
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
- Dental Biomaterials, Faculty of Dental Medicine Al-Azhar University, Cairo, Egypt
| | - Ayman Elsayed
- Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Yehia El-Mahallawy
- Assistant Professor, Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Haytham Al-Mahalawy
- Professor and head of the Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Fayoum University, Fayoum, Egypt
| |
Collapse
|
8
|
Mohaghegh S, Nokhbatolfoghahaei H, Baniameri S, Farajpour H, Fakhr MJ, Shokrolahi F, Khojasteh A. Physicochemical and Biological Characterization of Gelatin/Alginate Scaffolds Reinforced with β-TCP, FDBA, and SrHA: Insights into Stem Cell Behavior and Osteogenic Differentiation. Int J Biomater 2024; 2024:1365080. [PMID: 39376511 PMCID: PMC11458296 DOI: 10.1155/2024/1365080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/30/2024] [Accepted: 07/12/2024] [Indexed: 10/09/2024] Open
Abstract
Bone tissue engineering necessitates the development of scaffolds with optimal properties to provide a suitable microenvironment for cell adhesion, proliferation, and osteogenic differentiation. The selection of appropriate scaffold materials remains a critical challenge in this field. In this study, we aimed to address this challenge by evaluating and comparing the performance of hydrogel scaffolds reinforced with β-tricalcium phosphate (β-TCP), allograft, and a combination of allograft and strontium hydroxyapatite (SrHA). In this study, scaffolds containing the following compounds with a weight ratio of 75 : 25 : 50 were made using a 3D printer: group (1) alginate + gelatin + β-TCP (TCP), group (2) alginate + gelatin + allograft (Allo), and group (3) alginate + gelatin + allograft + strontium hydroxyapatite (Str). Stem cells extracted from rat bone marrow (rBMSCs) were cultured on scaffolds, and cell proliferation and differentiation tests were performed. Also, the physical and chemical properties of the scaffolds were investigated. The two/one-way analysis of variance (ANOVA) by Tukey's post hoc test was performed. There was no significant difference between scaffolds with pore size and porosity. TCP scaffolds' mechanical strength and degradation rate were significantly lower than the other two groups (P < 0.05). Also, the swelling ratio of Allo scaffolds was higher than in other samples. The amount of cell proliferation in the samples of the TCP group was lower than the other two, and the Allo samples had the best results in this concern (P < 0.01). However, the scaffolds containing strontium hydroxyapatite had significantly higher bone differentiation compared to the other two groups, and the lowest results were related to the scaffolds containing β-TCP. Hydrogel scaffolds reinforced with allograft or its combination with strontium showed better physicochemical and biological behavior compared to those reinforced with β-TCP. Besides, adding strontium had a limited impact on the physicochemical features of allograft-containing scaffolds while improving their potential to induce osteogenic differentiation.
Collapse
Affiliation(s)
- Sadra Mohaghegh
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sahar Baniameri
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hekmat Farajpour
- Department of Artificial Intelligence, Smart University of Medical Sciences, Tehran, Iran
| | | | | | - Arash Khojasteh
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Abdalla MM, Sayed O, Lung CYK, Rajasekar V, Yiu CKY. Applications of Bioactive Strontium Compounds in Dentistry. J Funct Biomater 2024; 15:216. [PMID: 39194654 DOI: 10.3390/jfb15080216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Divalent cations have captured the interest of researchers in biomedical and dental fields due to their beneficial effects on bone formation. These metallic elements are similar to trace elements found in human bone. Strontium is a divalent cation commonly found in various biomaterials. Since strontium has a radius similar to calcium, it has been used to replace calcium in many calcium-containing biomaterials. Strontium has the ability to inhibit bone resorption and increase bone deposition, making it useful in the treatment of osteoporosis. Strontium has also been used as a radiopacifier in dentistry and has been incorporated into a variety of dental materials to improve their radiopacity. Furthermore, strontium has been shown to improve the antimicrobial and mechanical properties of dental materials, promote enamel remineralization, alleviate dentin hypersensitivity, and enhance dentin regeneration. The objective of this review is to provide a comprehensive review of the applications of strontium in dentistry.
Collapse
Affiliation(s)
- Mohamed Mahmoud Abdalla
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
- Dental Biomaterials, Faculty of Dental Medicine, Al-Azhar University, Cairo 11651, Egypt
| | - Osama Sayed
- Faculty of Dentistry, Fayoum University, Faiyum 63514, Egypt
| | - Christie Ying Kei Lung
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Vidhyashree Rajasekar
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Cynthia Kar Yung Yiu
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Qin S, Niu Y, Zhang Y, Wang W, Zhou J, Bai Y, Ma G. Metal Ion-Containing Hydrogels: Synthesis, Properties, and Applications in Bone Tissue Engineering. Biomacromolecules 2024; 25:3217-3248. [PMID: 38237033 DOI: 10.1021/acs.biomac.3c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Hydrogel, as a unique scaffold material, features a three-dimensional network system that provides conducive conditions for the growth of cells and tissues in bone tissue engineering (BTE). In recent years, it has been discovered that metal ion-containing hybridized hydrogels, synthesized with metal particles as the foundation, exhibit excellent physicochemical properties, osteoinductivity, and osteogenic potential. They offer a wide range of research prospects in the field of BTE. This review provides an overview of the current state and recent advancements in research concerning metal ion-containing hydrogels in the field of BTE. Within materials science, it covers topics such as the binding mechanisms of metal ions within hydrogel networks, the types and fabrication methods of various metal ion-containing hydrogels, and the influence of metal ions on the properties of hydrogels. In the context of BTE, the review delves into the osteogenic mechanisms of various metal ions, the applications of metal ion-containing hydrogels in BTE, and relevant experimental studies in vitro and in vivo. Furthermore, future improvements in bone repair can be anticipated through advancements in bone bionics, exploring interactions between metal ions and the development of a wider range of metal ions and hydrogel types.
Collapse
Affiliation(s)
- Shengao Qin
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
| | - Yimeng Niu
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
| | - Yihan Zhang
- School of Stomatology, Harbin Medical University, Harbin 150020, P. R. China
| | - Weiyi Wang
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
| | - Jian Zhou
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, P. R. China
- Department of VIP Dental Service, School of Stomatology, Capital Medical University, Beijing 100050, P. R. China
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P. R. China
| | - Yingjie Bai
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
- Department of Stomatology, Stomatological Hospital Affiliated School of Stomatology of Dalian Medical University, No. 397 Huangpu Road, Shahekou District, Dalian 116086, P. R. China
| |
Collapse
|
11
|
Guan X, Wu S, Ouyang S, Ren S, Cui N, Wu X, Xiang D, Chen W, Yu B, Zhao P, Wang B. Remodeling Microenvironment for Implant-Associated Osteomyelitis by Dual Metal Peroxide. Adv Healthc Mater 2024; 13:e2303529. [PMID: 38430010 DOI: 10.1002/adhm.202303529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/02/2024] [Indexed: 03/03/2024]
Abstract
Implant-associated osteomyelitis (IAOM) is characterized by bone infection and destruction; current therapy of antibiotic treatment and surgical debridement often results in drug resistance and bone defect. It is challenging to develop an antibiotic-free bactericidal and osteogenic-enhanced strategy for IAOM. Herein, an IAOM-tailored antibacterial and osteoinductive composite of copper (Cu)-strontium (Sr) peroxide nanoparticles (CSp NPs), encapsulated in polyethylene glycol diacrylate (PEGDA) (CSp@PEGDA), is designed. The dual functional CSp NPs display hydrogen peroxide (H2O2) self-supplying and Fenton catalytic Cu2+ ions' release, generating plenty of hydroxyl radical (•OH) in a pH-responsive manner for bacterial killing, while the released Sr2+ promotes the in vitro osteogenicity regarding cell proliferation, alkaline phosphatase activity, extracellular matrix calcification, and osteo-associated genes expression. The integration of Cu2+ and Sr2+ in CSp NPs together with the coated PEGDA hydrogel ensures the stable and sustainable ion release during short- and long-term periods. Benefitted from the injectablity and photo-crosslink ability, CSp@PEGDA is able to thoroughly fill the infectious site and gelate in situ for bacterial elimination and bone regeneration, which is verified through in vivo evaluation using a clinical-simulating IAOM mouse model. These favorable abilities of CSp@PEGDA precisely meet the multiple therapeutic needs and pave a promising way for implant-associated osteomyelitis treatment.
Collapse
Affiliation(s)
- Xin Guan
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Siyuan Wu
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Sixue Ouyang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Shuchen Ren
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Naiqian Cui
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaohu Wu
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510515, China
| | - Dayong Xiang
- Division of Orthopaedic Trauma, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenting Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bin Yu
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Division of Orthopaedic Trauma, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bowei Wang
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Division of Orthopaedic Trauma, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
12
|
Liu Z, Huang L, Qi L, Wang J, Xu H, Yang H, Liu L, Feng G, Zhang L. Activating Angiogenesis and Immunoregulation to Propel Bone Regeneration via Deferoxamine-Laden Mg-Mediated Tantalum Oxide Nanoplatform. ACS APPLIED MATERIALS & INTERFACES 2024; 16:24384-24397. [PMID: 38709640 DOI: 10.1021/acsami.4c04316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Vascularization and inflammation management are essential for successful bone regeneration during the healing process of large bone defects assisted by artificial implants/fillers. Therefore, this study is devoted to the optimization of the osteogenic microenvironment for accelerated bone healing through rapid neovascularization and appropriate inflammation inhibition that were achieved by applying a tantalum oxide (TaO)-based nanoplatform carrying functional substances at the bone defect. Specifically, TaO mesoporous nanospheres were first constructed and then modified by functionalized metal ions (Mg2+) with the following deferoxamine (DFO) loading to obtain the final product simplified as DFO-Mg-TaO. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that the product was homogeneously dispersed hollow nanospheres with large specific surface areas and mesoporous shells suitable for loading Mg2+ and DFO. The biological assessments indicated that DFO-Mg-TaO could enhance the adhesion, proliferation, and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). The DFO released from DFO-Mg-TaO promoted angiogenetic activity by upregulating the expressions of hypoxia-inducible factor-1 (HIF-1α) and vascular endothelial growth factor (VEGF). Notably, DFO-Mg-TaO also displayed anti-inflammatory activity by reducing the expressions of pro-inflammatory factors, benefiting from the release of bioactive Mg2+. In vivo experiments demonstrated that DFO-Mg-TaO integrated with vascular regenerative, anti-inflammatory, and osteogenic activities significantly accelerated the reconstruction of bone defects. Our findings suggest that the optimized DFO-Mg-TaO nanospheres are promising as multifunctional fillers to speed up the bone healing process.
