1
|
Singarayar MS, Chandrasekaran A, Balasundaram D, Veerasamy V, Neethirajan V, Thilagar S. Prebiotics: Comprehensive analysis of sources, structural characteristics and mechanistic roles in disease regulation. Microb Pathog 2024; 197:107071. [PMID: 39447658 DOI: 10.1016/j.micpath.2024.107071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Prebiotics are nondigestible components that comprise short-chain carbohydrates, primarily oligosaccharides, which are converted into beneficial compounds by probiotics. Various plant substances with prebiotic properties provide substantial health benefits and are used to prevent different diseases and for medical and clinical applications. Consuming prebiotics gives impeccable benefits since it aids in gut microbial balance. Prebiotic research is primarily concerned with the influence of intestinal disorders. The proposed review will describe recent data on the sources, structures, implementation of prebiotics and potential mechanisms in preventing and treating various disorders, with an emphasis on the gut microbiome. Prebiotics have a distinctive impact on the gastro intestine by explicitly encouraging the growth of probiotic organisms like Bifidobacteria and Lactobacilli. This in turn augments the body's inherent ability to fend off harmful pathogens. Prebiotic carbohydrates may also provide other non-specific advantages due to their fermentation in the large intestine. Additional in vivo research is needed to fully comprehend the interactions between prebiotics and probiotics ingested by hosts to improve their nutritional and therapeutic benefits.
Collapse
Affiliation(s)
- Magdalin Sylvia Singarayar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| | - Ajithan Chandrasekaran
- Department of Horticulture, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | | | - Veeramurugan Veerasamy
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| | - Vivek Neethirajan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| | - Sivasudha Thilagar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| |
Collapse
|
2
|
Luppi S, Aldegheri L, Azzalini E, Pacetti E, Barucca Sebastiani G, Fabiani C, Robino A, Comar M. Unravelling the Role of Gut and Oral Microbiota in the Pediatric Population with Type 1 Diabetes Mellitus. Int J Mol Sci 2024; 25:10611. [PMID: 39408940 PMCID: PMC11477131 DOI: 10.3390/ijms251910611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Type 1 Diabetes Mellitus (T1DM) is a chronic autoimmune disease that results in the destruction of pancreatic β cells, leading to hyperglycaemia and the need for lifelong insulin therapy. Although genetic predisposition and environmental factors are considered key contributors to T1DM, the exact causes of the disease remain partially unclear. Recent evidence has focused on the relationship between the gut, the oral cavity, immune regulation, and systemic inflammation. In individuals with T1DM, changes in the gut and oral microbial composition are commonly observed, indicating that dysbiosis may contribute to immune dysregulation. Gut dysbiosis can influence the immune system through increased intestinal permeability, altered production of short chain fatty acids (SCFAs), and interactions with the mucosal immune system, potentially triggering the autoimmune response. Similarly, oral dysbiosis may contribute to the development of systemic inflammation and thus influence the progression of T1DM. A comprehensive understanding of these relationships is essential for the identification of biomarkers for early diagnosis and monitoring, as well as for the development of therapies aimed at restoring microbial balance. This review presents a synthesis of current research on the connection between T1DM and microbiome dysbiosis, with a focus on the gut and oral microbiomes in pediatric populations. It explores potential mechanisms by which microbial dysbiosis contributes to the pathogenesis of T1DM and examines the potential of microbiome-based therapies, including probiotics, prebiotics, synbiotics, and faecal microbiota transplantation (FMT). This complex relationship highlights the need for longitudinal studies to monitor microbiome changes over time, investigate causal relationships between specific microbial species and T1DM, and develop personalised medicine approaches.
Collapse
Affiliation(s)
- Stefania Luppi
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy; (S.L.); (L.A.); (M.C.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy; (E.A.); (E.P.)
| | - Luana Aldegheri
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy; (S.L.); (L.A.); (M.C.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy; (E.A.); (E.P.)
| | - Eros Azzalini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy; (E.A.); (E.P.)
| | - Emanuele Pacetti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy; (E.A.); (E.P.)
| | - Giulia Barucca Sebastiani
- Medicine of Services Department, Clinical Analysis Laboratory, Azienda Sanitaria Universitaria Giuliano Isontina, 34125 Trieste, Italy; (G.B.S.); (C.F.)
| | - Carolina Fabiani
- Medicine of Services Department, Clinical Analysis Laboratory, Azienda Sanitaria Universitaria Giuliano Isontina, 34125 Trieste, Italy; (G.B.S.); (C.F.)
| | - Antonietta Robino
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy; (S.L.); (L.A.); (M.C.)
| | - Manola Comar
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy; (S.L.); (L.A.); (M.C.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy; (E.A.); (E.P.)
| |
Collapse
|
3
|
Acharya B, Tofthagen M, Maciej-Hulme ML, Suissa MR, Karlsson NG. Limited support for a direct connection between prebiotics and intestinal permeability - a systematic review. Glycoconj J 2024; 41:323-342. [PMID: 39287885 PMCID: PMC11522178 DOI: 10.1007/s10719-024-10165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
The intestinal barrier is a selective interface between the body´s external and the internal environment. Its layer of epithelial cells is joined together by tight junction proteins. In intestinal permeability (IP), the barrier is compromised, leading to increased translocation of luminal contents such as large molecules, toxins and even microorganisms. Numerous diseases including Inflammatory Bowel Disease (IBD), Coeliac disease (CD), autoimmune disorders, and diabetes are believed to be associated with IP. Dietary interventions, such as prebiotics, may improve the intestinal barrier. Prebiotics are non-digestible food compounds, that promote the growth and activity of beneficial bacteria in the gut. This systematic review assesses the connection between prebiotic usage and IP. PubMed and Trip were used to identify relevant studies conducted between 2010-2023. Only six studies were found, which all varied in the characteristics of the population, study design, and types of prebiotics interventions. Only one study showed a statistically significant effect of prebiotics on IP. Alteration of intestinal barrier function was measured by lactulose/mannitol, chromium-labelled Ethylenediaminetetraacetic acid (51Cr-EDTA), lactulose/rhamnose, and sucralose/erythritol excretion as well as zonulin and glucagon-like peptide 2 levels. Three studies also conducted gut microbiota assessment, and one of them showed statistically significant improvement of the gut microbiome. This study also reported a decrease in zonulin level. The main conclusion from this review is that there is a lack of human studies in this important field. Futhermore, large population studies and using standardized protocols, would be required to properly assess the impact of prebiotic intervention and improvement on IP.
Collapse
Affiliation(s)
- Binayak Acharya
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, N-0130, Oslo, Norway
| | - Marthe Tofthagen
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, N-0130, Oslo, Norway
| | - Marissa L Maciej-Hulme
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, N-0130, Oslo, Norway
| | - Michal Rachel Suissa
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, N-0130, Oslo, Norway
| | - Niclas G Karlsson
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, N-0130, Oslo, Norway.
| |
Collapse
|
4
|
Alemu BK, Wu L, Azeze GG, Lau SL, Wang Y, Wang CC. Microbiota-targeted interventions and clinical implications for maternal-offspring health: An umbrella review of systematic reviews and meta-analyses of randomised controlled trials. J Glob Health 2024; 14:04177. [PMID: 39269153 PMCID: PMC11395958 DOI: 10.7189/jogh.14.04177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
Background Microbes in the human body are the determinants of life-long health and disease. Microbiome acquisition starts in utero and matures during early childhood through breastfeeding. However, maternal gut dysbiosis affects the maternal-offspring microbiome interplay. Lines of evidence on dysbiosis-targeted interventions and their effect on maternal-offspring health and gut microbiome are inconsistent and inconclusive. Therefore, this study summarised studies to identify the most common microbiota-targeted intervention during pregnancy and lactation and to comprehensively evaluate its effects on maternal and offspring health. Methods This umbrella review was conducted by systematically searching databases such as PubMed and the Web of Science from inception to 2 September 2023. The quality was assessed using the Assessment of Multiple Systematic Reviews-2 checklist. The Grading of Recommendations Assessment, Development, and Evaluation was used for grading the strength and certainty of the studies. The overlap of primary studies was quantified by the corrected covered area score. Results A total of 17 systematic reviews and meta-analyses with 219 randomised controlled trials, 39 113 mothers, and 20 915 infants were included in this study. About 88% of studies had moderate and above certainty of evidence. Probiotics were the most common and effective interventions at reducing gestational diabetes risk (fasting blood glucose with the mean difference (MD) = -2.92, -0.05; I2 = 45, 98.97), fasting serum insulin (MD = -2.3, -2.06; I2 = 45, 77), glycated haemoglobin (Hb A1c) = -0.16; I2 = 0.00)), Homeostatic Model Assessment of insulin resistance (HOMA-IR) (MD = -20.55, -0.16; I2 = 0.00, 72.00), and lipid metabolism (MD = -5.47, 0.98; I2 = 0.00, 90.65). It was also effective in preventing and treating mastitis (risk ratio (RR) = 0.49; I2 = 2.00), relieving anxiety symptoms (MD = -0.99, 0.01; I2 = 0.00, 70.00), depression in lactation (MD = -0.46, -0.22; I2 = 0.00, 74.00) and reducing recto-vaginal bacterial colonisation (odds ratio (OR) = 0.62; I2 = 4.80), and with no adverse events. It also effectively remodelled the infant gut microbiome (MD = 0.89; I2 = 95.01) and prevented infant allergies. However, studies on pregnancy outcomes and preeclampsia incidences are limited. Conclusions Our findings from high-quality studies identify that probiotics are the most common microbiome interventions during pregnancy and lactation. Probiotics have a strong impact on maternal and offspring health through maintaining gut microbiome homeostasis. However, further studies are needed on the effect of microbiota-targeted interventions on maternal cardiometabolic health, pregnancy, and neonatal outcomes. Registration This umbrella review was registered with PROSPERO, CRD42023437098.
