1
|
Pala D, Clark DE. Caught between a ROCK and a hard place: current challenges in structure-based drug design. Drug Discov Today 2024; 29:104106. [PMID: 39029868 DOI: 10.1016/j.drudis.2024.104106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/27/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The discipline of structure-based drug design (SBDD) is several decades old and it is tempting to think that the proliferation of experimental structures for many drug targets might make computer-aided drug design (CADD) straightforward. However, this is far from true. In this review, we illustrate some of the challenges that CADD scientists face every day in their work, even now. We use Rho-associated protein kinase (ROCK), and public domain structures and data, as an example to illustrate some of the challenges we have experienced during our project targeting this protein. We hope that this will help to prevent unrealistic expectations of what CADD can accomplish and to educate non-CADD scientists regarding the challenges still facing their CADD colleagues.
Collapse
Affiliation(s)
- Daniele Pala
- Medicinal Chemistry and Drug Design Technologies Department, Chiesi Farmaceutici S.p.A, Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - David E Clark
- Charles River, 6-9 Spire Green Centre, Flex Meadow, Harlow CM19 5TR, UK.
| |
Collapse
|
2
|
Eid AM, Selim A, Khaled M, Elfiky AA. Hybrid Virtual Screening Approach to Predict Novel Natural Compounds against HIV-1 CCR5. J Phys Chem B 2024; 128:7086-7101. [PMID: 39016126 DOI: 10.1021/acs.jpcb.4c02083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
BACKGROUND Human immunodeficiency virus (HIV) infection continues to pose a major global health challenge. HIV entry into host cells via membrane fusion mediated by the viral envelope glycoprotein gp120/gp41 is a key step in the HIV life cycle. CCR5, expressed on CD4+ T cells and macrophages, acts as a coreceptor facilitating HIV-1 entry. The CCR5 antagonist maraviroc is used to treat HIV infection. However, it can cause adverse effects and has limitations such as only inhibiting CCR5-tropic viruses. There remains a need to develop alternative CCR5 inhibitors with improved safety profiles. PROBLEM STATEMENT Natural products may offer advantages over synthetic inhibitors including higher bioavailability, binding affinity, effectiveness, lower toxicity, and molecular diversity. However, screening the vast chemical space of natural compounds to identify novel CCR5 inhibitors presents challenges. This study aimed to address this gap through a hybrid ligand-based pharmacophore modeling and molecular docking approach to virtually screen large natural product databases. METHODS A reliable pharmacophore model was developed based on 311 known CCR5 antagonists and validated against an external data set. Five natural product databases containing over 306,000 compounds were filtered based on drug-likeness rules. The validated pharmacophore model screened the databases to identify 611 hits. Key residues of the CCR5 receptor crystal structure were identified for docking. The top hits were docked, and interactions were analyzed. Molecular dynamics simulations were conducted to examine complex stability. Computational prediction evaluated pharmacokinetic properties. RESULTS Three compounds exhibited similar interactions and binding energies to maraviroc. MD simulations demonstrated complex stability comparable to maraviroc. One compound showed optimal predicted absorption, minimal metabolism, and a lower likelihood of interactions than maraviroc. CONCLUSION This computational screening workflow identified three natural compounds with promising CCR5 inhibition and favorable pharmacokinetic profiles. One compound emerged as a lead based on bioavailability potential and minimal interaction risk. These findings present opportunities for developing alternative CCR5 antagonists and warrant further experimental investigation. Overall, the hybrid virtual screening approach proved effective for mining large natural product spaces to discover novel molecular entities with drug-like properties.
Collapse
Affiliation(s)
- Abdulrahman M Eid
- Biophysics Dept. Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Abdallah Selim
- Biophysics Dept. Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mohamed Khaled
- Biophysics Dept. Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Abdo A Elfiky
- Biophysics Dept. Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
3
|
Higgins WT, Vibhute S, Bennett C, Lindert S. Discovery of Nanomolar Inhibitors for Human Dihydroorotate Dehydrogenase Using Structure-Based Drug Discovery Methods. J Chem Inf Model 2024; 64:435-448. [PMID: 38175956 DOI: 10.1021/acs.jcim.3c01358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
We used a structure-based drug discovery approach to identify novel inhibitors of human dihydroorotate dehydrogenase (DHODH), which is a therapeutic target for treating cancer and autoimmune and inflammatory diseases. In the case of acute myeloid leukemia, no previously discovered DHODH inhibitors have yet succeeded in this clinical application. Thus, there remains a strong need for new inhibitors that could be used as alternatives to the current standard-of-care. Our goal was to identify novel inhibitors of DHODH. We implemented prefiltering steps to omit PAINS and Lipinski violators at the earliest stages of this project. This enriched compounds in the data set that had a higher potential of favorable oral druggability. Guided by Glide SP docking scores, we found 20 structurally unique compounds from the ChemBridge EXPRESS-pick library that inhibited DHODH with IC50, DHODH values between 91 nM and 2.7 μM. Ten of these compounds reduced MOLM-13 cell viability with IC50, MOLM-13 values between 2.3 and 50.6 μM. Compound 16 (IC50, DHODH = 91 nM) inhibited DHODH more potently than the known DHODH inhibitor, teriflunomide (IC50, DHODH = 130 nM), during biochemical characterizations and presented a promising scaffold for future hit-to-lead optimization efforts. Compound 17 (IC50, MOLM-13 = 2.3 μM) was most successful at reducing survival in MOLM-13 cell lines compared with our other hits. The discovered compounds represent excellent starting points for the development and optimization of novel DHODH inhibitors.
Collapse
Affiliation(s)
- William T Higgins
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| | - Sandip Vibhute
- Medicinal Chemistry Shared Resource, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, United States
| | - Chad Bennett
- Medicinal Chemistry Shared Resource, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, United States
- Drug Development Institute, Ohio State University, Columbus, Ohio 43210, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Romanini M, Macovez R, Valenti S, Noor W, Tamarit JL. Dielectric Spectroscopy Studies of Conformational Relaxation Dynamics in Molecular Glass-Forming Liquids. Int J Mol Sci 2023; 24:17189. [PMID: 38139017 PMCID: PMC10743228 DOI: 10.3390/ijms242417189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
We review experimental results obtained with broadband dielectric spectroscopy concerning the relaxation times and activation energies of intramolecular conformational relaxation processes in small-molecule glass-formers. Such processes are due to the interconversion between different conformers of relatively flexible molecules, and generally involve conformational changes of flexible chain or ring moieties, or else the rigid rotation of planar groups, such as conjugated phenyl rings. Comparative analysis of molecules possessing the same (type of) functional group is carried out in order to test the possibility of assigning the dynamic conformational isomerism of given families of organic compounds to the motion of specific molecular subunits. These range from terminal halomethyl and acetyl/acetoxy groups to both rigid and flexible ring structures, such as the planar halobenzene cycles or the buckled saccharide and diazepine rings. A short section on polyesters provides a generalisation of these findings to synthetic macromolecules.
Collapse
Affiliation(s)
| | | | | | | | - Josep Lluís Tamarit
- Grup de Caracterització de Materials, Departament de Física and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona East School of Engineering (EEBE), Av. Eduard Maristany 10-14, E-08019 Barcelona, Spain; (M.R.); (R.M.); (S.V.); (W.N.)
| |
Collapse
|
5
|
Ojha AA, Votapka LW, Amaro RE. QMrebind: incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through milestoning simulations. Chem Sci 2023; 14:13159-13175. [PMID: 38023523 PMCID: PMC10664576 DOI: 10.1039/d3sc04195f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Understanding the interaction of ligands with biomolecules is an integral component of drug discovery and development. Challenges for computing thermodynamic and kinetic quantities for pharmaceutically relevant receptor-ligand complexes include the size and flexibility of the ligands, large-scale conformational rearrangements of the receptor, accurate force field parameters, simulation efficiency, and sufficient sampling associated with rare events. Our recently developed multiscale milestoning simulation approach, SEEKR2 (Simulation Enabled Estimation of Kinetic Rates v.2), has demonstrated success in predicting unbinding (koff) kinetics by employing molecular dynamics (MD) simulations in regions closer to the binding site. The MD region is further subdivided into smaller Voronoi tessellations to improve the simulation efficiency and parallelization. To date, all MD simulations are run using general molecular mechanics (MM) force fields. The accuracy of calculations can be further improved by incorporating quantum mechanical (QM) methods into generating system-specific force fields through reparameterizing ligand partial charges in the bound state. The force field reparameterization process modifies the potential energy landscape of the bimolecular complex, enabling a more accurate representation of the intermolecular interactions and polarization effects at the bound state. We present QMrebind (Quantum Mechanical force field reparameterization at the receptor-ligand binding site), an ORCA-based software that facilitates reparameterizing the potential energy function within the phase space representing the bound state in a receptor-ligand complex. With SEEKR2 koff estimates and experimentally determined kinetic rates, we compare and interpret the receptor-ligand unbinding kinetics obtained using the newly reparameterized force fields for model host-guest systems and HSP90-inhibitor complexes. This method provides an opportunity to achieve higher accuracy in predicting receptor-ligand koff rate constants.
Collapse
Affiliation(s)
- Anupam Anand Ojha
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093 USA
| | - Lane William Votapka
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093 USA
| | - Rommie Elizabeth Amaro
- Department of Molecular Biology, University of California San Diego La Jolla California 92093 USA
| |
Collapse
|
6
|
Xia S, Chen E, Zhang Y. Integrated Molecular Modeling and Machine Learning for Drug Design. J Chem Theory Comput 2023; 19:7478-7495. [PMID: 37883810 PMCID: PMC10653122 DOI: 10.1021/acs.jctc.3c00814] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Modern therapeutic development often involves several stages that are interconnected, and multiple iterations are usually required to bring a new drug to the market. Computational approaches have increasingly become an indispensable part of helping reduce the time and cost of the research and development of new drugs. In this Perspective, we summarize our recent efforts on integrating molecular modeling and machine learning to develop computational tools for modulator design, including a pocket-guided rational design approach based on AlphaSpace to target protein-protein interactions, delta machine learning scoring functions for protein-ligand docking as well as virtual screening, and state-of-the-art deep learning models to predict calculated and experimental molecular properties based on molecular mechanics optimized geometries. Meanwhile, we discuss remaining challenges and promising directions for further development and use a retrospective example of FDA approved kinase inhibitor Erlotinib to demonstrate the use of these newly developed computational tools.
Collapse
Affiliation(s)
- Song Xia
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Eric Chen
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Yingkai Zhang
- Department
of Chemistry, New York University, New York, New York 10003, United States
- Simons
Center for Computational Physical Chemistry at New York University, New York, New York 10003, United States
- NYU-ECNU
Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
7
|
Azad I, Khan T, Ahmad N, Khan AR, Akhter Y. Updates on drug designing approach through computational strategies: a review. Future Sci OA 2023; 9:FSO862. [PMID: 37180609 PMCID: PMC10167725 DOI: 10.2144/fsoa-2022-0085] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
The drug discovery and development (DDD) process in pursuit of novel drug candidates is a challenging procedure requiring lots of time and resources. Therefore, computer-aided drug design (CADD) methodologies are used extensively to promote proficiency in drug development in a systematic and time-effective manner. The point in reference is SARS-CoV-2 which has emerged as a global pandemic. In the absence of any confirmed drug moiety to treat the infection, the science fraternity adopted hit and trial methods to come up with a lead drug compound. This article is an overview of the virtual methodologies, which assist in finding novel hits and help in the progression of drug development in a short period with a specific medicinal solution.