Collapse
Affiliation(s)
- Zheng Liu
- Analytical & Testing Center, Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Leizhen Huang
- Analytical & Testing Center, Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Lin Qi
- Analytical & Testing Center, Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Jing Wang
- Analytical & Testing Center, Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Huilun Xu
- Analytical & Testing Center, Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Hao Yang
- Analytical & Testing Center, Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Limin Liu
- Analytical & Testing Center, Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Ganjun Feng
- Analytical & Testing Center, Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Li Zhang
- Analytical & Testing Center, Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| |
Collapse
|
13
|
Tomczyk-Warunek A, Turżańska K, Posturzyńska A, Kowal F, Blicharski T, Pano IT, Winiarska-Mieczan A, Nikodem A, Dresler S, Sowa I, Wójciak M, Dobrowolski P. Influence of Various Strontium Formulations (Ranelate, Citrate, and Chloride) on Bone Mineral Density, Morphology, and Microarchitecture: A Comparative Study in an Ovariectomized Female Mouse Model of Osteoporosis. Int J Mol Sci 2024; 25:4075. [PMID: 38612883 PMCID: PMC11012416 DOI: 10.3390/ijms25074075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Osteoporosis stands out as a prevalent skeletal ailment, prompting exploration into potential treatments, including dietary strontium ion supplements. This study assessed the efficacy of supplementation of three strontium forms-strontium citrate (SrC), strontium ranelate (SrR), and strontium chloride (SrCl)-for enhancing bone structure in 50 female SWISS mice, aged seven weeks. In total, 40 mice underwent ovariectomy, while 10 underwent sham ovariectomy. Ovariectomized (OVX) mice were randomly assigned to the following groups: OVX (no supplementation), OVX + SrR, OVX + SrC, and OVX + SrCl, at concentrations equivalent to the molar amount of strontium. After 16 weeks, micro-CT examined trabeculae and cortical bones, and whole-bone strontium content was determined. Results confirm strontium administration increased bone tissue mineral density (TMD) and Sr content, with SrC exhibiting the weakest effect. Femur morphometry showed limited Sr impact, especially in the OVX + SrC group. This research highlights strontium's potential in bone health, emphasizing variations in efficacy among its forms.
Collapse
Affiliation(s)
- Agnieszka Tomczyk-Warunek
- Laboratory of Locomotor Systems Research, Department of Rehabilitation and Physiotherapy, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Karolina Turżańska
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-954 Lublin, Poland; (A.P.); (F.K.); (T.B.); (I.T.P.)
| | - Agnieszka Posturzyńska
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-954 Lublin, Poland; (A.P.); (F.K.); (T.B.); (I.T.P.)
| | - Filip Kowal
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-954 Lublin, Poland; (A.P.); (F.K.); (T.B.); (I.T.P.)
| | - Tomasz Blicharski
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-954 Lublin, Poland; (A.P.); (F.K.); (T.B.); (I.T.P.)
| | - Inés Torné Pano
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-954 Lublin, Poland; (A.P.); (F.K.); (T.B.); (I.T.P.)
| | - Anna Winiarska-Mieczan
- Department of Bromatology and Nutrition Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| | - Anna Nikodem
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego, 50-370 Wrocław, Poland;
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (S.D.); (I.S.); (M.W.)
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (S.D.); (I.S.); (M.W.)
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (S.D.); (I.S.); (M.W.)
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland;
| |
Collapse
|
14
|
Sun W, Yang K, Zou Y, Ren Y, Zhang L, Zhang F, Zeng R. In vitro and in vivo degradation, biocompatibility and bone repair performance of strontium-doped montmorillonite coating on Mg-Ca alloy. Regen Biomater 2024; 11:rbae027. [PMID: 38605854 PMCID: PMC11007119 DOI: 10.1093/rb/rbae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024] Open
Abstract
Poor bone growth remains a challenge for degradable bone implants. Montmorillonite and strontium were selected as the carrier and bone growth promoting elements to prepare strontium-doped montmorillonite coating on Mg-Ca alloy. The surface morphology and composition were characterized by SEM, EDS, XPS, FT-IR and XRD. The hydrogen evolution experiment and electrochemical test results showed that the Mg-Ca alloy coated with Sr-MMT coating possessed optimal corrosion resistance performance. Furthermore, in vitro studies on cell activity, ALP activity, and cell morphology confirmed that Sr-MMT coating had satisfactory biocompatibility, which can significantly avail the proliferation, differentiation, and adhesion of osteoblasts. Moreover, the results of the 90-day implantation experiment in rats indicated that, the preparation of Sr-MMT coating effectively advanced the biocompatibility and bone repair performance of Mg-Ca alloy. In addition, The Osteogenic ability of Sr-MMT coating may be due to the combined effect of the precipitation of Si4+ and Sr2+ in Sr-MMT coating and the dissolution of Mg2+ and Ca2+ during the degradation of Mg-Ca alloy. By using coating technology, this study provides a late-model strategy for biodegradable Mg alloys with good corrosion resistance, biocompatibility. This new material will bring more possibilities in bone repair.
Collapse
Affiliation(s)
- Wenxin Sun
- Department of Bioengineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Kaining Yang
- Department of Bioengineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yuhong Zou
- Department of Bioengineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yande Ren
- Affiliated Hospital of Medical College Qingdao University, Qingdao 266555, China
| | - Lin Zhang
- Hospital of Shandong, University of Science and Technology, Qingdao 266590, China
| | - Fen Zhang
- Corrosion Laboratory for Light Metals, College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Rongchang Zeng
- Corrosion Laboratory for Light Metals, College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
15
|
Kheirmand-Parizi M, Doll-Nikutta K, Gaikwad A, Denis H, Stiesch M. Effectiveness of strontium/silver-based titanium surface coatings in improving antibacterial and osteogenic implant characteristics: a systematic review of in-vitro studies. Front Bioeng Biotechnol 2024; 12:1346426. [PMID: 38486866 PMCID: PMC10937591 DOI: 10.3389/fbioe.2024.1346426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/16/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction: Due to the high incidence of implant failures, dual functionalization of titanium surfaces with antibacterial and osteogenic agents, like silver (Ag) and strontium (Sr), has gained significant attention in recent years. However, so far, the combined antibacterial and osteoinductive effectiveness of Ag/Sr-based titanium surface coatings has only been analyzed in individual studies. Methods: This systematic review aims to evaluate the existing scientific literature regarding the PICOS question "Does dual incorporation of strontium/silver enhances the osteogenic and anti-bacterial characteristics of Ti surfaces in vitro?". As a result of a web-based search adhering to the PRISMA Guidelines using three electronic databases (PubMed, Scopus, and Web of Science) until March 31, 2023, a total of 69 publications were identified as potentially relevant and 17 of which were considered appropriate for inclusion into this review. Results and Discussion: In all included publications, the use of Sr/Ag combination showed enhanced osteogenic and antibacterial effects, either alone or in combination with other agents. Moreover, the combination of Sr and Ag shows potential to synergistically enhance these effects. Nevertheless, further studies need to validate these findings under clinically more relevant conditions and evaluate the mechanism of antimicrobial and osteogenic activity of Sr/Ag combination.
Collapse
Affiliation(s)
- Marjan Kheirmand-Parizi
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Katharina Doll-Nikutta
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Amit Gaikwad
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Hannah Denis
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
16
|
Sun W, Xie W, Hu K, Yang Z, Han L, Li L, Qi Y, Wei Y. Three-Dimensional Bioprinting of Strontium-Modified Controlled Assembly of Collagen Polylactic Acid Composite Scaffold for Bone Repair. Polymers (Basel) 2024; 16:498. [PMID: 38399876 PMCID: PMC10891933 DOI: 10.3390/polym16040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, the incidence of bone defects has been increasing year by year. Bone transplantation has become the most needed surgery after a blood transfusion and shows a rising trend. Three-dimensional-printed implants can be arbitrarily shaped according to the defects of tissues and organs to achieve perfect morphological repair, opening a new way for non-traumatic repair and functional reconstruction. In this paper, strontium-doped mineralized collagen was first prepared by an in vitro biomimetic mineralization method and then polylactic acid was homogeneously blended with the mineralized collagen to produce a comprehensive bone repair scaffold by a gas extrusion 3D printing method. Characterization through scanning electron microscopy, X-ray diffraction, and mechanical testing revealed that the strontium-functionalized composite scaffold exhibits an inorganic composition and nanostructure akin to those of human bone tissue. The scaffold possesses uniformly distributed and interconnected pores, with a compressive strength reaching 21.04 MPa. The strontium doping in the mineralized collagen improved the biocompatibility of the scaffold and inhibited the differentiation of osteoclasts to promote bone regeneration. This innovative composite scaffold holds significant promise in the field of bone tissue engineering, providing a forward-thinking solution for prospective bone injury repair.
Collapse
Affiliation(s)
- Weiwei Sun
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Wenyu Xie
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Kun Hu
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Zongwen Yang
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Lu Han
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Luhai Li
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Yuansheng Qi
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Yen Wei
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Markel DC, Dietz PR, Wu B, Chen L, Bou-Akl T, Shi T, Ren W. Repair of a rat calvaria defect with injectable strontium (Sr)-doped polyphosphate dicalcium phosphate dehydrate (P-DCPD) ceramic bone grafts. J Biomed Mater Res B Appl Biomater 2024; 112:e35388. [PMID: 38334714 DOI: 10.1002/jbm.b.35388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/07/2024] [Accepted: 01/27/2024] [Indexed: 02/10/2024]
Abstract
The trace element strontium (Sr) enhances new bone formation. However, delivering Sr, like other materials, in a sustained manner from a ceramic bone graft substitute (BGS) is difficult. We developed a novel ceramic BGS, polyphosphate dicalcium phosphate dehydrate (P-DCPD), which delivers embedded drugs in a sustained pattern. This study assessed the in vitro and in vivo performance of Sr-doped P-DCPD. In vitro P-DCPD and 10%Sr-P-DCPD were nontoxic and eluents from 10%Sr-P-DCPD significantly enhanced osteoblastic MC3T3 cell differentiation. A sustained, zero-order Sr release was observed from 10%Sr-P-DCPD for up to 70 days. When using this BGS in a rat calvaria defect model, both P-DCPD and 10% Sr-P-DCPD were found to be biocompatible and biodegradable. Histologic data from decalcified and undecalcified tissue showed that 10%Sr-P-DCPD had more extensive new bone formation compared with P-DCPD 12-weeks after surgery and the 10%Sr-P-DCPD had more organized new bone and much less fibrous tissue at the defect margins. The new bone was formed on the surface of the degraded ceramic debris within the bone defect area. P-DCPD represented a promising drug-eluting BGS for repair of critical bone defects.
Collapse
Affiliation(s)
- David C Markel
- Ascension Providence Hospital, Section of Orthopedic Surgery, Southfield, Michigan, USA
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Paula R Dietz
- Ascension Providence Hospital, Section of Orthopedic Surgery, Southfield, Michigan, USA
| | - Bin Wu
- Ascension Providence Hospital, Section of Orthopedic Surgery, Southfield, Michigan, USA
| | - Liang Chen
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Therese Bou-Akl
- Ascension Providence Hospital, Section of Orthopedic Surgery, Southfield, Michigan, USA
| | - Tong Shi
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Weiping Ren
- Ascension Providence Hospital, Section of Orthopedic Surgery, Southfield, Michigan, USA
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
18
|
Bubpamala T, Promoppatum P, Pholpabu P. Drug-Releasing Tannic Acid-Mediated Adhesive PEG Hydrogel for Porous Titanium Implants. ACS OMEGA 2024; 9:887-895. [PMID: 38222498 PMCID: PMC10785316 DOI: 10.1021/acsomega.3c06966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 01/16/2024]
Abstract
Porous titanium implants are commonly utilized for orthopedic surgery because they can mimic the mechanical properties and porous structure of human bone. However, the bioinertness of titanium (Ti) has been reported to obstruct biointegration processes, resulting in slower bone repair. Here, we propose a localized drug delivery system on Ti surfaces using adhesive hydrogel to enhance biological-Ti interactions. The hydrogel was fabricated from polyethylene glycol (PEG), which was cross-linked by the complex of tannic acid (TA) and 1,4-phenylenediboronic acid (PDBA) and stabilized by bovine serum albumin (BSA). The hydrogel was formed and attached to a Ti plate to investigate stability, biodegradability, controlled drug release, and biocompatibility. The stability and biodegradability of the hydrogel could be tuned by adjusting the concentrations of BSA and TA. The hydrogel lasted and remained adhered to the Ti surface after being submerged in PBS for at least 15 days. The controlled release of strontium ranelate (SrRan) and the release mechanism depended on the amount of TA since it was found to govern the hydrogel integrity and pore size. Additionally, in vitro biocompatibility was validated using L929 fibroblast and MC3T3-E1 osteoblast cells that showed greater than 70% viability. The adhesive hydrogel was further studied by injecting it into a 3D-printed Ti-scaffold that contained a porous structure mimicking natural human bone. The hydrogel completely filled and adhered to the inner porous structure of the scaffold. The biodegradation and drug release of the hydrogel in the scaffold occurred at a slower rate, suggesting sustainable drug release that is suitable for bone cell regeneration. The overall results in biodegradability, controlled drug release, and biocompatibility demonstrate the great potential of the drug-releasing TA-mediated adhesive PEG hydrogel as a Ti-enhancing biomaterial that supports osseointegration.
