1
|
Brandner BA, Rananavare SB, Hall SB. Effects of spontaneous curvature on interfacial adsorption and collapse of phospholipid monolayers. Am J Physiol Lung Cell Mol Physiol 2024; 327:L876-L882. [PMID: 39437761 DOI: 10.1152/ajplung.00193.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/05/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
To function effectively, pulmonary surfactant must adsorb rapidly to the alveolar air/water interface but avoid collapse from the surface when compressed to high interfacial densities. Prior studies show that phospholipids in the cylindrical monolayers of the inverse hexagonal (HII) phase adsorb quickly. The monolayers have negative curvature, defined by the concave shape of the hydrophilic face. Formation of the HII structures, however, involves significant disruption of chain-packing. Samples with significant spontaneous curvature, formed in the absence of applied force, may nonetheless have lamellar structures that optimize chain-packing. The experiments here tested whether planar lamellar bilayers formed by phospholipids with negative spontaneous curvature might adsorb rapidly but collapse slowly. Prior studies have shown that binary mixtures of dioleoyl phosphatidylcholine-dioleoyl phosphatidylethanolamine (DOPC-DOPE) with higher mol fractions of DOPE (XPE) have more negative spontaneous curvature. Samples of DOPC-DOPE with higher XPE studied here adsorbed more rapidly but also collapsed more quickly. Over that range of XPE, small-angle X-ray scattering showed only lamellar structures. The HII phase was undetectable. The results suggest that the innate tendency of the phospholipids to form curvature has primary importance for adsorption rather than the presence of the HII phase. Planar structures are insufficient to minimize the tendency of spontaneous curvature to promote collapse. These findings are consistent with adsorption and collapse that occur via rate-limiting transient structures with significant negative curvature.NEW & NOTEWORTHY Pulmonary surfactant must adsorb rapidly to the surface of the alveolar liquid but collapse slowly when compressed. Prior studies show that cylindrical monolayers of the inverse hexagonal phase adsorb rapidly. These structures have negative curvature; the hydrophilic face of the phospholipid leaflet is concave. Our studies tested whether planar lamellar structures with a greater tendency to form negative curvature would adsorb rapidly but collapse slowly. Compositional change accelerated adsorption but also yielded faster collapse.
Collapse
Affiliation(s)
- Bret A Brandner
- Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - Shankar B Rananavare
- Department of Chemistry, Portland State University, Portland, Oregon, United States
| | - Stephen B Hall
- Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
2
|
Hall SB, Zuo YY. The biophysical function of pulmonary surfactant. Biophys J 2024; 123:1519-1530. [PMID: 38664968 PMCID: PMC11213971 DOI: 10.1016/j.bpj.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
The type II pneumocytes of the lungs secrete a mixture of lipids and proteins that together acts as a surfactant. The material forms a thin film on the surface of the liquid layer that lines the alveolar air sacks. When compressed by the decreasing alveolar surface area during exhalation, the films reduce surface tension to exceptionally low levels. Pulmonary surfactant is essential for preserving the integrity of the barrier between alveolar air and capillary blood during normal breathing. This review focuses on the major biophysical processes by which endogenous pulmonary surfactant achieves its function and the mechanisms involved in those processes. Vesicles of pulmonary surfactant adsorb rapidly from the alveolar liquid to form the interfacial film. Interfacial insertion, which requires the hydrophobic surfactant protein SP-B, proceeds by a process analogous to the fusion of two vesicles. When compressed, the adsorbed film desorbs slowly. Constituents remain at the surface at high interfacial concentrations that reduce surface tensions well below equilibrium levels. We review the models proposed to explain how pulmonary surfactant achieves both the rapid adsorption and slow desorption characteristic of a functional film.
Collapse
Affiliation(s)
- Stephen B Hall
- Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon.
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii
| |
Collapse
|
3
|
Abstract
Pulmonary surfactant is a critical component of lung function in healthy individuals. It functions in part by lowering surface tension in the alveoli, thereby allowing for breathing with minimal effort. The prevailing thinking is that low surface tension is attained by a compression-driven squeeze-out of unsaturated phospholipids during exhalation, forming a film enriched in saturated phospholipids that achieves surface tensions close to zero. A thorough review of past and recent literature suggests that the compression-driven squeeze-out mechanism may be erroneous. Here, we posit that a surfactant film enriched in saturated lipids is formed shortly after birth by an adsorption-driven sorting process and that its composition does not change during normal breathing. We provide biophysical evidence for the rapid formation of an enriched film at high surfactant concentrations, facilitated by adsorption structures containing hydrophobic surfactant proteins. We examine biophysical evidence for and against the compression-driven squeeze-out mechanism and propose a new model for surfactant function. The proposed model is tested against existing physiological and pathophysiological evidence in neonatal and adult lungs, leading to ideas for biophysical research, that should be addressed to establish the physiological relevance of this new perspective on the function of the mighty thin film that surfactant provides.
Collapse
Affiliation(s)
- Fred Possmayer
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
- Department of Obstetrics/Gynaecology, Western University, London, Ontario N6A 3K7, Canada
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manon, Honolulu, Hawaii 96822, United States
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96826, United States
| | - Ruud A W Veldhuizen
- Department of Physiology & Pharmacology, Western University, London, Ontario N6A 5C1, Canada
- Department of Medicine, Western University, London, Ontario N6A 3K7, Canada
- Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
| | - Nils O Petersen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
4
|
Garavaglia ML, Bodega F, Porta C, Milzani A, Sironi C, Dalle-Donne I. Molecular Impact of Conventional and Electronic Cigarettes on Pulmonary Surfactant. Int J Mol Sci 2023; 24:11702. [PMID: 37511463 PMCID: PMC10380520 DOI: 10.3390/ijms241411702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The alveolar epithelium is covered by a non-cellular layer consisting of an aqueous hypophase topped by pulmonary surfactant, a lipo-protein mixture with surface-active properties. Exposure to cigarette smoke (CS) affects lung physiology and is linked to the development of several diseases. The macroscopic effects of CS are determined by several types of cell and molecular dysfunction, which, among other consequences, lead to surfactant alterations. The purpose of this review is to summarize the published studies aimed at uncovering the effects of CS on both the lipid and protein constituents of surfactant, discussing the molecular mechanisms involved in surfactant homeostasis that are altered by CS. Although surfactant homeostasis has been the topic of several studies and some molecular pathways can be deduced from an analysis of the literature, it remains evident that many aspects of the mechanisms of action of CS on surfactant homeostasis deserve further investigation.
