1
|
Royes J, Biou V, Dautin N, Tribet C, Miroux B. Inducible intracellular membranes: molecular aspects and emerging applications. Microb Cell Fact 2020; 19:176. [PMID: 32887610 PMCID: PMC7650269 DOI: 10.1186/s12934-020-01433-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023] Open
Abstract
Membrane remodeling and phospholipid biosynthesis are normally tightly regulated to maintain the shape and function of cells. Indeed, different physiological mechanisms ensure a precise coordination between de novo phospholipid biosynthesis and modulation of membrane morphology. Interestingly, the overproduction of certain membrane proteins hijack these regulation networks, leading to the formation of impressive intracellular membrane structures in both prokaryotic and eukaryotic cells. The proteins triggering an abnormal accumulation of membrane structures inside the cells (or membrane proliferation) share two major common features: (1) they promote the formation of highly curved membrane domains and (2) they lead to an enrichment in anionic, cone-shaped phospholipids (cardiolipin or phosphatidic acid) in the newly formed membranes. Taking into account the available examples of membrane proliferation upon protein overproduction, together with the latest biochemical, biophysical and structural data, we explore the relationship between protein synthesis and membrane biogenesis. We propose a mechanism for the formation of these non-physiological intracellular membranes that shares similarities with natural inner membrane structures found in α-proteobacteria, mitochondria and some viruses-infected cells, pointing towards a conserved feature through evolution. We hope that the information discussed in this review will give a better grasp of the biophysical mechanisms behind physiological and induced intracellular membrane proliferation, and inspire new applications, either for academia (high-yield membrane protein production and nanovesicle production) or industry (biofuel production and vaccine preparation).
Collapse
Affiliation(s)
- Jorge Royes
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France. .,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France. .,Département de Chimie, École Normale Supérieure, PASTEUR, PSL University, CNRS, Sorbonne Université, 24 Rue Lhomond, 75005, Paris, France.
| | - Valérie Biou
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France
| | - Nathalie Dautin
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France
| | - Christophe Tribet
- Département de Chimie, École Normale Supérieure, PASTEUR, PSL University, CNRS, Sorbonne Université, 24 Rue Lhomond, 75005, Paris, France
| | - Bruno Miroux
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France. .,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France.
| |
Collapse
|
2
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
3
|
Ting JJL. Proposal for verifying dipole properties of light-harvesting antennas. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 179:134-138. [PMID: 29367148 DOI: 10.1016/j.jphotobiol.2018.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 11/26/2022]
Abstract
For light harvesters with a reaction center complex (LH1-RC complex) of three types, we propose an experiment to verify our analysis based upon antenna theories that automatically include the required structural information. Our analysis conforms to the current understanding of light-harvesting antennas in that we can explain known properties of these complexes. We provide an explanation for the functional roles of the notch at the light harvester, a functional role of the polypeptide called PufX or W at the opening, a functional role of the special pair, a reason that the cross section of the light harvester must not be circular, a reason that the light harvester must not be spherical, reasons for the use of dielectric bacteriochlorophylls instead of conductors to make the light harvester, a mechanism to prevent damage from excess sunlight, an advantage of the dimeric form, and reasons for the modular design of nature. Based upon our analysis we provide a mechanism for dimerization. We predict that the dimeric form of light-harvesting complexes is favored under intense sunlight. We further comment upon the classification of the dimeric or S-shape complexes. The S-shape complexes should not be considered as the third type of light harvester but simply as a composite form.
Collapse
|
4
|
Yang K, Yang R, Tian X, He K, Filbrun SL, Fang N, Ma Y, Yuan B. Partitioning of nanoscale particles on a heterogeneous multicomponent lipid bilayer. Phys Chem Chem Phys 2018; 20:28241-28248. [DOI: 10.1039/c8cp05710a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Partitioning of nanoparticles into different lipid phases of a cell membrane is regulated by the physical properties of both the membrane and nanoparticles.
