1
|
Puthumana EA, Muhamad L, Young LA, Chu XP. TRPA1, TRPV1, and Caffeine: Pain and Analgesia. Int J Mol Sci 2024; 25:7903. [PMID: 39063144 PMCID: PMC11276833 DOI: 10.3390/ijms25147903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Caffeine (1,3,7-trimethylxanthine) is a naturally occurring methylxanthine that acts as a potent central nervous system stimulant found in more than 60 different plants and fruits. Although caffeinated beverages are widely and casually consumed, the application of caffeine beyond dietary levels as pharmacologic therapy has been recognized since the beginning of its recorded use. The analgesic and vasoactive properties of caffeine are well known, but the extent of their molecular basis remains an area of active research. There is existing evidence in the literature as to caffeine's effect on TRP channels, the role of caffeine in pain management and analgesia, as well as the role of TRP in pain and analgesia; however, there has yet to be a review focused on the interaction between caffeine and TRP channels. Although the influence of caffeine on TRP has been demonstrated in the lab and in animal models, there is a scarcity of data collected on a large scale as to the clinical utility of caffeine as a regulator of TRP. This review aims to prompt further molecular research to elucidate the specific ligand-host interaction between caffeine and TRP by validating caffeine as a regulator of transient receptor potential (TRP) channels-focusing on the transient receptor potential vanilloid 1 (TRPV1) receptor and transient receptor potential ankyrin 1 (TRPA1) receptor subtypes-and its application in areas of pain.
Collapse
Affiliation(s)
| | | | | | - Xiang-Ping Chu
- Departments of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; (E.A.P.); (L.M.); (L.A.Y.)
| |
Collapse
|
2
|
YAMAGUCHI T, UCHIDA K, YAMAZAKI J. Canine, mouse, and human transient receptor potential ankyrin 1 (TRPA1) channels show different sensitivity to menthol or cold stimulation. J Vet Med Sci 2023; 85:1301-1309. [PMID: 37821377 PMCID: PMC10788164 DOI: 10.1292/jvms.23-0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a nonselective cation channel that is activated by a variety of stimuli and acts as a nociceptor. Mouse and human TRPA1 exhibit different reactivity to some stimuli, including chemicals such as menthol as well as cold stimuli. The cold sensitivity of TRPA1 in mammalian species is controversial. Here, we analyzed the reactivity of heterologously expressed canine TRPA1 as well as the mouse and human orthologs to menthol or cold stimulation in Ca2+-imaging experiments. Canine and human TRPA1 exhibited a similar response to menthol, that is, activation in a concentration-dependent manner, even at the high concentration range in contrast to the mouse ortholog, which did not respond to high concentration of menthol. In addition, the response during the removal of menthol was different; mouse TRPA1-expressing cells exhibited a typical response with a rapid and clear increase in [Ca2+]i ("off-response"), whereas [Ca2+]i in human TRPA1-expressing cells was dramatically decreased by the washout of menthol and [Ca2+]i in canine TRPA1-expressing cells was slightly decreased. Finally, canine TRPA1 as well as mouse and human TRPA1 were activated by cold stimulation (below 19-20°C). The sensitivity to cold stimulation differed between these species, that is, human TRPA1 activated at higher temperatures compared with the canine and mouse orthologs. All of the above responses were suppressed by the selective TRPA1 inhibitor HC-030031. Because the concentration-dependency and "off-response" of menthol as well as the cold sensitivity were not uniform among these species, studies of canine TRPA1 might be useful for understanding the species-specific functional properties of mammalian TRPA1.