Collapse
Affiliation(s)
| | - Francesca Bodega
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Cristina Porta
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Aldo Milzani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Chiara Sironi
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Isabella Dalle-Donne
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
5
|
Surmeier G, Dogan-Surmeier S, Paulus M, Albers C, Latarius J, Sternemann C, Schneider E, Tolan M, Nase J. The interaction of viral fusion peptides with lipid membranes. Biophys J 2022; 121:3811-3825. [PMID: 36110043 PMCID: PMC9674987 DOI: 10.1016/j.bpj.2022.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/13/2022] [Accepted: 09/12/2022] [Indexed: 11/02/2022] Open
Abstract
In this paper, we studied fusogenic peptides of class I-III fusion proteins, which are relevant to membrane fusion for certain enveloped viruses, in contact with model lipid membranes. We resolved the vertical structure and examined the adsorption or penetration behavior of the fusogenic peptides at phospholipid Langmuir monolayers with different initial surface pressures with x-ray reflectometry. We show that the fusion loops of tick-borne encephalitis virus (TBEV) glycoprotein E and vesicular stomatitis virus (VSV) G-protein are not able to insert deeply into model lipid membranes, as they adsorbed mainly underneath the headgroups with only limited penetration depths into the lipid films. In contrast, we observed that the hemagglutinin 2 fusion peptide (HA2-FP) and the VSV-transmembrane domain (VSV-TMD) can penetrate deeply into the membranes. However, in the case of VSV-TMD, the penetration was suppressed already at low surface pressures, whereas HA2-FP was able to insert even into highly compressed films. Membrane fusion is accompanied by drastic changes of the membrane curvature. To investigate how the peptides affect the curvature of model lipid membranes, we examined the effect of the fusogenic peptides on the equilibration of cubic monoolein structures after a phase transition from a lamellar state induced by an abrupt hydrostatic pressure reduction. We monitored this process in presence and absence of the peptides with small-angle x-ray scattering and found that HA2-FP and VSV-TMD drastically accelerate the equilibration, while the fusion loops of TBEV and VSV stabilize the swollen state of the lipid structures. In this work, we show that the class I fusion peptide of HA2 penetrates deeply into the hydrophobic region of membranes and is able to promote and accelerate the formation of negative curvature. In contrast, we found that the class II and III fusion loops of TBEV and VSV tend to counteract negative membrane curvature.
Collapse
Affiliation(s)
- Göran Surmeier
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | | | - Michael Paulus
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | - Christian Albers
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | - Jan Latarius
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | | | - Eric Schneider
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | - Metin Tolan
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | - Julia Nase
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| |
Collapse
|
6
|
Fluid Films as Models for Understanding the Impact of Inhaled Particles in Lung Surfactant Layers. COATINGS 2022. [DOI: 10.3390/coatings12020277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pollution is currently a public health problem associated with different cardiovascular and respiratory diseases. These are commonly originated as a result of the pollutant transport to the alveolar cavity after their inhalation. Once pollutants enter the alveolar cavity, they are deposited on the lung surfactant (LS) film, altering their mechanical performance which increases the respiratory work and can induce a premature alveolar collapse. Furthermore, the interactions of pollutants with LS can induce the formation of an LS corona decorating the pollutant surface, favoring their penetration into the bloodstream and distribution along different organs. Therefore, it is necessary to understand the most fundamental aspects of the interaction of particulate pollutants with LS to mitigate their effects, and design therapeutic strategies. However, the use of animal models is often invasive, and requires a careful examination of different bioethics aspects. This makes it necessary to design in vitro models mimicking some physico-chemical aspects with relevance for LS performance, which can be done by exploiting the tools provided by the science and technology of interfaces to shed light on the most fundamental physico-chemical bases governing the interaction between LS and particulate matter. This review provides an updated perspective of the use of fluid films of LS models for shedding light on the potential impact of particulate matter in the performance of LS film. It should be noted that even though the used model systems cannot account for some physiological aspects, it is expected that the information contained in this review can contribute on the understanding of the potential toxicological effects of air pollution.
Collapse
|
7
|
Surmeier G, Paulus M, Schneider E, Dogan S, Tolan M, Nase J. A pressure-jump study on the interaction of osmolytes and crowders with cubic monoolein structures. SOFT MATTER 2022; 18:990-998. [PMID: 35015016 DOI: 10.1039/d1sm01425k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Many vital processes that take place in biological cells involve remodeling of lipid membranes. These processes take place in a milieu that is packed with various solutes, ranging from ions and small organic osmolytes to proteins and other macromolecules, occupying about 30% of the available volume. In this work, we investigated how molecular crowding, simulated with the polymer polyethylene glycol (PEG), and the osmolytes urea and trimethylamine-N-oxide (TMAO) affect the equilibration of cubic monoolein structures after a phase transition from a lamellar state induced by an abrupt pressure reduction. In absence of additives, swollen cubic crystallites form after the transition, releasing excess water over several hours. This process is reflected in a decreasing lattice constant and was monitored with small angle X-ray scattering. We found that the osmotic pressure exerted by PEG and TMAO, which are displaced from narrow inter-bilayer spaces, accelerates the equilibration. When the radius of gyration of the added PEG was smaller than the radius of the water channels of the cubic phase, the effect became more pronounced with increasing molecular weight of the polymers. As the release of hydration water from the cubic structures is accompanied by an increasing membrane curvature and a reduction of the interface between lipids and aqueous phase, urea, which has a slight affinity to reside near membrane surfaces, stabilized the swollen crystallites and slowed down the equilibration dynamics. Our results support the view that cellular solutes are important contributors to dynamic membrane processes, as they can accelerate dehydration of inter-bilayer spaces and promote or counteract membrane curvature.
Collapse
Affiliation(s)
- Göran Surmeier
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44221 Dortmund, Germany.
| | - Michael Paulus
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44221 Dortmund, Germany.
| | - Eric Schneider
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44221 Dortmund, Germany.
| | - Susanne Dogan
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44221 Dortmund, Germany.
| | - Metin Tolan
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44221 Dortmund, Germany.
| | - Julia Nase
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44221 Dortmund, Germany.
| |
Collapse
|
8
|
Castillo-Sánchez JC, Roldán N, García-Álvarez B, Batllori E, Galindo A, Cruz A, Perez-Gil J. The highly packed and dehydrated structure of pre-formed unexposed human pulmonary surfactant isolated from amniotic fluid. Am J Physiol Lung Cell Mol Physiol 2021; 322:L191-L203. [PMID: 34851730 DOI: 10.1152/ajplung.00230.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
By coating the alveolar air-liquid interface, lung surfactant overwhelms surface tension forces that, otherwise, would hinder the lifetime effort of breathing. Years of research have provided a picture of how highly hydrophobic and specialized proteins in surfactant promote rapid and efficient formation of phospholipid-based complex three-dimensional films at the respiratory surface, highly stable under the demanding breathing mechanics. However, recent evidence suggest that the structure and performance of surfactant typically isolated from bronchoalveolar lung lavages may be far from that of nascent, still unused, surfactant as freshly secreted by type II pneumocytes into the alveolar airspaces. In the present work, we report the isolation of lung surfactant from human amniotic fluid (amniotic fluid surfactant, AFS) and a detailed description of its composition, structure and surface activity in comparison to a natural surfactant (NS) purified from porcine bronchoalveolar lavages. We observe that the lipid/protein complexes in AFS exhibit a substantially higher lipid packing and dehydration than in NS. AFS shows melting transitions at higher temperatures than NS and a conspicuous presence of non-lamellar phases. The surface activity of AFS is not only comparable to that of NS under physiologically-meaningful conditions, but displays significantly higher resistance to inhibition by serum or meconium, agents that inactivate surfactant in the context of severe respiratory pathologies. We propose that AFS may be the optimal model to study the molecular mechanisms sustaining pulmonary surfactant performance in health and disease, and the reference material to develop improved therapeutic surfactant preparations to treat yet unresolved respiratory pathologies.