Collapse
Affiliation(s)
- Iqbal Azad
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Naseem Ahmad
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, UP, 2260025, India
| |
Collapse
|
8
|
Computational identification of drug-like marine natural products as potential RNA polymerase inhibitors against Nipah virus. Comput Biol Chem 2023; 104:107850. [PMID: 36907056 DOI: 10.1016/j.compbiolchem.2023.107850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Nipah virus (NiV) has been an alarming threat to human populations in southern Asia for more than a decade. It is one of the most deadly viruses in the Mononegavirales order. Despite its high mortality rate and virulence, no chemotherapeutic agent or vaccine is publicly available. Hence, this work was conducted to computationally screen marine natural products database for drug-like potential inhibitors for the viral RNA-dependent RNA polymerase (RdRp). The structural model was subjected to molecular dynamics (MD) simulation to obtain the native ensemble of the protein. The CMNPDB dataset of marine natural products was filtered to retain only compounds following Lipinski's five rules. The molecules were energy minimized and docked into different conformers of the RdRp using AutoDock Vina. The best 35 molecules were rescored by GNINA, a deep learning-based docking software. The resulting nine compounds were evaluated for their pharmacokinetic profiles and medicinal chemistry properties. The best five compounds were subjected to MD simulation for 100 ns, followed by binding free energy estimation via Molecular Mechanics/ Generalized Born Surface Area (MM/GBSA) calculations. The results showed remarkable behavior of five hits as inferred by stable binding pose and orientation to block the exit channel of RNA synthesis products in the RdRp cavity. These hits are promising starting materials for in vitro validation and structural modifications to enhance the pharmacokinetic and medicinal chemistry properties for developing antiviral lead compounds.
Collapse
|
9
|
Rosales-Hernández MC, Bello M, Toledano JV, Feregrino BCE, Correa Basurto J, Fragoso Morales LG, Torres-Ramos MA. Molecular dynamics simulations depict structural motions of the whole human aryl hydrocarbon receptor influencing its binding of ligands and HSP90. J Biomol Struct Dyn 2023; 41:13138-13153. [PMID: 36705144 DOI: 10.1080/07391102.2023.2171132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/15/2023] [Indexed: 01/28/2023]
Abstract
The aryl hydrocarbon receptor (AhR) has broad biological functions when its ligands activate it; the non-binding interactions with AhR have not been fully elucidated due to the absence of a complete tridimensional (3D) structure. Therefore, utilization of the whole 3D structure from Homo sapiens AhR by in silico studies will allow us to better study and analyze the binding mode of its full and partial agonists, and antagonists, as well as its interaction with the HSP90 chaperone. The 3D AhR structure was obtained from I-TASSER and subjected to molecular dynamics (MD) simulations to obtain different structural conformations and determine the most populated AhR conformer by clustering analyses. The AhR-3D structures selected from MD simulations and those from clustering analyses were used to achieve docking studies with some of its ligands and protein-protein docking with HSP90. Once the AhR-3D structure was built, its Ramachandran maps and energy showed a well-qualified 3D model. MD simulations showed that the per-Arnt-Sim homology (PAS) PAS A, PAS B, and Q domains underwent conformational changes, identifying the conformation when agonists were binding also, and HSP90 was binding near the PAS A, PAS B, and Q domains. However, when antagonists are binding, HSP90 does not bind near the PAS A, PAS B, and Q domains. These studies show that the complex agonist-AhR-HSP90 can be formed, but this complex is not formed when an antagonist is binding. Knowing the conformations when the ligands bind to AHR and the behavior of HSP90 allows for an understanding of its activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrago e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Ciudad de México, Mexico
| | - Martiniano Bello
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Seccion de Estudios de Posgrado. Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, México City, Mexico
| | - Jazziel Velazquez Toledano
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrago e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Ciudad de México, Mexico
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Seccion de Estudios de Posgrado. Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, México City, Mexico
| | - Barbara Citlali Escudero Feregrino
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrago e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Ciudad de México, Mexico
- Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, México
| | - José Correa Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Seccion de Estudios de Posgrado. Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, México City, Mexico
| | - Leticia Guadalupe Fragoso Morales
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrago e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Ciudad de México, Mexico
| | | |
Collapse
|
10
|
Khan T, Raza S. Exploration of Computational Aids for Effective Drug Designing and Management of Viral Diseases: A Comprehensive Review. Curr Top Med Chem 2023; 23:1640-1663. [PMID: 36725827 DOI: 10.2174/1568026623666230201144522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/14/2022] [Accepted: 12/19/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Microbial diseases, specifically originating from viruses are the major cause of human mortality all over the world. The current COVID-19 pandemic is a case in point, where the dynamics of the viral-human interactions are still not completely understood, making its treatment a case of trial and error. Scientists are struggling to devise a strategy to contain the pandemic for over a year and this brings to light the lack of understanding of how the virus grows and multiplies in the human body. METHODS This paper presents the perspective of the authors on the applicability of computational tools for deep learning and understanding of host-microbe interaction, disease progression and management, drug resistance and immune modulation through in silico methodologies which can aid in effective and selective drug development. The paper has summarized advances in the last five years. The studies published and indexed in leading databases have been included in the review. RESULTS Computational systems biology works on an interface of biology and mathematics and intends to unravel the complex mechanisms between the biological systems and the inter and intra species dynamics using computational tools, and high-throughput technologies developed on algorithms, networks and complex connections to simulate cellular biological processes. CONCLUSION Computational strategies and modelling integrate and prioritize microbial-host interactions and may predict the conditions in which the fine-tuning attenuates. These microbial-host interactions and working mechanisms are important from the aspect of effective drug designing and fine- tuning the therapeutic interventions.
Collapse
Affiliation(s)
- Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| | - Saman Raza
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| |
Collapse
|
11
|
Kidera A, Moritsugu K, Ekimoto T, Ikeguchi M. Functional dynamics of SARS-CoV-2 3C-like protease as a member of clan PA. Biophys Rev 2022; 14:1473-1485. [PMID: 36474932 PMCID: PMC9716165 DOI: 10.1007/s12551-022-01020-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
SARS-CoV-2 3C-like protease (3CLpro), a potential therapeutic target for COVID-19, consists of a chymotrypsin fold and a C-terminal α-helical domain (domain III), the latter of which mediates dimerization required for catalytic activation. To gain further understanding of the functional dynamics of SARS-CoV-2 3CLpro, this review extends the scope to the comparative study of many crystal structures of proteases having the chymotrypsin fold (clan PA of the MEROPS database). First, the close correspondence between the zymogen-enzyme transformation in chymotrypsin and the allosteric dimerization activation in SARS-CoV-2 3CLpro is illustrated. Then, it is shown that the 3C-like proteases of family Coronaviridae (the protease family C30), which are closely related to SARS-CoV-2 3CLpro, have the same homodimeric structure and common activation mechanism via domain III mediated dimerization. The survey extended to order Nidovirales reveals that all 3C-like proteases belonging to Nidovirales have domain III, but with various chain lengths, and 3CLpro of family Mesoniviridae (family C107) has the same homodimeric structure as that of C30, even though they have no sequence similarity. As a reference, monomeric 3C proteases belonging to the more distant family Picornaviridae (family C3) lacking domain III are compared with C30, and it is shown that the 3C proteases are rigid enough to maintain their structures in the active state. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-022-01020-x.
Collapse
Affiliation(s)
- Akinori Kidera
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi, Yokohama 230-0045 Japan
| | - Kei Moritsugu
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi, Yokohama 230-0045 Japan ,Present Address: Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-Cho, Nakaku, Sakai, Osaka 599-8570 Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi, Yokohama 230-0045 Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi, Yokohama 230-0045 Japan
| |
Collapse
|
12
|
Miñarro-Lleonar M, Ruiz-Carmona S, Alvarez-Garcia D, Schmidtke P, Barril X. Development of an Automatic Pipeline for Participation in the CELPP Challenge. Int J Mol Sci 2022; 23:ijms23094756. [PMID: 35563148 PMCID: PMC9105952 DOI: 10.3390/ijms23094756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/01/2022] Open
Abstract
The prediction of how a ligand binds to its target is an essential step for Structure-Based Drug Design (SBDD) methods. Molecular docking is a standard tool to predict the binding mode of a ligand to its macromolecular receptor and to quantify their mutual complementarity, with multiple applications in drug design. However, docking programs do not always find correct solutions, either because they are not sampled or due to inaccuracies in the scoring functions. Quantifying the docking performance in real scenarios is essential to understanding their limitations, managing expectations and guiding future developments. Here, we present a fully automated pipeline for pose prediction validated by participating in the Continuous Evaluation of Ligand Pose Prediction (CELPP) Challenge. Acknowledging the intrinsic limitations of the docking method, we devised a strategy to automatically mine and exploit pre-existing data, defining—whenever possible—empirical restraints to guide the docking process. We prove that the pipeline is able to generate predictions for most of the proposed targets as well as obtain poses with low RMSD values when compared to the crystal structure. All things considered, our pipeline highlights some major challenges in the automatic prediction of protein–ligand complexes, which will be addressed in future versions of the pipeline.
Collapse
Affiliation(s)
- Marina Miñarro-Lleonar
- Pharmacy Faculty, University of Barcelona, Av. de Joan XXIII 27-31, 08028 Barcelona, Spain;
| | | | - Daniel Alvarez-Garcia
- GAIN Therapeutics, Parc Cientific de Barcelona, Baldiri i Reixac 10, 08029 Barcelona, Spain;
| | - Peter Schmidtke
- Discngine S.A.S., 79 Avenue Ledru Rollin, 75012 Paris, France;
| | - Xavier Barril
- Pharmacy Faculty, University of Barcelona, Av. de Joan XXIII 27-31, 08028 Barcelona, Spain;
- GAIN Therapeutics, Parc Cientific de Barcelona, Baldiri i Reixac 10, 08029 Barcelona, Spain;
- Catalan Institute for Research and Advanced Studies (ICREA), Passeig de Lluis Companys 23, 08010 Barcelona, Spain
- Correspondence:
| |
Collapse
|
13
|
Santa-Coloma TA. Overlapping synthetic peptides as a tool to map protein-protein interactions ̶ FSH as a model system of nonadditive interactions. Biochim Biophys Acta Gen Subj 2022; 1866:130153. [DOI: 10.1016/j.bbagen.2022.130153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
|
14
|
Tze-Yang Ng J, Tan YS. Accelerated Ligand-Mapping Molecular Dynamics Simulations for the Detection of Recalcitrant Cryptic Pockets and Occluded Binding Sites. J Chem Theory Comput 2022; 18:1969-1981. [PMID: 35175753 DOI: 10.1021/acs.jctc.1c01177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The identification and characterization of binding sites is a critical component of structure-based drug design (SBDD). Probe-based/cosolvent molecular dynamics (MD) methods that allow for protein flexibility have been developed to predict ligand binding sites. However, cryptic pockets that appear only upon ligand binding and occluded binding sites with no access to the solvent pose significant challenges to these methods. Here, we report the development of accelerated ligand-mapping MD (aLMMD), which combines accelerated MD with LMMD, for the detection of these challenging binding sites. The method was validated on five proteins with what we term "recalcitrant" cryptic pockets, which are deeply buried pockets that require extensive movement of the protein backbone to expose, and three proteins with occluded binding sites. In all the cases, aLMMD was able to detect and sample the binding sites. Our results suggest that aLMMD could be used as a general approach for the detection of such elusive binding sites in protein targets, thus providing valuable information for SBDD.