Collapse
Affiliation(s)
- Takuya YAMAGUCHI
- Laboratory of Veterinary Pharmacology, Department of
Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kanagawa,
Japan
| | - Kunitoshi UCHIDA
- Laboratory of Functional Physiology, Department of
Environmental and Life Sciences, School of Food and Nutritional Sciences, University of
Shizuoka, Shizuoka, Japan
| | - Jun YAMAZAKI
- Laboratory of Veterinary Pharmacology, Department of
Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kanagawa,
Japan
| |
Collapse
|
3
|
Akiyama T, Curtis E, Carstens MI, Carstens E. Enhancement of allyl isothiocyanate-evoked responses of mouse trigeminal ganglion cells by the kokumi substance γ-glutamyl-valyl-glycine (γ-EVG) through activation of the calcium-sensing receptor (CaSR). Physiol Behav 2023; 260:114063. [PMID: 36563734 DOI: 10.1016/j.physbeh.2022.114063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Some γ-glutamyl peptides including glutathione (γ-Glu-Cys-Gly) and γ-glutamyl-valyl-glycine (γ-Glu-Val-Gly= γ-EVG) are reported to increase the intensity of basic tastes, such as salty, sweet, and umami, although they have no taste themselves at tested concentrations. The mechanism of action of γ-glutamyl peptides is not clearly understood, but the calcium sensing receptor (CaSR) may be involved. Glutathione and γ-EVG enhance the pungency of some spices, and the present study investigated the effects of γ-EVG on the responses of trigeminal ganglion (TG) cells to thermosensitiveTRP channel agonists. Single-cell RT-PCR revealed that most CaSR-expressing cells co-expressed TRPV1 (sensitive to capsaicin) and TRPA1 (sensitive to allyl isothiocyanate= AITC). Intracellular Ca2+ imaging showed that pretreatment with γ-EVG excited 7% of trigeminal ganglion (TG) cells and increased the amplitude of their responses to AITC, but not to capsaicin or menthol. The enhancing effect of γ-EVG was prevented by a CaSR inhibitor. The results indicate that γ-EVG increases AITC pungency by activating a subset of trigeminal ganglion cells that co-express CaSR and TRPA1.
Collapse
Affiliation(s)
- Tasuku Akiyama
- Dept. of Dermatology & Cutaneous Surgery, Univ. of Miami Miller School of Medicine, Miami FL United States of America
| | - Eric Curtis
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, United States of America
| | - M Iodi Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, United States of America
| | - E Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, United States of America.
| |
Collapse
|
4
|
Startek JB, Milici A, Naert R, Segal A, Alpizar YA, Voets T, Talavera K. The Agonist Action of Alkylphenols on TRPA1 Relates to Their Effects on Membrane Lipid Order: Implications for TRPA1-Mediated Chemosensation. Int J Mol Sci 2021; 22:ijms22073368. [PMID: 33806007 PMCID: PMC8037438 DOI: 10.3390/ijms22073368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
The Transient Receptor Potential Ankyrin 1 cation channel (TRPA1) is a broadly-tuned chemosensor expressed in nociceptive neurons. Multiple TRPA1 agonists are chemically unrelated non-electrophilic compounds, for which the mechanisms of channel activation remain unknown. Here, we assess the hypothesis that such chemicals activate TRPA1 by inducing mechanical perturbations in the plasma membrane. We characterized the activation of mouse TRPA1 by non-electrophilic alkylphenols (APs) of different carbon chain lengths in the para position of the aromatic ring. Having discarded oxidative stress and the action of electrophilic mediators as activation mechanisms, we determined whether APs induce mechanical perturbations in the plasma membrane using dyes whose fluorescence properties change upon alteration of the lipid environment. APs activated TRPA1, with potency increasing with their lipophilicity. APs increased the generalized polarization of Laurdan fluorescence and the anisotropy of the fluorescence of 1,6-diphenyl-1,3,5-hexatriene (DPH), also according to their lipophilicity. Thus, the potency of APs for TRPA1 activation is an increasing function of their ability to induce lipid order and membrane rigidity. These results support the hypothesis that TRPA1 senses non-electrophilic compounds by detecting the mechanical alterations they produce in the plasma membrane. This may explain how structurally unrelated non-reactive compounds induce TRPA1 activation and support the role of TRPA1 as an unspecific sensor of potentially noxious compounds.
Collapse
Affiliation(s)
- Justyna B. Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (J.B.S.); (A.M.); (R.N.); (A.S.); (Y.A.A.); (T.V.)
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Alina Milici
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (J.B.S.); (A.M.); (R.N.); (A.S.); (Y.A.A.); (T.V.)
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (J.B.S.); (A.M.); (R.N.); (A.S.); (Y.A.A.); (T.V.)
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Andrei Segal
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (J.B.S.); (A.M.); (R.N.); (A.S.); (Y.A.A.); (T.V.)
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Yeranddy A. Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (J.B.S.); (A.M.); (R.N.); (A.S.); (Y.A.A.); (T.V.)
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (J.B.S.); (A.M.); (R.N.); (A.S.); (Y.A.A.); (T.V.)
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (J.B.S.); (A.M.); (R.N.); (A.S.); (Y.A.A.); (T.V.)