Collapse
Affiliation(s)
- Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology
- Soochow University
- Suzhou
- P. R. China
- Jiangsu Key Laboratory of Thin Films
| | - Ran Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology
- Soochow University
- Suzhou
- P. R. China
| | - Xiaodong Tian
- Department of Thoracic Surgery
- Chinese PLA General Hospital
- Beijing
- P. R. China
| | - Kejie He
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology
- Soochow University
- Suzhou
- P. R. China
| | | | - Ning Fang
- Department of Chemistry
- Georgia State University
- Atlanta
- USA
| | - Yuqiang Ma
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology
- Soochow University
- Suzhou
- P. R. China
- National Laboratory of Solid State Microstructures and Department of Physics
| | - Bing Yuan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology
- Soochow University
- Suzhou
- P. R. China
- Jiangsu Key Laboratory of Thin Films
| |
Collapse
|
5
|
Bohuszewicz O, Liu J, Low HH. Membrane remodelling in bacteria. J Struct Biol 2016; 196:3-14. [PMID: 27265614 PMCID: PMC6168058 DOI: 10.1016/j.jsb.2016.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 01/10/2023]
Abstract
In bacteria the ability to remodel membrane underpins basic cell processes such as growth, and more sophisticated adaptations like inter-cell crosstalk, organelle specialisation, and pathogenesis. Here, selected examples of membrane remodelling in bacteria are presented and the diverse mechanisms for inducing membrane fission, fusion, and curvature discussed. Compared to eukaryotes, relatively few curvature-inducing proteins have been characterised so far. Whilst it is likely that many such proteins remain to be discovered, it also reflects the importance of alternative membrane remodelling strategies in bacteria where passive mechanisms for generating curvature are utilised.
Collapse
Affiliation(s)
- Olga Bohuszewicz
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Jiwei Liu
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Harry H Low
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK.
| |
Collapse
|
6
|
Sener M, Strumpfer J, Singharoy A, Hunter CN, Schulten K. Overall energy conversion efficiency of a photosynthetic vesicle. eLife 2016; 5. [PMID: 27564854 PMCID: PMC5001839 DOI: 10.7554/elife.09541] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/11/2016] [Indexed: 11/25/2022] Open
Abstract
The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytbc1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12–0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination. DOI:http://dx.doi.org/10.7554/eLife.09541.001 Photosynthesis, or the conversion of light energy into chemical energy, is a process that powers almost all life on Earth. Plants and certain bacteria share similar processes to perform photosynthesis, though the purple bacterium Rhodobacter sphaeroides uses a photosynthetic system that is much less complex than that in plants. Light harvesting inside the bacterium takes place in up to hundreds of compartments called chromatophores. Each chromatophore in turn contains hundreds of cooperating proteins that together absorb the energy of sunlight and convert and store it in molecules of ATP, the universal energy currency of all cells. The chromatophore of primitive purple bacteria provides a model for more complex photosynthetic systems in plants. Though researchers had characterized its individual components over the years, less was known about the overall architecture of the chromatophore and how its many components work together to harvest light energy efficiently and robustly. This knowledge would provide insight into the evolutionary pressures that shaped the chromatophore and its ability to work efficiently at different light intensities. Sener et al. now present a highly detailed structural model of the chromatophore of purple bacteria based on the findings of earlier studies. The model features the position of every atom of the constituent proteins and is used to examine how energy is transferred and converted. Sener et al. describe the sequence of energy conversion steps and calculate the overall energy conversion efficiency, namely how much of the light energy arriving at the microorganism is stored as ATP. These calculations show that the chromatophore is optimized to produce chemical energy at low light levels typical of purple bacterial habitats, and dissipate excess energy to avoid being damaged under brighter light. The chromatophore’s architecture also displays robustness against perturbations of its components. In the future, the approach used by Sener et al. to describe light harvesting in this bacterial compartment can be applied to more complex systems, such as those in plants. DOI:http://dx.doi.org/10.7554/eLife.09541.002
Collapse
Affiliation(s)
- Melih Sener
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Johan Strumpfer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Abhishek Singharoy
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Klaus Schulten
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|
7
|
Pluhackova K, Böckmann RA. Biomembranes in atomistic and coarse-grained simulations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015. [PMID: 26194872 DOI: 10.1088/0953-8984/27/32/323103] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The architecture of biological membranes is tightly coupled to the localization, organization, and function of membrane proteins. The organelle-specific distribution of lipids allows for the formation of functional microdomains (also called rafts) that facilitate the segregation and aggregation of membrane proteins and thus shape their function. Molecular dynamics simulations enable to directly access the formation, structure, and dynamics of membrane microdomains at the molecular scale and the specific interactions among lipids and proteins on timescales from picoseconds to microseconds. This review focuses on the latest developments of biomembrane force fields for both atomistic and coarse-grained molecular dynamics (MD) simulations, and the different levels of coarsening of biomolecular structures. It also briefly introduces scale-bridging methods applicable to biomembrane studies, and highlights selected recent applications.