Collapse
Affiliation(s)
- José Carlos Castillo-Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain.,Research Institute "Hospital 12 Octubre (imas12)", Complutense University, Madrid, Spain
| | - Nuria Roldán
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain.,Research Institute "Hospital 12 Octubre (imas12)", Complutense University, Madrid, Spain
| | - Begoña García-Álvarez
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Emma Batllori
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain.,Research Institute "Hospital 12 Octubre (imas12)", Complutense University, Madrid, Spain
| | - Alberto Galindo
- Department of Obstetrics and Gynecology, Hospital Universitario 12 de Octubre. Red de Salud Materno Infantil y del Desarrollo (SAMID). Instituto de Investigación Hospital 12 de Octubre (imas12). Universidad Complutense de Madrid, Spain
| | - Antonio Cruz
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain.,Research Institute "Hospital 12 Octubre (imas12)", Complutense University, Madrid, Spain
| | - Jesus Perez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain.,Research Institute "Hospital 12 Octubre (imas12)", Complutense University, Madrid, Spain
| |
Collapse
|
9
|
Ji J, Sun L, Luo Z, Zhang Y, Xianzheng W, Liao Y, Tong X, Shan J. Potential Therapeutic Applications of Pulmonary Surfactant Lipids in the Host Defence Against Respiratory Viral Infections. Front Immunol 2021; 12:730022. [PMID: 34646269 PMCID: PMC8503189 DOI: 10.3389/fimmu.2021.730022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Pulmonary surfactant is a complex and highly surface-active material. It covers the alveolar epithelium and consists of 90% lipids and 10% proteins. Pulmonary surfactant lipids together with pulmonary surfactant proteins facilitate breathing by reducing surface tension of the air-water interface within the lungs, thereby preventing alveolar collapse and the mechanical work required to breathe. Moreover, pulmonary surfactant lipids, such as phosphatidylglycerol and phosphatidylinositol, and pulmonary surfactant proteins, such as surfactant protein A and D, participate in the pulmonary host defense and modify immune responses. Emerging data have shown that pulmonary surfactant lipids modulate the inflammatory response and antiviral effects in some respiratory viral infections, and pulmonary surfactant lipids have shown promise for therapeutic applications in some respiratory viral infections. Here, we briefly review the composition, antiviral properties, and potential therapeutic applications of pulmonary surfactant lipids in respiratory viral infections.
Collapse
Affiliation(s)
- Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Sun
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zichen Luo
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Zhang
- Genome Center of University of California Davis, National Institutes of Health (NIH) West Coast Metabolomics Center, Davis, CA, United States
| | - Wang Xianzheng
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingzhao Liao
- Pediatrics of Traditional Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Xie Tong
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
10
|
Structural hallmarks of lung surfactant: Lipid-protein interactions, membrane structure and future challenges. Arch Biochem Biophys 2021; 703:108850. [PMID: 33753033 DOI: 10.1016/j.abb.2021.108850] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/20/2021] [Accepted: 03/16/2021] [Indexed: 11/23/2022]
Abstract
Lung surfactant (LS) is an outstanding example of how a highly regulated and dynamic membrane-based system has evolved to sustain a wealth of structural reorganizations in order to accomplish its biophysical function, as it coats and stabilizes the respiratory air-liquid interface in the mammalian lung. The present review dissects the complexity of the structure-function relationships in LS through an updated description of the lipid-protein interactions and the membrane structures that sustain its synthesis, secretion, interfacial performance and recycling. We also revise the current models and the biophysical techniques employed to study the membranous architecture of LS. It is important to consider that the structure and functional properties of LS are often studied in bulk or under static conditions, in spite that surfactant function is strongly connected with a highly dynamic behaviour, sustained by very polymorphic structures and lipid-lipid, lipid-protein and protein-protein interactions that reorganize in precise spatio-temporal coordinates. We have tried to underline the evidences available of the existence of such structural dynamism in LS. A last important aspect is that the synthesis and assembly of LS is a strongly regulated intracellular process to ensure the establishment of the proper interactions driving LS surface activity, while protecting the integrity of other cell membranes. The use of simplified lipid models or partial natural materials purified from animal tissues could be too simplistic to understand the true molecular mechanisms defining surfactant function in vivo. In this line, we will bring into the attention of the reader the methodological challenges and the questions still open to understand the structure-function relationships of LS at its full biological relevance.
Collapse
|
11
|
Lipid-Protein and Protein-Protein Interactions in the Pulmonary Surfactant System and Their Role in Lung Homeostasis. Int J Mol Sci 2020; 21:ijms21103708. [PMID: 32466119 PMCID: PMC7279303 DOI: 10.3390/ijms21103708] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Pulmonary surfactant is a lipid/protein complex synthesized by the alveolar epithelium and secreted into the airspaces, where it coats and protects the large respiratory air–liquid interface. Surfactant, assembled as a complex network of membranous structures, integrates elements in charge of reducing surface tension to a minimum along the breathing cycle, thus maintaining a large surface open to gas exchange and also protecting the lung and the body from the entrance of a myriad of potentially pathogenic entities. Different molecules in the surfactant establish a multivalent crosstalk with the epithelium, the immune system and the lung microbiota, constituting a crucial platform to sustain homeostasis, under health and disease. This review summarizes some of the most important molecules and interactions within lung surfactant and how multiple lipid–protein and protein–protein interactions contribute to the proper maintenance of an operative respiratory surface.
Collapse
|
12
|
Kumar K, Chavarha M, Loney RW, Weiss TM, Rananavare SB, Hall SB. The L γ Phase of Pulmonary Surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6601-6611. [PMID: 29715426 PMCID: PMC6526724 DOI: 10.1021/acs.langmuir.8b00460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
To determine how different components affect the structure of pulmonary surfactant, we measured X-ray scattering by samples derived from calf surfactant. The surfactant phospholipids demonstrated the essential characteristics of the Lγ phase: a unit cell with a lattice constant appropriate for two bilayers, and crystalline chains detected by wide-angle X-ray scattering (WAXS). The electron density profile, obtained from scattering by oriented films at different relative humidities (70-97%), showed that the two bilayers, arranged as mirror images, each contain two distinct leaflets with different thicknesses and profiles. The detailed structures suggest one ordered leaflet that would contain crystalline chains and one disordered monolayer likely to contain the anionic compounds, which constitute ∼10% of the surfactant phospholipids. The spacing and temperature dependence detected by WAXS fit with an ordered leaflet composed of dipalmitoyl phosphatidylcholine. Physiological levels of cholesterol had no effect on this structure. Removing the anionic phospholipids prevented formation of the Lγ phase. The cationic surfactant proteins inhibited Lγ structures, but at levels unlikely related to charge. Because the Lγ phase, if arranged properly, could produce a self-assembled ordered interfacial monolayer, the structure could have important functional consequences. Physiological levels of the proteins, however, inhibit formation of the Lγ structures at high relative humidities, making their physiological significance uncertain.