Collapse
Affiliation(s)
- Bekalu Kassie Alemu
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
- Department of Midwifery, College of Medicine and Health Sciences, Debre Markos University, Ethiopia
| | - Ling Wu
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Getnet Gedefaw Azeze
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
- Department of Midwifery, College of Medicine and Health Sciences, Injibara University, Ethiopia
| | - So Ling Lau
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Yao Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
- LI Ka Shing Institute of Health Sciences; Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
- LI Ka Shing Institute of Health Sciences; Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| |
Collapse
|
5
|
Milijasevic M, Veskovic-Moracanin S, Babic Milijasevic J, Petrovic J, Nastasijevic I. Antimicrobial Resistance in Aquaculture: Risk Mitigation within the One Health Context. Foods 2024; 13:2448. [PMID: 39123639 PMCID: PMC11311770 DOI: 10.3390/foods13152448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The application of antimicrobials in aquaculture primarily aims to prevent and treat bacterial infections in fish, but their inappropriate use may result in the emergence of zoonotic antibiotic-resistant bacteria and the subsequent transmission of resistant strains to humans via food consumption. The aquatic environment serves as a potential reservoir for resistant bacteria, providing an ideal breeding ground for development of antimicrobial resistance (AMR). The mutual inter-connection of intensive fish-farming systems with terrestrial environments, the food processing industry and human population creates pathways for the transmission of resistant bacteria, exacerbating the problem further. The aim of this study was to provide an overview of the most effective and available risk mitigation strategies to tackle AMR in aquaculture, based on the One Health (OH) concept. The stringent antimicrobial use guidelines, promoting disease control methods like enhanced farm biosecurity measures and vaccinations, alternatives to antibiotics (ABs) (prebiotics, probiotics, immunostimulants, essential oils (EOs), peptides and phage therapy), feeding practices, genetics, monitoring water quality, and improving wastewater treatment, rather than applying excessive use of antimicrobials, can effectively prevent the development of AMR and release of resistant bacteria into the environment and food. The contribution of the environment to AMR development traditionally receives less attention, and, therefore, environmental aspects should be included more prominently in OH efforts to predict, detect and prevent the risks to health. This is of particular importance for low and middle-income countries with a lack of integration of the national AMR action plans (NAPs) with the aquaculture-producing environment. Integrated control of AMR in fisheries based on the OH approach can contribute to substantial decrease in resistance, and such is the case in Asia, where in aquaculture, the percentage of antimicrobial compounds with resistance exceeding 50% (P50) decreased from 52% to 22% within the period of the previous two decades.
Collapse
Affiliation(s)
- Milan Milijasevic
- Institute of Meat Hygiene and Technology, 11000 Belgrade, Serbia; (M.M.); (S.V.-M.); (J.B.M.)
| | | | | | - Jelena Petrovic
- Scientific Veterinary Institute ‘Novi Sad’, 21113 Novi Sad, Serbia;
| | - Ivan Nastasijevic
- Institute of Meat Hygiene and Technology, 11000 Belgrade, Serbia; (M.M.); (S.V.-M.); (J.B.M.)
| |
Collapse
|
6
|
Luo L, Gu Z, Pu J, Chen D, Tian G, He J, Zheng P, Mao X, Yu B. Synbiotics improve growth performance and nutrient digestibility, inhibit PEDV infection, and prevent intestinal barrier dysfunction by mediating innate antivirus immune response in weaned piglets. J Anim Sci 2024; 102:skae023. [PMID: 38271094 PMCID: PMC10894507 DOI: 10.1093/jas/skae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024] Open
Abstract
This experiment was conducted to explore the effects of dietary synbiotics (SYB) supplementation on growth performance, immune function, and intestinal barrier function in piglets challenged with porcine epidemic diarrhea virus (PEDV). Forty crossbred (Duroc × Landrace × Yorkshire) weaned piglets (26 ± 1 d old) with a mean body weight (BW) of 6.62 ± 0.36 kg were randomly allotted to five groups: control (CON) I and CONII group, both fed basal diet; 0.1% SYB group, 0.2% SYB group, and 0.2% yeast culture (YC) group, fed basal diet supplemented with 0.1%, 0.2% SYB, and 0.2% YC, respectively. On day 22, all piglets were orally administrated with 40 mL PEDV (5.6 × 103 TCID50/mL) except piglets in CONI group, which were administrated with the same volume of sterile saline. The trial lasted for 26 d. Before PEDV challenge, dietary 0.1% SYB supplementation increased final BW, average daily gain (ADG), and decreased the ratio of feed to gain during 0 to 21 d (P < 0.05), as well as improved the apparent nutrient digestibility of dry matter (DM), organic matter (OM), crude protein, ether extract (EE), and gross energy (GE). At the same time, 0.2% YC also improved the apparent nutrient digestibility of DM, OM, EE, and GE (P < 0.05). PEDV challenge increased diarrhea rate and diarrhea indexes while decreased ADG (P < 0.05) from days 22 to 26, and induced systemic and intestinal mucosa innate immune and proinflammatory responses, destroyed intestinal barrier integrity. The decrease in average daily feed intake and ADG induced by PEDV challenge was suppressed by dietary SYB and YC supplementation, and 0.1% SYB had the best-alleviating effect. Dietary 0.1% SYB supplementation also increased serum interleukin (IL)-10, immunoglobulin M, complement component 4, and jejunal mucosal IL-4 levels, while decreased serum diamine oxidase activity compared with CONII group (P < 0.05). Furthermore, 0.1% SYB improved mRNA expressions of claudin-1, zonula occludens protein-1, mucin 2, interferon-γ, interferon regulatory factor-3, signal transducers and activators of transcription (P < 0.05), and protein expression of occludin, and downregulated mRNA expressions of toll-like receptor 3 and tumor necrosis factor-α (P < 0.05) in jejunal mucosa. Supplementing 0.2% SYB or 0.2% YC also had a positive effect on piglets, but the effect was not as good as 0.1% SYB. These results indicated that dietary 0.1% SYB supplementation improved growth performance under normal conditions, and alleviated the inflammatory response and the damage of intestinal barrier via improving innate immune function and decreasing PEDV genomic copies, showed optimal protective effects against PEDV infection.
Collapse
Affiliation(s)
- Luhong Luo
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhemin Gu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Junning Pu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Gang Tian
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jun He
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
7
|
Sharma G, Biswas SS, Mishra J, Navik U, Kandimalla R, Reddy PH, Bhatti GK, Bhatti JS. Gut microbiota dysbiosis and Huntington's disease: Exploring the gut-brain axis and novel microbiota-based interventions. Life Sci 2023; 328:121882. [PMID: 37356750 DOI: 10.1016/j.lfs.2023.121882] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Huntington's disease (HD) is a complex progressive neurodegenerative disorder affected by genetic, environmental, and metabolic factors contributing to its pathogenesis. Gut dysbiosis is termed as the alterations of intestinal microbial profile. Emerging research has highlighted the pivotal role of gut dysbiosis in HD, focusing on the gut-brain axis as a novel research parameter in science. This review article provides a comprehensive overview of gut microbiota dysbiosis and its relationship with HD and its pathogenesis along with the future challenges and opportunities. The focuses on the essential mechanisms which link gut dysbiosis to HD pathophysiology including neuroinflammation, immune system dysregulation, altered metabolites composition, and neurotransmitter imbalances. We also explored the impacts of gut dysbiosis on HD onset, severity, and symptoms such as cognitive decline, motor dysfunction, and psychiatric symptoms. Furthermore, we highlight recent advances in therapeutics including microbiota-based therapeutic approaches, including dietary interventions, prebiotics, probiotics, fecal microbiota transplantation, and combination therapies with conventional HD treatments and their applications in managing HD. The future challenges are also highlighted as the heterogeneity of gut microbiota, interindividual variability, establishing causality between gut dysbiosis and HD, identifying optimal therapeutic targets and strategies, and ensuring the long-term safety and efficacy of microbiota-based interventions. This review provides a better understanding of the potential role of gut microbiota in HD pathogenesis and guides the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Garvita Sharma
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Shristi Saroj Biswas
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Jayapriya Mishra
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Umashanker Navik
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
8
|
Montagnani M, Bottalico L, Potenza MA, Charitos IA, Topi S, Colella M, Santacroce L. The Crosstalk between Gut Microbiota and Nervous System: A Bidirectional Interaction between Microorganisms and Metabolome. Int J Mol Sci 2023; 24:10322. [PMID: 37373470 DOI: 10.3390/ijms241210322] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Several studies have shown that the gut microbiota influences behavior and, in turn, changes in the immune system associated with symptoms of depression or anxiety disorder may be mirrored by corresponding changes in the gut microbiota. Although the composition/function of the intestinal microbiota appears to affect the central nervous system (CNS) activities through multiple mechanisms, accurate epidemiological evidence that clearly explains the connection between the CNS pathology and the intestinal dysbiosis is not yet available. The enteric nervous system (ENS) is a separate branch of the autonomic nervous system (ANS) and the largest part of the peripheral nervous system (PNS). It is composed of a vast and complex network of neurons which communicate via several neuromodulators and neurotransmitters, like those found in the CNS. Interestingly, despite its tight connections to both the PNS and ANS, the ENS is also capable of some independent activities. This concept, together with the suggested role played by intestinal microorganisms and the metabolome in the onset and progression of CNS neurological (neurodegenerative, autoimmune) and psychopathological (depression, anxiety disorders, autism) diseases, explains the large number of investigations exploring the functional role and the physiopathological implications of the gut microbiota/brain axis.
Collapse
Affiliation(s)
- Monica Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Lucrezia Bottalico
- School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001-3006 Elbasan, Albania
| | - Maria Assunta Potenza
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Ioannis Alexandros Charitos
- Pneumology and Respiratory Rehabilitation Division, Maugeri Clinical Scientific Research Institutes (IRCCS), 70124 Bari, Italy
| | - Skender Topi
- School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001-3006 Elbasan, Albania
| | - Marica Colella
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
9
|
Jeong S, Kwon A, Jeong H, Park YS. Synergistic Immunostimulatory Activities of Probiotic Strains, Leuconostoc lactis and Weissella cibaria, and the Prebiotic Oligosaccharides They Produce. Microorganisms 2023; 11:1354. [PMID: 37317327 DOI: 10.3390/microorganisms11051354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023] Open
Abstract
Synbiotics contain health-beneficial bacteria, i.e., probiotics and prebiotics selectively utilized by the probiotics. Herein, three probiotic strains, Leuconostoc lactis CCK940, L. lactis SBC001, and Weissella cibaria YRK005, and the oligosaccharides produced by these strains (CCK, SBC, and YRK, respectively) were used to prepare nine synbiotic combinations. Macrophages (RAW 264.7) were treated with these synbiotic combinations and the corresponding lactic acid bacteria and oligosaccharides alone to evaluate the treatments' immunostimulatory activities. The level of nitric oxide (NO) production was significantly higher in the macrophages treated with the synbiotics than in those treated with the corresponding probiotic strains and the oligosaccharide alone. The immunostimulatory activities of the synbiotics increased regardless of the probiotic strain and the type of oligosaccharide used. The expressions of tissue necrosis factor-α, interleukin-1β, cyclooxygenase-2, inducible NO synthase genes, and extracellular-signal-regulated and c-Jun N-terminal kinases were significantly higher in the macrophages treated with the three synbiotics than in those treated with the corresponding strains or with the oligosaccharides alone. These results indicate that the synergistic immunostimulatory activities of probiotics and the prebiotics they produced in the studied synbiotic preparations resulted from the activation of the mitogen-activated protein-kinase-signaling pathway. This study suggests the combined use of these probiotics and prebiotics in the development of synbiotic preparations as health supplements.