Collapse
Affiliation(s)
- Kristyna Pluhackova
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | | |
Collapse
|
8
|
Van Lehn RC, Alexander-Katz A. Pathway for insertion of amphiphilic nanoparticles into defect-free lipid bilayers from atomistic molecular dynamics simulations. SOFT MATTER 2015; 11:3165-75. [PMID: 25757187 DOI: 10.1039/c5sm00287g] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Gold nanoparticles (NPs) have been increasingly used in biological applications that involve potential contact with cellular membranes. As a result, it is essential to gain a physical understanding of NP-membrane interactions to guide the design of next-generation bioactive nanoparticles. In previous work, we showed that charged, amphiphilic NPs can fuse with lipid bilayers after contact between protruding solvent-exposed lipid tails and the NP monolayer. Fusion was only observed at the high-curvature edges of large bilayer defects, but not in low-curvature regions where protrusions are rarely observed. Here, we use atomistic molecular dynamics simulations to show that the same NPs can also fuse with low-curvature bilayers in the absence of defects if NP-protrusion contact occurs, generalizing the results of our previous work. Insertion proceeds without applying biasing forces to the NP, driven by the hydrophobic effect, and involves the transient generation of bilayer curvature. We further find that NPs with long hydrophobic ligands can insert a single ligand into the bilayer core in a manner similar to the binding of peripheral proteins. Such anchoring may precede insertion, revealing potential methods for engineering NP monolayers to enhance NP-bilayer fusion in systems with a low likelihood of lipid tail protrusions. These results reveal new pathways for NP-bilayer fusion and provide fundamental insight into behavior at the nano-bio interface.
Collapse
Affiliation(s)
- Reid C Van Lehn
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | |
Collapse
|
9
|
Chandler DE, Strümpfer J, Sener M, Scheuring S, Schulten K. Light harvesting by lamellar chromatophores in Rhodospirillum photometricum. Biophys J 2015; 106:2503-10. [PMID: 24896130 DOI: 10.1016/j.bpj.2014.04.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 11/26/2022] Open
Abstract
Purple photosynthetic bacteria harvest light using pigment-protein complexes which are often arranged in pseudo-organelles called chromatophores. A model of a chromatophore from Rhodospirillum photometricum was constructed based on atomic force microscopy data. Molecular-dynamics simulations and quantum-dynamics calculations were performed to characterize the intercomplex excitation transfer network and explore the interplay between close-packing and light-harvesting efficiency.
Collapse
Affiliation(s)
- Danielle E Chandler
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Johan Strümpfer
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Melih Sener
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Simon Scheuring
- U1006 INSERM, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 163 avenue de Luminy, 13009 Marseille, France
| | - Klaus Schulten
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
10
|
Pannuzzo M, Raudino A, Böckmann RA. Peptide-induced membrane curvature in edge-stabilized open bilayers: A theoretical and molecular dynamics study. J Chem Phys 2014; 141:024901. [DOI: 10.1063/1.4885340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Martina Pannuzzo
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Antonio Raudino
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Rainer A. Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
11
|
Scheuring S, Nevo R, Liu LN, Mangenot S, Charuvi D, Boudier T, Prima V, Hubert P, Sturgis JN, Reich Z. The architecture of Rhodobacter sphaeroides chromatophores. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1263-70. [PMID: 24685429 DOI: 10.1016/j.bbabio.2014.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 12/18/2022]
Abstract
The chromatophores of Rhodobacter (Rb.) sphaeroides represent a minimal bio-energetic system, which efficiently converts light energy into usable chemical energy. Despite extensive studies, several issues pertaining to the morphology and molecular architecture of this elemental energy conversion system remain controversial or unknown. To tackle these issues, we combined electron microscope tomography, immuno-electron microscopy and atomic force microscopy. We found that the intracellular Rb. sphaeroides chromatophores form a continuous reticulum rather than existing as discrete vesicles. We also found that the cytochrome bc1 complex localizes to fragile chromatophore regions, which most likely constitute the tubular structures that interconnect the vesicles in the reticulum. In contrast, the peripheral light-harvesting complex 2 (LH2) is preferentially hexagonally packed within the convex vesicular regions of the membrane network. Based on these observations, we propose that the bc1 complexes are in the inter-vesicular regions and surrounded by reaction center (RC) core complexes, which in turn are bounded by arrays of peripheral antenna complexes. This arrangement affords rapid cycling of electrons between the core and bc1 complexes while maintaining efficient excitation energy transfer from LH2 domains to the RCs.