Collapse
Affiliation(s)
- Kamlesh Kumar
- Departments of Biochemistry & Molecular Biology, Medicine, and Physiology & Pharmacology, Oregon Heath & Science University, Portland, OR 97239-3098
| | - Mariya Chavarha
- Departments of Biochemistry & Molecular Biology, Medicine, and Physiology & Pharmacology, Oregon Heath & Science University, Portland, OR 97239-3098
| | - Ryan W. Loney
- Departments of Biochemistry & Molecular Biology, Medicine, and Physiology & Pharmacology, Oregon Heath & Science University, Portland, OR 97239-3098
| | - Thomas M. Weiss
- Stanford University, SLAC/SSRL Building 137, 2575 Sand Hill Road MS69, Menlo Park, CA 94025
| | | | - Stephen B. Hall
- Departments of Biochemistry & Molecular Biology, Medicine, and Physiology & Pharmacology, Oregon Heath & Science University, Portland, OR 97239-3098
- To whom correspondence should be addressed: Stephen B. Hall, Pulmonary & Critical Care Medicine, Mail Code UHN-67, Oregon Health & Science University, Portland, Oregon 97239-3098, , Telephone: (503) 494-6667
| |
Collapse
|
13
|
Tran N, Kurian J, Bhatt A, McKenna R, Long JR. Entropic Anomaly Observed in Lipid Polymorphisms Induced by Surfactant Peptide SP-B(1-25). J Phys Chem B 2017; 121:9102-9112. [PMID: 28872861 DOI: 10.1021/acs.jpcb.7b06538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The N-terminal 25 amino-acid residues of pulmonary surfactant protein B (SP-B1-25) induces unusual lipid polymorphisms in a model lipid system, 4:1 DPPC/POPG, mirroring the lipid composition of native pulmonary surfactant. It is widely suggested that SP-B1-25-induced lipid polymorphisms within the alveolar aqueous subphase provide a structural platform for rapid lipid adsorption to the air-water interface. Here, we characterize in detail the phase behavior of DPPC and POPG in hydrated lipid assemblies containing therapeutic levels of SP-B1-25 using 2H and 31P solid state NMR spectroscopy. The appearance of a previously observed isotropic lipid phase is found to be highly dependent on the thermal cycling of the samples. Slow heating of frozen samples leads to phase separation of DPPC into a lamellar phase whereas POPG lipids interact with the peptide to form an isotropic phase at physiologic temperature. Rapid heating of frozen samples to room temperature leads to strongly isotropic phase behavior for both DPPC and POPG lipids, with DPPC in exchange between isotropic and interdigitated phases. 31P T2 relaxation times confirm the isotropic phase to be consistent with a lipid cubic phase. The observed phases exhibit thermal stability up to physiologic temperature (37 °C) and are consistent with the formation of a ripple phase containing a large number of peptide-induced membrane structural defects enabling rapid transit of lipids between lipid lamellae. The coexistance of a lipid cubic phase with interdigitated lipids suggests a specific role for the highly conserved N-terminus of SP-B in stabilizing this unusual lipid polymorphism.
Collapse
Affiliation(s)
- Nhi Tran
- Department of Chemistry, University of Florida , Gainesville, Florida 32611, United States
| | - Justin Kurian
- Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida 32610, United States
| | - Avni Bhatt
- Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida 32610, United States
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida 32610, United States
| | - Joanna R Long
- Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida 32610, United States
| |
Collapse
|
14
|
Roldan N, Pérez-Gil J, Morrow MR, García-Álvarez B. Divide & Conquer: Surfactant Protein SP-C and Cholesterol Modulate Phase Segregation in Lung Surfactant. Biophys J 2017; 113:847-859. [PMID: 28834721 PMCID: PMC5567427 DOI: 10.1016/j.bpj.2017.06.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/15/2017] [Accepted: 06/26/2017] [Indexed: 02/04/2023] Open
Abstract
Lung surfactant (LS) is an essential system supporting the respiratory function. Cholesterol can be deleterious for LS function, a condition that is reversed by the presence of the lipopeptide SP-C. In this work, the structure of LS-mimicking membranes has been analyzed under the combined effect of SP-C and cholesterol by deuterium NMR and phosphorus NMR and by electron spin resonance. Our results show that SP-C induces phase segregation at 37°C, resulting in an ordered phase with spectral features resembling an interdigitated state enriched in dipalmitoylphosphatidylcholine, a liquid-crystalline bilayer phase, and an extremely mobile phase consistent with small vesicles or micelles. In the presence of cholesterol, POPC and POPG motion seem to be more hindered by SP-C than dipalmitoylphosphatidylcholine. The use of deuterated cholesterol did not show signs of specific interactions that could be attributed to SP-C or to the other hydrophobic surfactant protein SP-B. Palmitoylation of SP-C had an indirect effect on the extent of protein-lipid perturbations by stabilizing SP-C structure, and seemed to be important to maximize differences among the lipids participating in each phase. These results shed some light on how SP-C-induced lipid perturbations can alter membrane structure to sustain LS functionality at the air-liquid interface.
Collapse
Affiliation(s)
- Nuria Roldan
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain; Healthcare Research Institute of Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jesús Pérez-Gil
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain; Healthcare Research Institute of Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Michael R Morrow
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Begoña García-Álvarez
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain; Healthcare Research Institute of Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain.
| |
Collapse
|
15
|
Cerrada A, Haller T, Cruz A, Pérez-Gil J. Pneumocytes Assemble Lung Surfactant as Highly Packed/Dehydrated States with Optimal Surface Activity. Biophys J 2016; 109:2295-306. [PMID: 26636941 DOI: 10.1016/j.bpj.2015.10.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 01/22/2023] Open
Abstract
Pulmonary surfactant (PS) is an essential complex of lipids and specific proteins synthesized in alveolar type II pneumocytes, where it is assembled and stored intracellularly as multilayered organelles known as lamellar bodies (LBs). Once secreted upon physiological stimulation, LBs maintain a densely packed structure in the form of lamellar body-like particles (LBPs), which are efficiently transferred into the alveolar air-water interface, lowering surface tension to avoid lung collapse at end-expiration. In this work, the structural organization of membranes in LBs and LBPs freshly secreted by primary cultures of rat ATII cells has been compared with that of native lung surfactant membranes isolated from porcine bronchoalveolar lavage. PS assembles in LBs as crystalline-like highly ordered structures, with a highly packed and dehydrated state, which is maintained at supraphysiological temperatures. This relatively ordered/packed state is retained in secreted LBPs. The micro- and nanostructural examination of LBPs suggests the existence of high levels of structural complexity in comparison with the material purified from lavages, which may contain partially inactivated or spent structures. Additionally, freshly secreted surfactant LBPs exhibit superior activity when generating interfacial films and a higher intrinsic resistance to inactivating agents, such as serum proteins or meconium. We propose that LBs are assembled as an energy-activated structure competent to form very efficient interfacial films, and that the organization of lipids and proteins and the properties displayed by the films formed by LBPs are likely similar to those established at the alveolar interface and represent the actual functional structure of surfactant as it sustains respiration.