Collapse
Affiliation(s)
- Seoyoung Jeong
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Ayeon Kwon
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Huijin Jeong
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
10
|
Kaewarsar E, Chaiyasut C, Lailerd N, Makhamrueang N, Peerajan S, Sirilun S. Optimization of Mixed Inulin, Fructooligosaccharides, and Galactooligosaccharides as Prebiotics for Stimulation of Probiotics Growth and Function. Foods 2023; 12:foods12081591. [PMID: 37107386 PMCID: PMC10137966 DOI: 10.3390/foods12081591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Prebiotics have become an important functional food because of their potential for modulating the gut microbiota and metabolic activities. However, different prebiotics can stimulate the growth of different probiotics. The optimization of prebiotics was focused on in this study in order to stimulate the representative probiotics' growth (Lacticaseibacillus rhamnosus (previously Lactobacillus rhamnosus) and Bifidobacterium animalis subsp. lactis) and their function. The culture medium was supplemented with three prebiotics, including inulin (INU), fructooligosaccharides (FOS), and galactooligosaccharides (GOS). All prebiotics can clearly stimulate the growth of probiotic strains in both monoculture and co-culture. The specific growth rates of L. rhamnosus and B. animalis subsp. lactis were shown in GOS (0.019 h-1) and FOS (0.023 h-1), respectively. The prebiotic index (PI) scores of INU (1.03), FOS (0.86), and GOS (0.84) in co-culture at 48 h were significantly higher than the control (glucose). The mixture of prebiotics to achieve high quality was optimized using the Box-Behnken design. The optimum prebiotic ratios of INU, FOS, and GOS were 1.33, 2.00, and 2.67% w/v, respectively, with the highest stimulated growth of probiotic strains occurring with the highest PI score (1.03) and total short chain fatty acid concentration (85.55 µmol/mL). The suitable ratio of mixed prebiotics will function as a potential ingredient for functional foods or colonic foods.
Collapse
Affiliation(s)
- Ekkachai Kaewarsar
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaiyavat Chaiyasut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Narissara Lailerd
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Netnapa Makhamrueang
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Sasithorn Sirilun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
11
|
Wang C, Gao L, Gao Y, Yang G, Zhao Z, Zhao Y, Wang J, Li S. Evaluation of Pediococcus acidilacticiAS185 as an adjunct culture in probiotic cheddar cheese manufacture. Food Sci Nutr 2023; 11:1572-1583. [PMID: 36911834 PMCID: PMC10002913 DOI: 10.1002/fsn3.3198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
A novel probiotic Pediococcus acidilactici AS185, isolated from traditional Chinese fermented foods, was used as an adjunct culture for probiotic cheddar cheese production. The physicochemical composition, textural, free amino acids (FAAs), short-chain fatty acids (SCFAs) profiles, sensory properties, and microbial survival, was evaluated during the 90-day ripening period. The addition of P. acidilactici AS185 did not influence the physicochemical composition of cheddar cheese but significantly decreased the hardness without affecting its textural profile. During ripening, P. acidilactici AS185 was able to grow and promote the generation of FAAs and SCFAs, but did not alter the overall sensory properties; it rather improved the flavor and taste of cheese. In addition, the cheese matrix protected strain P. acidilactici AS185 during transit throughout the simulated gastrointestinal system. These results demonstrated that P. acidilactici AS185 adjunct cultures might be useful for producing high-quality probiotic cheddar cheese.
Collapse
Affiliation(s)
- Chao Wang
- School of Biological EngineeringDalian Polytechnic UniversityDalianChina
- Institute of Agro‐food TechnologyJilin Academy of Agricultural Sciences/National R&D Center for Milk ProcessingChangchunChina
| | - Lei Gao
- Institute of Agro‐food TechnologyJilin Academy of Agricultural Sciences/National R&D Center for Milk ProcessingChangchunChina
| | - Yansong Gao
- Institute of Agro‐food TechnologyJilin Academy of Agricultural Sciences/National R&D Center for Milk ProcessingChangchunChina
| | - Ge Yang
- Institute of Agro‐food TechnologyJilin Academy of Agricultural Sciences/National R&D Center for Milk ProcessingChangchunChina
| | - Zijian Zhao
- Institute of Agro‐food TechnologyJilin Academy of Agricultural Sciences/National R&D Center for Milk ProcessingChangchunChina
| | - Yujuan Zhao
- Institute of Agro‐food TechnologyJilin Academy of Agricultural Sciences/National R&D Center for Milk ProcessingChangchunChina
| | - Jihui Wang
- School of Biological EngineeringDalian Polytechnic UniversityDalianChina
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical Engineering and Energy TechnologyDongguan University of TechnologyDongguanChina
| | - Shengyu Li
- Institute of Agro‐food TechnologyJilin Academy of Agricultural Sciences/National R&D Center for Milk ProcessingChangchunChina
| |
Collapse
|
12
|
Helmy YA, Taha-Abdelaziz K, Hawwas HAEH, Ghosh S, AlKafaas SS, Moawad MMM, Saied EM, Kassem II, Mawad AMM. Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens. Antibiotics (Basel) 2023; 12:274. [PMID: 36830185 PMCID: PMC9952301 DOI: 10.3390/antibiotics12020274] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the most important global public health problems. The imprudent use of antibiotics in humans and animals has resulted in the emergence of antibiotic-resistant bacteria. The dissemination of these strains and their resistant determinants could endanger antibiotic efficacy. Therefore, there is an urgent need to identify and develop novel strategies to combat antibiotic resistance. This review provides insights into the evolution and the mechanisms of AMR. Additionally, it discusses alternative approaches that might be used to control AMR, including probiotics, prebiotics, antimicrobial peptides, small molecules, organic acids, essential oils, bacteriophage, fecal transplants, and nanoparticles.
Collapse
Affiliation(s)
- Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Khaled Taha-Abdelaziz
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - Hanan Abd El-Halim Hawwas
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Samar Sami AlKafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31511, Egypt
| | | | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Issmat I. Kassem
- Centre for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA 30609, USA
| | - Asmaa M. M. Mawad
- Department of Biology, College of Science, Taibah University, Madinah 42317, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
13
|
Vazquez-Marroquin G, Ochoa-Précoma R, Porchia LM, Pérez-Fuentes R, Nicolás-Toledo L, Rodríguez-Antolín J, Gonzalez-Mejia ME. The Effect of Microbiome Therapies on Waist Circumference, a Measure of Central Obesity, in Patients with Type 2 Diabetes: A Systematic Review and Meta-analysis of Randomized Controlled Trials. J Acad Nutr Diet 2023; 123:933-952.e1. [PMID: 36634870 DOI: 10.1016/j.jand.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND Microbiome therapies (probiotic, prebiotic, and synbiotics) have been proposed as adjuvants in the control of central obesity; however, their results for patients with type 2 diabetes (T2D) remain inconclusive. OBJECTIVE The aim of this systematic review and meta-analysis was to evaluate the effect of microbiome therapies on central obesity as measured by waist circumference (WC), and to evaluate the effect of microbiome therapies for glycemic parameters (fasting glucose [FPG], fasting insulin [FPI], hemoglobin A1c [HbA1c], and insulin resistance [HOMA1-IR]) in patients with T2D. METHODS SCOPUS, Pubmed, EBSCO, and LILACS databases were searched for studies that investigated the effect of microbiome therapies on WC up to June 1, 2022. Heterogeneity was determined using Cochran's Q test and quantified using the inconsistency index. The random effects model was used to calculate the pooled difference in means (DM) and 95% confidence intervals (95%CI). Egger's test and Beggs-Muzamar's test were used to assess publication bias. RESULTS Fifteen reports were included (443 treated and 387 controls). Overall, a significant decrease in WC was found (DM = -0.97 cm; 95% confidence interval [95%CI] = -1.74 to -0.20; P = 0.014); however, when stratified by type of microbiome therapy, only probiotics significantly decreased WC (DM = -0.62 cm; 95%CI = -1.00 to -0.24; P = 0.002). No effect was observed for prebiotics and synbiotics. With respect to glycemic parameters, HbA1c, FPG, and HOMA1-IR significantly decrease with microbiome therapies (P ≤ 0.001). When stratified by the type of therapy, for probiotic treatments, HbA1c, FPG, and HOMA1-IR scores decrease (P < 0.001). For prebiotic treatments, HbA1c and FPG (P ≤ 0.001) levels decrease, whereas FPI increased (P = 0.012). Synbiotic treatments were only associated with an increase in FPI (P = 0.031). CONCLUSION Findings indicate that using probiotics alone improved WC in patients with T2D. Both probiotics and prebiotics decreased HbA1c and FPG; however, prebiotics and synbiotics resulted in an increase in FPI. The formulation of the therapy (single vs multi) had no difference on the effect.
Collapse
|
14
|
Xu Q, Zheng F, Yang P, Tu P, Xing Y, Zhang P, Liu H, Liu X, Bi X. Effect of autoclave-cooling cycles combined pullulanase on the physicochemical and structural properties of resistant starch from black Tartary buckwheat. J Food Sci 2023; 88:315-327. [PMID: 36510380 DOI: 10.1111/1750-3841.16417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
A starch-rich portion is produced as a by-product of black Tartary buckwheat processing. The effect of enzymatic combined with autoclaving-cooling cycles (one, two, or three times) on the physicochemical and structural properties of black Tartary buckwheat type 3 resistant starch (BRS) was evaluated. The autoclaving-cooling cycles enhanced solubility and reduced swelling, with the BRS content increasing from 14.12% to 25.18%. The high crystallinity of the BRS reflected a high molecular order. However, increasing the number of autoclaving-cooling cycles did not result in higher BRS content. The highest BRS yield in the autoclaved starch samples was 25.18% after double-autoclaving-cooling cycles. Furthermore, the autoclaving-cooling cycles altered the crystalline structure of black Tartary buckwheat, and the subsequent crystallinity changed from 36.33% to 42.05% to 38.27%. Fourier-transform infrared spectroscopy shows that the number of cycles results in more efficient double-helical packing within the crystalline lamella. Principal component analysis showed that the autoclaving-cooling cycle treatment leads to significant changes in the molecular structure of resistant starch (RS). These results indicated that autoclaving-cooling cycles might be a feasible way for producing RS from black Tartary buckwheat starch with better structural stability to expand their application range.
Collapse
Affiliation(s)
- Qinglian Xu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Faying Zheng
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Ping Yang
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Ping Tu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yage Xing
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Ping Zhang
- Huantai Biotechnology Co., Ltd., Chengdu, China
| | - Hong Liu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Xiaocui Liu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Xiufang Bi
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu, China
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Epidemiologic studies and clinical trials have demonstrated the benefits of dietary fiber. This occurs through a combination of the physiochemical properties of fiber and through microbial fermentation that occurs in the colon which result in the production of short-chain fatty acids (SCFA). The purpose of this review is to highlight the physiochemical properties of fiber that result in the range of physiologic effects and to review the literature on the health benefits of acetate, propionate, and butyrate. RECENT FINDINGS Of the variety of properties and functions exerted by dietary fibers, the fermentability and production of SCFA's are emphasized in this review. Studies done in both animal and humans reveal the anti-obesity, anti-inflammatory, and possible anti-neoplastic roles SCFAs exert at the mucosal level. Many clinical questions remain regarding the optimal dose, type, and method of delivery of fiber to exert the desired beneficial effects. It has the potential to be used in the management of clinical symptoms, prevention of disease, and improvement in human health. Further studies to address this novel use of fiber has the potential to make a large impact in clinical practice.