Collapse
Affiliation(s)
- Theeraporn Bubpamala
- Biological
Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Patcharapit Promoppatum
- Department
of Mechanical Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Pitirat Pholpabu
- Biological
Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| |
Collapse
|
19
|
Turżańska K, Tomczyk-Warunek A, Dobrzyński M, Jarzębski M, Patryn R, Niezbecka-Zając J, Wojciechowska M, Mela A, Zarębska-Mróz A. Strontium Ranelate and Strontium Chloride Supplementation Influence on Bone Microarchitecture and Bone Turnover Markers-A Preliminary Study. Nutrients 2023; 16:91. [PMID: 38201922 PMCID: PMC10781151 DOI: 10.3390/nu16010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Despite strontium ranelate use in osteoporosis management being one of the promising concepts in disease treatment, there is no clear evidence that strontium organic compounds are more effective than inorganic ones. The aim of this study was to compare strontium chlorate and strontium ranelate influence on the mice bone microarchitecture. We investigated whether strontium chlorate (7.532 mmol/L) and strontium ranelate (7.78 mmol/L) solutions fed to healthy SWISS growing mice (n = 42) had an influence on the percent of bone volume (BV/TV), trabecular thickness (Tb.Th), number of trabeculae (Tb.N), and separation between each trabecula (Tb.Sp) in the chosen ROI (region of interest) in the distal metaphysis of the left femurs. The cortical bone surface was examined close to the ROI proximal scan. There was an increase in each examined parameter compared with the control group. There were no statistical differences between strontium ranelate and strontium chlorate parameters. Our study indicates that organic and inorganic strontium compounds similarly affect the bone microarchitecture and strength.
Collapse
Affiliation(s)
- Karolina Turżańska
- Department of Rehabilitation and Orthopaedics, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (K.T.); (J.N.-Z.); (A.Z.-M.)
| | - Agnieszka Tomczyk-Warunek
- Department of Rehabilitation and Orthopaedics, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (K.T.); (J.N.-Z.); (A.Z.-M.)
| | - Maciej Dobrzyński
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland;
| | - Maciej Jarzębski
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznan, Poland;
| | - Rafał Patryn
- Department of Humanities and Social Medicine, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland;
| | - Joanna Niezbecka-Zając
- Department of Rehabilitation and Orthopaedics, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (K.T.); (J.N.-Z.); (A.Z.-M.)
| | - Monika Wojciechowska
- Department of Pediatrics and Nephrology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Aneta Mela
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Aneta Zarębska-Mróz
- Department of Rehabilitation and Orthopaedics, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (K.T.); (J.N.-Z.); (A.Z.-M.)
| |
Collapse
|
20
|
Stipniece L, Ramata-Stunda A, Vecstaudza J, Kreicberga I, Livkisa D, Rubina A, Sceglovs A, Salma-Ancane K. A Comparative Study on Physicochemical Properties and In Vitro Biocompatibility of Sr-Substituted and Sr Ranelate-Loaded Hydroxyapatite Nanoparticles. ACS APPLIED BIO MATERIALS 2023; 6:5264-5281. [PMID: 38039078 PMCID: PMC10731655 DOI: 10.1021/acsabm.3c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/03/2023]
Abstract
Synthetic hydroxyapatite nanoparticles (nHAp) possess compositional and structural similarities to those of bone minerals and play a key role in bone regenerative medicine. Functionalization of calcium phosphate biomaterials with Sr, i.e., bone extracellular matrix trace element, has been proven to be an effective biomaterial-based strategy for promoting osteogenesis in vitro and in vivo. Functionalizing nHAp with Sr2+ ions or strontium ranelate (SrRAN) can provide favorable bone tissue regeneration by locally delivering bioactive molecules to the bone defect microenvironment. Moreover, administering an antiosteoporotic drug, SrRAN, directly into site-specific bone defects could significantly reduce the necessary drug dosage and the risk of possible side effects. Our study evaluated the impact of the Sr source (Sr2+ ions and SrRAN) used to functionalize nHAp by wet precipitation on its in vitro cellular activities. The systematic comparison of physicochemical properties, in vitro Sr2+ and Ca2+ ion release, and their effect on in vitro cellular activities of the developed Sr-functionalized nHAp was performed. The ion release tests in TRIS-HCl demonstrated a 21-day slow and continuous release of the Sr2+ and Ca2+ ions from both Sr-substituted nHAp and SrRAN-loaded HAp. Also, SrRAN and Sr2+ ion release kinetics were evaluated in DMEM to understand their correlation with in vitro cellular effects in the same time frame. Relatively low concentration (up to 2 wt %) of Sr in the nHAp led to an increase in the alkaline phosphatase activity in preosteoblasts and expression of collagen I and osteocalcin in osteoblasts, demonstrating their ability to boost bone formation.
Collapse
Affiliation(s)
- Liga Stipniece
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| | - Anna Ramata-Stunda
- Department
of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Jelgavas St. 1, Riga LV-1004, Latvia
| | - Jana Vecstaudza
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| | - Inta Kreicberga
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| | - Dora Livkisa
- Department
of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Jelgavas St. 1, Riga LV-1004, Latvia
| | - Anna Rubina
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| | - Artemijs Sceglovs
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| | - Kristine Salma-Ancane
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| |
Collapse
|
21
|
Silva AV, Gomes DDS, Victor RDS, Santana LNDL, Neves GA, Menezes RR. Influence of Strontium on the Biological Behavior of Bioactive Glasses for Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7654. [PMID: 38138796 PMCID: PMC10744628 DOI: 10.3390/ma16247654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Bioactive glasses (BGs) can potentially be applied in biomedicine, mainly for bone repair and replacement, given their unique ability to connect to natural bone tissue and stimulate bone regeneration. Since their discovery, several glass compositions have been developed to improve the properties and clinical abilities of traditional bioactive glass. Different inorganic ions, such as strontium (Sr2+), have been incorporated in BG due to their ability to perform therapeutic functions. Sr2+ has been gaining prominence due to its ability to stimulate osteogenesis, providing an appropriate environment to improve bone regeneration, in addition to its antibacterial potential. However, as there are still points in the literature that are not well consolidated, such as the influence of ionic concentrations and the BG production technique, this review aims to collect information on the state of the art of the biological behavior of BGs containing Sr2+. It also aims to gather data on different types of BGs doped with different concentrations of Sr2+, and to highlight the manufacturing techniques used in order to analyze the influence of the incorporation of this ion for bone regeneration purposes.
Collapse
Affiliation(s)
- Amanda Vieira Silva
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil;
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Déborah dos Santos Gomes
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Rayssa de Sousa Victor
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Lisiane Navarro de Lima Santana
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Gelmires Araújo Neves
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| |
Collapse
|
22
|
Jiang T, Xia T, Qiao F, Wang N, Jiang Y, Xin H. Role and Regulation of Transcription Factors in Osteoclastogenesis. Int J Mol Sci 2023; 24:16175. [PMID: 38003376 PMCID: PMC10671247 DOI: 10.3390/ijms242216175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Bones serve mechanical and defensive functions, as well as regulating the balance of calcium ions and housing bone marrow.. The qualities of bones do not remain constant. Instead, they fluctuate throughout life, with functions increasing in some situations while deteriorating in others. The synchronization of osteoblast-mediated bone formation and osteoclast-mediated bone resorption is critical for maintaining bone mass and microstructure integrity in a steady state. This equilibrium, however, can be disrupted by a variety of bone pathologies. Excessive osteoclast differentiation can result in osteoporosis, Paget's disease, osteolytic bone metastases, and rheumatoid arthritis, all of which can adversely affect people's health. Osteoclast differentiation is regulated by transcription factors NFATc1, MITF, C/EBPα, PU.1, NF-κB, and c-Fos. The transcriptional activity of osteoclasts is largely influenced by developmental and environmental signals with the involvement of co-factors, RNAs, epigenetics, systemic factors, and the microenvironment. In this paper, we review these themes in regard to transcriptional regulation in osteoclastogenesis.
Collapse
Affiliation(s)
- Tao Jiang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Tianshuang Xia
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Fangliang Qiao
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China;
| | - Yiping Jiang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Hailiang Xin
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
23
|
Liu Z, Ding H, Qi L, Wang J, Li Y, Liu L, Feng G, Zhang L. Core-Shell NiS@SrTiO 3 Nanorods on Titanium for Enhanced Osseointegration via Programmed Regulation of Bacterial Infection, Angiogenesis, and Osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37920934 DOI: 10.1021/acsami.3c11995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Developing bone implants with dynamic self-adjustment of antibacterial, angiogenic, and osteogenic functions in line with a bone regenerative cascade is highly required in orthopedics. Herein, a unique core-shell nanorods array featuring a thin layer of NiS coated on each SrTiO3 nanorod (NiS@SrTiO3) was in situ constructed on titanium (Ti) through a two-step hydrothermal treatment. Under near-infrared (NIR) irradiation, the photoresponsive effect of NiS layer in synergy with the physical perforation of SrTiO3 nanorods initially enabled in vitro antibacterial rates of 96.5% to Escherichia coli and 93.1% to Staphylococcus aureus. With the degradation of the NiS layer, trace amounts of Ni ions were released, which accelerated angiogenesis by upregulating the expression of vascular regeneration-related factors, while the gradual exposure of SrTiO3 nanorods could simultaneously enhance the surface hydrophilicity in favor of cell adhesion and slowly release Sr ions to promote the proliferation and differentiation of MC3T3-E1 cells. The in vivo assessment verified not only the satisfactory antibacterial effect but also the superior osteogenic ability of the NiS@SrTiO3/Ti group with the aid of NIR irradiation, finally promoting the osseointegration of the Ti implant. The modification method endowing Ti implant with antibacterial, angiogenic, and osteogenic functions provides a new strategy to improve the long-term reliability of Ti-based devices.