Collapse
Affiliation(s)
- Justin Tze-Yang Ng
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| |
Collapse
|
15
|
Peña-Varas C, Kanstrup C, Vergara-Jaque A, González-Avendaño M, Crocoll C, Mirza O, Dreyer I, Nour-Eldin H, Ramírez D. Structural Insights into the Substrate Transport Mechanisms in GTR Transporters through Ensemble Docking. Int J Mol Sci 2022; 23:ijms23031595. [PMID: 35163519 PMCID: PMC8836200 DOI: 10.3390/ijms23031595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Glucosinolate transporters (GTRs) are part of the nitrate/peptide transporter (NPF) family, members of which also transport specialized secondary metabolites as substrates. Glucosinolates are defense compounds derived from amino acids. We selected 4-methylthiobutyl (4MTB) and indol-3-ylmethyl (I3M) glucosinolates to study how GTR1 from Arabidopsis thaliana transports these substrates in computational simulation approaches. The designed pipeline reported here includes massive docking of 4MTB and I3M in an ensemble of GTR1 conformations (in both inward and outward conformations) extracted from molecular dynamics simulations, followed by clustered and substrate–protein interactions profiling. The identified key residues were mutated, and their role in substrate transport was tested. We were able to identify key residues that integrate a major binding site of these substrates, which is critical for transport activity. In silico approaches employed here represent a breakthrough in the plant transportomics field, as the identification of key residues usually takes a long time if performed from a purely wet-lab experimental perspective. The inclusion of structural bioinformatics in the analyses of plant transporters significantly speeds up the knowledge-gaining process and optimizes valuable time and resources.
Collapse
Affiliation(s)
- Carlos Peña-Varas
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Llano Subercaseaux 2801-piso 6, Santiago 8900000, Chile;
| | - Christa Kanstrup
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; (C.K.); (C.C.); (H.N.-E.)
| | - Ariela Vergara-Jaque
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Campus Talca, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca 3460000, Chile; (A.V.-J.); (M.G.-A.); (I.D.)
| | - Mariela González-Avendaño
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Campus Talca, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca 3460000, Chile; (A.V.-J.); (M.G.-A.); (I.D.)
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; (C.K.); (C.C.); (H.N.-E.)
| | - Osman Mirza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Ingo Dreyer
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Campus Talca, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca 3460000, Chile; (A.V.-J.); (M.G.-A.); (I.D.)
| | - Hussam Nour-Eldin
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; (C.K.); (C.C.); (H.N.-E.)
| | - David Ramírez
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Llano Subercaseaux 2801-piso 6, Santiago 8900000, Chile;
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 8900000, Chile
- Correspondence: ; Tel.: +56-(22)-3036667
| |
Collapse
|
16
|
Basciu A, Callea L, Motta S, Bonvin AM, Bonati L, Vargiu AV. No dance, no partner! A tale of receptor flexibility in docking and virtual screening. VIRTUAL SCREENING AND DRUG DOCKING 2022. [DOI: 10.1016/bs.armc.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Kidera A, Moritsugu K, Ekimoto T, Ikeguchi M. Allosteric Regulation of 3CL Protease of SARS-CoV-2 and SARS-CoV Observed in the Crystal Structure Ensemble. J Mol Biol 2021; 433:167324. [PMID: 34717972 PMCID: PMC8550881 DOI: 10.1016/j.jmb.2021.167324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 01/08/2023]
Abstract
The 3C-like protease (3CLpro) of SARS-CoV-2 is a potential therapeutic target for COVID-19. Importantly, it has an abundance of structural information solved as a complex with various drug candidate compounds. Collecting these crystal structures (83 Protein Data Bank (PDB) entries) together with those of the highly homologous 3CLpro of SARS-CoV (101 PDB entries), we constructed the crystal structure ensemble of 3CLpro to analyze the dynamic regulation of its catalytic function. The structural dynamics of the 3CLpro dimer observed in the ensemble were characterized by the motions of four separate loops (the C-loop, E-loop, H-loop, and Linker) and the C-terminal domain III on the rigid core of the chymotrypsin fold. Among the four moving loops, the C-loop (also known as the oxyanion binding loop) causes the order (active)-disorder (collapsed) transition, which is regulated cooperatively by five hydrogen bonds made with the surrounding residues. The C-loop, E-loop, and Linker constitute the major ligand binding sites, which consist of a limited variety of binding residues including the substrate binding subsites. Ligand binding causes a ligand size dependent conformational change to the E-loop and Linker, which further stabilize the C-loop via the hydrogen bond between the C-loop and E-loop. The T285A mutation from SARS-CoV 3CLpro to SARS-CoV-2 3CLpro significantly closes the interface of the domain III dimer and allosterically stabilizes the active conformation of the C-loop via hydrogen bonds with Ser1 and Gly2; thus, SARS-CoV-2 3CLpro seems to have increased activity relative to that of SARS-CoV 3CLpro.
Collapse
Affiliation(s)
- Akinori Kidera
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| | - Kei Moritsugu
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
18
|
Rubio-Martínez J, Jiménez-Alesanco A, Ceballos-Laita L, Ortega-Alarcón D, Vega S, Calvo C, Benítez C, Abian O, Velázquez-Campoy A, Thomson TM, Granadino-Roldán JM, Gómez-Gutiérrez P, Pérez JJ. Discovery of Diverse Natural Products as Inhibitors of SARS-CoV-2 M pro Protease through Virtual Screening. J Chem Inf Model 2021; 61:6094-6106. [PMID: 34806382 PMCID: PMC9931176 DOI: 10.1021/acs.jcim.1c00951] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
SARS-CoV-2 is a type of coronavirus responsible for the international outbreak of respiratory illness termed COVID-19 that forced the World Health Organization to declare a pandemic infectious disease situation of international concern at the beginning of 2020. The need for a swift response against COVID-19 prompted to consider different sources to identify bioactive compounds that can be used as therapeutic agents, including available drugs and natural products. Accordingly, this work reports the results of a virtual screening process aimed at identifying antiviral natural product inhibitors of the SARS-CoV-2 Mpro viral protease. For this purpose, ca. 2000 compounds of the Selleck database of Natural Compounds were the subject of an ensemble docking process targeting the Mpro protease. Molecules that showed binding to most of the protein conformations were retained for a further step that involved the computation of the binding free energy of the ligand-Mpro complex along a molecular dynamics trajectory. The compounds that showed a smooth binding free energy behavior were selected for in vitro testing. From the resulting set of compounds, five compounds exhibited an antiviral profile, and they are disclosed in the present work.
Collapse
Affiliation(s)
- Jaime Rubio-Martínez
- Department
of Materials Science and Physical Chemistry, University of Barcelona and the Institut de Recerca en Quimica Teorica
i Computacional (IQTCUB), 08028 Barcelona, Spain,. Phone: (+34) 93
4039263. Fax: (+34) 93 4021231
| | - Ana Jiménez-Alesanco
- Institute
for Biocomputation and Physics of Complex Systems (BIFI), Joint Units
IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad
de Zaragoza, 50018 Zaragoza, Spain,Departamento
de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Laura Ceballos-Laita
- Institute
for Biocomputation and Physics of Complex Systems (BIFI), Joint Units
IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad
de Zaragoza, 50018 Zaragoza, Spain,Instituto
de Investigación Sanitaria de Aragón (IIS Aragon), 50009 Zaragoza, Spain
| | - David Ortega-Alarcón
- Institute
for Biocomputation and Physics of Complex Systems (BIFI), Joint Units
IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad
de Zaragoza, 50018 Zaragoza, Spain,Departamento
de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Sonia Vega
- Institute
for Biocomputation and Physics of Complex Systems (BIFI), Joint Units
IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad
de Zaragoza, 50018 Zaragoza, Spain
| | - Cristina Calvo
- Centro
de Investigación Biomédica en Red en el Área
Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain,Institute
of Molecular Biology of Barcelona (IBMB-CSIC), 08028 Barcelona, Spain
| | - Cristina Benítez
- Centro
de Investigación Biomédica en Red en el Área
Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain,Institute
of Molecular Biology of Barcelona (IBMB-CSIC), 08028 Barcelona, Spain
| | - Olga Abian
- Institute
for Biocomputation and Physics of Complex Systems (BIFI), Joint Units
IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad
de Zaragoza, 50018 Zaragoza, Spain,Departamento
de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50018 Zaragoza, Spain,Instituto
de Investigación Sanitaria de Aragón (IIS Aragon), 50009 Zaragoza, Spain,Centro
de Investigación Biomédica en Red en el Área
Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain,Instituto
Aragonés de Ciencias de la Salud (IACS), 50018 Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Institute
for Biocomputation and Physics of Complex Systems (BIFI), Joint Units
IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad
de Zaragoza, 50018 Zaragoza, Spain,Departamento
de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50018 Zaragoza, Spain,Instituto
de Investigación Sanitaria de Aragón (IIS Aragon), 50009 Zaragoza, Spain,Centro
de Investigación Biomédica en Red en el Área
Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain,Fundación
ARAID, Gobierno de Aragón, 50018 Zaragoza, Spain
| | - Timothy M. Thomson
- Centro
de Investigación Biomédica en Red en el Área
Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain,Institute
of Molecular Biology of Barcelona (IBMB-CSIC), 08028 Barcelona, Spain,Universidad
Peruana Cayetano Heredia, San Martín
de Porres 15102, Perú
| | - José Manuel Granadino-Roldán
- Departamento
de Química Física y Analítica, Facultad de Ciencias
Experimentales, Universidad de Jaén, Campus “Las Lagunillas”
s/n, 23071, Jaén, Spain
| | - Patricia Gómez-Gutiérrez
- Department
of Chemical Engineering, Universitat Politecnica
de Catalunya- Barcelona Tech, Av. Diagonal, 647, 08028 Barcelona, Spain
| | - Juan J. Pérez
- Department
of Chemical Engineering, Universitat Politecnica
de Catalunya- Barcelona Tech, Av. Diagonal, 647, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Ricci-Lopez J, Aguila SA, Gilson MK, Brizuela CA. Improving Structure-Based Virtual Screening with Ensemble Docking and Machine Learning. J Chem Inf Model 2021; 61:5362-5376. [PMID: 34652141 DOI: 10.1021/acs.jcim.1c00511] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the main challenges of structure-based virtual screening (SBVS) is the incorporation of the receptor's flexibility, as its explicit representation in every docking run implies a high computational cost. Therefore, a common alternative to include the receptor's flexibility is the approach known as ensemble docking. Ensemble docking consists of using a set of receptor conformations and performing the docking assays over each of them. However, there is still no agreement on how to combine the ensemble docking results to obtain the final ligand ranking. A common choice is to use consensus strategies to aggregate the ensemble docking scores, but these strategies exhibit slight improvement regarding the single-structure approach. Here, we claim that using machine learning (ML) methodologies over the ensemble docking results could improve the predictive power of SBVS. To test this hypothesis, four proteins were selected as study cases: CDK2, FXa, EGFR, and HSP90. Protein conformational ensembles were built from crystallographic structures, whereas the evaluated compound library comprised up to three benchmarking data sets (DUD, DEKOIS 2.0, and CSAR-2012) and cocrystallized molecules. Ensemble docking results were processed through 30 repetitions of 4-fold cross-validation to train and validate two ML classifiers: logistic regression and gradient boosting trees. Our results indicate that the ML classifiers significantly outperform traditional consensus strategies and even the best performance case achieved with single-structure docking. We provide statistical evidence that supports the effectiveness of ML to improve the ensemble docking performance.