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-16-330469
| |
Collapse
|
5
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
6
|
Logashina YA, Korolkova YV, Kozlov SA, Andreev YA. TRPA1 Channel as a Regulator of Neurogenic Inflammation and Pain: Structure, Function, Role in Pathophysiology, and Therapeutic Potential of Ligands. BIOCHEMISTRY (MOSCOW) 2019; 84:101-118. [PMID: 31216970 DOI: 10.1134/s0006297919020020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
TRPA1 is a cation channel located on the plasma membrane of many types of human and animal cells, including skin sensory neurons and epithelial cells of the intestine, lungs, urinary bladder, etc. TRPA1 is the major chemosensor that also responds to thermal and mechanical stimuli. Substances that activate TRPA1, e.g., allyl isothiocyanates (pungent components of mustard, horseradish, and wasabi), cinnamaldehyde from cinnamon, organosulfur compounds from garlic and onion, tear gas, acrolein and crotonaldehyde from cigarette smoke, etc., cause burning, mechanical and thermal hypersensitivity, cough, eye irritation, sneezing, mucus secretion, and neurogenic inflammation. An increased activity of TRPA1 leads to the emergence of chronic pruritus and allergic dermatitis and is associated with episodic pain syndrome, a hereditary disease characterized by episodes of debilitating pain triggered by stress. TRPA1 is now considered as one of the targets for developing new anti-inflammatory and analgesic drugs. This review summarizes information on the structure, function, and physiological role of this channel, as well as describes known TRPA1 ligands and their significance as therapeutic agents in the treatment of inflammation-associated pain.
Collapse
Affiliation(s)
- Yu A Logashina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - Yu V Korolkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - S A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Ya A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia. .,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| |
Collapse
|
7
|
Bais S, Greenberg RM. TRP channels as potential targets for antischistosomals. Int J Parasitol Drugs Drug Resist 2018; 8:511-517. [PMID: 30224169 PMCID: PMC6287577 DOI: 10.1016/j.ijpddr.2018.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 01/08/2023]
Abstract
Ion channels are membrane protein complexes that underlie electrical excitability in cells, allowing ions to diffuse through cell membranes in a regulated fashion. They are essential for normal functioning of the neuromusculature and other tissues. Ion channels are also validated targets for many current anthelmintics, yet the properties of only a small subset of ion channels in parasitic helminths have been explored in any detail. Transient receptor potential (TRP) channels comprise a widely diverse superfamily of ion channels with important roles in sensory signaling, regulation of ion homeostasis, organellar trafficking, and other functions. There are several subtypes of TRP channels, including TRPA1 and TRPV1 channels, both of which are involved in, among other functions, sensory, nociceptive, and inflammatory signaling in mammals. Several lines of evidence indicate that TRPA1-like channels in schistosomes exhibit pharmacological sensitivities that differ from their mammalian counterparts and that may signify unique physiological properties as well. Thus, in addition to responding to TRPA1 modulators, schistosome TRPA1-like channels also respond to compounds that in other organisms modulate TRPV1 channels. Notably, TRPV channel genes are not found in schistosome genomes. Here, we review the evidence leading to these conclusions and examine potential implications. We also discuss recent results showing that praziquantel, the current drug of choice against schistosomiasis, selectively targets host TRP channels in addition to its likely primary targets in the parasite. The results we discuss add weight to the notion that schistosome TRP channels are worthy of investigation as candidate therapeutic targets.
Collapse
Affiliation(s)
- Swarna Bais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia PA 19104, USA
| | - Robert M Greenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia PA 19104, USA.
| |
Collapse
|
8
|
Abstract
The transient receptor potential ankyrin 1 (TRPA1) ion channel is expressed in pain-sensing neurons and other tissues and has become a major target in the development of novel pharmaceuticals. A remarkable feature of the channel is its long list of activators, many of which we are exposed to in daily life. Many of these agonists induce pain and inflammation, making TRPA1 a major target for anti-inflammatory and analgesic therapies. Studies in human patients and in experimental animals have confirmed an important role for TRPA1 in a number of pain conditions. Over the recent years, much progress has been made in elucidating the molecular structure of TRPA1 and in discovering binding sites and modulatory sites of the channel. Because the list of published mutations and important molecular sites is steadily growing and because it has become difficult to see the forest for the trees, this review aims at summarizing the current knowledge about TRPA1, with a special focus on the molecular structure and the known binding or gating sites of the channel.