Collapse
Affiliation(s)
- Simon Scheuring
- U1006 INSERM, Aix-Marseille Université, Parc Scientifique de Luminy, Marseille F-13009, France.
| | - Reinat Nevo
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lu-Ning Liu
- U1006 INSERM, Aix-Marseille Université, Parc Scientifique de Luminy, Marseille F-13009, France
| | | | - Dana Charuvi
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Thomas Boudier
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, F-75005 Paris, France
| | - Valerie Prima
- LISM CNRS, Aix-Marseille Université, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Pierre Hubert
- LISM CNRS, Aix-Marseille Université, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - James N Sturgis
- LISM CNRS, Aix-Marseille Université, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Ziv Reich
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
12
|
Sznee K, Crouch LI, Jones MR, Dekker JP, Frese RN. Variation in supramolecular organisation of the photosynthetic membrane of Rhodobacter sphaeroides induced by alteration of PufX. PHOTOSYNTHESIS RESEARCH 2014; 119:243-256. [PMID: 24197265 DOI: 10.1007/s11120-013-9949-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/24/2013] [Indexed: 06/02/2023]
Abstract
In purple bacteria of the genus Rhodobacter (Rba.), an LH1 antenna complex surrounds the photochemical reaction centre (RC) with a PufX protein preventing the LH1 complex from completely encircling the RC. In membranes of Rba. sphaeroides, RC-LH1 complexes associate as dimers which in turn assemble into longer range ordered arrays. The present work uses linear dichroism (LD) and dark-minus-light difference LD (ΔLD) to probe the organisation of genetically altered RC-LH1 complexes in intact membranes. The data support previous proposals that Rba. capsulatus, and Rba. sphaeroides heterologously expressing the PufX protein from Rba. capsulatus, produce monomeric core complexes in membranes that lack long-range order. Similarly, Rba. sphaeroides with a point mutation in the Gly 51 residue of PufX, which is located on the membrane-periplasm interface, assembles mainly non-ordered RC-LH1 complexes that are most likely monomeric. All the Rba. sphaeroides membranes in their ΔLD spectra exhibited a spectral fingerprint of small degree of organisation implying the possibility of ordering influence of LH1, and leading to an important conclusion that PufX itself has no influence on ordering RC-LH1 complexes, as long-range order appears to be induced only through its role of configuring RC-LH1 complexes into dimers.
Collapse
Affiliation(s)
- Kinga Sznee
- Division of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands,
| | | | | | | | | |
Collapse
|
13
|
Sumino A, Dewa T, Noji T, Nakano Y, Watanabe N, Hildner R, Bösch N, Köhler J, Nango M. Influence of Phospholipid Composition on Self-Assembly and Energy-Transfer Efficiency in Networks of Light-Harvesting 2 Complexes. J Phys Chem B 2013; 117:10395-404. [DOI: 10.1021/jp4047819] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ayumi Sumino
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Takehisa Dewa
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Tomoyasu Noji
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Yuki Nakano
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Natsuko Watanabe
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Richard Hildner
- Experimental
Physics IV and BIMF, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Nils Bösch
- Experimental
Physics IV and BIMF, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Jürgen Köhler
- Experimental
Physics IV and BIMF, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Mamoru Nango
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
14
|
Liu LN, Scheuring S. Investigation of photosynthetic membrane structure using atomic force microscopy. TRENDS IN PLANT SCIENCE 2013; 18:277-86. [PMID: 23562040 DOI: 10.1016/j.tplants.2013.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/21/2013] [Accepted: 03/01/2013] [Indexed: 05/26/2023]
Abstract
Photosynthetic processes, including light capture, electron transfer, and energy conversion, are not only ensured by the activities of individual photosynthetic complexes but also substantially determined and regulated by the composition and assembly of the overall photosynthetic apparatus at the supramolecular level. In recent years, atomic force microscopy (AFM) has matured as a unique and powerful tool for directly assessing the supramolecular assembly of integral membrane protein complexes in their native membrane environment at submolecular resolution. This review highlights the major contributions and advances of AFM studies to our understanding of the structure of the bacterial photosynthetic machinery and its regulatory arrangement during chromatic adaptation. AFM topographs of other biological membrane systems and potential future applications of AFM are also discussed.