Collapse
|
16
|
Li X, Wu X, Ma W, Chen W, Zhao F. Effects of dietary xylooligosaccharides supplementation on the intestinal morphology, nitrogen metabolism, faecal ammonia release, antioxidant capacity, and immune organ indices of broilers. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2113747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Xixi Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xiaohong Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Wenfeng Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Wei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
| | - Furong Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
17
|
Subcritical Fluid Process for Producing Mannooligosaccharide-Rich Carbohydrates from Coconut Meal and Their In Vitro Fermentation. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Sangiuolo K, Cheng E, Terala A, Dubrosa F, Milanaik RL. The gut microbiome: an overview of current trends and risks for paediatric populations. Curr Opin Pediatr 2022; 34:634-642. [PMID: 36226734 DOI: 10.1097/mop.0000000000001186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW Gut health is an increasingly popular topic of discussion among scientists and the general population alike. As interest surrounding the gut microbiome grows, the accessibility to misinformation and unfounded gut health trends to youth is likely to emerge as a public health concern. The purpose of this review is to provide paediatricians with current information about the gut microbiome, as well as explanations and possible risks of the multitude of gut health trends that adolescents may be exposed to. RECENT FINDINGS The gut microbiome is implicated in overall health by playing roles in digestion, immunity and mental health. Novel microbiome-related therapies, such as faecal microbiota transplants, and the gut-brain link show the therapeutic potential of the gut microbiome. However, unproven dietary fads and trends on social media are rampant as well, such as ginger juice shots. In addition, paediatric supplements meant to target gut health are unregulated, yet are highly marketed. Improperly applying these trends and diets may result in risks of malnutrition and body image issues for impressionable children. SUMMARY Increased familiarity regarding the types of gut health trends and diets among young people will allow paediatricians to more effectively advise their patients about potential risks and good gut health practices. Paediatricians and caregivers serve as role models and educators with regard to children's perceptions and management of their gut and overall health.
Collapse
Affiliation(s)
- Kara Sangiuolo
- Division of Developmental and Behavioral Pediatrics, Steven and Alexandra Cohen Children's Medical Center of New York, Lake Success, New York, USA
| | | | | | | | | |
Collapse
|
19
|
Schell KR, Fernandes KE, Shanahan E, Wilson I, Blair SE, Carter DA, Cokcetin NN. The Potential of Honey as a Prebiotic Food to Re-engineer the Gut Microbiome Toward a Healthy State. Front Nutr 2022; 9:957932. [PMID: 35967810 PMCID: PMC9367972 DOI: 10.3389/fnut.2022.957932] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Honey has a long history of use for the treatment of digestive ailments. Certain honey types have well-established bioactive properties including antibacterial and anti-inflammatory activities. In addition, honey contains non-digestible carbohydrates in the form of oligosaccharides, and there is increasing evidence from in vitro, animal, and pilot human studies that some kinds of honey have prebiotic activity. Prebiotics are foods or compounds, such as non-digestible carbohydrates, that are used to promote specific, favorable changes in the composition and function of the gut microbiota. The gut microbiota plays a critical role in human health and well-being, with disturbances to the balance of these organisms linked to gut inflammation and the development and progression of numerous conditions, such as colon cancer, irritable bowel syndrome, obesity, and mental health issues. Consequently, there is increasing interest in manipulating the gut microbiota to a more favorable balance as a way of improving health by dietary means. Current research suggests that certain kinds of honey can reduce the presence of infection-causing bacteria in the gut including Salmonella, Escherichia coli, and Clostridiodes difficile, while simultaneously stimulating the growth of potentially beneficial species, such as Lactobacillus and Bifidobacteria. In this paper, we review the current and growing evidence that shows the prebiotic potential of honey to promote healthy gut function, regulate the microbial communities in the gut, and reduce infection and inflammation. We outline gaps in knowledge and explore the potential of honey as a viable option to promote or re-engineer a healthy gut microbiome.
Collapse
Affiliation(s)
- Kathleen R Schell
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
| | - Kenya E Fernandes
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Erin Shanahan
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Isabella Wilson
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
| | - Shona E Blair
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Dee A Carter
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Nural N Cokcetin
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
20
|
The impact of incorporating Lactobacillus acidophilus bacteriocin with inulin and FOS on yogurt quality. Sci Rep 2022; 12:13401. [PMID: 35927320 PMCID: PMC9352778 DOI: 10.1038/s41598-022-17633-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022] Open
Abstract
The current study aimed to figure out the effect of using a combination of 2% inulin, and 2% Fructo-oligosaccharides (FOS) with Lactobacillus acidophilus and their bacteriocin on some yogurt properties such as coagulation time, extending the shelf life of set yogurt and its microbiological quality, also the acceptance by consumers. The results indicated that coagulation time increased by 22.75% in yogurts prepared with Lactobacillus acidophilus and their bacteriocins compared to the control, and titratable acidity increased gradually in all treatments during storage. Hence control acidity (%) increased from 0.84 ± 0.02A at zero time to 1.23 ± 0.03A after 14 days of cold storage, while treatment (T4) was 0.72 ± 0.01C at zero time and reached 1.20 ± 0.5A after 39 days at the same conditions. The sensory properties showed the superiority of inulin, FOS, and Lactobacillus acidophilus bacteriocin groups. Lactobacillus bulgaricus, Streptococcus thermophiles, and Lactobacillus acidophilus count increased in the treatments compared to the control group, with an extended shelf life to 39 days of storage in the medicines containing lactobacillus acidophilus bacteriocin. Coliforms, Moulds, and yeasts did not detect in the treatments comprising 2% inulin, 2% FOS, and lactobacillus acidophilus bacteriocin for 39 days of refrigerated storage. This study proved that 2% inulin, 2% FOS, and Lactobacillus acidophilus bacteriocin fortification extended the shelf life by more than 5 weeks.
Collapse
|
21
|
Technological Properties and Composition of Enzymatically Modified Cranberry Pomace. Foods 2022; 11:foods11152321. [PMID: 35954089 PMCID: PMC9368176 DOI: 10.3390/foods11152321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022] Open
Abstract
Cranberry pomace obtained after juice production is a good source of dietary fiber and other bioactive compounds. In this study, cranberry pomace was hydrolyzed with Viscozyme® L, Pectinex® Ultra Tropical, Pectinex® Yieldmash Plus, and Celluclast® 1.5L (Novozyme A/S, Denmark). The soluble and insoluble dietary fiber was determined using the Megazyme kit, while the changes in mono-, disaccharide and oligosaccharides’ contents were determined using HPLC-RI; the total phenolic contents were determined by Folin−Ciocalteu’s Assay. Prebiotic activity, using two probiotic strains Lactobacillus acidophilus DSM 20079 and Bifidobacterium animalis DSM 20105, was investigated. The technological properties, such as hydration and oil retention capacity, were evaluated. The enzymatic treatment increased the yield of short-chain soluble saccharides. The highest oligosaccharide content was obtained using Viscozyme® L and Pectinex® Ultra Tropical. All of the tested extracts of cranberry pomace showed the ability to promote growth of selected probiotic bacteria. The insoluble dietary fiber content decreased in all of the samples, while the soluble dietary fiber increased just in samples hydrolyzed with Celluclast® 1.5L. The highest content of total phenolic compounds was obtained using Viscozyme® L and Pectinex® Ultra Tropical (10.9% and 13.1% higher than control, respectively). The enzymatically treated cranberry pomace exhibited lower oil and water retention capacities in most cases. In contrast, water swelling capacity increased by 23% and 70% in samples treated with Viscozyme® L and Celluclast® 1.5L, respectively. Enzymatically treated cranberry pomace has a different composition and technological properties depending on the enzyme used for hydrolysis and can be used in various novel food products.
Collapse
|
22
|
Lin Y, Teng PY, Olukosi OA. The effects of xylo-oligosaccharides on regulating growth performance, nutrient utilization, gene expression of tight junctions, nutrient transporters, and cecal short chain fatty acids profile in Eimeria-challenged broiler chickens. Poult Sci 2022; 101:102125. [PMID: 36088820 PMCID: PMC9468463 DOI: 10.1016/j.psj.2022.102125] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
A 21-d experiment was conducted to investigate the effects of xylo-oligosaccharides (XOS) on growth performance, nutrient utilization, gene expression of tight junctions, nutrient transporters, and cecal short chain fatty acids (SCFA) profile of broiler chickens challenged with mixed Eimeria spp. Two hundred fifty-two zero-day-old chicks were allocated to 6 treatments in a 3 × 2 factorial arrangement (corn-soybean meal diets supplemented with 0, 0.5, or 1.0 g/kg XOS; with or without Eimeria challenge). Challenged groups were inoculated with a solution containing E. maxima, E. acervulina, and E. tenella oocysts on d 15. During the infection period (d 15 to d 21), there was a significant (P < 0.05) Eimeria × XOS interaction for weight gain (WG). XOS significantly (P < 0.05) increased WG in the unchallenged birds but not in the challenged treatments. There was no significant Eimeria × XOS interaction for N and minerals utilization responses. XOS supplementation at 0.5 g/kg tended to alleviate Eimeria-induced depression in apparent ileal digestibility of DM (P = 0.052). Challenged birds had lower (P < 0.01) AME, AMEn, and total retention of N, Ca, and P. Eimeria upregulated (P < 0.01) gene expression of tight junction proteins claudin-1, junctional adhesion molecule-2, and glucose transporter GLUT1; but downregulated (P < 0.01) the peptide transporter PepT1, amino acid transporters rBAT, CAT2, y+LAT2, and zinc transporter ZnT1. XOS alleviated (P < 0.05) Eimeria-induced claudin-1 upregulation. Eimeria decreased (P < 0.05) cecal saccharolytic SCFA acetate, butyrate, and total SCFA, but increased (P < 0.05) branched chain fatty acids isobutyrate and isovalerate. The supplementation of XOS tended to decrease the concentration of isobutyrate (P = 0.08) and isovalerate (P = 0.062). In conclusion, 0.5 g/kg XOS supplementation alleviated depression in growth performance and nutrient utilization from the Eimeria challenge. In addition, supplemental XOS reversed the gene expression changes of claudin-1, also showed the potentials of alleviating the negative cecal fermentation pattern induced by Eimeria infection.