Collapse
Affiliation(s)
- Joel Ricci-Lopez
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California C.P. 22860, Mexico.,Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (UNAM), Ensenada, Baja California C.P. 22860, Mexico
| | - Sergio A Aguila
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (UNAM), Ensenada, Baja California C.P. 22860, Mexico
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
| | - Carlos A Brizuela
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California C.P. 22860, Mexico
| |
Collapse
|
20
|
Pham KN, Fernandez-Lima F. Structural Characterization of Human Histone H4.1 by Tandem Nonlinear and Linear Ion Mobility Spectrometry Complemented with Molecular Dynamics Simulations. ACS OMEGA 2021; 6:29567-29576. [PMID: 34778628 PMCID: PMC8582071 DOI: 10.1021/acsomega.1c03744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Extracellular histone H4 is an attractive drug target owing to its roles in organ failure in sepsis and other diseases. To identify inhibitors using in silico methods, information on histone H4 structural dynamics and three-dimensional (3D) structural coordinates is required. Here, DNA-free histone H4 type 1 (H4.1) was characterized by utilizing tandem nonlinear and linear ion mobility spectrometry (FAIMS-TIMS) coupled to mass spectrometry (MS) complemented with molecular dynamics (MD) simulations. The gas-phase structures of H4.1 are dependent on the starting solution conditions, evidenced by differences in charge state distributions, mobility distributions, and collision-induced unfolding (CIU) pathways. The experimental results show that H4.1 adopts diverse conformational types from compact (C) to partially folded (P) and subsequently elongated (E) structures. Molecular dynamics simulations provided candidate structures for the histone H4.1 monomer in solution and for the gas-phase structures observed using FAIMS-IMS-TOF MS as a function of the charge state and mobility distribution. A combination of the FAIMS-TIMS experimental results with theoretical dipole calculations reveals the important role of charge distribution in the dipole alignment of H4.1 elongated structures at high electric fields. A comparison of the secondary and primary structures of DNA-free H2A.1 and H4.1 is made based on the experimental IMS-MS and MD findings.
Collapse
Affiliation(s)
- Khoa N. Pham
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
- Biomolecular
Science Institute, Florida International
University, Miami, Florida 33199, United
States
| |
Collapse
|
21
|
Martín Díaz AE, Lewis JEM. Structural Flexibility in Metal-Organic Cages. Front Chem 2021; 9:706462. [PMID: 34336791 PMCID: PMC8317845 DOI: 10.3389/fchem.2021.706462] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/02/2021] [Indexed: 01/23/2023] Open
Abstract
Metal-organic cages (MOCs) have emerged as a diverse class of molecular hosts with potential utility across a vast spectrum of applications. With advances in single-crystal X-ray diffraction and economic methods of computational structure optimisation, cavity sizes can be readily determined. In combination with a chemist's intuition, educated guesses about the likelihood of particular guests being bound within these porous structures can be made. Whilst practically very useful, simple rules-of-thumb, such as Rebek's 55% rule, fail to take into account structural flexibility inherent to MOCs that can allow hosts to significantly adapt their internal cavity. An often unappreciated facet of MOC structures is that, even though relatively rigid building blocks may be employed, conformational freedom can enable large structural changes. If it could be exploited, this flexibility might lead to behavior analogous to the induced-fit of substrates within the active sites of enzymes. To this end, in-roads have already been made to prepare MOCs incorporating ligands with large degrees of conformational freedom. Whilst this may make the constitution of MOCs harder to predict, it has the potential to lead to highly sophisticated and functional synthetic hosts.
Collapse
Affiliation(s)
| | - James E. M. Lewis
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, United Kingdom
| |
Collapse
|
22
|
Abstract
Human cytochrome P450 1B1 (CYP1B1) is an extrahepatic heme-containing monooxygenase. CYP1B1 contributes to the oxidative metabolism of xenobiotics, drugs, and endogenous substrates like melatonin, fatty acids, steroid hormones, and retinoids, which are involved in diverse critical cellular functions. CYP1B1 plays an important role in the pathogenesis of cardiovascular diseases, hormone-related cancers and is responsible for anti-cancer drug resistance. Inhibition of CYP1B1 activity is considered as an approach in cancer chemoprevention and cancer chemotherapy. CYP1B1 can activate anti-cancer prodrugs in tumor cells which display overexpression of CYP1B1 in comparison to normal cells. CYP1B1 involvement in carcinogenesis and cancer progression encourages investigation of CYP1B1 interactions with its ligands: substrates and inhibitors. Computational methods, with a simulation of molecular dynamics (MD), allow the observation of molecular interactions at the binding site of CYP1B1, which are essential in relation to the enzyme’s functions.
Collapse
|
23
|
Kim SS, Alves MJ, Gygli P, Otero J, Lindert S. Identification of Novel Cyclin A2 Binding Site and Nanomolar Inhibitors of Cyclin A2-CDK2 Complex. Curr Comput Aided Drug Des 2021; 17:57-68. [PMID: 31889491 DOI: 10.2174/1573409916666191231113055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Given the diverse roles of cyclin A2 both in cell cycle regulation and in DNA damage response, identifying small molecule regulators of cyclin A2 activity carries significant potential to regulate diverse cellular processes in both ageing/neurodegeneration and in cancer. OBJECTIVE Based on cyclin A2's recently discovered role in DNA repair, we hypothesized that small molecule inhibitors that were predicted to bind to both cyclin A2 and CDK2 will be useful as a radiosensitizer of cancer cells. In this study, we used structure-based drug discovery to find inhibitors that target both cyclin A2 and CDK2. METHODS Molecular dynamics simulations were used to generate diverse binding pocket conformations for application of the relaxed complex scheme. We then used structure-based virtual screening to find potential dual cyclin A2 and CDK2 inhibitors. Based on a consensus score of docked poses from Glide and AutoDock Vina, we identified about 40 promising hit compounds, where all PAINS scaffolds were removed from consideration. A biochemical luminescence assay of cyclin A2-CDK2 function was used for experimental verification. RESULTS Four lead inhibitors of cyclin A2-CDK2 complex have been identified using a relaxed complex scheme virtual screen have been verified in a biochemical luminescence assay of cyclin A2- CDK2 function. Two of the four lead inhibitors had inhibitory concentrations in the nanomolar range. CONCLUSION The four cyclin A2-CDK2 complex inhibitors are the first reported inhibitors that were specifically designed not to target the cyclin A2-CDK2 protein-protein interface. Overall, our results highlight the potential of combined advanced computational tools and biochemical verification to discover novel binding scaffolds.
Collapse
Affiliation(s)
- Stephanie S Kim
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, 43210, United States
| | - Michele J Alves
- Departments of Neuroscience, Pathology and Neuropathology, Ohio State University, Columbus, OH, 43210, United States
| | - Patrick Gygli
- Departments of Neuroscience, Pathology and Neuropathology, Ohio State University, Columbus, OH, 43210, United States
| | - Jose Otero
- Departments of Neuroscience, Pathology and Neuropathology, Ohio State University, Columbus, OH, 43210, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, 43210, United States
| |
Collapse
|
24
|
Abstract
INTRODUCTION Molecular docking has been consolidated as one of the most important methods in the molecular modeling field. It has been recognized as a prominent tool in the study of protein-ligand complexes, to describe intermolecular interactions, to accurately predict poses of multiple ligands, to discover novel promising bioactive compounds. Molecular docking methods have evolved in terms of their accuracy and reliability; but there are pending issues to solve for improving the connection between the docking results and the experimental evidence. AREAS COVERED In this article, the author reviews very recent innovative molecular docking applications with special emphasis on reverse docking, treatment of protein flexibility, the use of experimental data to guide the selection of docking poses, the application of Quantum mechanics(QM) in docking, and covalent docking. EXPERT OPINION There are several issues being worked on in recent years that will lead to important breakthroughs in molecular docking methods in the near future These developments are related to more efficient exploration of large datasets and receptor conformations, advances in electronic description, and the use of structural information for guiding the selection of results.
Collapse
Affiliation(s)
- Julio Caballero
- Departamento De Bioinformática, Centro De Bioinformática, Simulación Y Modelado (CBSM), Facultad De Ingeniería, Universidad De Talca, Talca, Chile
| |
Collapse
|
25
|
Di Cera E. Mechanisms of ligand binding. BIOPHYSICS REVIEWS 2020; 1:011303. [PMID: 33313600 PMCID: PMC7714259 DOI: 10.1063/5.0020997] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022]
Abstract
Many processes in chemistry and biology involve interactions of a ligand with its molecular target. Interest in the mechanism governing such interactions has dominated theoretical and experimental analysis for over a century. The interpretation of molecular recognition has evolved from a simple rigid body association of the ligand with its target to appreciation of the key role played by conformational transitions. Two conceptually distinct descriptions have had a profound impact on our understanding of mechanisms of ligand binding. The first description, referred to as induced fit, assumes that conformational changes follow the initial binding step to optimize the complex between the ligand and its target. The second description, referred to as conformational selection, assumes that the free target exists in multiple conformations in equilibrium and that the ligand selects the optimal one for binding. Both descriptions can be merged into more complex reaction schemes that better describe the functional repertoire of macromolecular systems. This review deals with basic mechanisms of ligand binding, with special emphasis on induced fit, conformational selection, and their mathematical foundations to provide rigorous context for the analysis and interpretation of experimental data. We show that conformational selection is a surprisingly versatile mechanism that includes induced fit as a mathematical special case and even captures kinetic properties of more complex reaction schemes. These features make conformational selection a dominant mechanism of molecular recognition in biology, consistent with the rich conformational landscape accessible to biological macromolecules being unraveled by structural biology.