Collapse
Affiliation(s)
- Alejandro Cerrada
- Department of Biochemistry, Faculty of Biology, and Hospital 12 Octubre Research Institute, Universidad Complutense, Madrid, Spain
| | - Thomas Haller
- Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Antonio Cruz
- Department of Biochemistry, Faculty of Biology, and Hospital 12 Octubre Research Institute, Universidad Complutense, Madrid, Spain
| | - Jesús Pérez-Gil
- Department of Biochemistry, Faculty of Biology, and Hospital 12 Octubre Research Institute, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
16
|
Chavarha M, Loney RW, Rananavare SB, Hall SB. Hydrophobic surfactant proteins strongly induce negative curvature. Biophys J 2016; 109:95-105. [PMID: 26153706 DOI: 10.1016/j.bpj.2015.05.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/23/2015] [Accepted: 05/28/2015] [Indexed: 01/31/2023] Open
Abstract
The hydrophobic surfactant proteins SP-B and SP-C greatly accelerate the adsorption of vesicles containing the surfactant lipids to form a film that lowers the surface tension of the air/water interface in the lungs. Pulmonary surfactant enters the interface by a process analogous to the fusion of two vesicles. As with fusion, several factors affect adsorption according to how they alter the curvature of lipid leaflets, suggesting that adsorption proceeds via a rate-limiting structure with negative curvature, in which the hydrophilic face of the phospholipid leaflets is concave. In the studies reported here, we tested whether the surfactant proteins might promote adsorption by inducing lipids to adopt a more negative curvature, closer to the configuration of the hypothetical intermediate. Our experiments used x-ray diffraction to determine how the proteins in their physiological ratio affect the radius of cylindrical monolayers in the negatively curved, inverse hexagonal phase. With binary mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), the proteins produced a dose-related effect on curvature that depended on the phospholipid composition. With DOPE alone, the proteins produced no change. With an increasing mol fraction of DOPC, the response to the proteins increased, reaching a maximum 50% reduction in cylindrical radius at 5% (w/w) protein. This change represented a doubling of curvature at the outer cylindrical surface. The change in spontaneous curvature, defined at approximately the level of the glycerol group, would be greater. Analysis of the results in terms of a Langmuir model for binding to a surface suggests that the effect of the lipids is consistent with a change in the maximum binding capacity. Our findings show that surfactant proteins can promote negative curvature, and support the possibility that they facilitate adsorption by that mechanism.
Collapse
Affiliation(s)
- Mariya Chavarha
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, Portland, Oregon; Department of Medicine, Oregon Health & Science University, Portland, Oregon; Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, Oregon
| | - Ryan W Loney
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, Portland, Oregon; Department of Medicine, Oregon Health & Science University, Portland, Oregon; Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, Oregon
| | | | - Stephen B Hall
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, Portland, Oregon; Department of Medicine, Oregon Health & Science University, Portland, Oregon; Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
17
|
Baoukina S, Tieleman DP. Computer simulations of lung surfactant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2431-2440. [PMID: 26922885 DOI: 10.1016/j.bbamem.2016.02.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/21/2016] [Accepted: 02/23/2016] [Indexed: 01/26/2023]
Abstract
Lung surfactant lines the gas-exchange interface in the lungs and reduces the surface tension, which is necessary for breathing. Lung surfactant consists mainly of lipids with a small amount of proteins and forms a monolayer at the air-water interface connected to bilayer reservoirs. Lung surfactant function involves transfer of material between the monolayer and bilayers during the breathing cycle. Lipids and proteins are organized laterally in the monolayer; selected species are possibly preferentially transferred to bilayers. The complex 3D structure of lung surfactant and the exact roles of lipid organization and proteins remain important goals for research. We review recent simulation studies on the properties of lipid monolayers, monolayers with phase coexistence, monolayer-bilayer transformations, lipid-protein interactions, and effects of nanoparticles on lung surfactant. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Svetlana Baoukina
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
18
|
Olmeda B, García‐Álvarez B, Gómez MJ, Martínez‐Calle M, Cruz A, Pérez‐Gil J. A model for the structure and mechanism of action of pulmonary surfactant protein B. FASEB J 2015; 29:4236-47. [DOI: 10.1096/fj.15-273458] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/15/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Bárbara Olmeda
- Departmento de Bioquímica, Facultad de BiologíaUniversidad ComplutenseMadridSpain
| | | | - Manuel J. Gómez
- Centro de Astrobiología (INTA‐CSIC), Torrejón de ArdozMadridSpain
| | - Marta Martínez‐Calle
- Departmento de Bioquímica, Facultad de BiologíaUniversidad ComplutenseMadridSpain
| | - Antonio Cruz
- Departmento de Bioquímica, Facultad de BiologíaUniversidad ComplutenseMadridSpain
| | - Jesús Pérez‐Gil
- Departmento de Bioquímica, Facultad de BiologíaUniversidad ComplutenseMadridSpain
| |
Collapse
|
19
|
Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chem Phys Lipids 2014; 185:153-75. [PMID: 25260665 DOI: 10.1016/j.chemphyslip.2014.09.002] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/06/2014] [Accepted: 09/11/2014] [Indexed: 12/30/2022]
Abstract
The respiratory surface in the mammalian lung is stabilized by pulmonary surfactant, a membrane-based system composed of multiple lipids and specific proteins, the primary function of which is to minimize the surface tension at the alveolar air-liquid interface, optimizing the mechanics of breathing and avoiding alveolar collapse, especially at the end of expiration. The goal of the present review is to summarize current knowledge regarding the structure, lipid-protein interactions and mechanical features of surfactant membranes and films and how these properties correlate with surfactant biological function inside the lungs. Surfactant mechanical properties can be severely compromised by different agents, which lead to surfactant inhibition and ultimately contributes to the development of pulmonary disorders and pathologies in newborns, children and adults. A detailed comprehension of the unique mechanical and rheological properties of surfactant layers is crucial for the diagnostics and treatment of lung diseases, either by analyzing the contribution of surfactant impairment to the pathophysiology or by improving the formulations in surfactant replacement therapies. Finally, a short review is also included on the most relevant experimental techniques currently employed to evaluate lung surfactant mechanics, rheology, and inhibition and reactivation processes.