Collapse
Affiliation(s)
- Zheng Liu
- Analytical & Testing Center, Department of Orthopedic Surgery & Orthopedic Research Institute, and West China Hospital, Sichuan University, Chengdu 610065, P. R. China
| | - Hong Ding
- Analytical & Testing Center, Department of Orthopedic Surgery & Orthopedic Research Institute, and West China Hospital, Sichuan University, Chengdu 610065, P. R. China
| | - Lin Qi
- Analytical & Testing Center, Department of Orthopedic Surgery & Orthopedic Research Institute, and West China Hospital, Sichuan University, Chengdu 610065, P. R. China
| | - Jing Wang
- Analytical & Testing Center, Department of Orthopedic Surgery & Orthopedic Research Institute, and West China Hospital, Sichuan University, Chengdu 610065, P. R. China
| | - Yubao Li
- Analytical & Testing Center, Department of Orthopedic Surgery & Orthopedic Research Institute, and West China Hospital, Sichuan University, Chengdu 610065, P. R. China
| | - Limin Liu
- Analytical & Testing Center, Department of Orthopedic Surgery & Orthopedic Research Institute, and West China Hospital, Sichuan University, Chengdu 610065, P. R. China
| | - Ganjun Feng
- Analytical & Testing Center, Department of Orthopedic Surgery & Orthopedic Research Institute, and West China Hospital, Sichuan University, Chengdu 610065, P. R. China
| | - Li Zhang
- Analytical & Testing Center, Department of Orthopedic Surgery & Orthopedic Research Institute, and West China Hospital, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
24
|
Pagani S, Salerno M, Filardo G, Locs J, van Osch GJ, Vecstaudza J, Dolcini L, Borsari V, Fini M, Giavaresi G, Columbaro M. Human Osteoblasts' Response to Biomaterials for Subchondral Bone Regeneration in Standard and Aggressive Environments. Int J Mol Sci 2023; 24:14764. [PMID: 37834212 PMCID: PMC10573262 DOI: 10.3390/ijms241914764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Osteochondral lesions, when not properly treated, may evolve into osteoarthritis (OA), especially in the elderly population, where altered joint function and quality are usual. To date, a collagen/collagen-magnesium-hydroxyapatite (Col/Col-Mg-HAp) scaffold (OC) has demonstrated good clinical results, although suboptimal subchondral bone regeneration still limits its efficacy. This study was aimed at evaluating the in vitro osteogenic potential of this scaffold, functionalized with two different strategies: the addition of Bone Morphogenetic Protein-2 (BMP-2) and the incorporation of strontium (Sr)-ion-enriched amorphous calcium phosphate (Sr-ACP) granules. Human osteoblasts were seeded on the functionalized scaffolds (OC+BMP-2 and OC+Sr-ACP, compared to OC) under stress conditions reproduced with the addition of H2O2 to the culture system, as well as in normal conditions, and evaluated in terms of morphology, metabolic activity, gene expression, and matrix synthesis. The OC+BMP-2 scaffold supported a better osteoblast morphology and stimulated scaffold colonization, cell activity, and extracellular matrix secretion, especially in the stressed culture environment but also in normal culture conditions, with increased expression of genes related to osteoblast differentiation. In conclusion, the incorporation of BMP-2 into the Col/Col-Mg-HAp scaffold also represents an improvement of the osteochondral scaffold in more challenging conditions, supporting further preclinical studies to optimize it for use in clinical practice.
Collapse
Affiliation(s)
- Stefania Pagani
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (S.P.); (V.B.); (G.G.)
| | - Manuela Salerno
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1007 Riga, Latvia; (J.L.); (J.V.)
| | - Gerjo J.V.M. van Osch
- Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Jana Vecstaudza
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1007 Riga, Latvia; (J.L.); (J.V.)
| | | | - Veronica Borsari
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (S.P.); (V.B.); (G.G.)
| | - Milena Fini
- Scientific Direction, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (S.P.); (V.B.); (G.G.)
| | - Marta Columbaro
- Electron Microscopy Platform, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| |
Collapse
|
25
|
Anwar A, Kanwal Q, Sadiqa A, Razaq T, Khan IH, Javaid A, Khan S, Tag-Eldin E, Ouladsmane M. Synthesis and Antimicrobial Analysis of High Surface Area Strontium-Substituted Calcium Phosphate Nanostructures for Bone Regeneration. Int J Mol Sci 2023; 24:14527. [PMID: 37833975 PMCID: PMC10572144 DOI: 10.3390/ijms241914527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 10/15/2023] Open
Abstract
Continuous microwave-assisted flow synthesis has been used as a simple, more efficient, and low-cost route to fabricate a range of nanosized (<100 nm) strontium-substituted calcium phosphates. In this study, fine nanopowder was synthesized via a continuous flow synthesis with microwave assistance from the solutions of calcium nitrate tetrahydrate (with strontium nitrate as Sr2+ ion source) and diammonium hydrogen phosphate at pH 10 with a time duration of 5 min. The morphological characterization of the obtained powder has been carried out by employing techniques such as transmission electron microscopy, X-ray diffraction, and Brunauer-Emmett-Teller surface area analysis. The chemical structural analysis to evaluate the surface properties was made by using X-ray photoelectron spectroscopy. Zeta potential analysis was performed to evaluate the colloidal stability of the particles. Antimicrobial studies were performed for all the compositions using four bacterial strains and an opportunistic human fungal pathogen Macrophomina phaseolina. It was found that the nanoproduct with high strontium content (15 wt% of strontium) showed pronounced antibacterial potential against M. luteus while it completely arrested the fungal growth after 48 h by all of its concentrations. Thus the synthesis strategy described herein facilitated the rapid production of nanosized Sr-substituted CaPs with excellent biological performance suitable for a bone replacement application.
Collapse
Affiliation(s)
- Aneela Anwar
- Department of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan
- Biomedical Engineering Department, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Qudsia Kanwal
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan; (Q.K.); (A.S.)
| | - Ayesha Sadiqa
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan; (Q.K.); (A.S.)
| | - Tabassam Razaq
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan;
| | - Iqra Haider Khan
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan; (I.H.K.); (A.J.)
| | - Arshad Javaid
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan; (I.H.K.); (A.J.)
| | - Safia Khan
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11835, Egypt;
| | - ElSayed Tag-Eldin
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250101, China
| | - Mohamed Ouladsmane
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
26
|
Skalny AV, Aschner M, Silina EV, Stupin VA, Zaitsev ON, Sotnikova TI, Tazina SI, Zhang F, Guo X, Tinkov AA. The Role of Trace Elements and Minerals in Osteoporosis: A Review of Epidemiological and Laboratory Findings. Biomolecules 2023; 13:1006. [PMID: 37371586 DOI: 10.3390/biom13061006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The objective of the present study was to review recent epidemiological and clinical data on the association between selected minerals and trace elements and osteoporosis, as well as to discuss the molecular mechanisms underlying these associations. We have performed a search in the PubMed-Medline and Google Scholar databases using the MeSH terms "osteoporosis", "osteogenesis", "osteoblast", "osteoclast", and "osteocyte" in association with the names of particular trace elements and minerals through 21 March 2023. The data demonstrate that physiological and nutritional levels of trace elements and minerals promote osteogenic differentiation through the up-regulation of BMP-2 and Wnt/β-catenin signaling, as well as other pathways. miRNA and epigenetic effects were also involved in the regulation of the osteogenic effects of trace minerals. The antiresorptive effect of trace elements and minerals was associated with the inhibition of osteoclastogenesis. At the same time, the effect of trace elements and minerals on bone health appeared to be dose-dependent with low doses promoting an osteogenic effect, whereas high doses exerted opposite effects which promoted bone resorption and impaired bone formation. Concomitant with the results of the laboratory studies, several clinical trials and epidemiological studies demonstrated that supplementation with Zn, Mg, F, and Sr may improve bone quality, thus inducing antiosteoporotic effects.
Collapse
Affiliation(s)
- Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ekaterina V Silina
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Victor A Stupin
- Department of Hospital Surgery No. 1, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Oleg N Zaitsev
- Department of Physical Education, Yaroslavl State Technical University, 150023 Yaroslavl, Russia
| | - Tatiana I Sotnikova
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- City Clinical Hospital n. a. S.P. Botkin of the Moscow City Health Department, 125284 Moscow, Russia
| | - Serafima Ia Tazina
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an 710061, China
| | - Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| |
Collapse
|
27
|
Mazmanian K, Grauffel C, Dudev T, Lim C. Protein Ca 2+-Sites Prone to Sr 2+ Substitution: Implications for Strontium Therapy. J Phys Chem B 2023. [PMID: 37327495 DOI: 10.1021/acs.jpcb.3c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Strontium (Sr), an alkali metal with properties similar to calcium, in the form of soluble salts is used to treat osteoporosis. Despite the information accumulated on the role of Sr2+ as a Ca2+ mimetic in biology and medicine, there is no systematic study of how the outcome of the competition between the two dications depends on the physicochemical properties of (i) the metal ions, (ii) the first- and second-shell ligands, and (iii) the protein matrix. Specifically, the key features of a Ca2+-binding protein that enable Sr2+ to displace Ca2+ remain unclear. To address this, we studied the competition between Ca2+ and Sr2+ in protein Ca2+-binding sites using density functional theory combined with the polarizable continuum model. Our findings indicate that Ca2+-sites with multiple strong charge-donating protein ligands, including one or more bidentately bound Asp-/Glu- that are relatively buried and rigid are protected against Sr2+ attack. On the other hand, Ca2+-sites crowded with multiple protein ligands may be prone to Sr2+ displacement if they are solvent-exposed and flexible enough so that an extra backbone ligand from the outer shell can bind to Sr2+. In addition, solvent-exposed Ca2+ sites with only a few weak charge-donating ligands that can rearrange to fit the strontium's coordination requirements are susceptible to Sr2+ displacement. We provide the physical basis of these results and discuss potential novel protein targets of therapeutic Sr2+.
Collapse
Affiliation(s)
- Karine Mazmanian
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Cédric Grauffel
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
28
|
Wang S, Zeng F, Ma Y, Yu J, Xiang C, Feng X, Wang S, Wang J, Zhao S, Zhu X. Strontium Attenuates Hippocampal Damage via Suppressing Neuroinflammation in High-Fat Diet-Induced NAFLD Mice. Int J Mol Sci 2023; 24:10248. [PMID: 37373395 DOI: 10.3390/ijms241210248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) leads to hippocampal damage and causes a variety of physiopathological responses, including the induction of endoplasmic reticulum stress (ERS), neuroinflammation, and alterations in synaptic plasticity. As an important trace element, strontium (Sr) has been reported to have antioxidant effects, to have anti-inflammatory effects, and to cause the inhibition of adipogenesis. The present study was undertaken to investigate the protective effects of Sr on hippocampal damage in NAFLD mice in order to elucidate the underlying mechanism of Sr in NAFLD. The mouse model of NAFLD was established by feeding mice a high-fat diet (HFD), and the mice were treated with Sr. In the NAFLD mice, we found that treatment with Sr significantly increased the density of c-Fos+ cells in the hippocampus and inhibited the expression of caspase-3 by suppressing ERS. Surprisingly, the induction of neuroinflammation and the increased expression of inflammatory cytokines in the hippocampus following an HFD were attenuated by Sr treatment. Sr significantly attenuated the activation of microglia and astrocytes induced by an HFD. The expression of phospho-p38, ERK, and NF-κB was consistently significantly increased in the HFD group, and treatment with Sr decreased their expression. Moreover, Sr prevented HFD-induced damage to the ultra-structural synaptic architecture. This study implies that Sr has beneficial effects on repairing the damage to the hippocampus induced by an HFD, revealing that Sr could be a potential candidate for protection from neural damage caused by NAFLD.
Collapse
Affiliation(s)
- Shuai Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Fangyuan Zeng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yue Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jiaojiao Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Chenyao Xiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xiao Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Songlin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
29
|
Wang H, Luo Y, Wang H, Li F, Yu F, Ye L. Mechanistic advances in osteoporosis and anti-osteoporosis therapies. MedComm (Beijing) 2023; 4:e244. [PMID: 37188325 PMCID: PMC10175743 DOI: 10.1002/mco2.244] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 05/17/2023] Open
Abstract
Osteoporosis is a type of bone loss disease characterized by a reduction in bone mass and microarchitectural deterioration of bone tissue. With the intensification of global aging, this disease is now regarded as one of the major public health problems that often leads to unbearable pain, risk of bone fractures, and even death, causing an enormous burden at both the human and socioeconomic layers. Classic anti-osteoporosis pharmacological options include anti-resorptive and anabolic agents, whose ability to improve bone mineral density and resist bone fracture is being gradually confirmed. However, long-term or high-frequency use of these drugs may bring some side effects and adverse reactions. Therefore, an increasing number of studies are devoted to finding new pathogenesis or potential therapeutic targets of osteoporosis, and it is of great importance to comprehensively recognize osteoporosis and develop viable and efficient therapeutic approaches. In this study, we systematically reviewed literatures and clinical evidences to both mechanistically and clinically demonstrate the state-of-art advances in osteoporosis. This work will endow readers with the mechanistical advances and clinical knowledge of osteoporosis and furthermore present the most updated anti-osteoporosis therapies.