Collapse
|
23
|
Pain and Opioid-Induced Gut Microbial Dysbiosis. Biomedicines 2022; 10:biomedicines10081815. [PMID: 36009361 PMCID: PMC9404803 DOI: 10.3390/biomedicines10081815] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/10/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Opioid-induced dysbiosis (OID) is a specific condition describing the consequences of opioid use on the bacterial composition of the gut. Opioids have been shown to affect the epithelial barrier in the gut and modulate inflammatory pathways, possibly mediating opioid tolerance or opioid-induced hyperalgesia; in combination, these allow the invasion and proliferation of non-native bacterial colonies. There is also evidence that the gut-brain axis is linked to the emotional and cognitive aspects of the brain with intestinal function, which can be a factor that affects mental health. For example, Mycobacterium, Escherichia coli and Clostridium difficile are linked to Irritable Bowel Disease; Lactobacillaceae and Enterococcacae have associations with Parkinson’s disease, and Alistipes has increased prevalence in depression. However, changes to the gut microbiome can be therapeutically influenced with treatments such as faecal microbiota transplantation, targeted antibiotic therapy and probiotics. There is also evidence of emerging therapies to combat OID. This review has collated evidence that shows that there are correlations between OID and depression, Parkinson’s Disease, infection, and more. Specifically, in pain management, targeting OID deserves specific investigations.
Collapse
|
24
|
Bowers SJ, Summa KC, Thompson RS, González A, Vargas F, Olker C, Jiang P, Lowry CA, Dorrestein PC, Knight R, Wright KP, Fleshner M, Turek FW, Vitaterna MH. A Prebiotic Diet Alters the Fecal Microbiome and Improves Sleep in Response to Sleep Disruption in Rats. Front Neurosci 2022; 16:889211. [PMID: 35685770 PMCID: PMC9172596 DOI: 10.3389/fnins.2022.889211] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/28/2022] [Indexed: 12/16/2022] Open
Abstract
Sleep disruption is a challenging and exceedingly common physiological state that contributes to a wide range of biochemical and molecular perturbations and has been linked to numerous adverse health outcomes. Modern society exerts significant pressure on the sleep/wake cycle via myriad factors, including exposure to electric light, psychological stressors, technological interconnection, jet travel, shift work, and widespread use of sleep-affecting compounds. Interestingly, recent research has identified a link between the microbiome and the regulation of sleep, suggesting that interventions targeting the microbiome may offer unique therapeutic approaches to challenges posed by sleep disruption. In this study, we test the hypothesis that administration of a prebiotic diet containing galactooligosaccharides (GOS) and polydextrose (PDX) in adult male rats improves sleep in response to repeated sleep disruption and during recovery sleep. We found that animals fed the GOS/PDX prebiotic diet for 4 weeks exhibit increased non-rapid eye movement (NREM) and rapid eye movement (REM) sleep during 5 days of sleep disruption and increased total sleep time during 24 h of recovery from sleep disruption compared to animals fed a control diet, despite similar baseline sleep characteristics. Further, the GOS/PDX prebiotic diet led to significant changes in the fecal microbiome. Consistent with previous reports, the prebiotic diet increased the relative abundance of the species Parabacteroides distasonis, which positively correlated with sleep parameters during recovery sleep. Taken together, these findings suggest that the GOS/PDX prebiotic diet may offer an approach to improve resilience to the physiologic challenge of sleep disruption, in part through impacts on the microbiome.
Collapse
Affiliation(s)
- Samuel J. Bowers
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Northwestern University Weinberg College of Arts and Sciences, Evanston, IL, United States
| | - Keith C. Summa
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Division of Gastroenterology & Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Robert S. Thompson
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado, Boulder, Boulder, CO, United States
| | - Antonio González
- Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA, United States
| | - Fernando Vargas
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Christopher Olker
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Northwestern University Weinberg College of Arts and Sciences, Evanston, IL, United States
| | - Peng Jiang
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Northwestern University Weinberg College of Arts and Sciences, Evanston, IL, United States
| | - Christopher A. Lowry
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado, Boulder, Boulder, CO, United States
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Kenneth P. Wright
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado, Boulder, Boulder, CO, United States
- Sleep and Chronobiology Laboratory, University of Colorado, Boulder, Boulder, CO, United States
| | - Monika Fleshner
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado, Boulder, Boulder, CO, United States
| | - Fred W. Turek
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Northwestern University Weinberg College of Arts and Sciences, Evanston, IL, United States
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Martha H. Vitaterna
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Northwestern University Weinberg College of Arts and Sciences, Evanston, IL, United States
| |
Collapse
|
25
|
Deng S, Hu S, Xue J, Yang K, Zhuo R, Xiao Y, Fang R. Productive Performance, Serum Antioxidant Status, Tissue Selenium Deposition, and Gut Health Analysis of Broiler Chickens Supplemented with Selenium and Probiotics-A Pilot Study. Animals (Basel) 2022; 12:ani12091086. [PMID: 35565512 PMCID: PMC9103767 DOI: 10.3390/ani12091086] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
The effect and interaction of dietary selenium (Se) and probiotics on three yellow chicken growth performance, tissue Se content, antioxidant capacity, and gut health were studied from 0 to 70 days of age. A total of 400 one-day-old broilers were distributed into four groups (I-Se, O-Se, I-Se + pros, and O-Se + pros groups) consisting of a 2 × 2 factorial design. The main factors were the source of Se (I-Se = inorganic Se: 0.2 mg/kg sodium selenite; O-Se = organic Se: 0.2 mg/kg Selenium yeast) and the level of probiotics (0.5% EM or 0% EM, the component of EM mainly includes Lactobacillus and Yeast at the dose of 2 × 108 cfu/kg and 3 × 107 cfu/kg, respectively). Each treatment had 5 duplicates consisting of 20 broilers. The results showed that the I-Se group had a greater (p < 0.05) ratio of feed: weight gain (F/G) of broilers at Starter (0−35 d) than the other treatments. Compared to the I-Se group, the O-Se group increased (p < 0.05) Se concentrations in the liver, pancreas, breast muscles, thigh muscle, and the activity of total antioxidative capacity (T-AOC) in serum, as well as the relative abundance of Barnesiella and Lactobacillus in cecum. Meanwhile, probiotics enhanced (p < 0.05) Se concentrations in the pancreas, thigh muscle, serum, and the activity of T-AOC and glutathione peroxidase (GSH-Px), the duodenum’s ratio of villi height to crypt depth (V/C), the jejunum villus height and V/C, and the ileum’s villus height. Furthermore, the significant interactions (p < 0.05) between Se sources and the level of probiotics were observed in Se concentrations in the pancreas, thigh muscle, serum, crypt depth of duodenum, and villus height of jejunum of birds, and Barnesiella abundance in the cecal. In conclusion, our results demonstrate that the combination of O-Se + pros can improve broiler early growth performance, tissue Se content in the pancreas, thigh muscle, and serum, promote intestinal development, and regulate the composition of intestinal flora, suggesting a better combination. These findings provide an effective method of nutrient combination addition to improving the performance of three yellow chickens.
Collapse
Affiliation(s)
- Shengting Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Shengjun Hu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Junjing Xue
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Kaili Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Ruiwen Zhuo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Yuanyuan Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.D.); (S.H.); (J.X.); (K.Y.); (R.Z.); (Y.X.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
- Correspondence:
| |
Collapse
|
26
|
Cheng L, Kong L, Xia C, Zeng X, Wu Z, Guo Y, Pan D. Sources, Processing-Related Transformation, and Gut Axis Regulation of Conventional and Potential Prebiotics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4509-4521. [PMID: 35389646 DOI: 10.1021/acs.jafc.2c00168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
One strategy to achieve a balanced intestinal microbiota is to introduce prebiotics. Some substances present in the diet, such as soybean extracts, koji glycosylceramides, grape extracts, tea polyphenols, and seaweed extracts, can be considered as potential prebiotics, because they can selectively stimulate the proliferation of beneficial bacteria in the intestine. However, the discovery of novel prebiotics also involves advances in screening methods and the use of thermal and non-thermal processing techniques to modify and enhance the properties of beneficial organisms. The health benefits of prebiotics are also reflected by their participation in regulating the microbiota in different gut axes. In the present review, we introduced the field of prebiotics, focusing on potential prebiotic substances, the process of screening potential prebiotics, the transformation of prebiotics by food-processing technologies, and the roles of prebiotics on gut axis regulation, which, it is hoped, will promote the discovery and utilization of novel prebiotics.
Collapse
Affiliation(s)
- Lu Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, Zhejiang 315211, People's Republic of China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Lingyu Kong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, Zhejiang 315211, People's Republic of China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Chaoran Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, Zhejiang 315211, People's Republic of China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, Zhejiang 315211, People's Republic of China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, Zhejiang 315211, People's Republic of China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Yuxing Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, Zhejiang 315211, People's Republic of China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210097, People's Republic of China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, Zhejiang 315211, People's Republic of China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| |
Collapse
|
27
|
Narisetty V, Parhi P, Mohan B, Hakkim Hazeena S, Naresh Kumar A, Gullón B, Srivastava A, Nair LM, Paul Alphy M, Sindhu R, Kumar V, Castro E, Kumar Awasthi M, Binod P. Valorization of renewable resources to functional oligosaccharides: Recent trends and future prospective. BIORESOURCE TECHNOLOGY 2022; 346:126590. [PMID: 34953996 DOI: 10.1016/j.biortech.2021.126590] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Lignocellulosic wastes have the ability to be transformed into oligosaccharides and other value-added products. The synthesis of oligosaccharides from renewable sources bestow to growing bioeconomies. Oligosaccharides are synthesized chemically or biologically from agricultural residues. These oligosaccharides are functional food supplements that have a positive impact on humans and livestock. Non-digestible oligosaccharides, refered as prebiotics are beneficial for the colonic microbiota inhabiting the f the digestive system. These microbiota plays a crucial role in stimulating the host immune system and other physiological responses. The commonly known prebiotics, galactooligosaccharides (GOS), xylooligosaccharides (XOS), fructooligosaccharides (FOS), mannanooligosaccharides (MOS), and isomaltooligosaccharides (IOS) are synthesized either through enzymatic or whole cell-mediated approaches using natural or agricultural waste substrates. This review focusses on recent advancements in biological processes, for the synthesis of oligosaccharides using renewable resources (lignocellulosic substrates) for sustainable circular bioeconomy. The work also addresses the limitations associated with the processes and commercialization of the products.