Collapse
|
20
|
Lopez-Rodriguez E, Pérez-Gil J. Structure-function relationships in pulmonary surfactant membranes: from biophysics to therapy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1568-85. [PMID: 24525076 DOI: 10.1016/j.bbamem.2014.01.028] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 01/22/2014] [Accepted: 01/27/2014] [Indexed: 01/01/2023]
Abstract
Pulmonary surfactant is an essential lipid-protein complex to maintain an operative respiratory surface at the mammalian lungs. It reduces surface tension at the alveolar air-liquid interface to stabilise the lungs against physical forces operating along the compression-expansion breathing cycles. At the same time, surfactant integrates elements establishing a primary barrier against the entry of pathogens. Lack or deficiencies of the surfactant system are associated with respiratory pathologies, which treatment often includes supplementation with exogenous materials. The present review summarises current models on the molecular mechanisms of surfactant function, with particular emphasis in its biophysical properties to stabilise the lungs and the molecular alterations connecting impaired surfactant with diseased organs. It also provides a perspective on the current surfactant-based strategies to treat respiratory pathologies. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
- Elena Lopez-Rodriguez
- Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, Universidad Complutense de Madrid, Madrid, Spain; Institute for Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Biomedical Research in End Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Jesús Pérez-Gil
- Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
21
|
Lopez-Rodriguez E, Cruz A, Richter RP, Taeusch HW, Pérez-Gil J. Transient exposure of pulmonary surfactant to hyaluronan promotes structural and compositional transformations into a highly active state. J Biol Chem 2013; 288:29872-81. [PMID: 23983120 DOI: 10.1074/jbc.m113.493957] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pulmonary surfactant is a lipid-protein complex that lowers surface tension at the respiratory air-liquid interface, stabilizing the lungs against physical forces tending to collapse alveoli. Dysfunction of surfactant is associated with respiratory pathologies such as acute respiratory distress syndrome or meconium aspiration syndrome where naturally occurring surfactant-inhibitory agents such as serum, meconium, or cholesterol reach the lung. We analyzed the effect of hyaluronan (HA) on the structure and surface behavior of pulmonary surfactant to understand the mechanism for HA-promoted surfactant protection in the presence of inhibitory agents. In particular, we found that HA affects structural properties such as the aggregation state of surfactant membranes and the size, distribution, and order/packing of phase-segregated lipid domains. These effects do not require a direct interaction between surfactant complexes and HA and are accompanied by a compositional reorganization of large surfactant complexes that become enriched with saturated phospholipid species. HA-exposed surfactant reaches very high efficiency in terms of rapid and spontaneous adsorption of surfactant phospholipids at the air-liquid interface and shows significantly improved resistance to inactivation by serum or cholesterol. We propose that physical effects pertaining to the formation of a meshwork of interpenetrating HA polymer chains are responsible for the changes in surfactant structure and composition that enhance surfactant function and, thus, resistance to inactivation. The higher resistance of HA-exposed surfactant to inactivation persists even after removal of the polymer, suggesting that transient exposure of surfactant to polymers like HA could be a promising strategy for the production of more efficient therapeutic surfactant preparations.
Collapse
Affiliation(s)
- Elena Lopez-Rodriguez
- From the Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
22
|
Sylvester A, MacEachern L, Booth V, Morrow MR. Interaction of the C-terminal peptide of pulmonary surfactant protein B (SP-B) with a bicellar lipid mixture containing anionic lipid. PLoS One 2013; 8:e72248. [PMID: 23991073 PMCID: PMC3753361 DOI: 10.1371/journal.pone.0072248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 07/08/2013] [Indexed: 01/12/2023] Open
Abstract
The hydrophobic lung surfactant SP-B is essential for respiration. SP-B promotes spreading and adsorption of surfactant at the alveolar air-water interface and may facilitate connections between the surface layer and underlying lamellar reservoirs of surfactant material. SP-B63–78 is a cationic and amphipathic helical peptide containing the C-terminal helix of SP-B. 2H NMR has been used to examine the effect of SP-B63–78 on the phase behavior and dynamics of bicellar lipid dispersions containing the longer chain phospholipids DMPC-d54 and DMPG and the shorter chain lipid DHPC mixed with a 3∶1∶1 molar ratio. Below the gel-to-liquid crystal phase transition temperature of the longer chain components, bicellar mixtures form small, rapidly reorienting disk-like particles with shorter chain lipid components predominantly found around the highly curved particle edges. With increasing temperature, the particles coalesce into larger magnetically-oriented structures and then into more extended lamellar phases. The susceptibility of bicellar particles to coalescence and large scale reorganization makes them an interesting platform in which to study peptide-induced interactions between lipid assemblies. SP-B63–78 is found to lower the temperature at which the orientable phase transforms to the more extended lamellar phase. The peptide also changes the spectrum of motions contributing to quadrupole echo decay in the lamellar phase. The way in which the peptide alters interactions between bilayered micelle structures may provide some insight into some aspects of the role of full-length SP-B in maintaining a functional surfactant layer in lungs.
Collapse
Affiliation(s)
- Alexander Sylvester
- Department of Physics & Physical Oceanography, Memorial University of Newfoundland St. John’s, Newfoundland and Labrador, Canada
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Lauren MacEachern
- Department of Physics & Physical Oceanography, Memorial University of Newfoundland St. John’s, Newfoundland and Labrador, Canada
| | - Valerie Booth
- Department of Physics & Physical Oceanography, Memorial University of Newfoundland St. John’s, Newfoundland and Labrador, Canada
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Michael R. Morrow
- Department of Physics & Physical Oceanography, Memorial University of Newfoundland St. John’s, Newfoundland and Labrador, Canada
- * E-mail:
| |
Collapse
|
23
|
Chavarha M, Loney RW, Rananavare SB, Hall SB. An anionic phospholipid enables the hydrophobic surfactant proteins to alter spontaneous curvature. Biophys J 2013; 104:594-603. [PMID: 23442910 DOI: 10.1016/j.bpj.2012.12.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 12/20/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022] Open
Abstract
The hydrophobic surfactant proteins, SP-B and SP-C, greatly accelerate the adsorption of the surfactant lipids to an air/water interface. Previous studies of factors that affect curvature suggest that vesicles may adsorb via a rate-limiting structure with prominent negative curvature, in which the hydrophilic face of the lipid leaflets is concave. To determine if SP-B and SP-C might promote adsorption by inducing negative curvature, we used small-angle x-ray scattering to test whether the physiological mixture of the two proteins affects the radius of cylindrical monolayers in the inverse hexagonal phase. With dioleoyl phosphatidylethanolamine alone, the proteins had no effect on the hexagonal lattice constant, suggesting that the proteins fail to insert into the cylindrical monolayers. The surfactant lipids also contain ∼10% anionic phospholipids, which might allow incorporation of the cationic proteins. With 10% of the anionic dioleoyl phosphatidylglycerol added to dioleoyl phosphatidylethanolamine, the proteins induced a dose-related decrease in the hexagonal lattice constant. At 30°C, the reduction reached a maximum of 8% relative to the lipids alone at ∼1% (w/w) protein. Variation of NaCl concentration tested whether the effect of the protein represented a strictly electrostatic effect that screening by electrolyte would eliminate. With concentrations up to 3 M NaCl, the dose-related change in the hexagonal lattice constant decreased but persisted. Measurements at different hydrations determined the location of the pivotal plane and proved that the change in the lattice constant produced by the proteins resulted from a shift in spontaneous curvature. These results provide the most direct evidence yet that the surfactant proteins can induce negative curvature in lipid leaflets. This finding supports the model in which the proteins promote adsorption by facilitating the formation of a negatively curved, rate-limiting structure.