Collapse
Affiliation(s)
- Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | | |
Collapse
|
15
|
Adams PG, Hunter CN. Adaptation of intracytoplasmic membranes to altered light intensity in Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1616-27. [PMID: 22659614 DOI: 10.1016/j.bbabio.2012.05.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/18/2012] [Accepted: 05/25/2012] [Indexed: 11/19/2022]
Abstract
The model photosynthetic bacterium Rhodobacter sphaeroides uses a network of bacteriochlorophyll (BChl)-protein complexes embedded in spherical intracytoplasmic membranes (ICM) to collect and utilise solar energy. We studied the effects of high- and low-light growth conditions, where BChl levels increased approximately four-fold from 1.6×10(6) to 6.5×10(6) molecules per cell. Most of this extra pigment is accommodated in the proliferating ICM system, which increases from approximately 274 to 1468 vesicles per cell. Thus, 16×10(6)nm(2) of specialised membrane surface area is made available for harvesting and utilising solar energy compared to 3×10(6)nm(2) under high-light conditions. Membrane mapping using atomic force microscopy revealed closely packed dimeric and monomeric reaction centre-light harvesting 1-PufX (RC-LH1-PufX) complexes in high-light ICM with room only for small clusters of LH2, whereas extensive LH2-only domains form during adaptation to low light, with the LH2/RC ratio increasing three-fold. The number of upper pigmented band (UPB) sites where membrane invagination is initiated hardly varied; 704 (5.8×10(5) BChls/cell) and 829 (4.9×10(5) BChls/cell) UPB sites per cell were estimated under high- and low-light conditions, respectively. Thus, the lower ICM content in high-light cells is a consequence of fewer ICM invaginations reaching maturity. Taking into account the relatively poor LH2-to-LH1 energy transfer in UPB membranes it is likely that high-light cells are relatively inefficient at energy trapping, but can grow well enough without the need to fully develop their photosynthetic membranes from the relatively inefficient UPB to highly efficient mature ICM.
Collapse
Affiliation(s)
- Peter G Adams
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
16
|
Nievas F, Bogino P, Sorroche F, Giordano W. Detection, characterization, and biological effect of quorum-sensing signaling molecules in peanut-nodulating bradyrhizobia. SENSORS 2012; 12:2851-73. [PMID: 22736981 PMCID: PMC3376631 DOI: 10.3390/s120302851] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 02/23/2012] [Accepted: 02/23/2012] [Indexed: 11/16/2022]
Abstract
Bacteria of the genus Bradyrhizobium are able to establish a symbiotic relationship with peanut (Arachis hypogaea) root cells and to fix atmospheric nitrogen by converting it to nitrogenous compounds. Quorum sensing (QS) is a cell-cell communication mechanism employed by a variety of bacterial species to coordinate behavior at a community level through regulation of gene expression. The QS process depends on bacterial production of various signaling molecules, among which the N-acylhomoserine lactones (AHLs) are most commonly used by Gram-negative bacteria. Some previous reports have shown the production of QS signaling molecules by various rhizobia, but little is known regarding mechanisms of communication among peanut-nodulating strains. The aims of this study were to identify and characterize QS signals produced by peanut-nodulating bradyrhizobial strains and to evaluate their effects on processes related to cell interaction. Detection of AHLs in 53 rhizobial strains was performed using the biosensor strains Agrobacterium tumefaciens NTL4 (pZLR4) and Chromobacterium violaceum CV026 for AHLs with long and short acyl chains, respectively. None of the strains screened were found to produce AHLs with short acyl chains, but 14 strains produced AHLs with long acyl chains. These 14 AHL-producing strains were further studied by quantification of β-galactosidase activity levels (AHL-like inducer activity) in NTL4 (pZLR4). Strains displaying moderate to high levels of AHL-like inducer activity were subjected to chemical identification of signaling molecules by high-performance liquid chromatography coupled to mass spectrometry (LC-MS/MS). For each AHL-producing strain, we found at least four different AHLs, corresponding to N-hexanoyl-dl-homoserine lactone (C6), N-(3-oxodecanoyl)-l-homoserine lactone (3OC10), N-(3-oxododecanoyl)-l-homoserine lactone (3OC12), and N-(3-oxotetradecanoyl)-l-homoserine lactone (3OC14). Biological roles of 3OC10, 3OC12, and 3OC14 AHLs were evaluated in both AHL-producing and -non-producing peanut-nodulating strains. Bacterial processes related to survival and nodulation, including motility, biofilm formation, and cell aggregation, were affected or modified by the exogenous addition of increasing concentrations of synthetic AHLs. Our results clearly demonstrate the existence of cell communication mechanisms among bradyrhizobial strains symbiotic of peanut. AHLs with long acyl chains appear to be signaling molecules regulating important QS physiological processes in these bacteria.