Collapse
Affiliation(s)
- Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| |
Collapse
|
26
|
Integrating molecular modelling methods to advance influenza A virus drug discovery. Drug Discov Today 2020; 26:503-510. [PMID: 33220433 DOI: 10.1016/j.drudis.2020.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/20/2020] [Accepted: 11/11/2020] [Indexed: 11/20/2022]
Abstract
Since the discovery of the anti-influenza drugs oseltamivir and zanamivir using computer-aided drug design methods, there have been significant applications of molecular modelling methodologies applied to influenza A virus drug discovery, such as molecular dynamics (MD) simulation, molecular docking, and virtual screening (VS). In this review, we provide a brief general introduction to molecular modelling in the context of drug discovery and then focus on the advances and impact of integrating these methods with specific reference to potential influenza A antiviral drug targets.
Collapse
|
27
|
Gloaguen E, Mons M, Schwing K, Gerhards M. Neutral Peptides in the Gas Phase: Conformation and Aggregation Issues. Chem Rev 2020; 120:12490-12562. [PMID: 33152238 DOI: 10.1021/acs.chemrev.0c00168] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Combined IR and UV laser spectroscopic techniques in molecular beams merged with theoretical approaches have proven to be an ideal tool to elucidate intrinsic structural properties on a molecular level. It offers the possibility to analyze structural changes, in a controlled molecular environment, when successively adding aggregation partners. By this, it further makes these techniques a valuable starting point for a bottom-up approach in understanding the forces shaping larger molecular systems. This bottom-up approach was successfully applied to neutral amino acids starting around the 1990s. Ever since, experimental and theoretical methods developed further, and investigations could be extended to larger peptide systems. Against this background, the review gives an introduction to secondary structures and experimental methods as well as a summary on theoretical approaches. Vibrational frequencies being characteristic probes of molecular structure and interactions are especially addressed. Archetypal biologically relevant secondary structures investigated by molecular beam spectroscopy are described, and the influences of specific peptide residues on conformational preferences as well as the competition between secondary structures are discussed. Important influences like microsolvation or aggregation behavior are presented. Beyond the linear α-peptides, the main results of structural analysis on cyclic systems as well as on β- and γ-peptides are summarized. Overall, this contribution addresses current aspects of molecular beam spectroscopy on peptides and related species and provides molecular level insights into manifold issues of chemical and biochemical relevance.
Collapse
Affiliation(s)
- Eric Gloaguen
- CEA, CNRS, Université Paris-Saclay, CEA Paris-Saclay, Bât 522, 91191 Gif-sur-Yvette, France
| | - Michel Mons
- CEA, CNRS, Université Paris-Saclay, CEA Paris-Saclay, Bât 522, 91191 Gif-sur-Yvette, France
| | - Kirsten Schwing
- TU Kaiserslautern & Research Center Optimas, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany
| | - Markus Gerhards
- TU Kaiserslautern & Research Center Optimas, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany
| |
Collapse
|
28
|
Protein Dynamics in F-like Bacterial Conjugation. Biomedicines 2020; 8:biomedicines8090362. [PMID: 32961700 PMCID: PMC7555446 DOI: 10.3390/biomedicines8090362] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 01/21/2023] Open
Abstract
Efficient in silico development of novel antibiotics requires high-resolution, dynamic models of drug targets. As conjugation is considered the prominent contributor to the spread of antibiotic resistance genes, targeted drug design to disrupt vital components of conjugative systems has been proposed to lessen the proliferation of bacterial antibiotic resistance. Advancements in structural imaging techniques of large macromolecular complexes has accelerated the discovery of novel protein-protein interactions in bacterial type IV secretion systems (T4SS). The known structural information regarding the F-like T4SS components and complexes has been summarized in the following review, revealing a complex network of protein-protein interactions involving domains with varying degrees of disorder. Structural predictions were performed to provide insight on the dynamicity of proteins within the F plasmid conjugative system that lack structural information.
Collapse
|
29
|
García-Simón C, Colomban C, Çetin YA, Gimeno A, Pujals M, Ubasart E, Fuertes-Espinosa C, Asad K, Chronakis N, Costas M, Jiménez-Barbero J, Feixas F, Ribas X. Complete Dynamic Reconstruction of C60, C70, and (C59N)2 Encapsulation into an Adaptable Supramolecular Nanocapsule. J Am Chem Soc 2020; 142:16051-16063. [DOI: 10.1021/jacs.0c07591] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cristina García-Simón
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Cédric Colomban
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Yarkin Aybars Çetin
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Ana Gimeno
- CIC bioGUNE, Bizkaia Technology Park, Building 801A, 48170 Derio, Spain
| | - Míriam Pujals
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Ernest Ubasart
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Carles Fuertes-Espinosa
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Karam Asad
- Department of Chemistry, University of Cyprus, University str. 1, Building No. 13, 2109 Aglantzia, Nicosia, Cyprus
| | - Nikos Chronakis
- Department of Chemistry, University of Cyprus, University str. 1, Building No. 13, 2109 Aglantzia, Nicosia, Cyprus
| | - Miquel Costas
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Bizkaia Technology Park, Building 801A, 48170 Derio, Spain
- Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 13, 48009 Bilbao, Spain
- Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940 Leioa, Spain
| | - Ferran Feixas
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Xavi Ribas
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| |
Collapse
|
30
|
Saikia S, Bordoloi M. Molecular Docking: Challenges, Advances and its Use in Drug Discovery Perspective. Curr Drug Targets 2020; 20:501-521. [PMID: 30360733 DOI: 10.2174/1389450119666181022153016] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/08/2018] [Accepted: 08/28/2018] [Indexed: 01/21/2023]
Abstract
Molecular docking is a process through which small molecules are docked into the macromolecular structures for scoring its complementary values at the binding sites. It is a vibrant research area with dynamic utility in structure-based drug-designing, lead optimization, biochemical pathway and for drug designing being the most attractive tools. Two pillars for a successful docking experiment are correct pose and affinity prediction. Each program has its own advantages and drawbacks with respect to their docking accuracy, ranking accuracy and time consumption so a general conclusion cannot be drawn. Moreover, users don't always consider sufficient diversity in their test sets which results in certain programs to outperform others. In this review, the prime focus has been laid on the challenges of docking and troubleshooters in existing programs, underlying algorithmic background of docking, preferences regarding the use of docking programs for best results illustrated with examples, comparison of performance for existing tools and algorithms, state of art in docking, recent trends of diseases and current drug industries, evidence from clinical trials and post-marketing surveillance are discussed. These aspects of the molecular drug designing paradigm are quite controversial and challenging and this review would be an asset to the bioinformatics and drug designing communities.
Collapse
Affiliation(s)
- Surovi Saikia
- Natural Products Chemistry Group, CSIR North East Institute of Science & Technology, Jorhat-785006, Assam, India
| | - Manobjyoti Bordoloi
- Natural Products Chemistry Group, CSIR North East Institute of Science & Technology, Jorhat-785006, Assam, India
| |
Collapse
|
31
|
Chandak T, Mayginnes JP, Mayes H, Wong CF. Using machine learning to improve ensemble docking for drug discovery. Proteins 2020; 88:1263-1270. [PMID: 32401384 DOI: 10.1002/prot.25899] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 04/09/2020] [Accepted: 05/07/2020] [Indexed: 01/26/2023]
Abstract
Ensemble docking has provided an inexpensive method to account for receptor flexibility in molecular docking for virtual screening. Unfortunately, as there is no rigorous theory to connect the docking scores from multiple structures to measured activity, researchers have not yet come up with effective ways to use these scores to classify compounds into actives and inactives. This shortcoming has led to the decrease, rather than an increase in the performance of classifying compounds when more structures are added to the ensemble. Previously, we suggested machine learning, implemented in the form of a naïve Bayesian model could alleviate this problem. However, the naïve Bayesian model assumed that the probabilities of observing the docking scores to different structures to be independent. This approximation might prevent it from achieving even higher performance. In the work presented in this paper, we have relaxed this approximation when using several other machine learning methods-k nearest neighbor, logistic regression, support vector machine, and random forest-to improve ensemble docking. We found significant improvement.
Collapse
Affiliation(s)
- Tanay Chandak
- Department of Chemistry and Biochemistry and Center for Nanoscience, University of Missouri-St. Louis, Saint Louis, Missouri, USA
| | - John P Mayginnes
- Department of Chemistry and Biochemistry and Center for Nanoscience, University of Missouri-St. Louis, Saint Louis, Missouri, USA
| | - Howard Mayes
- Department of Chemistry and Biochemistry and Center for Nanoscience, University of Missouri-St. Louis, Saint Louis, Missouri, USA
| | - Chung F Wong
- Department of Chemistry and Biochemistry and Center for Nanoscience, University of Missouri-St. Louis, Saint Louis, Missouri, USA
| |
Collapse
|
32
|
Wang Z, Sun H, Shen C, Hu X, Gao J, Li D, Cao D, Hou T. Combined strategies in structure-based virtual screening. Phys Chem Chem Phys 2020; 22:3149-3159. [PMID: 31995074 DOI: 10.1039/c9cp06303j] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The identification and optimization of lead compounds are inalienable components in drug design and discovery pipelines. As a powerful computational approach for the identification of hits with novel structural scaffolds, structure-based virtual screening (SBVS) has exhibited a remarkably increasing influence in the early stages of drug discovery. During the past decade, a variety of techniques and algorithms have been proposed and tested with different purposes in the scope of SBVS. Although SBVS has been a common and proven technology, it still shows some challenges and problems that are needed to be addressed, where the negative influence regardless of protein flexibility and the inaccurate prediction of binding affinity are the two major challenges. Here, focusing on these difficulties, we summarize a series of combined strategies or workflows developed by our group and others. Furthermore, several representative successful applications from recent publications are also discussed to demonstrate the effectiveness of the combined SBVS strategies in drug discovery campaigns.
Collapse
Affiliation(s)
- Zhe Wang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China.
| | - Huiyong Sun
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China.
| | - Chao Shen
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China.
| | - Xueping Hu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China.
| | - Junbo Gao
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China.
| | - Dan Li
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China.