Collapse
Affiliation(s)
- Jannis E Meents
- Institute of Physiology, University Hospital RWTH Aachen , Aachen , Germany
| | - Cosmin I Ciotu
- Center for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| | - Michael J M Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| |
Collapse
|
9
|
TRPA1 ankyrin repeat six interacts with a small molecule inhibitor chemotype. Proc Natl Acad Sci U S A 2018; 115:12301-12306. [PMID: 30429323 DOI: 10.1073/pnas.1808142115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TRPA1, a member of the transient receptor potential channel (TRP) family, is genetically linked to pain in humans, and small molecule inhibitors are efficacious in preclinical animal models of inflammatory pain. These findings have driven significant interest in development of selective TRPA1 inhibitors as potential analgesics. The majority of TRPA1 inhibitors characterized to date have been reported to interact with the S5 transmembrane helices forming part of the pore region of the channel. However, the development of many of these inhibitors as clinical drug candidates has been prevented by high lipophilicity, low solubility, and poor pharmacokinetic profiles. Identification of alternate compound interacting sites on TRPA1 provides the opportunity to develop structurally distinct modulators with novel structure-activity relationships and more desirable physiochemical properties. In this paper, we have identified a previously undescribed potent and selective small molecule thiadiazole structural class of TRPA1 inhibitor. Using species ortholog chimeric and mutagenesis strategies, we narrowed down the site of interaction to ankyrinR #6 within the distal N-terminal region of TRPA1. To identify the individual amino acid residues involved, we generated a computational model of the ankyrinR domain. This model was used predictively to identify three critical amino acids in human TRPA1, G238, N249, and K270, which were confirmed by mutagenesis to account for compound activity. These findings establish a small molecule interaction region on TRPA1, expanding potential avenues for developing TRPA1 inhibitor analgesics and for probing the mechanism of channel gating.
Collapse
|
10
|
Startek JB, Voets T, Talavera K. To flourish or perish: evolutionary TRiPs into the sensory biology of plant-herbivore interactions. Pflugers Arch 2018; 471:213-236. [PMID: 30229297 DOI: 10.1007/s00424-018-2205-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022]
Abstract
The interactions between plants and their herbivores are highly complex systems generating on one side an extraordinary diversity of plant protection mechanisms and on the other side sophisticated consumer feeding strategies. Herbivores have evolved complex, integrative sensory systems that allow them to distinguish between food sources having mere bad flavors from the actually toxic ones. These systems are based on the senses of taste, olfaction and somatosensation in the oral and nasal cavities, and on post-ingestive chemosensory mechanisms. The potential ability of plant defensive chemical traits to induce tissue damage in foragers is mainly encoded in the latter through chemesthetic sensations such as burning, pain, itch, irritation, tingling, and numbness, all of which induce innate aversive behavioral responses. Here, we discuss the involvement of transient receptor potential (TRP) channels in the chemosensory mechanisms that are at the core of complex and fascinating plant-herbivore ecological networks. We review how "sensory" TRPs are activated by a myriad of plant-derived compounds, leading to cation influx, membrane depolarization, and excitation of sensory nerve fibers of the oronasal cavities in mammals and bitter-sensing cells in insects. We also illustrate how TRP channel expression patterns and functionalities vary between species, leading to intriguing evolutionary adaptations to the specific habitats and life cycles of individual organisms.
Collapse
Affiliation(s)
- Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Campus Gasthuisberg O&N1 bus 802, 3000, Leuven, Belgium. .,VIB Center for Brain & Disease Research, Leuven, Belgium.