Collapse
Affiliation(s)
- Fiorela Nievas
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.
| | | | | | | |
Collapse
|
17
|
Şener M, Strümpfer J, Hsin J, Chandler D, Scheuring S, Hunter CN, Schulten K. Förster energy transfer theory as reflected in the structures of photosynthetic light-harvesting systems. Chemphyschem 2011; 12:518-31. [PMID: 21344591 DOI: 10.1002/cphc.201000944] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Förster’s theory of resonant energy transfer underlies a fundamental process in nature, namely the harvesting of sunlight by photosynthetic life forms. The theoretical framework developed by Förster and others describes how electronic excitation migrates in the photosynthetic apparatus of plants, algae, and bacteria from light absorbing pigments to reaction centers where light energy is utilized for the eventual conversion into chemical energy. The demand for highest possible efficiency of light harvesting appears to have shaped the evolution of photosynthetic species from bacteria to plants which, despite a great variation in architecture, display common structural themes founded on the quantum physics of energy transfer as described first by Förster. Herein, Förster’s theory of excitation transfer is summarized, including recent extensions, and the relevance of the theory to photosynthetic systems as evolved in purple bacteria, cyanobacteria, and plants is demonstrated. Förster’s energy transfer formula, as used widely today in many fields of science, is also derived.
Collapse
Affiliation(s)
- Melih Şener
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Bridging the gap: linking molecular simulations and systemic descriptions of cellular compartments. PLoS One 2010; 5:e14070. [PMID: 21124924 PMCID: PMC2989909 DOI: 10.1371/journal.pone.0014070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 10/21/2010] [Indexed: 12/31/2022] Open
Abstract
Metabolic processes in biological cells are commonly either characterized at the level of individual enzymes and metabolites or at the network level. Often these two paradigms are considered as mutually exclusive because concepts from neither side are suited to describe the complete range of scales. Additionally, when modeling metabolic or regulatory cellular systems, often a large fraction of the required kinetic parameters are unknown. This even applies to such simple and extensively studied systems like the photosynthetic apparatus of purple bacteria. Using the chromatophore vesicles of Rhodobacter sphaeroides as a model system, we show that a consistent kinetic model emerges when fitting the dynamics of a molecular stochastic simulation to a set of time dependent experiments even though about two thirds of the kinetic parameters in this system are not known from experiment. Those kinetic parameters that were previously known all came out in the expected range. The simulation model was built from independent protein units composed of elementary reactions processing single metabolites. This pools-and-proteins approach naturally compiles the wealth of available molecular biological data into a systemic model and can easily be extended to describe other systems by adding new protein or nucleic acid types. The automated parameter optimization, performed with an evolutionary algorithm, reveals the sensitivity of the model to the value of each parameter and the relative importances of the experiments used. Such an analysis identifies the crucial system parameters and guides the setup of new experiments that would add most knowledge for a systemic understanding of cellular compartments. The successful combination of the molecular model and the systemic parametrization presented here on the example of the simple machinery for bacterial photosynthesis shows that it is actually possible to combine molecular and systemic modeling. This framework can now straightforwardly be applied to other currently less well characterized but biologically more relevant systems.