Collapse
Affiliation(s)
- Haiwei Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yuchuan Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Haisheng Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
30
|
Dias AM, do Nascimento Canhas I, Bruziquesi CGO, Speziali MG, Sinisterra RD, Cortés ME. Magnesium (Mg2 +), Strontium (Sr2 +), and Zinc (Zn2 +) Co-substituted Bone Cements Based on Nano-hydroxyapatite/Monetite for Bone Regeneration. Biol Trace Elem Res 2023; 201:2963-2981. [PMID: 35994139 DOI: 10.1007/s12011-022-03382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/06/2022] [Indexed: 11/30/2022]
Abstract
New bone cement type that combines Sr2 + /Mg2 + or Sr2 + /Zn2 + co-substituted nano-hydroxyapatite (n-HAs) with calcium phosphate dibasic and chitosan/gelatin polymers was developed to increase adhesion and cellular response. The cements were physicochemically described and tested in vitro using cell cultures. All cements exhibited quite hydrophilic and had high washout resistance. Cement releases Ca2 + , Mg2 + , Sr2 + , and Zn2 + in concentrations that are suitable for osteoblast proliferation and development. All of the cements stimulated cell proliferation in fibroblasts, endothelial cells, and osteoblasts, were non-cytotoxic, and produced apatite. Cements containing co-substituted n-HAs had excellent cytocompatibility, which improved osteoblast adhesion and cell proliferation. These cements had osteoinductive potential, stimulating extracellular matrix (ECM) mineralization and differentiation of MC3T3-E1 cells by increasing ALP and NO production. The ions Ca2 + , Mg2 + , Zn2 + , and Sr2 + appear to cooperate in promoting osteoblast function. The C3 cement (HA-SrMg5%), which was made up of n-HA co-substituted with 5 mol% Sr and 5 mol% Mg, showed exceptional osteoinductive capacity in terms of bone regeneration, indicating that this new bone cement could be a promising material for bone replacement.
Collapse
Affiliation(s)
- Alexa Magalhães Dias
- Dentistry Department, Faculty of Dentistry, Universidade Federal de Juiz de Fora, Rua São Paulo, 745 Governador Valadares/MG Brazil, Governador Valadares, MG, CEP, 31270901, Brazil
- Restorative Dentistry Department, Faculty of Dentistry, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
| | - Isabela do Nascimento Canhas
- Biopharmaceutical and Technology Innovation Graduate Program, ICB, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
| | - Carlos Giovani Oliveira Bruziquesi
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
| | - Marcelo Gomes Speziali
- Biopharmaceutical and Technology Innovation Graduate Program, ICB, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
- Chemistry Department, Instituto de Ciências Exatas E Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro s/n, Ouro Preto, MG, CEP, 35400000, Brazil
| | - Rubén Dario Sinisterra
- Biopharmaceutical and Technology Innovation Graduate Program, ICB, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
| | - Maria Esperanza Cortés
- Biopharmaceutical and Technology Innovation Graduate Program, ICB, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil.
- Restorative Dentistry Department, Faculty of Dentistry, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil.
| |
Collapse
|
31
|
Liu X, Huang H, Zhang J, Sun T, Zhang W, Li Z. Recent Advance of Strontium Functionalized in Biomaterials for Bone Regeneration. Bioengineering (Basel) 2023; 10:bioengineering10040414. [PMID: 37106601 PMCID: PMC10136039 DOI: 10.3390/bioengineering10040414] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Bone defect disease causes damage to people’s lives and property, and how to effectively promote bone regeneration is still a big clinical challenge. Most of the current repair methods focus on filling the defects, which has a poor effect on bone regeneration. Therefore, how to effectively promote bone regeneration while repairing the defects at the same time has become a challenge for clinicians and researchers. Strontium (Sr) is a trace element required by the human body, which mainly exists in human bones. Due to its unique dual properties of promoting the proliferation and differentiation of osteoblasts and inhibiting osteoclast activity, it has attracted extensive research on bone defect repair in recent years. With the deep development of research, the mechanisms of Sr in the process of bone regeneration in the human body have been clarified, and the effects of Sr on osteoblasts, osteoclasts, mesenchymal stem cells (MSCs), and the inflammatory microenvironment in the process of bone regeneration have been widely recognized. Based on the development of technology such as bioengineering, it is possible that Sr can be better loaded onto biomaterials. Even though the clinical application of Sr is currently limited and relevant clinical research still needs to be developed, Sr-composited bone tissue engineering biomaterials have achieved satisfactory results in vitro and in vivo studies. The Sr compound together with biomaterials to promote bone regeneration will be a development direction in the future. This review will present a brief overview of the relevant mechanisms of Sr in the process of bone regeneration and the related latest studies of Sr combined with biomaterials. The aim of this paper is to highlight the potential prospects of Sr functionalized in biomaterials.
Collapse
|
32
|
Ye Z, Qi Y, Zhang A, Karels BJ, Aparicio C. Biomimetic Mineralization of Fibrillar Collagen with Strontium-doped Hydroxyapatite. ACS Macro Lett 2023; 12:408-414. [PMID: 36897173 DOI: 10.1021/acsmacrolett.3c00039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Fibrillar collagen structures mineralized with hydroxyapatite using the polymer-induced liquid precursor (PILP) process have been explored as synthetic models for studying biomineralization of human hard tissues and have also been applied in the fabrication of scaffolds for hard tissue regeneration. Strontium has important biological functions in bone and has been used as a therapeutic agent for treating diseases that result in bone defects, such as osteoporosis. Here, we developed a strategy to mineralize collagen with Sr-doped hydroxyapatite (HA) using the PILP process. Doping with Sr altered the crystal lattice of HA and inhibited the degree of mineralization in a concentration-dependent manner, but did not affect the unique formation of intrafibrillar minerals using the PILP. The Sr-doped HA nanocrystals were aligned in the [001] direction but did not recapitulate the parallel alignment of the c-axis of pure Ca HA in relation to the collagen fiber long axis. The mimicry of doping Sr in PILP-mineralized collagen can help understand the doping of Sr in natural hard tissues and during treatment. The fibrillary mineralized collagen with Sr-doped HA will be explored in future work as biomimetic and bioactive scaffolds for regeneration of bone and tooth dentin.
Collapse
Affiliation(s)
- Zhou Ye
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, S.A.R., China
| | - Yipin Qi
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510000, China
| | - Anqi Zhang
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brandon J Karels
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Conrado Aparicio
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Division of Basic and Translational Research, Faculty of Odontology, UIC Barcelona - Universitat Internacional de Catalunya, Sant Cugat del Vallès, 08195, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, 08028, Spain
| |
Collapse
|
33
|
Weng Y, Jian Y, Huang W, Xie Z, Zhou Y, Pei X. Alkaline earth metals for osteogenic scaffolds: From mechanisms to applications. J Biomed Mater Res B Appl Biomater 2023; 111:1447-1474. [PMID: 36883838 DOI: 10.1002/jbm.b.35246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
Regeneration of bone defects is a significant challenge today. As alternative approaches to the autologous bone, scaffold materials have remarkable features in treating bone defects; however, the various properties of current scaffold materials still fall short of expectations. Due to the osteogenic capability of alkaline earth metals, their application in scaffold materials has become an effective approach to improving their properties. Furthermore, numerous studies have shown that combining alkaline earth metals leads to better osteogenic properties than applying them alone. In this review, the physicochemical and physiological characteristics of alkaline earth metals are introduced, mainly focusing on their mechanisms and applications in osteogenesis, especially magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba). Furthermore, this review highlights the possible cross-talk between pathways when alkaline earth metals are combined. Finally, some of the current drawbacks of scaffold materials are enumerated, such as the high corrosion rate of Mg scaffolds and defects in the mechanical properties of Ca scaffolds. Moreover, a brief perspective is also provided regarding future directions in this field. It is worth exploring that whether the levels of alkaline earth metals in newly regenerated bone differs from those in normal bone. The ideal ratio of each element in the bone tissue engineering scaffolds or the optimal concentration of each elemental ion in the created osteogenic environment still needs further exploration. The review not only summarizes the research developments in osteogenesis but also offers a direction for developing new scaffold materials.
Collapse
Affiliation(s)
- Yihang Weng
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Yujia Jian
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Wenlong Huang
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhuojun Xie
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Ying Zhou
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Xibo Pei
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
34
|
Gobron B, Couchot M, Irwin N, Legrand E, Bouvard B, Mabilleau G. Development of a First-in-Class Unimolecular Dual GIP/GLP-2 Analogue, GL-0001, for the Treatment of Bone Fragility. J Bone Miner Res 2023; 38:733-748. [PMID: 36850034 DOI: 10.1002/jbmr.4792] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/01/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Due to aging of the population, bone frailty is dramatically increasing worldwide. Although some therapeutic options exist, they do not fully protect or prevent against the occurrence of new fractures. All current drugs approved for the treatment of bone fragility target bone mass. However, bone resistance to fracture is not solely due to bone mass but relies also on bone extracellular matrix (ECM) material properties, i.e., the quality of the bone matrix component. Here, we introduce the first-in-class unimolecular dual glucose-dependent insulinotropic polypeptide/glucagon-like peptide-2 (GIP/GLP-2) analogue, GL-0001, that activates simultaneously the glucose-dependent insulinotropic polypeptide receptor (GIPr) and the glucagon-like peptide-2 receptor (GLP-2r). GL-0001 acts synergistically through a cyclic adenosine monophosphate-lysyl oxidase pathway to enhance collagen maturity. Furthermore, bilateral ovariectomy was performed in 32 BALB/c mice at 12 weeks of age prior to random allocation to either saline, dual GIP/GLP-2 analogues (GL-0001 or GL-0007) or zoledronic acid groups (n = 8/group). Treatment with dual GIP/GLP-2 analogues was initiated 4 weeks later for 8 weeks. At the organ level, GL-0001 modified biomechanical parameters by increasing ultimate load, postyield displacement, and energy-to-fracture of cortical bone. GL-0001 also prevented excess trabecular bone degradation at the appendicular skeleton and enhanced bone ECM material properties in cortical bone through a reduction of the mineral-to-matrix ratio and augmentation in enzymatic collagen cross-linking. These results demonstrate that targeting bone ECM material properties is a viable option to enhance bone strength and opens an innovative pathway for the treatment of patients suffering from bone fragility. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Benoit Gobron
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers, France.,CHU Angers, Service de Rhumatologie, Angers, France
| | - Malory Couchot
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers, France.,SATT Ouest Valorisation, Nantes, France
| | - Nigel Irwin
- Ulster University, School of Pharmacy and Pharmaceutical Sciences, Coleraine, UK
| | - Erick Legrand
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers, France.,CHU Angers, Service de Rhumatologie, Angers, France
| | - Béatrice Bouvard
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers, France.,CHU Angers, Service de Rhumatologie, Angers, France
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers, France.,CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, UF de Pathologie osseuse, Angers, France
| |
Collapse
|
35
|
Banche-Niclot F, Corvaglia I, Cavalera C, Boggio E, Gigliotti CL, Dianzani U, Tzagiollari A, Dunne N, Manca A, Fiorilli S, Vitale-Brovarone C. Optimization of an Injectable, Resorbable, Bioactive Cement Able to Release the Anti-Osteoclastogenic Biomolecule ICOS-Fc for the Treatment of Osteoporotic Vertebral Compression Fractures. Biomolecules 2023; 13:biom13010094. [PMID: 36671479 PMCID: PMC9855932 DOI: 10.3390/biom13010094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
Vertebral compression fractures are typical of osteoporosis and their treatment can require the injection of a cement through a minimally invasive procedure to restore vertebral body height. This study reports the development of an injectable calcium sulphate-based composite cement able to stimulate bone regeneration while inhibiting osteoclast bone resorption. To this aim, different types of strontium-containing mesoporous glass particles (Sr-MBG) were added to calcium sulphate powder to impart a pro-osteogenic effect, and the influence of their size and textural features on the cement properties was investigated. Anti-osteoclastogenic properties were conferred by incorporating into poly(lactic-co-glycolic)acid (PLGA) nanoparticles, a recombinant protein able to inhibit osteoclast activity (i.e., ICOS-Fc). Radiopaque zirconia nanoparticles (ZrO2) were also added to the formulation to visualize the cement injection under fluoroscopy. The measured cement setting times were suitable for the clinical practice, and static mechanical testing determined a compressive strength of ca. 8 MPa, comparable to that of human vertebral bodies. In vitro release experiments indicated a sustained release of ICOS-Fc and Sr2+ ions up to 28 days. Overall, the developed cement is promising for the treatment of vertebral compression fractures and has the potential to stimulate bone regeneration while releasing a biomolecule able to limit bone resorption.