Collapse
Affiliation(s)
- Vivek Narisetty
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Priyanka Parhi
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Binoop Mohan
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Sulfath Hakkim Hazeena
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - A Naresh Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, E-32004 Ourense, Spain
| | - Anita Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Lakshmi M Nair
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Maria Paul Alphy
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712 100, China
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India.
| |
Collapse
|
28
|
Santos DCD, Ataide CDG, Mota da Costa N, Oliveira Junior VPD, Egea MB. Blenderized formulations in home enteral nutrition: a narrative review about challenges in nutritional security and food safety. Nutr Rev 2022; 80:1580-1598. [PMID: 35026011 DOI: 10.1093/nutrit/nuab121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Blenderized formulations (BFs) are prepared by homogenization of food that is normally used in oral nutrition. BFs are mainly used in home enteral nutrition (HEN), although their use has also been reported by hospitals when commercial enteral formulas are not available. HEN is applied when the patient has been discharged from the hospital. This nutritional therapy promotes the patient's reintegration into the family nucleus and promotes humanized care, and decreases treatment costs. However, the patient should continue to receive health and nutritional care, ranging from periodic nutritional re-evaluation to adaptation of the dietary plan. HEN provides the patient a greater contact with the family, whereas BFs promote the adaptation of the diet with food, respecting the food diversity and culture, lower cost, and easier access to food. Disadvantages of BFs include more time spent by the professional to calculate the dietary plan, greater difficulty in adjusting daily needs, and less microbiological and chemical stability. In this review, the nutritional, food security, and safety aspects of BF used in HEN are discussed. Technological quality aspects that are essential knowledge in the preparation of the patient's dietary plan also are presented.
Collapse
Affiliation(s)
- Daiane Costa Dos Santos
- D.C.d. Santos is with the Goiás Federal University (UFG), Institute of Tropical Pathology and Public Health, IPTSP-UFG, Goiânia, Goiás, Brazil. C.D.G. Ataide is with the Hospital DF Star, Asa Sul, Brasília, Brazil. N.M. da Costa, V.P. de Oliveira Junior, and M.B. Egea are with the Federal Institute of Education, Science, and Technology Goiano, Rio Verde, Goiás, Brazil
| | - Carla Daniela Gomes Ataide
- D.C.d. Santos is with the Goiás Federal University (UFG), Institute of Tropical Pathology and Public Health, IPTSP-UFG, Goiânia, Goiás, Brazil. C.D.G. Ataide is with the Hospital DF Star, Asa Sul, Brasília, Brazil. N.M. da Costa, V.P. de Oliveira Junior, and M.B. Egea are with the Federal Institute of Education, Science, and Technology Goiano, Rio Verde, Goiás, Brazil
| | - Nair Mota da Costa
- D.C.d. Santos is with the Goiás Federal University (UFG), Institute of Tropical Pathology and Public Health, IPTSP-UFG, Goiânia, Goiás, Brazil. C.D.G. Ataide is with the Hospital DF Star, Asa Sul, Brasília, Brazil. N.M. da Costa, V.P. de Oliveira Junior, and M.B. Egea are with the Federal Institute of Education, Science, and Technology Goiano, Rio Verde, Goiás, Brazil
| | - Valtemir Paula de Oliveira Junior
- D.C.d. Santos is with the Goiás Federal University (UFG), Institute of Tropical Pathology and Public Health, IPTSP-UFG, Goiânia, Goiás, Brazil. C.D.G. Ataide is with the Hospital DF Star, Asa Sul, Brasília, Brazil. N.M. da Costa, V.P. de Oliveira Junior, and M.B. Egea are with the Federal Institute of Education, Science, and Technology Goiano, Rio Verde, Goiás, Brazil
| | - Mariana Buranelo Egea
- D.C.d. Santos is with the Goiás Federal University (UFG), Institute of Tropical Pathology and Public Health, IPTSP-UFG, Goiânia, Goiás, Brazil. C.D.G. Ataide is with the Hospital DF Star, Asa Sul, Brasília, Brazil. N.M. da Costa, V.P. de Oliveira Junior, and M.B. Egea are with the Federal Institute of Education, Science, and Technology Goiano, Rio Verde, Goiás, Brazil
| |
Collapse
|
29
|
Gut microbiome dysbiosis in malnutrition. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:205-229. [DOI: 10.1016/bs.pmbts.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Ibrahem AA, Al-Shawi SG, Al-Temimi WKA. The antagonistic activity of the synbiotic containing Lactobacillus acidophilus and pineapple residue FOS against pathogenic bacteria. BRAZ J BIOL 2022; 84:e258277. [PMID: 35239793 DOI: 10.1590/1519-6984.258277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022] Open
Abstract
Fructooligosaccharide is used widely in many foods and pharmaceutical industries and produced by using different ways such as extracting it from plants or producing it by using plants and microorganisms' enzymes. In a previous study, we extracted Fructosyltransferase (Ftase) enzyme from pineapple residue and produced FOS. In this study, we measured the antagonistic activity of two synbiotics, the first synbiotic containing Lactobacillus acidophilus and the produced FOS, the second synbiotic containing Lactobacillus acidophilus and standard FOS, against pathogenic bacteria (P. aeruginosa, E. coli, S. aureus and B cereus). The results showed that the antagonistic activity of both synbiotic types was very close, as there were no significant differences between them except in the antagonistic activity against S. aureus, there was a significant difference between the synbiotic containing the standard FOS, which was the highest in its antagonistic activity compared to the synbiotic containing the produced FOS in this study. The activity of the fructooligosaccharide (FOS) extracted from pineapple residue was evident in enhancing the activity of the probiotic bacteria (L. acidophilus), which had a major role in the production of acids and compounds that inhibited the pathogenic bacteria. The diameters of inhibition areas in the current study ranged between 19.33-28 mm, and E. coli was more susceptible to inhibition, followed by S. aureus, P. aeruginosa, and B. cereus, respectively.
Collapse
Affiliation(s)
- A A Ibrahem
- Basrah University, Agriculture College, Food Science Department, Basrah, Iraq
| | - S G Al-Shawi
- Basrah University, Agriculture College, Food Science Department, Basrah, Iraq
| | - W K A Al-Temimi
- Basrah University, Agriculture College, Food Science Department, Basrah, Iraq
| |
Collapse
|
31
|
Mahmud MR, Akter S, Tamanna SK, Mazumder L, Esti IZ, Banerjee S, Akter S, Hasan MR, Acharjee M, Hossain MS, Pirttilä AM. Impact of gut microbiome on skin health: gut-skin axis observed through the lenses of therapeutics and skin diseases. Gut Microbes 2022; 14:2096995. [PMID: 35866234 PMCID: PMC9311318 DOI: 10.1080/19490976.2022.2096995] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 02/08/2023] Open
Abstract
The human intestine hosts diverse microbial communities that play a significant role in maintaining gut-skin homeostasis. When the relationship between gut microbiome and the immune system is impaired, subsequent effects can be triggered on the skin, potentially promoting the development of skin diseases. The mechanisms through which the gut microbiome affects skin health are still unclear. Enhancing our understanding on the connection between skin and gut microbiome is needed to find novel ways to treat human skin disorders. In this review, we systematically evaluate current data regarding microbial ecology of healthy skin and gut, diet, pre- and probiotics, and antibiotics, on gut microbiome and their effects on skin health. We discuss potential mechanisms of the gut-skin axis and the link between the gut and skin-associated diseases, such as psoriasis, atopic dermatitis, acne vulgaris, rosacea, alopecia areata, and hidradenitis suppurativa. This review will increase our understanding of the impacts of gut microbiome on skin conditions to aid in finding new medications for skin-associated diseases.
Collapse
Affiliation(s)
- Md. Rayhan Mahmud
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Sharmin Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Israt Zahan Esti
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Sumona Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Mrityunjoy Acharjee
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | | | | |
Collapse
|
32
|
Ye Y, Li Z, Wang P, Zhu B, Zhao M, Huang D, Ye Y, Ding Z, Li L, Wan G, Wu Q, Song D, Tang Y. Effects of probiotic supplements on growth performance and intestinal microbiota of partridge shank broiler chicks. PeerJ 2021; 9:e12538. [PMID: 34917423 PMCID: PMC8643103 DOI: 10.7717/peerj.12538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Background The benefits of probiotics being used in animals are well-documented via evidenced growth performance improvement and positive modulations of gut microbiota (GM). Thus, a combination of effective microorganisms (EM) has been frequently used in animal production, including broilers. However, there are only very limited reports of EM on the growth performance and the modulation in GM of partridge shank broiler chicks. Methods We attempted to evaluate the effects of a basal diet with the addition of an EM mixture on the growth performance and gut microbiome of the chicks. A total of 100 ten-day-old female partridge shank broiler chicks were randomly divided into two groups of 50 chicks each, of which, one group fed with EM supplementation in the basal diet (designated as EM-treated group), the other group just fed with a basal diet (referred as to non-EM treated group or control group). The body weight, daily feed intake, daily gain, feed conversion ratio and other growth parameters were observed and compared between EM-treated and non-EM-treated chicks, and the gut microbiota was profiled by 16S rRNA-based next generation sequencing (NGS). Results EM-treated chicks showed significantly increased performances in body weight (BW), average daily gain (ADG) and reduced feed conversion ratio (FCR). Histological observation indicated that dietary supplementation of EM significantly increased the villus heights (VH) and the ratio of villus height to crypt depth (VH/CD), while decreased the CD of jejunum, ilea, and ceca. The results of 16S rRNA-based gut microbiota analyses showed that Firmicutes accounted for the most of the relative abundance (63.24%∼92.63%), followed by Proteobacteria (0.62%∼23.94%), Bacteroidetes (0.80%∼7.85%), Actinobacteria (0.06%∼13.69%) and others in both EM-treated and non-EM-treated broiler chicks. The addition of EM could not alter the alpha diversity of gut microbiota. Compared with the non-EM-treated chicks, the abundances of bad bacteria in the phyla of Firmicutes, Euryarchaeota, and Ruminococcus were dramatically decreased in that of EM-treated chicks, while the abundances of good bacteria in the phyla of Actinobacteria and WPS-2 were significantly increased. Conclusions The supplementation of EM in feed could improve the growth performance and positively influence the morphological characteristics of the intestine, and ameliorate the community and structure of the intestinal microbiota of partridge shank broiler chicks.