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Campus Gasthuisberg O&N1 bus 802, 3000, Leuven, Belgium.,VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Campus Gasthuisberg O&N1 bus 802, 3000, Leuven, Belgium.,VIB Center for Brain & Disease Research, Leuven, Belgium
| |
Collapse
|
11
|
Oda M, Saito K, Hatta S, Kubo Y, Saitoh O. Chemical and thermal sensitivity of medaka TRPA1 analyzed in heterologous expression system. Biochem Biophys Res Commun 2017; 494:194-201. [DOI: 10.1016/j.bbrc.2017.10.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
|
12
|
Dong X, Kashio M, Peng G, Wang X, Tominaga M, Kadowaki T. Isoform-specific modulation of the chemical sensitivity of conserved TRPA1 channel in the major honeybee ectoparasitic mite, Tropilaelaps mercedesae. Open Biol 2017; 6:rsob.160042. [PMID: 27307515 PMCID: PMC4929936 DOI: 10.1098/rsob.160042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/17/2016] [Indexed: 11/12/2022] Open
Abstract
We identified and characterized the TRPA1 channel of Tropilaelaps mercedesae (TmTRPA1), one of two major species of honeybee ectoparasitic mite. Three TmTRPA1 isoforms with unique N-terminal sequences were activated by heat, and the isoform highly expressed in the mite's front legs, TmTRPA1b, was also activated by 27 plant-derived compounds including electrophiles. This suggests that the heat- and electrophile-dependent gating mechanisms as nocisensitive TRPA1 channel are well conserved between arthropod species. Intriguingly, one TmTRPA1 isoform, TmTRPA1a, was activated by only six compounds compared with two other isoforms, demonstrating that the N-terminal sequences are critical determinants for the chemical sensitivity. This is the first example of isoform-specific modulation of chemical sensitivity of TRPA1 channel in one species. α-terpineol showed repellent activity towards T. mercedesae in a laboratory assay and repressed T. mercedesae entry for reproduction into the brood cells with fifth instar larvae in hives. Thus, α-terpineol could be used as the potential compound to control two major honeybee ectoparasitic mites, T. mercedesae and Varroa destructor, in the apiculture industry.
Collapse
Affiliation(s)
- Xiaofeng Dong
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Jiangsu Province 215123, People's Republic of China
| | - Makiko Kashio
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Guangda Peng
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Jiangsu Province 215123, People's Republic of China
| | - Xinyue Wang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Jiangsu Province 215123, People's Republic of China
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan
| | - Tatsuhiko Kadowaki
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Jiangsu Province 215123, People's Republic of China
| |
Collapse
|
13
|
Saito S, Tominaga M. Evolutionary tuning of TRPA1 and TRPV1 thermal and chemical sensitivity in vertebrates. Temperature (Austin) 2017; 4:141-152. [PMID: 28680930 DOI: 10.1080/23328940.2017.1315478] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 12/24/2022] Open
Abstract
Thermal perception is an essential sensory system for survival since temperature fluctuations affect various biologic processes. Therefore, evolutionary changes in thermosensory systems may have played important roles in adaptation processes. Comparative analyses of sensory receptors among different species can provide us with important clues to understand the molecular basis for adaptation. Several ion channels belonging to the transient receptor potential (TRP) superfamily serve as thermal sensors in a wide variety of animal species. These TRP proteins are multimodal receptors that are activated by temperature as well as other sensory stimuli. Among them TRPV1 and TRPA1 are activated by noxious ranges of thermal stimuli and irritating chemicals, and are mainly expressed in nociceptive sensory neurons. Comparative analyses of TRPV1 and TRPA1 among various vertebrate species revealed evolutionary changes that likely contributed to diversification of sensory perception. Whereas heat-induced TRPV1 responses have been conserved across many vertebrates, TRPA1 varied among species. Mutagenesis experiments using these two channels from various species also helped characterize the molecular basis for their activation and inhibition. Meanwhile, recent detailed comparative analyses using closely related species showed shifts in TRPV1 and TRPA1 thermal sensitivity that allowed adaptation to different thermal environments. Changes in TRPV1 heat responses appear to arise from just a few amino acid differences among species. These observations suggest that evolutionary changes in peripheral sensors are likely driving force for shifting thermal perception in adaptation processes.
Collapse
Affiliation(s)
- Shigeru Saito
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institute of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institute of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| |
Collapse
|
14
|
Skerratt S. Recent Progress in the Discovery and Development of TRPA1 Modulators. PROGRESS IN MEDICINAL CHEMISTRY 2017; 56:81-115. [PMID: 28314413 DOI: 10.1016/bs.pmch.2016.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
TRPA1 is a well-validated therapeutic target in areas of high unmet medical need that include pain and respiratory disorders. The human genetic rationale for TRPA1 as a pain target is provided by a study describing a rare gain-of-function mutation in TRPA1, causing familial episodic pain syndrome. There is a growing interest in the TRPA1 field, with many pharmaceutical companies reporting the discovery of TRPA1 chemical matter; however, GRC 17536 remains to date the only TRPA1 antagonist to have completed Phase IIa studies. A key issue in the progression of TRPA1 programmes is the identification of high-quality orally bioavailable molecules. Most published TRPA1 ligands are commonly not suitable for clinical progression due to low lipophilic efficiency and/or poor absorption, distribution, metabolism, excretion and pharmaceutical properties. The recent TRPA1 cryogenic electron microscopy structure from the Cheng and Julius labs determined the structure of full-length human TRPA1 at up to 4Å resolution in the presence of TRPA1 ligands. This ground-breaking science paves the way to enable structure-based drug design within the TRPA1 field.