Collapse
Affiliation(s)
- Federica Banche-Niclot
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Ilaria Corvaglia
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Caterina Cavalera
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Elena Boggio
- NOVAICOS s.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Casimiro Luca Gigliotti
- NOVAICOS s.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Antzela Tzagiollari
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland
| | - Nicholas Dunne
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland
| | - Antonio Manca
- Department of Radiology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Torino, Italy
| | - Sonia Fiorilli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
- National Interuniversity Consortium of Materials Science and Technology, RU Politecnico di Torino, 50121 Firenze, Italy
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
- National Interuniversity Consortium of Materials Science and Technology, RU Politecnico di Torino, 50121 Firenze, Italy
- Correspondence:
| |
Collapse
|
36
|
Mohammadi A, Dehkordi NR, Mahmoudi S, Rafeie N, Sabri H, Valizadeh M, Poorsoleiman T, Jafari A, Mokhtari A, Khanjarani A, Salimi Y, Mokhtari M, Deravi N. Effects of Drugs and Chemotherapeutic Agents on Dental Implant Osseointegration: A Narrative Review. Curr Rev Clin Exp Pharmacol 2023; 19:42-60. [PMID: 35674294 DOI: 10.2174/2772432817666220607114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dental implants have been one of the most popular treatments for rehabilitating individuals with single missing teeth or fully edentulous jaws since their introduction. As more implant patients are well-aged and take several medications due to various systemic conditions, clinicians should take into consideration the possible drug implications on bone remodeling and osseointegration. OBJECTIVE The present study aims to examine and review some desirable and unwelcomed implications of medicine on osseointegration. METHODS A broad search for proper relevant studies was conducted in four databases, including Web of Science, Pubmed, Scopus, and Google Scholar. RESULTS Some commonly prescribed medicines, such as nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, proton pump inhibitors (PPIs), selective serotonin reuptake inhibitors (SSRIs), anticoagulants, metformin, and chemotherapeutic agents, may jeopardize osseointegration. On the contrary, some therapeutic agents, such as anabolic, anti-catabolic, or dual anabolic agents may enhance osseointegration and increase the treatment's success rate. CONCLUSION Systemic medications that enhance osseointegration include mineralization promoters and bone resorption inhibitors. On the other hand, medications often given to the elderly with systemic problems might interfere with osseointegration, leading to implant failure. However, to validate the research, more human studies with a higher level of evidence are required.
Collapse
Affiliation(s)
- Aida Mohammadi
- Dental Materials Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Roqani Dehkordi
- Department of Periodontology, Faculty of Dentistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sadaf Mahmoudi
- Department of Endodontics, School of Dentistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Niyousha Rafeie
- Dental Research Center, Dentistry Research Institute, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamoun Sabri
- Research Center, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Valizadeh
- Student Research Committee, Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Taniya Poorsoleiman
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Aryan Jafari
- Dental Materials Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Mokhtari
- Student Research Committee, Dental Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arshia Khanjarani
- Student Research Committee, Dental Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasaman Salimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Melika Mokhtari
- Student Research Committee, Dental Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Alsharif SB, Wali R, Vanyo ST, Andreana S, Chen K, Sheth B, Swihart MT, Dziak R, Visser MB. Strontium-loaded hydrogel scaffolds to promote gingival fibroblast function. J Biomed Mater Res A 2023; 111:6-14. [PMID: 36054416 DOI: 10.1002/jbm.a.37439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/20/2022] [Accepted: 08/05/2022] [Indexed: 11/07/2022]
Abstract
Dental implant clinical success is dependent on effective peri-implant tissue attachment to the trans-mucosal portion following placement. Modification of transmucosal implant surfaces can improve cellular adhesion and function leading to formation of an effective soft-tissue seal during healing, of which gingival fibroblasts are prominent cells to migrate to repair wounds and crucial for the development of a collagen rich connective tissue. Biocompatible loaded scaffold materials have been developed to allow local release of molecules with effective biological activity. Our previous studies indicate that strontium can promote gingival fibroblast metabolism, decrease apoptosis and support adhesion to titanium healing abutments. In this study, we developed a strontium-loaded alginate hydrogel scaffold which can be easily personalized to fit over any size and shape of implant transmucosal collar or healing abutment. Results indicate that biologically active strontium ions are effectively released from loaded alginate hydrogel material to promote fibroblast viability and migration to repair in vitro wounds similar to that of strontium citrate solution. Overall, this novel strontium-loaded alginate scaffold device displays good biocompatibility and functionality, demonstrating high potential as a system to provide local delivery of strontium to improve peri-implant mucosal healing following implant placement and clinical success.
Collapse
Affiliation(s)
- Shahad Bakheet Alsharif
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, New York, USA.,Department of Periodontology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rofida Wali
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, New York, USA.,College of Dentistry, Umm Al-Qura University, Meca, Saudi Arabia
| | - Stephen T Vanyo
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Sebastiano Andreana
- Department of Restorative Dentistry, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Kaiwen Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Bhoomika Sheth
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Rosemary Dziak
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Michelle B Visser
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
38
|
Existing and Novel Biomaterials for Bone Tissue Engineering. Int J Mol Sci 2022; 24:ijms24010529. [PMID: 36613972 PMCID: PMC9820083 DOI: 10.3390/ijms24010529] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The treatment of bone defects remains one of the major challenges in modern clinical practice. Nowadays, with the increased incidence of bone disease in an aging population, the demand for materials to repair bone defects continues to grow. Recent advances in the development of biomaterials offer new possibilities for exploring modern bone tissue engineering strategies. Both natural and synthetic biomaterials have been used for tissue repair. A variety of porous structures that promote cell adhesion, differentiation, and proliferation enable better implant integration with increasingly better physical properties. The selection of a suitable biomaterial on which the patient's new tissue will grow is one of the key issues when designing a modern tissue scaffold and planning the entire treatment process. The purpose of this article is to present a comprehensive literature review of existing and novel biomaterials used in the surgical treatment of bone tissue defects. The materials described are divided into three groups-organic, inorganic, and synthetic polymers-taking into account current trends. This review highlights different types of existing and novel natural and synthetic materials used in bone tissue engineering and their advantages and disadvantages for bone defects regeneration.
Collapse
|
39
|
Ren L, Gong P, Gao X, Wang Q, Xie L, Tang W, Long J, Liu C, Tian W, He M. Metal-phenolic networks acted as a novel bio-filler of a barrier membrane to improve guided bone regeneration via manipulating osteoimmunomodulation. J Mater Chem B 2022; 10:10128-10138. [PMID: 36468640 DOI: 10.1039/d2tb01804g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A guided bone tissue regeneration membrane (GBRM) is traditionally viewed as an inert physical barrier to isolate soft tissue from the bone defect area. However, as a "foreign body", the implantation of a GBRM would inevitably modulate immune response and subsequently affect bone dynamics. Herein, we developed strontium ion (Sr2+)-based metal-phenolic network complexes (MPNs) as a novel type of bio-filler to manipulate the osteoimmunomodulation of the advanced GBRM. For controllable delivery of Sr2+ depending on the difference in affinity between phenolic ligands and Sr2+, tannic acid (TA), epigallocatechin gallate (EGCG), and epigallocatechin (EGC) were selected to chelate with Sr2+. The formed MPNs were incorporated into PCL nanofibrous membranes by blending electrospinning. Among them, TA/Sr based MPN particles displayed the most sustainable release profile of phenolic ligands and Sr2+. Further investigations demonstrated that Sr2+ could not only directly promote osteogenic differentiation of BMSCs, but also manipulate an anti-inflammatory osteoimmune microenvironment in a synergistic manner with TA, thus enhancing osteogenesis and inhibiting bone resorption. The rat alveolar bone defect model also confirmed that the TA/Sr nanoparticle modified membrane displayed better bone regeneration performance than the pure PCL membrane via inhibiting bone resorption. This work provides a new platform for controllable delivery of bioactive nutrient elements, and holds great promise for advancing multi-functional biocomposites.
Collapse
Affiliation(s)
- Lulu Ren
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Pei Gong
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinghui Gao
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qian Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Li Xie
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Tang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jie Long
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Can Liu
- Beijing Jimafei Technology Development Co., LTD, Beijing, China
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Min He
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
40
|
Liu L, Zhang Z, Aimaijiang M, Liu M, Huang L, Pan Z, Liu S, Qi S, Zhang X, Wang H, Li D, Zhou Y. Strontium-Incorporated Carbon Nitride Nanosheets Modulate Intracellular Tension for Reinforced Bone Regeneration. NANO LETTERS 2022; 22:9723-9731. [PMID: 36459114 DOI: 10.1021/acs.nanolett.2c04078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Strontium-containing agents have been demonstrated to elicit both bone anabolic and antiosteoporotic effects, showing great potential for the treatment of bone loss. However, an increased incidence of strontium-induced side effects restricts their clinical applications. Herein, oxidized carbon nitride nanosheets (CN) are delicately used to incorporate Sr2+ for the first time to achieve high osteogenic efficacy. The lamellar structure and enriched nitrogen species of CN provide them with a high surface area-to-volume ratio and abundant anchoring sites for Sr2+ incorporation. Importantly, Sr2+-incorporated CN (CNS) could synergistically promote osteoblast differentiation and bone regeneration at a single, very low Sr2+ dose. Mechanically, CNS could activate the FAK/RhoA signaling pathway to modulate the intracellular tension that stimulates osteoblasts differentiation. The present study will provide a new paradigm to enhance the efficacy of osteogenic metal ions by using lamellar nanocarriers.