Collapse
|
19
|
Trabuco LG, Schreiner E, Gumbart J, Hsin J, Villa E, Schulten K. Applications of the molecular dynamics flexible fitting method. J Struct Biol 2010; 173:420-7. [PMID: 20932910 DOI: 10.1016/j.jsb.2010.09.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 09/19/2010] [Accepted: 09/28/2010] [Indexed: 12/12/2022]
Abstract
In recent years, cryo-electron microscopy (cryo-EM) has established itself as a key method in structural biology, permitting the structural characterization of large biomolecular complexes in various functional states. The data obtained through single-particle cryo-EM has recently seen a leap in resolution thanks to landmark advances in experimental and computational techniques, resulting in sub-nanometer resolution structures being obtained routinely. The remaining gap between these data and revealing the mechanisms of molecular function can be closed through hybrid modeling tools that incorporate known atomic structures into the cryo-EM data. One such tool, molecular dynamics flexible fitting (MDFF), uses molecular dynamics simulations to combine structures from X-ray crystallography with cryo-EM density maps to derive atomic models of large biomolecular complexes. The structures furnished by MDFF can be used subsequently in computational investigations aimed at revealing the dynamics of the complexes under study. In the present work, recent applications of MDFF are presented, including the interpretation of cryo-EM data of the ribosome at different stages of translation and the structure of a membrane-curvature-inducing photosynthetic complex.
Collapse
Affiliation(s)
- Leonardo G Trabuco
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
20
|
Agrawal NJ, Nukpezah J, Radhakrishnan R. Minimal mesoscale model for protein-mediated vesiculation in clathrin-dependent endocytosis. PLoS Comput Biol 2010. [PMID: 20838575 DOI: 10.1371/journal.pcbi.1000926.s008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
In eukaryotic cells, the internalization of extracellular cargo via the endocytic machinery is an important regulatory process required for many essential cellular functions. The role of cooperative protein-protein and protein-membrane interactions in the ubiquitous endocytic pathway in mammalian cells, namely the clathrin-dependent endocytosis, remains unresolved. We employ the Helfrich membrane Hamiltonian together with surface evolution methodology to address how the shapes and energetics of vesicular-bud formation in a planar membrane are stabilized by presence of the clathrin-coat assembly. Our results identify a unique dual role for the tubulating protein epsin: multiple epsins localized spatially and orientationally collectively play the role of a curvature inducing capsid; in addition, epsin serves the role of an adapter in binding the clathrin coat to the membrane. Our results also suggest an important role for the clathrin lattice, namely in the spatial- and orientational-templating of epsins. We suggest that there exists a critical size of the coat above which a vesicular bud with a constricted neck resembling a mature vesicle is stabilized. Based on the observed strong dependence of the vesicle diameter on the bending rigidity, we suggest that the variability in bending stiffness due to variations in membrane composition with cell type can explain the experimentally observed variability on the size of clathrin-coated vesicles, which typically range 50-100 nm. Our model also provides estimates for the number of epsins involved in stabilizing a coated vesicle, and without any direct fitting reproduces the experimentally observed shapes of vesicular intermediates as well as their probability distributions quantitatively, in wildtype as well as CLAP IgG injected neuronal cell experiments. We have presented a minimal mesoscale model which quantitatively explains several experimental observations on the process of vesicle nucleation induced by the clathrin-coated assembly prior to vesicle scission in clathrin dependent endocytosis.
Collapse
Affiliation(s)
- Neeraj J Agrawal
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | | |
Collapse
|
21
|
Agrawal NJ, Nukpezah J, Radhakrishnan R. Minimal mesoscale model for protein-mediated vesiculation in clathrin-dependent endocytosis. PLoS Comput Biol 2010; 6:e1000926. [PMID: 20838575 PMCID: PMC2936510 DOI: 10.1371/journal.pcbi.1000926] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 08/09/2010] [Indexed: 11/21/2022] Open
Abstract
In eukaryotic cells, the internalization of extracellular cargo via the endocytic machinery is an important regulatory process required for many essential cellular functions. The role of cooperative protein-protein and protein-membrane interactions in the ubiquitous endocytic pathway in mammalian cells, namely the clathrin-dependent endocytosis, remains unresolved. We employ the Helfrich membrane Hamiltonian together with surface evolution methodology to address how the shapes and energetics of vesicular-bud formation in a planar membrane are stabilized by presence of the clathrin-coat assembly. Our results identify a unique dual role for the tubulating protein epsin: multiple epsins localized spatially and orientationally collectively play the role of a curvature inducing capsid; in addition, epsin serves the role of an adapter in binding the clathrin coat to the membrane. Our results also suggest an important role for the clathrin lattice, namely in the spatial- and orientational-templating of epsins. We suggest that there exists a critical size of the coat above which a vesicular bud with a constricted neck resembling a mature vesicle is stabilized. Based on the observed strong dependence of the vesicle diameter on the bending rigidity, we suggest that the variability in bending stiffness due to variations in membrane composition with cell type can explain the experimentally observed variability on the size of clathrin-coated vesicles, which typically range 50-100 nm. Our model also provides estimates for the number of epsins involved in stabilizing a coated vesicle, and without any direct fitting reproduces the experimentally observed shapes of vesicular intermediates as well as their probability distributions quantitatively, in wildtype as well as CLAP IgG injected neuronal cell experiments. We have presented a minimal mesoscale model which quantitatively explains several experimental observations on the process of vesicle nucleation induced by the clathrin-coated assembly prior to vesicle scission in clathrin dependent endocytosis.