Collapse
Affiliation(s)
- Yizhe Ye
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Research Center for Animal Health Products, Jiangxi Agricultural University, Nanchang, China
| | - Zhiquan Li
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Research Center for Animal Health Products, Jiangxi Agricultural University, Nanchang, China
| | - Ping Wang
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Bin Zhu
- Jiangxi Red Animal Health Products Co., LTD., Nanchang, China
| | - Min Zhao
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Research Center for Animal Health Products, Jiangxi Agricultural University, Nanchang, China
| | - Dongyan Huang
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Research Center for Animal Health Products, Jiangxi Agricultural University, Nanchang, China
| | - Yu Ye
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Research Center for Animal Health Products, Jiangxi Agricultural University, Nanchang, China
| | - Zhen Ding
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Research Center for Animal Health Products, Jiangxi Agricultural University, Nanchang, China
| | - Longrui Li
- Jiangxi Newtoldhow Animal Pharmaceutical Co., LTD, Ji'an, China
| | - Gen Wan
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Research Center for Animal Health Products, Jiangxi Agricultural University, Nanchang, China
| | - Qiong Wu
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Research Center for Animal Health Products, Jiangxi Agricultural University, Nanchang, China
| | - Deping Song
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Research Center for Animal Health Products, Jiangxi Agricultural University, Nanchang, China
| | - Yuxin Tang
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Research Center for Animal Health Products, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
33
|
İspirli H, Bowman MJ, Skory CD, Dertli E. Synthesis and characterization of cellobiose-derived oligosaccharides with Bifidogenic activity by glucansucrase E81. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Kaur S, Thukral SK, Kaur P, Samota MK. Perturbations associated with hungry gut microbiome and postbiotic perspectives to strengthen the microbiome health. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
35
|
Sayers B, Wijeyesekera A, Gibson G. Exploring the potential of prebiotic and polyphenol-based dietary interventions for the alleviation of cognitive and gastrointestinal perturbations associated with military specific stressors. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
36
|
Wang Y, Liu Y, Ivusic Polic I, Chandran Matheyambath A, LaPointe G. Modulation of human gut microbiota composition and metabolites by arabinogalactan and Bifidobacterium longum subsp. longum BB536 in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
37
|
Chromatographic preparation of food-grade prebiotic oligosaccharides with defined degree of polymerization. Food Chem 2021; 373:131542. [PMID: 34782210 PMCID: PMC8678371 DOI: 10.1016/j.foodchem.2021.131542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022]
Abstract
Prebiotic oligosaccharides are of widespread interest in the food industry due to their potential health benefits. This has triggered a need for research into their sensory properties. Such research is currently limited due to the lack of available food-grade oligosaccharide preparations with specific degree of polymerization (DP). The aim of this study was to develop economical approaches for the preparation and characterization of prebiotic oligosaccharides differing with respect to composition and DP. Such preparations were prepared by chromatographic fractionation of commercially available prebiotic mixtures using microcrystalline cellulose stationary phases and aqueous ethanol mobile phases. This approach is shown to work for the preparation of food-grade fructooligosaccharides of DP 3 and 4, galactooligosaccharides of DP 3 and 4, and xylooligosaccharides of DP 2-4. Methods for the characterization of the different classes of oligosaccharides are also presented including those addressing purity, identity, total carbohydrate content, moles per unit mass, and DP.
Collapse
|
38
|
Sobotik EB, Ramirez S, Roth N, Tacconi A, Pender C, Murugesan R, Archer GS. Evaluating the effects of a dietary synbiotic or synbiotic plus enhanced organic acid on broiler performance and cecal and carcass Salmonella load. Poult Sci 2021; 100:101508. [PMID: 34731735 PMCID: PMC8572883 DOI: 10.1016/j.psj.2021.101508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 11/19/2022] Open
Abstract
Several feed additives such as synbiotics and organic acids may be viable options for controlling Salmonella in poultry. This experiment was conducted to study the effects of synbiotic product or synbiotic plus enhanced organic acid program on broiler performance, intestinal histomorphology, and cecal and carcass Salmonella load. A total of 648 day-of-hatch Cobb 700 male broiler chicks were randomly allocated to one of 4 dietary treatments: basal control diet (CON), CON diet supplemented with a synbiotic (PoultryStar; 500 g/MT; PS), CON diet supplemented with PS in the starter phase and enhanced organic acid (Biotronic PX Top3 US; 500g/MT; BPX) in the grower and finisher phase (PS1+BPX2), and the CON diet supplemented with PS in the starter and grower phase and BPX in the finisher phase (PS2+BPX1). No differences in overall BW or BWG (P > 0.05) were observed among PS, PS1+BPX2, and PS2+BPX1; however, BW was consistently greater (P < 0.05) in PS, PS1+BPX2, and PS2+BPX1 compared with CON on d 14 28, 35, and 42. On d 1 to 14 and d 1 to 28, PS and PS2+BPX1 improved FCR compared to CON (P < 0.05); PS1+BPX2 had intermediate results. No differences (P > 0.05) in overall FI were observed among dietary treatments, although PS1+BP2 and PS2+BPX1 increased FI numerically compared to CON and PS. Both PS1+BPX2 and PS2+BPX1 had reduced carcass Salmonella load by 1.6 and 1.4 log units, respectively, compared with CON (P < 0.05); PS had intermediate results. Birds fed PS1+BPX2 and PS2+BPX1 reduced the percentage of postchilled carcasses that tested positive for Salmonella by 72% and 57%, respectively, compared to CON, while PS had intermediate results with a 43% reduction. This experiment demonstrated that dietary supplementation with synbiotic or synbiotic plus organic acid can be used as a potential tool to improve growth performance and reduce carcass Salmonella in broilers.
Collapse
Affiliation(s)
- Eric B Sobotik
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | - Gregory S Archer
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
39
|
Structure Characterization of Polysaccharide from Chinese Yam ( Dioscorea opposite Thunb.) and Its Growth-Promoting Effects on Streptococcus thermophilus. Foods 2021; 10:foods10112698. [PMID: 34828979 PMCID: PMC8624800 DOI: 10.3390/foods10112698] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
To clarify the mechanisms underlying the growth-promoting effects of yam polysaccharide on Streptococcus thermophilus (S. thermophilus), the yam polysaccharide was extracted using a deep eutectic solvents (DESs) method and separated into four fractions by DEAE-cellulose 52. These fractions were used as the alternative carbon source to substitute lactose to compare their growth-promoting effects on S. thermophilus. Furthermore, their molecular weight, monosaccharide and functional groups' composition, microscopic forms and other basic structure characterizations were analyzed. The results showed that all the fractions could significantly promote S. thermophilus growth, and fractions exhibited significantly different growth-promoting effects, whose viable count increased by 6.14, 6.03, 11.48 and 11.29%, respectively, relative to those in the M17 broth medium. Structure-activity relationship analysis revealed that the high growth-promoting activity of yam polysaccharide might be more dependent on the higher molecular weight, the higher galacturonic acid content and its complex spatial configuration, and the existence of β-glycosides would make the yam polysaccharide have a better growth-promoting effect on S. thermophilus.
Collapse
|
40
|
Juárez OE, Lafarga-De la Cruz F, Lazo JP, Delgado-Vega R, Chávez-García D, López-Landavery E, Tovar-Ramírez D, Galindo-Sánchez CE. Transcriptomic assessment of dietary fishmeal partial replacement by soybean meal and prebiotics inclusion in the liver of juvenile Pacific yellowtail (Seriola lalandi). Mol Biol Rep 2021; 48:7127-7140. [PMID: 34515920 DOI: 10.1007/s11033-021-06703-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Seriola lalandi is an important species for aquaculture, due to its rapid growth, adaptation to captivity and formulated diets, and high commercial value. Due to the rise in fishmeal (FM) price, efforts have been and still are made to replace it partially or entirely with vegetable meals in diets for carnivorous fish. The use of prebiotics when feeding vegetable meals has improved fish health. METHODS Four experimental diets were assessed in juveniles, the control diet consisted of FM as the main protein source, the second diet included 2% of GroBiotic®-A (FM-P), in the third diet FM was partially replaced (25%) by soybean meal (SM25), and the fourth consisted of SM25 with 2% of GroBiotic®-A (SM25-P). Growth was evaluated and RNA-seq of the liver tissue was performed, including differential expression analysis and functional annotation to identify genes affected by the diets. RESULTS Growth was not affected by this level of FM replacement, but it was improved by prebiotics. Annotation was achieved for 59,027 transcripts. Gene expression was affected by the factors: 225 transcripts due to FM replacement, 242 due to prebiotics inclusion, and 62 due to the interaction of factors. The SM25-P diet showed the least amount of differentially expressed genes against the control diet. CONCLUSION The replacement of FM (25%) by soybean meal combined with prebiotics (2%) represents a good cost-benefit balance for S. lalandi juveniles since the fish growth increased and important metabolic and immune system genes in the liver were upregulated with this diet.
Collapse
Affiliation(s)
- Oscar E Juárez
- Department of Marine Biotechnology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana #3918, Zona Playitas, 22860, Ensenada, Baja California, México
| | - Fabiola Lafarga-De la Cruz
- Department of Aquaculture, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana #3918, Zona Playitas, 22860, Ensenada, Baja California, México
| | - Juan Pablo Lazo
- Department of Aquaculture, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana #3918, Zona Playitas, 22860, Ensenada, Baja California, México
| | - Rigoberto Delgado-Vega
- Department of Aquaculture, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana #3918, Zona Playitas, 22860, Ensenada, Baja California, México
| | - Denisse Chávez-García
- Department of Aquaculture, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana #3918, Zona Playitas, 22860, Ensenada, Baja California, México
| | - Edgar López-Landavery
- Department of Marine Biotechnology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana #3918, Zona Playitas, 22860, Ensenada, Baja California, México
| | - Dariel Tovar-Ramírez
- Aquaculture Program, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional #195, Playa Palo de Santa Rita Sur, 23096, La Paz, Baja California Sur, México
| | - Clara Elizabeth Galindo-Sánchez
- Department of Marine Biotechnology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana #3918, Zona Playitas, 22860, Ensenada, Baja California, México.
| |
Collapse
|
41
|
Rahim MA, Saeed F, Khalid W, Hussain M, Anjum FM. Functional and nutraceutical properties of fructo-oligosaccharides derivatives: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1986520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Muhammad Abdul Rahim
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Waseem Khalid
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Faqir M. Anjum
- Administration Department, University of the Gambia, Banjul, Gambia
| |
Collapse
|
42
|
Xylooligosaccharides: prebiotic potential from agro-industrial residue, production strategies and prospects. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Do T, Diamond S, Green C, Warren M. Nutritional Implications of Patients with Dysautonomia and Hypermobility Syndromes. Curr Nutr Rep 2021; 10:324-333. [PMID: 34510391 PMCID: PMC8435108 DOI: 10.1007/s13668-021-00373-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 09/04/2024]
Abstract
PURPOSE OF REVIEW Dysautonomia and hypermobility syndrome are two distinct but often overlapping clinical conditions that are recognized for their complex multiorgan system afflictions. The purpose of this review is to investigate dietary strategies to reduce symptoms and augment quality of life in this growing patient population. RECENT FINDINGS There is increasing evidence supporting dietary modifications to include food rich in probiotics and prebiotics, along with fiber supplements to reduce gastrointestinal symptoms. Adequate salt and fluid intake may reduce orthostatic hypotension symptoms. Dietary supplements may help with osteoarticular, musculoskeletal, and fatigue symptoms. Individualized diet strategies and supplements can reduce the multiorgan system symptoms observed in dysautonomia and hypermobility syndrome.