Collapse
Affiliation(s)
- S Skerratt
- Convergence (a Biogen Company), Cambridge, United Kingdom
| |
Collapse
|
15
|
Gupta R, Saito S, Mori Y, Itoh SG, Okumura H, Tominaga M. Structural basis of TRPA1 inhibition by HC-030031 utilizing species-specific differences. Sci Rep 2016; 6:37460. [PMID: 27874100 PMCID: PMC5118716 DOI: 10.1038/srep37460] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/31/2016] [Indexed: 11/30/2022] Open
Abstract
Pain is a harmful sensation that arises from noxious stimuli. Transient receptor potential ankyrin 1 (TRPA1) is one target for studying pain mechanisms. TRPA1 is activated by various stimuli such as noxious cold, pungent natural products and environmental irritants. Since TRPA1 is an attractive target for pain therapy, a few TRPA1 antagonists have been developed and some function as analgesic agents. The responses of TRPA1 to agonists and antagonists vary among species and these species differences have been utilized to identify the structural basis of activation and inhibition mechanisms. The TRPA1 antagonist HC-030031 (HC) failed to inhibit frog TRPA1 (fTRPA1) and zebrafish TRPA1 activity induced by cinnamaldehyde (CA), but did inhibit human TRPA1 (hTRPA1) in a heterologous expression system. Chimeric studies between fTRPA1 and hTRPA1, as well as analyses using point mutants, revealed that a single amino acid residue (N855 in hTRPA1) significantly contributes to the inhibitory action of HC. Moreover, the N855 residue and the C-terminus region exhibited synergistic effects on the inhibition by HC. Molecular dynamics simulation suggested that HC stably binds to hTRPA1-N855. These findings provide novel insights into the structure-function relationship of TRPA1 and could lead to the development of more effective analgesics targeted to TRPA1.
Collapse
Affiliation(s)
- Rupali Gupta
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Shigeru Saito
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Yoshiharu Mori
- Research Center for Computational Science, Institute for Molecular Science, Okazaki, Japan
| | - Satoru G. Itoh
- Research Center for Computational Science, Institute for Molecular Science, Okazaki, Japan
- Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Hisashi Okumura
- Research Center for Computational Science, Institute for Molecular Science, Okazaki, Japan
- Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| |
Collapse
|
16
|
Kozai D, Sakaguchi R, Ohwada T, Mori Y. Deciphering Subtype-Selective Modulations in TRPA1 Biosensor Channels. Curr Neuropharmacol 2016; 13:266-78. [PMID: 26411770 PMCID: PMC4598439 DOI: 10.2174/1570159x1302150525122020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The transient receptor potential (TRP) proteins are a family of ion channels that act as
cellular sensors. Several members of the TRP family are sensitive to oxidative stress mediators.
Among them, TRPA1 is remarkably susceptible to various oxidants, and is known to mediate
neuropathic pain and respiratory, vascular and gastrointestinal functions, making TRPA1 an
attractive therapeutic target. Recent studies have revealed a number of modulators (both activators and inhibitors) that act
on TRPA1. Endogenous mediators of oxidative stress and exogenous electrophiles activate TRPA1 through oxidative
modification of cysteine residues. Non-electrophilic compounds also activate TRPA1. Certain non-electrophilic
modulators may act on critical non-cysteine sites in TRPA1. However, a method to achieve selective modulation of
TRPA1 by small molecules has not yet been established. More recently, we found that a novel N-nitrosamine compound
activates TRPA1 by S-nitrosylation (the addition of a nitric oxide (NO) group to cysteine thiol), and does so with
significant selectivity over other NO-sensitive TRP channels. It is proposed that this subtype selectivity is conferred
through synergistic effects of electrophilic cysteine transnitrosylation and molecular recognition of the non-electrophilic
moiety on the N-nitrosamine. In this review, we describe the molecular pharmacology of these TRPA1 modulators and
discuss their modulatory mechanisms.