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410004, Hunan, P. R. China.
| | - Tingjun Hou
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China.
| |
Collapse
|
33
|
Araujo SC, Maltarollo VG, Almeida MO, Ferreira LLG, Andricopulo AD, Honorio KM. Structure-Based Virtual Screening, Molecular Dynamics and Binding Free Energy Calculations of Hit Candidates as ALK-5 Inhibitors. Molecules 2020; 25:molecules25020264. [PMID: 31936488 PMCID: PMC7024315 DOI: 10.3390/molecules25020264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 01/08/2023] Open
Abstract
Activin-like kinase 5 (ALK-5) is involved in the physiopathology of several conditions, such as pancreatic carcinoma, cervical cancer and liver hepatoma. Cellular events that are landmarks of tumorigenesis, such as loss of cell polarity and acquisition of motile properties and mesenchymal phenotype, are associated to deregulated ALK-5 signaling. ALK-5 inhibitors, such as SB505154, GW6604, SD208, and LY2157299, have recently been reported to inhibit ALK-5 autophosphorylation and induce the transcription of matrix genes. Due to their ability to impair cell migration, invasion and metastasis, ALK-5 inhibitors have been explored as worthwhile hits as anticancer agents. This work reports the development of a structure-based virtual screening (SBVS) protocol aimed to prospect promising hits for further studies as novel ALK-5 inhibitors. From a lead-like subset of purchasable compounds, five molecules were identified as putative ALK-5 inhibitors. In addition, molecular dynamics and binding free energy calculations combined with pharmacokinetics and toxicity profiling demonstrated the suitability of these compounds to be further investigated as novel ALK-5 inhibitors.
Collapse
Affiliation(s)
- Sheila C. Araujo
- CCNH, Federal University of ABC, Santo Andre, SP 09210-580, Brazil;
| | - Vinicius G. Maltarollo
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil;
| | | | - Leonardo L. G. Ferreira
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos, University of Sao Paulo, Sao Carlos, SP 13563-120, Brazil; (L.L.G.F.); (A.D.A.)
| | - Adriano D. Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos, University of Sao Paulo, Sao Carlos, SP 13563-120, Brazil; (L.L.G.F.); (A.D.A.)
| | - Kathia M. Honorio
- CCNH, Federal University of ABC, Santo Andre, SP 09210-580, Brazil;
- EACH, University of São Paulo, Sao Paulo, SP 03828-000, Brazil
- Correspondence: ; Tel.: +55-11-3091-1027
| |
Collapse
|
34
|
Parnham MJ, Geisslinger G. Pharmacological plasticity-How do you hit a moving target? Pharmacol Res Perspect 2019; 7:e00532. [PMID: 31768257 PMCID: PMC6868654 DOI: 10.1002/prp2.532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/23/2022] Open
Abstract
Paul Ehrlich's concept of the magic bullet, by which a single drug induces pharmacological effects by interacting with a single receptor has been a strong driving force in pharmacology for a century. It is continually thwarted, though, by the fact that the treated organism is highly dynamic and the target molecule(s) is (are) never static. In this article, we address some of the factors that modify and cause the mobility and plasticity of drug targets and their interactions with ligands and discuss how these can lead to unexpected (lack of) effects of drugs. These factors include genetic, epigenetic, and phenotypic variability, cellular plasticity, chronobiological rhythms, time, age and disease resolution, sex, drug metabolism, and distribution. We emphasize four existing approaches that can be taken, either singly or in combination, to try to minimize effects of pharmacological plasticity. These are firstly, to enhance specificity using target conditions close to those in diseases, secondly, by simultaneously or thirdly, sequentially aiming at multiple targets, and fourthly, in synchronization with concurrent dietary, psychological, training, and biorhythm-synchronizing procedures to optimize drug therapy.
Collapse
Affiliation(s)
- Michael J. Parnham
- Fraunhofer Institute for Molecular Biology & Applied Ecology IMEBranch for Translational Medicine and Pharmacology TMPFrankfurt am MainGermany
| | - Gerd Geisslinger
- Fraunhofer Institute for Molecular Biology & Applied Ecology IMEBranch for Translational Medicine and Pharmacology TMPFrankfurt am MainGermany
- Institute of Clinical PharmacologyJ.W. Goethe UniversityFrankfurtGermany
| |
Collapse
|
35
|
Li G, Li W, Xie Y, Wan X, Zheng G, Huang N, Zhou Y. Discovery of Novel Pim-1 Kinase Inhibitors with a Flexible-Receptor Docking Protocol. J Chem Inf Model 2019; 59:4116-4119. [PMID: 31609618 DOI: 10.1021/acs.jcim.9b00494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A flexible-receptor docking protocol was designed for treating binding-site side-chain flexibility by integrating essential aspects of "Conformational Selection" and "Induced Fit" in a hierarchical fashion. Assessed in a diverse set of pharmaceutically relevant targets, this protocol showed improved performance in reproducing binding poses and ligand enrichment studies compared to rigid-receptor docking. Moreover, it has also exhibited encouraging efficiency in prospective ligand discovery for Pim-1 kinase, which led to novel Pim-1 inhibitors with single-digit nanomolar potencies.
Collapse
Affiliation(s)
- Gudong Li
- State Key Laboratory of Chemical Resources Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Wei Li
- National Institute of Biological Sciences , No. 7 Science Park Road, Zhongguancun Life Science Park , Beijing 102206 , China
| | - Yuting Xie
- National Institute of Biological Sciences , No. 7 Science Park Road, Zhongguancun Life Science Park , Beijing 102206 , China
| | - Xiaobo Wan
- National Institute of Biological Sciences , No. 7 Science Park Road, Zhongguancun Life Science Park , Beijing 102206 , China
| | - Guojun Zheng
- State Key Laboratory of Chemical Resources Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Niu Huang
- National Institute of Biological Sciences , No. 7 Science Park Road, Zhongguancun Life Science Park , Beijing 102206 , China.,Tsinghua Institute of Multidisciplinary Biomedical Research , Tsinghua University , Beijing 102206 , China
| | - Yu Zhou
- National Institute of Biological Sciences , No. 7 Science Park Road, Zhongguancun Life Science Park , Beijing 102206 , China
| |
Collapse
|
36
|
Shaw VS, Mohammadi M, Quinn JA, Vashisth H, Neubig RR. An Interhelical Salt Bridge Controls Flexibility and Inhibitor Potency for Regulators of G-protein Signaling Proteins 4, 8, and 19. Mol Pharmacol 2019; 96:683-691. [PMID: 31543506 DOI: 10.1124/mol.119.117176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/14/2019] [Indexed: 12/13/2022] Open
Abstract
Regulators of G-protein signaling (RGS) proteins modulate receptor signaling by binding to activated G-protein α-subunits, accelerating GTP hydrolysis. Selective inhibition of RGS proteins increases G-protein activity and may provide unique tissue specificity. Thiadiazolidinones (TDZDs) are covalent inhibitors that act on cysteine residues to inhibit RGS4, RGS8, and RGS19. There is a correlation between protein flexibility and potency of inhibition by the TDZD 4-[(4- fluorophenyl)methyl]-2-(4-methylphenyl)-1,2,4-thiadiazolidine-3,5-dione (CCG-50014). In the context of a single conserved cysteine residue on the α 4 helix, RGS19 is the most flexible and most potently inhibited by CCG-50014, followed by RGS4 and RGS8. In this work, we identify residues responsible for differences in both flexibility and potency of inhibition among RGS isoforms. RGS19 lacks a charged residue on the α 4 helix that is present in RGS4 and RGS8. Introducing a negative charge at this position (L118D) increased the thermal stability of RGS19 and decreased the potency of inhibition of CCG-50014 by 8-fold. Mutations eliminating salt bridge formation in RGS8 and RGS4 decreased thermal stability in RGS8 and increased potency of inhibition of both RGS4 and RGS8 by 4- and 2-fold, respectively. Molecular dynamics simulations with an added salt bridge in RGS19 (L118D) showed reduced RGS19 flexibility. Hydrogen-deuterium exchange studies showed striking differences in flexibility in the α 4 helix of RGS4, 8, and 19 with salt bridge-modifying mutations. These results show that the α 4 salt bridge-forming residue controls flexibility in several RGS isoforms and supports a causal relationship between RGS flexibility and the potency of TDZD inhibitors. SIGNIFICANCE STATEMENT: Inhibitor potency is often viewed in relation to the static structure of a target protein binding pocket. Using both experimental and computation studies we assess determinants of dynamics and inhibitor potency for three different RGS proteins. A single salt bridge-forming residue determines differences in flexibility between RGS isoforms; mutations either increase or decrease protein motion with correlated alterations in inhibitor potency. This strongly suggests a causal relationship between RGS protein flexibility and covalent inhibitor potency.
Collapse
Affiliation(s)
- Vincent S Shaw
- Department of Pharmacology and Toxicology (V.S.S., J.A.Q., R.R.N.) and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; and Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire (M.M., H.V.)
| | - Mohammadjavad Mohammadi
- Department of Pharmacology and Toxicology (V.S.S., J.A.Q., R.R.N.) and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; and Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire (M.M., H.V.)
| | - Josiah A Quinn
- Department of Pharmacology and Toxicology (V.S.S., J.A.Q., R.R.N.) and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; and Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire (M.M., H.V.)
| | - Harish Vashisth
- Department of Pharmacology and Toxicology (V.S.S., J.A.Q., R.R.N.) and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; and Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire (M.M., H.V.)
| | - Richard R Neubig
- Department of Pharmacology and Toxicology (V.S.S., J.A.Q., R.R.N.) and Nicholas V. Perricone, M.D., Division of Dermatology, Department of Medicine (R.R.N.), Michigan State University, East Lansing, Michigan; and Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire (M.M., H.V.)
| |
Collapse
|
37
|
Devaurs D, Antunes DA, Hall-Swan S, Mitchell N, Moll M, Lizée G, Kavraki LE. Using parallelized incremental meta-docking can solve the conformational sampling issue when docking large ligands to proteins. BMC Mol Cell Biol 2019; 20:42. [PMID: 31488048 PMCID: PMC6729087 DOI: 10.1186/s12860-019-0218-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/08/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Docking large ligands, and especially peptides, to protein receptors is still considered a challenge in computational structural biology. Besides the issue of accurately scoring the binding modes of a protein-ligand complex produced by a molecular docking tool, the conformational sampling of a large ligand is also often considered a challenge because of its underlying combinatorial complexity. In this study, we evaluate the impact of using parallelized and incremental paradigms on the accuracy and performance of conformational sampling when docking large ligands. We use five datasets of protein-ligand complexes involving ligands that could not be accurately docked by classical protein-ligand docking tools in previous similar studies. RESULTS Our computational evaluation shows that simply increasing the amount of conformational sampling performed by a protein-ligand docking tool, such as Vina, by running it for longer is rarely beneficial. Instead, it is more efficient and advantageous to run several short instances of this docking tool in parallel and group their results together, in a straightforward parallelized docking protocol. Even greater accuracy and efficiency are achieved by our parallelized incremental meta-docking tool, DINC, showing the additional benefits of its incremental paradigm. Using DINC, we could accurately reproduce the vast majority of the protein-ligand complexes we considered. CONCLUSIONS Our study suggests that, even when trying to dock large ligands to proteins, the conformational sampling of the ligand should no longer be considered an issue, as simple docking protocols using existing tools can solve it. Therefore, scoring should currently be regarded as the biggest unmet challenge in molecular docking.