Collapse
Affiliation(s)
- Neeraj J. Agrawal
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jonathan Nukpezah
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
22
|
Liu LN, Sturgis JN, Scheuring S. Native architecture of the photosynthetic membrane from Rhodobacter veldkampii. J Struct Biol 2010; 173:138-45. [PMID: 20797440 DOI: 10.1016/j.jsb.2010.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/18/2010] [Accepted: 08/19/2010] [Indexed: 11/27/2022]
Abstract
The photosynthetic membrane in purple bacteria contains several pigment-protein complexes that assure light capture and establishment of the chemiosmotic gradient. The bioenergetic tasks of the photosynthetic membrane require the strong interaction between these various complexes. In the present work, we acquired the first images of the native outer membrane architecture and the supramolecular organization of the photosynthetic apparatus in vesicular chromatophores of Rhodobacter (Rb.) veldkampii. Mixed with LH2 (light-harvesting complex 2) rings, the PufX-containing LH1-RC (light-harvesting complex 1--reaction center) core complexes appear as C-shaped monomers, with random orientations in the photosynthetic membrane. Within the LH1 fence surrounding the RC, a remarkable gap that is probably occupied (or partially occupied) by PufX is visualized. Sequence alignment revealed that one specific region in PufX may be essential for PufX-induced core dimerization. In this region of ten amino acids in length all Rhodobacter species had five conserved amino acids, with the exception of Rb. veldkampii. Our findings provide direct evidence that the presence of PufX in Rb. veldkampii does not directly govern the dimerization of LH1-RC core complexes in the native membrane. It is indicated, furthermore, that the high membrane curvature of Rb. veldkampii chromatophores (Rb. veldkampii features equally small vesicular chromatophores alike Rb. sphaeroides) is not due to membrane bending induced by dimeric RC-LH1-PufX cores, as it has been proposed in Rb. sphaeroides.
Collapse
Affiliation(s)
- Lu-Ning Liu
- Institut Curie, U1006 INSERM, UMR168 CNRS, 26 Rue d'Ulm, 75248 Paris, France
| | | | | |
Collapse
|
23
|
Hsin J, Chandler DE, Gumbart J, Harrison CB, Şener M, Strumpfer J, Schulten K. Self-assembly of photosynthetic membranes. Chemphyschem 2010; 11:1154-9. [PMID: 20183845 PMCID: PMC3086839 DOI: 10.1002/cphc.200900911] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Indexed: 11/08/2022]
Abstract
Bacterial photosynthetic membranes, also known as chromatophores, are tightly packed with integral membrane proteins that work together to carry out photosynthesis. Chromatophores display a wide range of cellular morphologies; spherical, tubular, and lamellar chromatophores have all been observed in different bacterial species, or with different protein constituents. Through recent computational modeling and simulation, it has been demonstrated that the light-harvesting complexes abundant in chromatophores induce local membrane curvature via multiple mechanisms. These protein complexes assemble to generate a global curvature and sculpt the chromatophores into various cellular-scale architectures.
Collapse
Affiliation(s)
- Jen Hsin
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Danielle E. Chandler
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| | - James Gumbart
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| | | | - Melih Şener
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Johan Strumpfer
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Klaus Schulten
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| |
Collapse
|