Collapse
Affiliation(s)
| | | | | | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyoku, Kyoto 615-8510, Japan.
| |
Collapse
|
17
|
Oda M, Kurogi M, Kubo Y, Saitoh O. Sensitivities of Two Zebrafish TRPA1 Paralogs to Chemical and Thermal Stimuli Analyzed in Heterologous Expression Systems. Chem Senses 2016; 41:261-72. [PMID: 26826723 DOI: 10.1093/chemse/bjv091] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2015] [Indexed: 11/13/2022] Open
Abstract
Transient receptor potential A1 (TRPA1) is the only member of the mouse, chick, and frog TRPA family, whereas 2 paralogs (zTRPA1a and zTRPA1b) are present in zebrafish. We herein investigated functional differences in the 2 zebrafish TRPA1s. HEK293T cells were used as heterologous expression systems, and the sensitivities of these cells to 4 chemical irritants (allyl isothiocyanate [AITC], caffeine, auto-oxidized epigallocatechin gallate [EGCG], and hydrogen peroxide [H2O2]) were compared with Ca(2+) imaging techniques. Sensitivities to the activators for AITC, oxidized EGCG, and H2O2 were higher in cells expressing zTRPA1a than in those expressing zTRPA1b, whereas caffeine appeared to activate both cells equally. We also characterized the thermal sensitivity of Xenopus oocytes expressing each TRPA1 electrophysiologically using a 2-electrode voltage clamp. Although endogenous currents induced by a cold stimulation were observed in control oocytes in some batches, oocytes expressing zTRPA1b showed significantly stronger cold- and heat-induced responses. However, significant thermal activation was not observed in oocytes expressing zTRPA1a. The results obtained using in vitro expression systems suggest that zTRPA1a is specialized for chemical sensing, whereas zTRPA1b responds to thermal stimuli. Furthermore, characterization of the chimeric molecule of TRPA1a and 1b revealed the importance of the N-terminal region in chemical and thermal sensing by zTRPA1s.
Collapse
Affiliation(s)
- Mai Oda
- Department of Animal Bio-Science, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama-shi, Shiga 526-0829, Japan
| | - Mako Kurogi
- Department of Animal Bio-Science, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama-shi, Shiga 526-0829, Japan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Nishigohnaka38, Myodaiji, Okazaki, Aichi 444-8585, Japan and Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 240-0155, Japan
| | - Osamu Saitoh
- Department of Animal Bio-Science, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama-shi, Shiga 526-0829, Japan,
| |
Collapse
|
18
|
|
19
|
Peng G, Kashio M, Morimoto T, Li T, Zhu J, Tominaga M, Kadowaki T. Plant-Derived Tick Repellents Activate the Honey Bee Ectoparasitic Mite TRPA1. Cell Rep 2015; 12:190-202. [DOI: 10.1016/j.celrep.2015.06.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 05/06/2015] [Accepted: 06/05/2015] [Indexed: 01/12/2023] Open
|
20
|
Hilton JK, Rath P, Helsell CVM, Beckstein O, Van Horn WD. Understanding Thermosensitive Transient Receptor Potential Channels as Versatile Polymodal Cellular Sensors. Biochemistry 2015; 54:2401-13. [DOI: 10.1021/acs.biochem.5b00071] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jacob K. Hilton
- Center
for Personalized Diagnostics, Magnetic Resonance Research Center,
and Department of Chemistry and Biochemistry, Arizona State University, 551 East University Drive, PSG-106, Tempe, Arizona 85287, United States
| | - Parthasarathi Rath
- Center
for Personalized Diagnostics, Magnetic Resonance Research Center,
and Department of Chemistry and Biochemistry, Arizona State University, 551 East University Drive, PSG-106, Tempe, Arizona 85287, United States
| | - Cole V. M. Helsell
- Center
for Personalized Diagnostics, Magnetic Resonance Research Center,
and Department of Chemistry and Biochemistry, Arizona State University, 551 East University Drive, PSG-106, Tempe, Arizona 85287, United States
| | - Oliver Beckstein
- Center
for Biological Physics and Department of Physics, Arizona State University, 550 East Tyler Mall, Tempe, Arizona 85287, United States
| | - Wade D. Van Horn
- Center
for Personalized Diagnostics, Magnetic Resonance Research Center,
and Department of Chemistry and Biochemistry, Arizona State University, 551 East University Drive, PSG-106, Tempe, Arizona 85287, United States
| |