Collapse
Affiliation(s)
- Mariya Chavarha
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, USA
| | | | | | | |
Collapse
|
24
|
Chavarha M, Loney RW, Kumar K, Rananavare SB, Hall SB. Differential effects of the hydrophobic surfactant proteins on the formation of inverse bicontinuous cubic phases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:16596-604. [PMID: 23140329 PMCID: PMC3514604 DOI: 10.1021/la3025364] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Prior studies have shown that the biological mixture of the two hydrophobic surfactant proteins, SP-B and SP-C, produces faster adsorption of the surfactant lipids to an air/water interface, and that they induce 1-palmitoyl-2-oleoyl phosphatidylethanolamine (POPE) to form inverse bicontinuous cubic phases. Previous studies have shown that SP-B has a much greater effect than SP-C on adsorption. If the two proteins induce faster adsorption and formation of the bicontinuous structures by similar mechanisms, then they should also have different abilities to form the cubic phases. To test this hypothesis, we measured small-angle X-ray scattering on the individual proteins combined with POPE. SP-B replicated the dose-related ability of the combined proteins to induce the cubic phases at temperatures more than 25 °C below the point at which POPE alone forms the curved inverse-hexagonal phase. With SP-C, diffraction from cubic structures was either absent or present at very low intensities only with larger amounts of protein. The correlation between the structural effects of inducing curved structures and the functional effects on the rate of adsorption fits with the model in which SP-B promotes adsorption by facilitating formation of an inversely curved, rate-limiting structure.
Collapse
Affiliation(s)
- Mariya Chavarha
- Departments of Biochemistry & Molecular Biology, Medicine, and Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239-3098
| | - Ryan W. Loney
- Departments of Biochemistry & Molecular Biology, Medicine, and Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239-3098
| | - Kamlesh Kumar
- Departments of Biochemistry & Molecular Biology, Medicine, and Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239-3098
| | | | - Stephen B. Hall
- Departments of Biochemistry & Molecular Biology, Medicine, and Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239-3098
- To whom correspondence should be addressed: Stephen B. Hall, Pulmonary & Critical Care Medicine, Mail Code UHN-67, Oregon Health & Science University, Portland, Oregon 97239-3098, Telephone: (503) 494-6667,
| |
Collapse
|
25
|
Olmeda B, García-Álvarez B, Pérez-Gil J. Structure–function correlations of pulmonary surfactant protein SP-B and the saposin-like family of proteins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 42:209-22. [DOI: 10.1007/s00249-012-0858-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/18/2012] [Accepted: 09/03/2012] [Indexed: 02/06/2023]
|
26
|
Casals C, Cañadas O. Role of lipid ordered/disordered phase coexistence in pulmonary surfactant function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2550-62. [PMID: 22659676 DOI: 10.1016/j.bbamem.2012.05.024] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 05/03/2012] [Accepted: 05/22/2012] [Indexed: 12/27/2022]
Abstract
The respiratory epithelium has evolved to produce a complicated network of extracellular membranes that are essential for breathing and, ultimately, survival. Surfactant membranes form a stable monolayer at the air-liquid interface with bilayer structures attached to it. By reducing the surface tension at the air-liquid interface, surfactant stabilizes the lung against collapse and facilitates inflation. The special composition of surfactant membranes results in the coexistence of two distinct micrometer-sized ordered/disordered phases maintained up to physiological temperatures. Phase coexistence might facilitate monolayer folding to form three-dimensional structures during exhalation and hence allow the film to attain minimal surface tension. These folded structures may act as a membrane reserve and attenuate the increase in membrane tension during inspiration. The present review summarizes what is known of ordered/disordered lipid phase coexistence in lung surfactant, paying attention to the possible role played by domain boundaries in the monolayer-to-multilayer transition, and the correlations of biophysical inactivation of pulmonary surfactant with alterations in phase coexistence.
Collapse
Affiliation(s)
- Cristina Casals
- Departamento de Bioquimica y Biologia Molecular, Universidad Complutense de Madrid, Madrid, Spain.
| | | |
Collapse
|
27
|
Orientation and depth of surfactant protein B C-terminal helix in lung surfactant bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1165-72. [PMID: 22252270 DOI: 10.1016/j.bbamem.2012.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/19/2011] [Accepted: 01/03/2012] [Indexed: 11/22/2022]
Abstract
SP-B(CTERM) is a cationic amphipathic helical peptide and functional fragment composed of residues 63 to 78 of surfactant protein B (SP-B). Static oriented and magic angle spinning solid state NMR, along with molecular dynamics simulation was used to investigate its structure, orientation, and depth in lipid bilayers of several compositions, namely POPC, DPPC, DPPC/POPC/POPG, and bovine lung surfactant extract (BLES). In all lipid environments the peptide was oriented parallel to the membrane surface. While maintaining this approximately planar orientation, SP-B(CTERM) exhibited a flexible topology controlled by subtle variations in lipid composition. SP-B(CTERM)-induced lipid realignment and/or conformational changes at the level of the head group were observed using (31)P solid-state NMR spectroscopy. Measurements of the depth of SP-B(CTERM) indicated the peptide center positions ~8Å more deeply than the phosphate headgroups, a topology that may allow the peptide to promote functional lipid structures without causing micellization upon compression.
Collapse
|
28
|
Lung surfactant protein SP-B promotes formation of bilayer reservoirs from monolayer and lipid transfer between the interface and subphase. Biophys J 2011; 100:1678-87. [PMID: 21463581 DOI: 10.1016/j.bpj.2011.02.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 02/10/2011] [Accepted: 02/14/2011] [Indexed: 12/13/2022] Open
Abstract
We investigated the possible role of SP-B proteins in the function of lung surfactant. To this end, lipid monolayers at the air/water interface, bilayers in water, and transformations between them in the presence of SP-B were simulated. The proteins attached bilayers to monolayers, providing close proximity of the reservoirs with the interface. In the attached aggregates, SP-B mediated establishment of the lipid-lined connection similar to the hemifusion stalk. Via this connection, a lipid flow was initiated between the monolayer at the interface and the bilayer in water in a surface-tension-dependent manner. On interface expansion, the flow of lipids to the monolayer restored the surface tension to the equilibrium spreading value. SP-B induced formation of bilayer folds from the monolayer at positive surface tensions below the equilibrium. In the absence of proteins, lipid monolayers were stable at these conditions. Fold nucleation was initiated by SP-B from the liquid-expanded monolayer phase by local bending, and the proteins lined the curved perimeter of the growing fold. No effect on the liquid-condensed phase was observed. Covalently linked dimers resulted in faster kinetics for monolayer folding. The simulation results are in line with existing hypotheses on SP-B activity in lung surfactant and explain its molecular mechanism.