Collapse
Affiliation(s)
- Lijun Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, People's Repbulic of China
| | - Zhiying Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, People's Repbulic of China
| | - Maierhaba Aimaijiang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, People's Repbulic of China
| | - Manxuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, People's Repbulic of China
| | - Lei Huang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, People's Repbulic of China
| | - Ziyi Pan
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, People's Repbulic of China
| | - Shuchen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, People's Repbulic of China
| | - Shuangyan Qi
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, People's Repbulic of China
| | - Xu Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, People's Repbulic of China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Repbulic of China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, People's Repbulic of China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, People's Repbulic of China
| |
Collapse
|
41
|
You J, Zhang Y, Zhou Y. Strontium Functionalized in Biomaterials for Bone Tissue Engineering: A Prominent Role in Osteoimmunomodulation. Front Bioeng Biotechnol 2022; 10:928799. [PMID: 35875505 PMCID: PMC9298737 DOI: 10.3389/fbioe.2022.928799] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
With the development of bone tissue engineering bio-scaffold materials by adding metallic ions to improve bone healing have been extensively explored in the past decades. Strontium a non-radioactive element, as an essential osteophilic trace element for the human body, has received widespread attention in the medical field due to its superior biological properties of inhibiting bone resorption and promoting osteogenesis. As the concept of osteoimmunology developed, the design of orthopedic biomaterials has gradually shifted from “immune-friendly” to “immunomodulatory” with the aim of promoting bone healing by modulating the immune microenvironment through implanted biomaterials. The process of bone healing can be regarded as an immune-induced procedure in which immune cells can target the effector cells such as macrophages, neutrophils, osteocytes, and osteoprogenitor cells through paracrine mechanisms, affecting pathological alveolar bone resorption and physiological bone regeneration. As a kind of crucial immune cell, macrophages play a critical role in the early period of wound repair and host defense after biomaterial implantation. Despite Sr-doped biomaterials being increasingly investigated, how extracellular Sr2+ guides the organism toward favorable osteogenesis by modulating macrophages in the bone tissue microenvironment has rarely been studied. This review focuses on recent knowledge that the trace element Sr regulates bone regeneration mechanisms through the regulation of macrophage polarization, which is significant for the future development of Sr-doped bone repair materials. We will also summarize the primary mechanism of Sr2+ in bone, including calcium-sensing receptor (CaSR) and osteogenesis-related signaling pathways.
Collapse
Affiliation(s)
- Jiaqian You
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yidi Zhang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yanmin Zhou
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
42
|
Antibacterial and Cytocompatible: Combining Silver Nitrate with Strontium Acetate Increases the Therapeutic Window. Int J Mol Sci 2022; 23:ijms23158058. [PMID: 35897634 PMCID: PMC9331456 DOI: 10.3390/ijms23158058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Microbial infection and insufficient tissue formation are considered to be the two main causes of dental implant failure. Novel studies have focused on designing dual-functional strategies to promote antibacterial properties and improve tissue cell response simultaneously. In this study, we investigated the antibacterial properties and cytocompatibility of silver nitrate (AgNO3) and strontium acetate (SrAc) in a mono-culture setup for dental application. Additionally, we defined the therapeutic window between the minimum inhibitory concentration against pathogenic bacteria and maximum cytocompatible dose in the case of combined applications in a co-culture setup. Antibacterial properties were screened using Aggregatibacter actinomycetemcomitans and cell response experiments were performed with osteoblastic cells (MC3T3) and fibroblastic cells (NIH3T3). The osteoinductive behavior was investigated separately on MC3T3 cells using alizarin red staining. A therapeutic window for AgNO3 as well as SrAc applications could be defined in the case of MC3T3 cells while the cytocompatibility of NIH3T3 cells was compromised for all concentrations with an antibacterial effect. However, the combined application of AgNO3/SrAc caused an enhanced antibacterial effect and opened a therapeutic window for both cell lines. Enhanced mineralization rates could be observed in cultures containing SrAc. In conclusion, we were able to demonstrate that adding SrAc to AgNO3 not only intensifies antibacterial properties but also exhibits bone inductive characteristics, thereby offering a promising strategy to combat peri-implantitis and at the same time improve osseointegration in implant therapy.
Collapse
|
43
|
Svarca A, Grava A, Dubnika A, Ramata-Stunda A, Narnickis R, Aunina K, Rieksta E, Boroduskis M, Jurgelane I, Locs J, Loca D. Calcium Phosphate/Hyaluronic Acid Composite Hydrogels for Local Antiosteoporotic Drug Delivery. Front Bioeng Biotechnol 2022; 10:917765. [PMID: 35866026 PMCID: PMC9294454 DOI: 10.3389/fbioe.2022.917765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the bone ability of self-regeneration, large bone defects require surgical intervention. Likewise, when it comes to osteoporotic bone fractures, new approaches should be considered a supportive mechanism for the surgery. In recent years, more and more attention has been attracted to advanced drug delivery systems for local osteoporosis treatment, combining appropriate biomaterials with antiosteoporotic drugs, allowing simultaneously to regenerate the bone and locally treat the osteoporosis. Within the current research, hyaluronic acid/strontium ranelate (HA/SrRan), HA/calcium phosphate nanoparticles (HA/CaP NPs), and HA/CaP NPs/SrRan hydrogels were prepared. The effect of CaP and SrRan presence in the composites on the swelling behavior, gel fraction, molecular structure, microstructure, and SrRan and Sr2+ release, as well as in vitro cell viability was evaluated. Obtained results revealed that the route of CaP nanoparticle incorporation into the HA matrix had a significant effect on the hydrogel gel fraction, rheological properties, swelling behavior, and microstructure. Nevertheless, it had a negligible effect on the release kinetics of SrRan and Sr2+. The highest cell (3T3) viability (>80%) was observed for HA hydrogels, with and without SrRan. Moreover, the positive effect of SrRan on 3T3 cells was also demonstrated, showing a significant increase (up to 50%) in cell viability if the used concentrations of SrRan were in the range of 0.05-0.2 μg/ml.
Collapse
Affiliation(s)
- Alise Svarca
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Andra Grava
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Arita Dubnika
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Anna Ramata-Stunda
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Riga, Latvia
| | - Raimonds Narnickis
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Kristine Aunina
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Eleonora Rieksta
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Martins Boroduskis
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Riga, Latvia
| | - Inga Jurgelane
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Dagnija Loca
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
44
|
Mecca LEDA, Fischborn AR, Andreis JD, Delfrate G, Mroczek T, Rigo NM, Oliveira FBD, Castro ML, Taba Junior M, Claudino M, Franco GCN. Absence of medication-related jaw osteonecrosis after treatment with strontium ranelate in ovariectomized rats. Braz Oral Res 2022; 36:e084. [PMID: 35703709 DOI: 10.1590/1807-3107bor-2022.vol36.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 03/07/2022] [Indexed: 08/24/2023] Open
Abstract
This study aimed to evaluate the potential of strontium ranelate (SR) in medication-related jaw osteonecrosis (MRONJ) after tooth extraction in ovariectomized rats. Thirty ovariectomized rats were divided into three groups (n = 10): bisphophonate (BP) group (zoledronic acid; 0.4 mg/kg/week), SR group (625 mg/kg/day), and control group (saline solution). The lower first molars were extracted after 60 days of drug therapy. Drug administration was continued for another 30 days after tooth extraction. The mandibles were subjected to clinical, histological, radiographic, and microtomographic evaluations. Only the BP group showed clinical changes, characterized by the presence of 70% (n = 7) and 20% (n = 2) of ulcers and extraoral fistulas. Radiographic evaluation demonstrated bone sequestration only in the BP group (n = 7, 70%). Microtomographic analysis revealed increased bone porosity after ovariectomy, particularly in the the control group (p < 0.05). The BP group showed a higher bone surface density, bone volume, and trabecular number than SR and control groups, but with less trabecular separation (p < 0.05). All the animals in the BP group demonstrated histological osteonecrosis. There was no evidence of osteonecrosis in the control and SR groups, which was characterized by the absence of empty osteocyte gaps and associated with the gradual healing of the extraction area. Also, an increased number of blood vessels and a reduced number of osteoclasts were observed in the SR group (p < 0.05). Therefore, SR treatment increased angiogenesis and osteoclastogenesis in the healing socket and was not associated with MRONJ development after tooth extraction in ovariectomized rats.
Collapse
Affiliation(s)
| | - Amanda Regina Fischborn
- Universidade Estadual de Ponta Grossa - UEPG, Department of Dentistry , Ponta Grossa , PR , Brazil
| | - Jessica Daniela Andreis
- Universidade Estadual de Ponta Grossa - UEPG, Department of Dentistry , Ponta Grossa , PR , Brazil
| | - Gabrielle Delfrate
- Universidade Estadual de Ponta Grossa - UEPG, Department of Dentistry , Ponta Grossa , PR , Brazil
| | - Tayline Mroczek
- Universidade Estadual de Ponta Grossa - UEPG, Department of Dentistry , Ponta Grossa , PR , Brazil
| | - Natália Mariane Rigo
- Universidade Estadual de Ponta Grossa - UEPG, Department of Dentistry , Ponta Grossa , PR , Brazil
| | - Fábio Brasil de Oliveira
- Universidade Estadual de Ponta Grossa - UEPG, Department of Dentistry , Ponta Grossa , PR , Brazil
| | - Myrella Lessio Castro
- Faculdade de Ciências do Tocantins - Facit, Department of Pharmacology , Araguaína , TO , Brazil
| | - Mario Taba Junior
- Universidade de São Paulo - USP, Ribeirão Preto School of Dentistry , Department of Oral Surgery and Periodontology , Ribeirão Preto , SP , Brazil
| | - Marcela Claudino
- Universidade Estadual de Ponta Grossa - UEPG, Department of Dentistry , Ponta Grossa , PR , Brazil
| | | |
Collapse
|
45
|
Zhang H, Wang Z, Wang Y, Li Z, Chao B, Liu S, Luo W, Jiao J, Wu M. Biomaterials for Interbody Fusion in Bone Tissue Engineering. Front Bioeng Biotechnol 2022; 10:900992. [PMID: 35656196 PMCID: PMC9152360 DOI: 10.3389/fbioe.2022.900992] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
In recent years, interbody fusion cages have played an important role in interbody fusion surgery for treating diseases like disc protrusion and spondylolisthesis. However, traditional cages cannot achieve satisfactory results due to their unreasonable design, poor material biocompatibility, and induced osteogenesis ability, limiting their application. There are currently 3 ways to improve the fusion effect, as follows. First, the interbody fusion cage is designed to facilitate bone ingrowth through the preliminary design. Second, choose interbody fusion cages made of different materials to meet the variable needs of interbody fusion. Finally, complete post-processing steps, such as coating the designed cage, to achieve a suitable osseointegration microstructure, and add other bioactive materials to achieve the most suitable biological microenvironment of bone tissue and improve the fusion effect. The focus of this review is on the design methods of interbody fusion cages, a comparison of the advantages and disadvantages of various materials, the influence of post-processing techniques and additional materials on interbody fusion, and the prospects for the future development of interbody fusion cages.
Collapse
Affiliation(s)
- Han Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Bo Chao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Shixian Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Wangwang Luo
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
46
|
Hertel FC, da Silva AS, Sabino ADP, Valente FL, Reis ECC. Preconditioning Methods to Improve Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Bone Regeneration—A Systematic Review. BIOLOGY 2022; 11:biology11050733. [PMID: 35625461 PMCID: PMC9138769 DOI: 10.3390/biology11050733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/20/2022] [Accepted: 05/07/2022] [Indexed: 12/09/2022]
Abstract
Simple Summary The evidence of the therapeutic effects of mesenchymal stromal cells (MSCs), so-called stem cells, in several diseases relies mostly on the substances they secrete, including their extracellular vesicles (EVs). EVs are an important component of cell communication and they carry a cargo that is similar to their parent cell. Cells respond differently based on their microenvironment, and so it is expected that the therapeutic potential of these vesicles can be modulated by the enrichment of their parent cell microenvironment. With this in mind, we conducted a systematic search for papers that preconditioned MSCs and collected their EVs to assess their potential to favor bone formation. The results showed different methods for MSC preconditioning, including chemical induction, culture conditions, and genetic modifications. All methods were able to improve the therapeutic effects of the derived EVs for bone formation. However, the heterogeneity among studies—regarding the type of cell, EV concentration, and scaffolds—made it difficult to compare fairly the types of preconditioning methods. In summary, the microenvironment greatly influences MSCs, and using preconditioning methods can potentially improve the therapeutic effects of their derived EVs in bone regeneration and other bone diseases. Abstract Mesenchymal stromal cells (MSCs) have long been used in research for bone regeneration, with evidence of their beneficial properties. In the segmental area of MSC-based therapies, MSC-derived extracellular vesicles (EVs) have also shown great therapeutic effects in several diseases, including bone healing. This study aimed to assess whether the conditioning of MSCs improves the therapeutic effects of their derived extracellular vesicles for bone regeneration. Electronic research was performed until February 2021 to recover the studies in the following databases: PubMed, Scopus, and Web of Science. The studies were screened based on the inclusion criteria. Relevant information was extracted, including in vitro and in vivo experiments, and the animal studies were evaluated for risk of bias by the SYRCLE tool. A total of 463 studies were retrieved, and 18 studies met the inclusion criteria (10 studies for their in vitro analysis, and 8 studies for their in vitro and in vivo analysis). The conditioning methods reported included: osteogenic medium; dimethyloxalylglycine; dexamethasone; strontium-substituted calcium silicate; hypoxia; 3D mechanical microenvironment; and the overexpression of miR-375, bone morphogenetic protein-2, and mutant hypoxia-inducible factor-1α. The conditioning methods of MSCs in the reported studies generate exosomes able to significantly promote bone regeneration. However, heterogeneity regarding cell source, conditioning method, EV isolation and concentration, and defect model was observed among the studies. The different conditioning methods reported in this review do improve the therapeutic effects of MSC-derived EVs for bone regeneration, but they still need to be addressed in larger animal models for further clinical application.