Collapse
Affiliation(s)
- Didier Devaurs
- Department of Computer Science, Rice University, 6100 Main St, Houston, TX 77005 USA
| | - Dinler A Antunes
- Department of Computer Science, Rice University, 6100 Main St, Houston, TX 77005 USA
| | - Sarah Hall-Swan
- Department of Computer Science, Rice University, 6100 Main St, Houston, TX 77005 USA
| | - Nicole Mitchell
- Department of Computer Science, Rice University, 6100 Main St, Houston, TX 77005 USA
| | - Mark Moll
- Department of Computer Science, Rice University, 6100 Main St, Houston, TX 77005 USA
| | - Gregory Lizée
- Department of Melanoma Medical Oncology - Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 USA
| | - Lydia E Kavraki
- Department of Computer Science, Rice University, 6100 Main St, Houston, TX 77005 USA
| |
Collapse
|
38
|
Gómez-Castro CZ, López-Martínez M, Hernández-Pineda J, Trujillo-Ferrara JG, Padilla-Martínez II. Profiling the interaction of 1-phenylbenzimidazoles to cyclooxygenases. J Mol Recognit 2019; 32:e2801. [PMID: 31353677 DOI: 10.1002/jmr.2801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/03/2019] [Accepted: 06/03/2019] [Indexed: 11/12/2022]
Abstract
In the design of 1-phenylbenzimidazoles as model cyclooxygenase (COX) inhibitors, docking to a series of crystallographic COX structures was performed to evaluate their potential for high-affinity binding and to reproduce the interaction profile of well-known COX inhibitors. The effect of ligand-specific induced fit on the calculations was also studied. To quantitatively compare the pattern of interactions of model compounds to the profile of several cocrystallized COX inhibitors, a geometric parameter, denominated ligand-receptor contact distance (LRCD), was developed. The interaction profile of several model complexes showed similarity to the profile of COX complexes with inhibitors such as iodosuprofen, iodoindomethacin, diclofenac, and flurbiprofen. Shaping of high-affinity binding sites upon ligand-specific induced fit mostly determined both the affinity and the binding mode of the ligands in the docking calculations. The results suggest potential of 1-phenylbenzimidazole derivatives as COX inhibitors on the basis of their predicted affinity and interaction profile to COX enzymes. The analyses also provided insights into the role of induced fit in COX enzymes. While inhibitors produce different local structural changes at the COX ligand binding site, induced fit allows inhibitors in diverse chemical classes to share characteristic interaction patterns that ensure key contacts to be achieved. Different interaction patterns may also be associated with different inhibitory mechanisms.
Collapse
Affiliation(s)
- Carlos Z Gómez-Castro
- CONACyT Research Fellow, Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Básicas e Ingeniería, Área Académica de Química, Mexico
| | - Margarita López-Martínez
- Laboratorio de Farmacología Experimental, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Jessica Hernández-Pineda
- Laboratorio de Farmacología Experimental, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - José G Trujillo-Ferrara
- Sección de Estudios de Posgrado e Investigación, Departamento de Farmacología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Itzia I Padilla-Martínez
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
39
|
Giani Tagliabue S, Faber SC, Motta S, Denison MS, Bonati L. Modeling the binding of diverse ligands within the Ah receptor ligand binding domain. Sci Rep 2019; 9:10693. [PMID: 31337850 PMCID: PMC6650409 DOI: 10.1038/s41598-019-47138-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/02/2019] [Indexed: 01/08/2023] Open
Abstract
The Ah receptor (AhR) is a ligand-dependent transcription factor belonging to the basic helix-loop-helix Per-Arnt-Sim (bHLH-PAS) superfamily. Binding to and activation of the AhR by a variety of chemicals results in the induction of expression of diverse genes and production of a broad spectrum of biological and toxic effects. The AhR also plays important roles in several physiological responses, which has led it to become a novel target for the development of therapeutic drugs. Differences in the interactions of various ligands within the AhR ligand binding domain (LBD) may contribute to differential modulation of AhR functionality. We combined computational and experimental analyses to investigate the binding modes of a group of chemicals representative of major classes of AhR ligands. On the basis of a novel computational approach for molecular docking to the homology model of the AhR LBD that includes the receptor flexibility, we predicted specific residues within the AhR binding cavity that play a critical role in binding of three distinct groups of chemicals. The prediction was validated by site-directed mutagenesis and evaluation of the relative ligand binding affinities for the mutant AhRs. These results provide an avenue for understanding ligand modulation of the AhR functionality and for rational drug design.
Collapse
Affiliation(s)
- Sara Giani Tagliabue
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Samantha C Faber
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stefano Motta
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Michael S Denison
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
40
|
Pereira JEM, Eckert J, Rudic S, Yu D, Mole R, Tsapatsaris N, Bordallo HN. Hydrogen bond dynamics and conformational flexibility in antipsychotics. Phys Chem Chem Phys 2019; 21:15463-15470. [PMID: 31257373 DOI: 10.1039/c9cp02456e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Effective treatment of disorders of the central nervous system can often be achieved using bioactive molecules of similar moieties to those known to be tolerable. A better understanding of the solid-state characteristics of such molecules could thereby create new opportunities for research on pharmaceutical preparations and drug prescriptions, while information about their rich intramolecular dynamics may well add an important aspect in the field of in silico drug discovery. We have therefore investigated three different antipsychotic drugs: haloperidol (C21H23ClFNO2, HAL), aripiprazole (C23H27Cl2N3O2, APZ) and quetiapine hemifumarate (C21H25N3O2S·0.5C4H4O4, QTP) based on similarities either in their structures, hydrophobic and hydrophilic moieties, or in their modes of action, typical or atypical. Our aim was to test the structural and molecular stability of these three different antipsychotics. To this end, we compared the molecular vibrations observed by inelastic neutron spectroscopy of these systems with those from theoretical periodic calculations of the crystalline antipsychotics using the Vienna ab initio simulation package (VASP). While most of the observed features in the lattice region were reasonably well represented by the calculations, the overall spectra were relatively complex, and hence traditional assignment procedures for the approximately 600 normal modes in the unit cell were not possible. These results indicate that in the search for new drug candidates, not only analysis of the flexibility of the receptor, but also the dynamics of the active molecules play a role in improving the prediction of binding affinities.
Collapse
Affiliation(s)
- Jose E M Pereira
- The Niels Bohr Institute, University of Copenhagen, DK-2100, Copenhagen, Denmark.
| | - Juergen Eckert
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Svemir Rudic
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, UK
| | - Dehong Yu
- Australian Center for Neutron Scattering, Australian Nuclear Science and Technology Organization, Lucas Heights, 2233 NSW, Australia
| | - Richard Mole
- Australian Center for Neutron Scattering, Australian Nuclear Science and Technology Organization, Lucas Heights, 2233 NSW, Australia
| | - Nikolaos Tsapatsaris
- The Niels Bohr Institute, University of Copenhagen, DK-2100, Copenhagen, Denmark. and European Spallation Source ESS ERIC, PO Box 176, SE-221 00 Lund, Sweden
| | - Heloisa N Bordallo
- The Niels Bohr Institute, University of Copenhagen, DK-2100, Copenhagen, Denmark. and European Spallation Source ESS ERIC, PO Box 176, SE-221 00 Lund, Sweden
| |
Collapse
|
41
|
Cerisier N, Petitjean M, Regad L, Bayard Q, Réau M, Badel A, Camproux AC. High Impact: The Role of Promiscuous Binding Sites in Polypharmacology. Molecules 2019; 24:molecules24142529. [PMID: 31295958 PMCID: PMC6680532 DOI: 10.3390/molecules24142529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
The literature focuses on drug promiscuity, which is a drug’s ability to bind to several targets, because it plays an essential role in polypharmacology. However, little work has been completed regarding binding site promiscuity, even though its properties are now recognized among the key factors that impact drug promiscuity. Here, we quantified and characterized the promiscuity of druggable binding sites from protein-ligand complexes in the high quality Mother Of All Databases while using statistical methods. Most of the sites (80%) exhibited promiscuity, irrespective of the protein class. Nearly half were highly promiscuous and able to interact with various types of ligands. The corresponding pockets were rather large and hydrophobic, with high sulfur atom and aliphatic residue frequencies, but few side chain atoms. Consequently, their interacting ligands can be large, rigid, and weakly hydrophilic. The selective sites that interacted with one ligand type presented less favorable pocket properties for establishing ligand contacts. Thus, their ligands were highly adaptable, small, and hydrophilic. In the dataset, the promiscuity of the site rather than the drug mainly explains the multiple interactions between the drug and target, as most ligand types are dedicated to one site. This underlines the essential contribution of binding site promiscuity to drug promiscuity between different protein classes.
Collapse
Affiliation(s)
- Natacha Cerisier
- Université de Paris, Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS, ERL U1133, INSERM, Computational Modeling of Protein Ligand Interactions, F-75013 Paris, France
| | - Michel Petitjean
- Université de Paris, Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS, ERL U1133, INSERM, Computational Modeling of Protein Ligand Interactions, F-75013 Paris, France
| | - Leslie Regad
- Université de Paris, Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS, ERL U1133, INSERM, Computational Modeling of Protein Ligand Interactions, F-75013 Paris, France
| | - Quentin Bayard
- Centre de Recherche des Cordeliers, Sorbonne Universités, INSERM, USPC, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Functional Genomics of Solid Tumors Laboratory, F-75006 Paris, France
| | - Manon Réau
- Laboratoire Génomique Bioinformatique et Chimie Moléculaire, EA 7528, Conservatoire National des Arts et Métiers, F-75003 Paris, France
| | - Anne Badel
- Université de Paris, Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS, ERL U1133, INSERM, Computational Modeling of Protein Ligand Interactions, F-75013 Paris, France
| | - Anne-Claude Camproux
- Université de Paris, Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS, ERL U1133, INSERM, Computational Modeling of Protein Ligand Interactions, F-75013 Paris, France.
| |
Collapse
|
42
|
Wong CF. Improving ensemble docking for drug discovery by machine learning. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2019. [DOI: 10.1142/s0219633619200013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ensemble docking has provided an inexpensive method to account for receptor flexibility in molecular docking. However, it is still unclear how best to use the docking scores from multiple structures to classify compounds into actives and inactives. Previous studies have also found that the performance of classification could decrease rather than increase with the number of structures included in the ensemble. Machine learning could help to alleviate these problems.
Collapse
Affiliation(s)
- Chung F. Wong
- Department of Chemistry and Biochemistry and Center for Nanoscience, University of Missouri-St. Louis, Saint Louis, MO 63121, USA
| |
Collapse
|
43
|
Thompson RD, Baisden JT, Zhang Q. NMR characterization of RNA small molecule interactions. Methods 2019; 167:66-77. [PMID: 31128236 DOI: 10.1016/j.ymeth.2019.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 01/25/2023] Open
Abstract
Exciting discoveries of naturally occurring ligand-sensing and disease-linked noncoding RNAs have promoted significant interests in understanding RNA-small molecule interactions. NMR spectroscopy is a powerful tool for characterizing intermolecular interactions. In this review, we describe protocols and approaches for applying NMR spectroscopy to investigate interactions between RNA and small molecules. We review protocols for RNA sample preparation, methods for identifying RNA-binding small molecules, approaches for mapping RNA-small molecule interactions, determining complex structures, and characterizing binding kinetics. We hope this review will provide a guideline to streamline NMR applications in studying RNA-small molecule interactions, facilitating both basic mechanistic understandings of RNA functions and translational efforts in developing RNA-targeted therapeutics.