Collapse
|
29
|
Sarker M, Jackman D, Booth V. Lung surfactant protein A (SP-A) interactions with model lung surfactant lipids and an SP-B fragment. Biochemistry 2011; 50:4867-76. [PMID: 21553841 PMCID: PMC3104520 DOI: 10.1021/bi200167d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Surfactant protein A (SP-A) is the most abundant protein component of lung surfactant, a complex mixture of proteins and lipids. SP-A performs host defense activities and modulates the biophysical properties of surfactant in concerted action with surfactant protein B (SP-B). Current models of lung surfactant mechanism generally assume SP-A functions in its octadecameric form. However, one of the findings of this study is that when SP-A is bound to detergent and lipid micelles that mimic lung surfactant phospholipids, it exists predominantly as smaller oligomers, in sharp contrast to the much larger forms observed when alone in water. These investigations were carried out in sodium dodecyl sulfate (SDS), dodecylphosphocholine (DPC), lysomyristoylphosphatidylcholine (LMPC), lysomyristoylphosphatidylglycerol (LMPG), and mixed LMPC + LMPG micelles, using solution and diffusion nuclear magnetic resonance (NMR) spectroscopy. We have also probed SP-A’s interaction with Mini-B, a biologically active synthetic fragment of SP-B, in the presence of micelles. Despite variations in Mini-B’s own interactions with micelles of different compositions, SP-A is found to interact with Mini-B in all micelle systems and perhaps to undergo a further structural rearrangement upon interacting with Mini-B. The degree of SP-A–Mini-B interaction appears to be dependent on the type of lipid headgroup and is likely mediated through the micelles, rather than direct binding.
Collapse
Affiliation(s)
- Muzaddid Sarker
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | | |
Collapse
|
30
|
Lipid polymorphism induced by surfactant peptide SP-B(1-25). Biophys J 2011; 99:1773-82. [PMID: 20858421 DOI: 10.1016/j.bpj.2010.06.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/24/2010] [Accepted: 06/28/2010] [Indexed: 01/09/2023] Open
Abstract
Pulmonary surfactant protein B (SP-B) is an essential protein for lowering surface tension in the alveoli. SP-B(1-25), a peptide comprised of the N-terminal 25 amino-acid residues of SP-B, is known to retain much of the biological activity of SP-B. Circular dichroism has shown that when SP-B(1-25) interacts with negatively charged lipid vesicles, it contains significant helical structure for the lipid compositions and peptide/lipid ratios studied here. The effect of SP-B(1-25) on lipid organization and polymorphisms was investigated via DSC, dynamic light scattering, transmission electron microscopy, and solid-state NMR spectroscopy. At 1-3 mol% peptide and physiologic temperature, SP-B(1-25) partitions at the interface of negatively charged PC/PG lipid bilayers. In lipid mixtures containing 1-5 mol% peptide, the structure of SP-B(1-25) remains constant, but (2)H and (31)P NMR spectra show the presence of an isotropic lipid phase in exchange with the lamellar phase below the T(m) of the lipids. This behavior is observed for both DPPC/POPG and POPC/POPG lipid mixtures as well as for both the PC and PG components of the mixtures. For 1-3 mol% SP-B(1-25), a return to a single lamellar phase above the lipid mixture T(m) is observed, but for 5 mol% SP-B(1-25) a significant isotropic component is observed at physiologic temperatures for DPPC and exchange broadening is observed in (2)H and (31)P NMR spectra of the other lipid components in the two mixtures. DLS and TEM rule out the formation of micellar structures and suggest that SP-B(1-25) promotes the formation of a fluid isotropic phase. The ability of SP-B(1-25) to fuse lipid lamellae via this mechanism, particularly those enriched in DPPC, suggests a specific role for the highly conserved N-terminus of SP-B in the packing of lipid lamellae into surfactant lamellar bodies or in stabilizing multilayer structures at the air-liquid interface. Importantly, this behavior has not been seen for the other SP-B fragments of SP-B(8-25) and SP-B(59-80), indicating a critical role for the proline rich first seven amino acids in this protein.
Collapse
|
31
|
Baoukina S, Tieleman DP. Direct simulation of protein-mediated vesicle fusion: lung surfactant protein B. Biophys J 2010; 99:2134-42. [PMID: 20923647 PMCID: PMC3042587 DOI: 10.1016/j.bpj.2010.07.049] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/22/2010] [Accepted: 07/23/2010] [Indexed: 10/19/2022] Open
Abstract
We simulated spontaneous fusion of small unilamellar vesicles mediated by lung surfactant protein B (SP-B) using the MARTINI force field. An SP-B monomer triggers fusion events by anchoring two vesicles and facilitating the formation of a lipid bridge between the proximal leaflets. Once a lipid bridge is formed, fusion proceeds via a previously described stalk - hemifusion diaphragm - pore-opening pathway. In the absence of protein, fusion of vesicles was not observed in either unbiased simulations or upon application of a restraining potential to maintain the vesicles in close proximity. The shape of SP-B appears to enable it to bind to two vesicles at once, forcing their proximity, and to facilitate the initial transfer of lipids to form a high-energy hemifusion intermediate. Our results may provide insight into more general mechanisms of protein-mediated membrane fusion, and a possible role of SP-B in the secretory pathway and transfer of lung surfactant to the gas exchange interface.
Collapse
Affiliation(s)
| | - D. Peter Tieleman
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| |
Collapse
|
32
|
Nag K, Vidyashankar S, Devraj R, Fritzen Garcia M, Panda AK. Physicochemical studies on the interaction of serum albumin with pulmonary surfactant extract in films and bulk bilayer phase. J Colloid Interface Sci 2010; 352:456-64. [PMID: 20850129 DOI: 10.1016/j.jcis.2010.08.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 11/28/2022]
Abstract
Functionality, structure and composition of the adsorbed films of bovine lipid extract surfactant (BLES), in the absence and presence of bovine serum albumin (BSA), at the air-buffer interface was characterized through surface tension, atomic force microscopy and time of flight secondary ion mass spectrometric methods. Gel and fluid domains of BLES films were found to be altered significantly in the presence of BSA. Differential scanning calorimetric studies on BLES dispersions in presence of BSA revealed that the perturbations of the lipid bilayer structures were significant only at higher amount of BSA. FTIR studies on the BLES dispersions in buffer solution revealed that BSA could affect the lipid head-group hydrations in bilayer as well as the methylene and methyl vibration modes of fatty acyl chains of the phospholipids present in BLES. Serum albumin could perturb the film structure at pathophysiological concentration while higher amount of BSA was required in perturbing the bilayer structures. The studies suggest a connected perturbed bilayer to monolayer transition model for surfactant inactivation at the alveolar-air interface in dysfunctional surfactants.
Collapse
Affiliation(s)
- Kaushik Nag
- Department of Biochemistry, Memorial University, St. John's, Newfoundland, Canada A1B 3X9
| | | | | | | | | |
Collapse
|