Collapse
Affiliation(s)
- Fernanda Campos Hertel
- Veterinary Department, Federal University of Viçosa, Vicosa 36570-900, Brazil; (F.C.H.); (A.S.d.S.); (F.L.V.)
| | - Aline Silvestrini da Silva
- Veterinary Department, Federal University of Viçosa, Vicosa 36570-900, Brazil; (F.C.H.); (A.S.d.S.); (F.L.V.)
| | - Adriano de Paula Sabino
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Fabrício Luciani Valente
- Veterinary Department, Federal University of Viçosa, Vicosa 36570-900, Brazil; (F.C.H.); (A.S.d.S.); (F.L.V.)
| | - Emily Correna Carlo Reis
- Veterinary Department, Federal University of Viçosa, Vicosa 36570-900, Brazil; (F.C.H.); (A.S.d.S.); (F.L.V.)
- Correspondence:
| |
Collapse
|
47
|
Al-Abassi A, Papini M, Towler M. Review of Biomechanical Studies and Finite Element Modeling of Sternal Closure Using Bio-Active Adhesives. Bioengineering (Basel) 2022; 9:198. [PMID: 35621476 PMCID: PMC9138150 DOI: 10.3390/bioengineering9050198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 11/17/2022] Open
Abstract
The most common complication of median sternotomy surgery is sternum re-separation after sternal fixation, which leads to high rates of morbidity and mortality. The adhered sternal fixation technique comprises the wiring fixation technique and the use of bio-adhesives. Adhered sternal fixation techniques have not been extensively studied using finite element analysis, so mechanical testing studies and finite element analysis of sternal fixation will be presented in this review to find the optimum techniques for simulating sternal fixation with adhesives. The optimal wiring technique should enhance bone stability and limit sternal displacement. Bio-adhesives have been proposed to support sternal fixation, as wiring is prone to failure in cases of post-operative problems. The aim of this paper is to review and present the existing numerical and biomechanical sternal fixation studies by reviewing common sternal closure techniques, adhesives for sternal closure, biomechanical modeling of sternal fixation, and finite element modeling of sternal fixation systems. Investigating the physical behavior of 3D sternal fixation models by finite element analysis (FEA) will lower the expense of conducting clinical trials. This indicates that FEA studies of sternal fixation with adhesives are needed to analyze the efficiency of this sternal closure technique virtually.
Collapse
Affiliation(s)
- Amatulraheem Al-Abassi
- Department of Biomedical Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada; (M.P.); (M.T.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Marcello Papini
- Department of Biomedical Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada; (M.P.); (M.T.)
- Department of Mechanical Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Mark Towler
- Department of Biomedical Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada; (M.P.); (M.T.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Department of Mechanical Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
48
|
Bagi Z, Balog K, Tóth B, Fehér M, Bársony P, Baranyai E, Harangi S, Ashrafzadeh MR, Hegedűs B, Stündl L, Kusza S. Genes and elements involved in the regulation of the nervous system and growth affect the development of spinal deformity in Cyprinus carpio. PLoS One 2022; 17:e0266447. [PMID: 35395053 PMCID: PMC8993014 DOI: 10.1371/journal.pone.0266447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
Spinal deformity is a serious economic and animal welfare problem in intensive fish farming systems, which will be a significant unsolved problem for the fish sector. The aim of this study was to determine the relative expression of genes (Akt1 substrate 1, Calreticulin, Collagen type I alpha 2 chain, Corticotropin-releasing hormone, Chromodomain-Helicase DNA-binding, Growth hormone, Insulin like growth factor 1, Myostatin, Sine oculis-related homeobox 3, Toll-like receptor 2) in different tissues associated with spinal deformity and to determine the macroelement (calcium, magnesium, phosphorus, potassium, sodium, sulfur) and microelement (barium, copper, iron, manganese, strontium, zinc) content of spine in healthy and deformed common carps (Cyprinus carpio) in Hungary. The mRNA levels of the genes were measured in 7 different tissues (abdominal fat, blood, brain, dorsal muscle, genitals, heart, liver) by qRT-PCR. Correlations between gene expression and element content were analyzed by using linear regression and Spearman rank correlation. In a total of 15 cases, we found a statistically significant connection between gene expression in a tissue and the macro- or microelement content of the spine. In these contexts, the genes Akt1 substrate 1 (3), Collagen type I alpha 2 chain (2), Corticotropin-releasing hormone (4), Insulin-like growth factor 1 (4), and Myostatin (2), the tissue's blood (3), brain (6), heart (5), and liver (1), the macroelements sodium (4), magnesium (4), phosphorus (1) and sulfur (2) as well as the microelement iron (4) were involved. We also found statistically significant mRNA level differences between healthy and deformed common carps in tissues that were not directly affected by the deformation. Based on our results, genes regulating the nervous system and growth, elements, and tissues are the most associated components in the phenomenon of spinal deformity. With our study, we wish to give direction to and momentum for the exploration of these complex processes.
Collapse
Affiliation(s)
- Zoltán Bagi
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Katalin Balog
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
- Doctoral School of Animal Science, University of Debrecen, Debrecen, Hungary
| | - Bianka Tóth
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Milán Fehér
- Department of Animal Husbandry, Laboratory of Aquaculture, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Péter Bársony
- Department of Animal Nutrition and Food Biotechnology Faculty of Agricultural and Food Sciences and Environmental Sciences, University of Debrecen, Debrecen, Hungary
| | - Edina Baranyai
- Department of Inorganic and Analytical Chemistry, Atomic Spectroscopy Laboratory, University of Debrecen, Debrecen, Hungary
| | - Sándor Harangi
- Department of Inorganic and Analytical Chemistry, Atomic Spectroscopy Laboratory, University of Debrecen, Debrecen, Hungary
| | - Mohammad Reza Ashrafzadeh
- Department of Fisheries and Environmental Sciences, Faculty of Natural Resources and Earth Sciences, Shahrekord University, Shahrekord, Iran
| | - Bettina Hegedűs
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - László Stündl
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
49
|
Borciani G, Ciapetti G, Vitale-Brovarone C, Baldini N. Strontium Functionalization of Biomaterials for Bone Tissue Engineering Purposes: A Biological Point of View. MATERIALS 2022; 15:ma15051724. [PMID: 35268956 PMCID: PMC8911212 DOI: 10.3390/ma15051724] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023]
Abstract
Strontium (Sr) is a trace element taken with nutrition and found in bone in close connection to native hydroxyapatite. Sr is involved in a dual mechanism of coupling the stimulation of bone formation with the inhibition of bone resorption, as reported in the literature. Interest in studying Sr has increased in the last decades due to the development of strontium ranelate (SrRan), an orally active agent acting as an anti-osteoporosis drug. However, the use of SrRan was subjected to some limitations starting from 2014 due to its negative side effects on the cardiac safety of patients. In this scenario, an interesting perspective for the administration of Sr is the introduction of Sr ions in biomaterials for bone tissue engineering (BTE) applications. This strategy has attracted attention thanks to its positive effects on bone formation, alongside the reduction of osteoclast activity, proven by in vitro and in vivo studies. The purpose of this review is to go through the classes of biomaterials most commonly used in BTE and functionalized with Sr, i.e., calcium phosphate ceramics, bioactive glasses, metal-based materials, and polymers. The works discussed in this review were selected as representative for each type of the above-mentioned categories, and the biological evaluation in vitro and/or in vivo was the main criterion for selection. The encouraging results collected from the in vitro and in vivo biological evaluations are outlined to highlight the potential applications of materials’ functionalization with Sr as an osteopromoting dopant in BTE.
Collapse
Affiliation(s)
- Giorgia Borciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-6366748
| | - Gabriela Ciapetti
- Biomedical Science and Technologies Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
- Laboratory for Nanobiotechnology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy;
| | - Nicola Baldini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Biomedical Science and Technologies Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| |
Collapse
|
50
|
Kamel R, Mabrouk M, El-Sayed SAM, Beherei HH, Abouzeid RE, Abo El-Fadl MT, Mahmoud AA, Maged A. Nanofibrillated cellulose/glucosamine 3D aerogel implants loaded with rosuvastatin and bioactive ceramic for dental socket preservation. Int J Pharm 2022; 616:121549. [PMID: 35131357 DOI: 10.1016/j.ijpharm.2022.121549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 11/19/2022]
Abstract
Recycling of agro-wastes presents a great economic and ecologic value. In this study, TEMPO-oxidized nanofibrillated cellulose (TONFC) originating from sugarcane bagasse pulp was exploited in regenerative medicine. TONFC in combination with glucosamine HCl (G) were used to prepare a 3D aerogel implant loaded with rosuvastatin as an integrative approach for extraction-socket healing. Comparing the prepared devices, aerogel composed of TONFC: G (4:1 wt ratio) had the best mechanical properties and integrity. Strontium borate-based bioactive ceramic particles were prepared and characterized for crystal structure, shape, porosity, and zeta potential. The particles had a crystalline diffraction pattern relative to Sr3B2O6, and they were rod in shape with nanopores with a zeta potential value of -16 mV. The prepared bioactive ceramic (BC) was then added in different concentrations (3 or 6% w/w) to the selected aerogel implant. The BC had a concentration-dependent effect on the aerogel properties as it ameliorated its mechanical performance (compressive strength = 90 and 150 kPa for 3 and 6%, respectively) and retarded drug release (mean release time = 2.34 and 3.4 h for 3 and 6%, respectively) (p < 0.05). The microphotograph of the selected aerogel implant loaded with BC showed a rough surface with an interconnective porous structure. During cell biology testing, the selected implant loaded with the lower BC concentration had the highest ability to increase MG-63 cells proliferation. In conclusion, TONFC is a promising material to formulate rosuvastatin-loaded aerogel implant with the aid of glucosamine and bioactive ceramic for dental socket preservation.
Collapse
Affiliation(s)
- Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Sara A M El-Sayed
- Refractories, Ceramics and Building Materials Department, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Ragab E Abouzeid
- Cellulose and Paper Department, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Mahmoud T Abo El-Fadl
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt; Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Azza A Mahmoud
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Future University in Egypt, Egypt.
| | - Amr Maged
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Future University in Egypt, Egypt; Pharmaceutical Factory, Faculty of Pharmacy, Future University in Egypt, Egypt.
| |
Collapse
|