Collapse
Affiliation(s)
- Rhese D Thompson
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jared T Baisden
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qi Zhang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
44
|
Ramírez D, Bedoya M, Kiper AK, Rinné S, Morales-Navarro S, Hernández-Rodríguez EW, Sepúlveda FV, Decher N, González W. Structure/Activity Analysis of TASK-3 Channel Antagonists Based on a 5,6,7,8 tetrahydropyrido[4,3-d]pyrimidine. Int J Mol Sci 2019; 20:ijms20092252. [PMID: 31067753 PMCID: PMC6539479 DOI: 10.3390/ijms20092252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 11/16/2022] Open
Abstract
TASK-3 potassium (K+) channels are highly expressed in the central nervous system, regulating the membrane potential of excitable cells. TASK-3 is involved in neurotransmitter action and has been identified as an oncogenic K+ channel. For this reason, the understanding of the action mechanism of pharmacological modulators of these channels is essential to obtain new therapeutic strategies. In this study we describe the binding mode of the potent antagonist PK-THPP into the TASK-3 channel. PK-THPP blocks TASK-1, the closest relative channel of TASK-3, with almost nine-times less potency. Our results confirm that the binding is influenced by the fenestrations state of TASK-3 channels and occurs when they are open. The binding is mainly governed by hydrophobic contacts between the blocker and the residues of the binding site. These interactions occur not only for PK-THPP, but also for the antagonist series based on 5,6,7,8 tetrahydropyrido[4,3-d]pyrimidine scaffold (THPP series). However, the marked difference in the potency of THPP series compounds such as 20b, 21, 22 and 23 (PK-THPP) respect to compounds such as 17b, inhibiting TASK-3 channels in the micromolar range is due to the presence of a hydrogen bond acceptor group that can establish interactions with the threonines of the selectivity filter.
Collapse
Affiliation(s)
- David Ramírez
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile. El Llano Subercaseaux 2801-Piso 6, 7500912 Santiago, Chile.
| | - Mauricio Bedoya
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca. 1 Poniente No. 1141, 3460000 Talca, Chile.
| | - Aytug K Kiper
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstraße 2, 35037 Marburg, Germany.
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstraße 2, 35037 Marburg, Germany.
| | - Samuel Morales-Navarro
- Bachillerato en Ciencias, Facultad de Ciencias, Universidad Santo Tomás, Av. Circunvalación Poniente #1855, 3460000 Talca, Chile.
| | - Erix W Hernández-Rodríguez
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca. 1 Poniente No. 1141, 3460000 Talca, Chile.
- Escuela de Química y Farmacia. Facultad de Medicina. Universidad Católica del Maule, 3460000 Talca, Chile.
| | | | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstraße 2, 35037 Marburg, Germany.
| | - Wendy González
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca. 1 Poniente No. 1141, 3460000 Talca, Chile.
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, 3460000 Talca, Chile.
| |
Collapse
|
45
|
Ding F, Peng W. Probing the local conformational flexibility in receptor recognition: mechanistic insight from an atomic-scale investigation. RSC Adv 2019; 9:13968-13980. [PMID: 35519308 PMCID: PMC9064033 DOI: 10.1039/c9ra01906e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022] Open
Abstract
Inherent protein conformational flexibility is important for biomolecular recognition, but this critical property is often neglected in several studies. This event can lead to large deviations in the research results. In the current contribution, we disclose the effects of the local conformational flexibility on receptor recognition by using an atomic-scale computational method. The results indicated that both static and dynamic reaction modes have noticeable differences, and these originated from the structural features of the protein molecules. Dynamic interaction results displayed that the structural stability and conformational flexibility of the proteins had a significant influence on the recognition processes. This point related closely to the characteristics of the flexible loop regions where bixin located within the protein structures. The energy decomposition analyses and circular dichroism results validated the rationality of the recognition studies. More importantly, the conformational and energy changes of some residues around the bixin binding domain were found to be vital to biological reactions. These microscopic findings clarified the nature of the phenomenon that the local conformational flexibility could intervene in receptor recognition. Obviously, this report may provide biophysical evidence for the exploration of the structure-function relationships of the biological receptors in the human body.
Collapse
Affiliation(s)
- Fei Ding
- School of Environmental Science and Engineering, Chang'an University Xi'an 710064 China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University No. 126 Yanta Road, Yanta District Xi'an 710064 China
| | - Wei Peng
- College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China +86-29-87092367 +86-29-87092367
- Department of Chemistry, China Agricultural University Beijing 100193 China
| |
Collapse
|
46
|
Kim SS, Aprahamian ML, Lindert S. Improving inverse docking target identification with Z-score selection. Chem Biol Drug Des 2019; 93:1105-1116. [PMID: 30604454 DOI: 10.1111/cbdd.13453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/22/2018] [Accepted: 11/17/2018] [Indexed: 12/12/2022]
Abstract
The utilization of inverse docking methods for target identification has been driven by an increasing demand for efficient tools for detecting potential drug side-effects. Despite impressive achievements in the field of inverse docking, identifying true positives from a pool of potential targets still remains challenging. Notably, most of the developed techniques have low accuracies, limit the pool of possible targets that can be investigated or are not easy to use for non-experts due to a lack of available scripts or webserver. Guided by our finding that the absolute docking score was a poor indication of a ligand's protein target, we developed a novel "combined Z-score" method that used a weighted fraction of ligand and receptor-based Z-scores to identify the most likely binding target of a ligand. With our combined Z-score method, an additional 14%, 3.6%, and 6.3% of all ligand-protein pairs of the Astex, DUD, and DUD-E databases, respectively, were correctly predicted compared to a docking score-based selection. The combined Z-score had the highest area under the curve in a ROC curve analysis of all three datasets and the enrichment factor for the top 1% predictions using the combined Z-score analysis was the highest for the Astex and DUD-E datasets. Additionally, we developed a user-friendly python script (compatible with both Python2 and Python3) that enables users to employ the combined Z-score analysis for target identification using a user-defined list of ligands and targets. We are providing this python script and a user tutorial as part of the supplemental information.
Collapse
Affiliation(s)
- Stephanie S Kim
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio
| | | | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio
| |
Collapse
|
47
|
Loo JSE, Emtage A, Murali L, Lee SS, Kueh ALW, Alexander SPH. Ligand discrimination during virtual screening of the CB1 cannabinoid receptor crystal structures following cross-docking and microsecond molecular dynamics simulations. RSC Adv 2019; 9:15949-15956. [PMID: 35521393 PMCID: PMC9064321 DOI: 10.1039/c9ra01095e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/16/2019] [Indexed: 01/04/2023] Open
Abstract
Ligands of inactive and active-state CB1 receptor crystal structures were swapped and virtual screening performance assessed after molecular dynamics simulations.
Collapse
Affiliation(s)
- Jason S. E. Loo
- School of Pharmacy
- Faculty of Health and Medical Sciences
- Taylor's University
- 47500 Subang Jaya
- Malaysia
| | - Abigail L. Emtage
- School of Pharmacy
- The University of Nottingham Malaysia Campus
- 43500 Semenyih
- Malaysia
| | - Lahari Murali
- School of Pharmacy
- The University of Nottingham Malaysia Campus
- 43500 Semenyih
- Malaysia
| | - Sze Siew Lee
- School of Pharmacy
- Faculty of Health and Medical Sciences
- Taylor's University
- 47500 Subang Jaya
- Malaysia
| | - Alvina L. W. Kueh
- School of Pharmacy
- Faculty of Health and Medical Sciences
- Taylor's University
- 47500 Subang Jaya
- Malaysia
| | | |
Collapse
|
48
|
Abstract
Drugs modulate disease states through their actions on targets in the body. Determining these targets aids the focused development of new treatments, and helps to better characterize those already employed. One means of accomplishing this is through the deployment of in silico methodologies, harnessing computational analytical and predictive power to produce educated hypotheses for experimental verification. Here, we provide an overview of the current state of the art, describe some of the well-established methods in detail, and reflect on how they, and emerging technologies promoting the incorporation of complex and heterogeneous data-sets, can be employed to improve our understanding of (poly)pharmacology.
Collapse
Affiliation(s)
- Ryan Byrne
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Gisbert Schneider
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.
| |
Collapse
|
49
|
Eubanks CS, Hargrove AE. RNA Structural Differentiation: Opportunities with Pattern Recognition. Biochemistry 2018; 58:199-213. [PMID: 30513196 DOI: 10.1021/acs.biochem.8b01090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our awareness and appreciation of the many regulatory roles of RNA have dramatically increased in the past decade. This understanding, in addition to the impact of RNA in many disease states, has renewed interest in developing selective RNA-targeted small molecule probes. However, the fundamental guiding principles in RNA molecular recognition that could accelerate these efforts remain elusive. While high-resolution structural characterization can provide invaluable insight, examples of well-characterized RNA structures, not to mention small molecule:RNA complexes, remain limited. This Perspective provides an overview of the current techniques used to understand RNA molecular recognition when high-resolution structural information is unavailable. We will place particular emphasis on a new method, pattern recognition of RNA with small molecules (PRRSM), that provides rapid insight into critical components of RNA recognition and differentiation by small molecules as well as into RNA structural features.
Collapse
Affiliation(s)
- Christopher S Eubanks
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0354 , United States
| | - Amanda E Hargrove
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0354 , United States
| |
Collapse
|
50
|
Chitrala KN, Yang X, Nagarkatti P, Nagarkatti M. Comparative analysis of interactions between aryl hydrocarbon receptor ligand binding domain with its ligands: a computational study. BMC STRUCTURAL BIOLOGY 2018; 18:15. [PMID: 30522477 PMCID: PMC6282305 DOI: 10.1186/s12900-018-0095-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/07/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Aryl hydrocarbon receptor (AhR) ligands may act as potential carcinogens or anti-tumor agents. Understanding how some of the residues in AhR ligand binding domain (AhRLBD) modulate their interactions with ligands would be useful in assessing their divergent roles including toxic and beneficial effects. To this end, we have analysed the nature of AhRLBD interactions with 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD), 6-formylindolo[3,2-b]carbazole (FICZ), indole-3-carbinol (I3C) and its degradation product, 3,3'-diindolylmethane (DIM), Resveratrol (RES) and its analogue, Piceatannol (PTL) using molecular modeling approach followed by molecular dynamic simulations. RESULTS Results showed that each of the AhR ligands, TCDD, FICZ, I3C, DIM, RES and PTL affect the local and global conformations of AhRLBD. CONCLUSION The data presented in this study provide a structural understanding of AhR with its ligands and set the basis for its functions in several pathways and their related diseases.
Collapse
Affiliation(s)
- Kumaraswamy Naidu Chitrala
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC 29208 USA
| | - Xiaoming Yang
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC 29208 USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC 29208 USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC 29208 USA
| |
Collapse
|