Collapse
Affiliation(s)
- Toan Do
- Internal Medicine, Oregon Health & Science University, Portland, OR, USA.
| | - Sarah Diamond
- Division of Gastroenterology & Hepatology, Oregon Health & Science University, Portland, OR, USA
| | - Caitlin Green
- Division of Gastroenterology & Hepatology, Medical University of South Carolina, Charleston, SC, USA
| | - Malissa Warren
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
44
|
Nejati M, Dehghan* P, Hashempour- Baltork* F, Alizadeh AM, Farshi P, Khosravi- Darani K. Potential Dietary Interventions for COVID-19 Infection Based on the Gut-Immune Axis: An Update Review on Bioactive Component of Macronutrients. Int J Prev Med 2021; 12:105. [PMID: 34729139 PMCID: PMC8505687 DOI: 10.4103/ijpvm.ijpvm_493_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/19/2020] [Indexed: 01/08/2023] Open
Abstract
Recently emerged coronavirus, known as SARS-CoV-2 or Covid-19 is considered as a serious threat for human health. Due to unavailable specific drugs for this virus, there is an urgent need for supportive cares. Epigenetic immune boosting approaches and developing anti-inflammatory agents by gut-associated bioactive macronutrients can be plausible protective cares for COVID-19. Suitable intake of bioactive macronutrients including prebiotics, fatty acids, proteins and branched-chain amino acids may result in anti-viral responses through modulating macrophages and dendritic cells via Toll-like receptors, decreasing viral load, inactivating the enveloped viruses, increasing the anti-inflammatory metabolites and inhibiting the proliferation of microbial organisms. Bioactive macronutrients may help in promotion of immunological responses and recovery acceleration against Covid-19. This review focuses on the mechanisms of bioactive macronutrients and related clinical trials on enveloped viruses with emphasis on gut-microbiome-immune axis. Macronutrients and this axis may be conducive strategies to protect host against the viral infection.
Collapse
Affiliation(s)
- Marzieh Nejati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan*
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz, University of Medical Sciences, Tabriz, Iran
| | - Fataneh Hashempour- Baltork*
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Adel Mirza Alizadeh
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parastou Farshi
- Food Science Institute, Kansas State University, Manhattan, KS, USA
| | - Kianoush Khosravi- Darani
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
İspirli H, Bowman MJ, Skory CD, Dertli E. Synthesis and characterization of Bifidogenic raffinose-derived oligosaccharides via acceptor reactions of glucansucrase E81. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Kaur S, Panesar PS, Chopra HK. Citrus processing by-products: an overlooked repository of bioactive compounds. Crit Rev Food Sci Nutr 2021; 63:67-86. [PMID: 34184951 DOI: 10.1080/10408398.2021.1943647] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Citrus fruits contain plethora of bioactive compounds stored in edible as well as inedible part. Since, citrus fruits are processed mainly for juice, the residues are disposed in wastelands, hence, plenty of nutritional potential goes in vain. But if utilized wisely, the bioactive phytochemicals in citrus by-products have the ability to revolutionize the functional food industry. In the present review, the composition of citrus by-products in terms of bioactive components and their health benefits has been reviewed. Various extraction techniques used to extract these bioactives has been discussed and a brief overview of purification and utilization of the extracted compounds, in food and nutraceutical industry is also presented. Bioactives in citrus by-products are higher than the peeled fruit, which can be extracted, isolated and incorporated into food systems for development of health foods. From the studies reviewed, it was observed that research reported on utilization of citrus by-products is limited to mainly research labs; proper scale-up process and its adequate research commercialization is the need of hour to transform these bioactives into economical functional ingredients.
Collapse
Affiliation(s)
- Samandeep Kaur
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Sangrur, Punjab, India
| | - Parmjit S Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Sangrur, Punjab, India
| | - Harish K Chopra
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Sangrur, Punjab, India
| |
Collapse
|
47
|
Su J, Zhang W, Ma C, Xie P, Blachier F, Kong X. Dietary Supplementation With Xylo-oligosaccharides Modifies the Intestinal Epithelial Morphology, Barrier Function and the Fecal Microbiota Composition and Activity in Weaned Piglets. Front Vet Sci 2021; 8:680208. [PMID: 34222403 PMCID: PMC8241929 DOI: 10.3389/fvets.2021.680208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
The present study determined the effects of dietary xylo-oligosaccharides (XOS) supplementation on the morphology of jejunum and ileum epithelium, fecal microbiota composition, metabolic activity, and expression of genes related to colon barrier function. A total of 150 piglets were randomly assigned to one of five groups: a blank control group (receiving a basal diet), three XOS groups (receiving the basal diet supplemented with 100, 250, and 500 g/t XOS, respectively), as well as a positive control group, used as a matter of comparison, that received the basal diet supplemented with 0.04 kg/t virginiamycin, 0.2 kg/t colistin, and 3,000 mg/kg ZnO. The trial was carried out for 56 days. The results showed that the lowest dose tested (100 g/t XOS) increased (P < 0.05) the ileal villus height, the relative amount of Lactobacillus and Bifidobacterium spp., and the concentration of acetic acid and short-chain fatty acid in feces when compared with the blank control group. In conclusion, dietary 100 g/t XOS supplementation modifies the intestinal ecosystem in weaned piglets in an apparently overall beneficial way.
Collapse
Affiliation(s)
- Jiayi Su
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Wanghong Zhang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Cui Ma
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Peifeng Xie
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Francois Blachier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Chinese Academy of Sciences Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
48
|
Polysaccharide Derived from Nelumbo nucifera Lotus Plumule Shows Potential Prebiotic Activity and Ameliorates Insulin Resistance in HepG2 Cells. Polymers (Basel) 2021; 13:polym13111780. [PMID: 34071638 PMCID: PMC8199337 DOI: 10.3390/polym13111780] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Polysaccharides are key bioactive compounds in lotus plumule tea, but their anti-diabetes activities remain unclear. The purpose of this study was to investigate the prebiotic activities of a novel polysaccharide fraction from the Nelumbo nucifera lotus plumule, and to examine its regulation of glucose metabolism in insulin-resistant HepG2 cells. The N. nucifera polysaccharide (NNP) was purified after discoloration, hot water extraction, ethanol precipitation, and DEAE-cellulose chromatography to obtain purified polysaccharide fractions (NNP-2). Fourier transform infrared spectroscopy was used to analyze the main structural characteristics and functional group of NNP-2. Physicochemical characterization indicated that NNP-2 had a molecular weight of 110.47 kDa and consisted of xylose, glucose, fructose, galactose, and fucose in a molar ratio of 33.4:25.7:22.0:10.5:8.1. The prebiotic activity of NNP-2 was demonstrated in vitro using Lactobacillus and Bifidobacterium. Furthermore, NNP-2 showed bioactivity against α-glucosidase (IC50 = 97.32 µg/mL). High glucose-induced insulin-resistant HepG2 cells were used to study the effect of NNP-2 on glucose consumption, and the molecular mechanism of the insulin transduction pathway was studied using RT-qPCR. NNP-2 could improve insulin resistance by modulating the IRS1/PI3K/Akt pathway in insulin-resistant HepG2 cells. Our data demonstrated that the Nelumbo nucifera polysaccharides are potential sources for nutraceuticals, and we propose functional food developments from the bioactive polysaccharides of N. nucifera for the management of diabetes.
Collapse
|
49
|
Sabouri S, Rad AH, Peighambardoust SH, Fathipour RB, Feshangchi J, Ansari F, Pourjafar H. The Oleaster (Elaeagnus angustifolia): A Comprehensive Review on Its Composition, Ethnobotanical and Prebiotic Values>. Curr Pharm Biotechnol 2021; 22:367-379. [PMID: 31696816 DOI: 10.2174/1389201020666191107112243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/17/2019] [Accepted: 10/20/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oleaster or Elaeagnus angustifolia is a deciduous plant from Elaegnacea family and is well-known for its remedial applications. OBJECTIVE This paper presents a comprehensive review of the potential application of Oleaster's flour incorporated in some food products. Emphasis is given to the physicochemical, biochemical, and functional properties of Oleaster's flour. METHODS A comprehensive search was carried out to find publications on Oleaster's flour and its application as a prebiotic. The results of the related studies were extracted and summarized in this paper. RESULTS Oleaster's flour as a prebiotic ingredient enhances antioxidants, polyphenols, fiber, flavonoids, Sterols, carbohydrates, and protein content of food products. CONCLUSION Further advanced investigations on Oleaster and its functional ingredients revealed that these are efficacious and can be applied as a substitute source in pharmacological industries for medical applications.
Collapse
Affiliation(s)
- Sima Sabouri
- Department of Food Science and Technology, Faculty of Agriculture, Saba Institute of Higher Education, Urmia, Iran
| | - Aziz H Rad
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Raana B Fathipour
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Feshangchi
- Research and Development Department, Athar Industrial Group, East Azerbaijan, Bonab, Iran
| | - Fereshteh Ansari
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Pourjafar
- Department of Food Sciences and Nutrition, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
50
|
Fatmawati NV, Ketbot P, Phitsuwan P, Waeonukul R, Tachaapaikoon C, Kosugi A, Ratanakhanokchai K, Pason P. Efficient biological pretreatment and bioconversion of corn cob by the sequential application of a Bacillus firmus K-1 cellulase-free xylanolytic enzyme and commercial cellulases. Appl Microbiol Biotechnol 2021; 105:4589-4598. [PMID: 34027563 DOI: 10.1007/s00253-021-11308-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/12/2021] [Accepted: 04/19/2021] [Indexed: 01/07/2023]
Abstract
We used agricultural residue, corn cob, with biorefinery and bioeconomy concepts. At short-time cultivation in corn cob (12 h), Bacillus firmus K-1 produced cellulase-free xylanolytic enzyme, with xylooligosaccharides (XOSs), X5 and X6, as the main products, which can be used in a variety of applications. The xylanolytic enzyme produced from B. firmus K-1 effectively degraded xylan in corn cob, which was examined by chemical composition, scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR). After cultivation, the xylan contained in the corn cob residue was decreased (as biological pretreatment), causing morphological and structural changes, including creating porosity and increasing the surface area and the exposure of cellulose of pretreated corn cob. These results lead to an improvement of cellulose access by cellulases. Commercially available cellulases, Accellerase® 1500 and Cellic® CTec2, yielded significantly higher glucose concentrations from pretreated corn cob compared to untreated corn cob. After saccharification, the lignin-rich corn cob residue can be used as a raw material for other purposes. Moreover, the B. firmus cells, with a low risk to human health, can be used in some applications. This study presents an efficient method for producing high-value-added products from agricultural residue (corn cob) through biological processes which are environmentally friendly and economically viable. KEY POINTS: • High-value-added products were efficiently produced from corn cob by B. firmus K-1. • After biological pretreatment by B. firmus K-1, cellulase can better reach cellulose. • XOSs and cellulose-derived glucose were the main products from corn cob.
Collapse
Affiliation(s)
- Niendy Virnanda Fatmawati
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Prattana Ketbot
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paripok Phitsuwan
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Rattiya Waeonukul
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chakrit Tachaapaikoon
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Akihiko Kosugi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, 305-8686, Japan
| | - Khanok Ratanakhanokchai
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Patthra Pason
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|