Collapse
|
21
|
Chen J, Hackos DH. TRPA1 as a drug target--promise and challenges. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2015; 388:451-63. [PMID: 25640188 PMCID: PMC4359712 DOI: 10.1007/s00210-015-1088-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/12/2015] [Indexed: 12/25/2022]
Abstract
The transient receptor potential ankyrin 1 (TRPA1) channel is a nonselective cation channel belonging to the superfamily of transient receptor potential (TRP) channels. It is predominantly expressed in sensory neurons and serves as an irritant sensor for a plethora of electrophilic compounds. Recent studies suggest that TRPA1 is involved in pain, itch, and respiratory diseases, and TRPA1 antagonists have been actively pursued as therapeutic agents. Here, we review the recent progress, unsettled issues, and challenges in TRPA1 research and drug discovery.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA 94080 USA
| | - David H. Hackos
- Department of Neuroscience, Genentech, South San Francisco, CA 94080 USA
| |
Collapse
|
22
|
Evolutionary dynamics of metazoan TRP channels. Pflugers Arch 2015; 467:2043-53. [DOI: 10.1007/s00424-015-1705-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 03/19/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
|
23
|
Ohara K, Fukuda T, Okada H, Kitao S, Ishida Y, Kato K, Takahashi C, Katayama M, Uchida K, Tominaga M. Identification of significant amino acids in multiple transmembrane domains of human transient receptor potential ankyrin 1 (TRPA1) for activation by eudesmol, an oxygenized sesquiterpene in hop essential oil. J Biol Chem 2014; 290:3161-71. [PMID: 25525269 DOI: 10.1074/jbc.m114.600932] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a calcium-permeable non-selective cation channel that is activated by various noxious or irritant substances in nature, including spicy compounds. Many TRPA1 chemical activators have been reported; however, only limited information is available regarding the amino acid residues that contribute to the activation by non-electrophilic activators, whereas activation mechanisms by electrophilic ligands have been well characterized. We used intracellular Ca(2+) measurements and whole-cell patch clamp recordings to show that eudesmol, an oxygenated sesquiterpene present at high concentrations in the essential oil of hop cultivar Hallertau Hersbrucker, could activate human TRPA1. Gradual activation of inward currents with outward rectification by eudesmol was observed in human embryonic kidney-derived 293 cells expressing human TRPA1. This activation was completely blocked by a TRPA1-specific inhibitor, HC03-0031. We identified three critical amino acid residues in human TRPA1 in putative transmembrane domains 3, 4, and 5, namely threonine at 813, tyrosine at 840, and serine at 873, for activation by β-eudesmol in a systematic mutational study. Our results revealed a new TRPA1 activator in hop essential oil and provide a novel insight into mechanisms of human TRPA1 activation by non-electrophilic chemicals.
Collapse
Affiliation(s)
- Kazuaki Ohara
- From the Research Laboratories for Health Science and Food Technologies, Kirin Company, Ltd., Yokohama, Kanagawa, 236-0004, Japan and
| | - Takafumi Fukuda
- From the Research Laboratories for Health Science and Food Technologies, Kirin Company, Ltd., Yokohama, Kanagawa, 236-0004, Japan and
| | - Hiroyuki Okada
- From the Research Laboratories for Health Science and Food Technologies, Kirin Company, Ltd., Yokohama, Kanagawa, 236-0004, Japan and
| | - Sayoko Kitao
- From the Research Laboratories for Health Science and Food Technologies, Kirin Company, Ltd., Yokohama, Kanagawa, 236-0004, Japan and
| | - Yuko Ishida
- From the Research Laboratories for Health Science and Food Technologies, Kirin Company, Ltd., Yokohama, Kanagawa, 236-0004, Japan and
| | - Kyoko Kato
- From the Research Laboratories for Health Science and Food Technologies, Kirin Company, Ltd., Yokohama, Kanagawa, 236-0004, Japan and
| | - Chika Takahashi
- From the Research Laboratories for Health Science and Food Technologies, Kirin Company, Ltd., Yokohama, Kanagawa, 236-0004, Japan and
| | - Mikio Katayama
- From the Research Laboratories for Health Science and Food Technologies, Kirin Company, Ltd., Yokohama, Kanagawa, 236-0004, Japan and
| | - Kunitoshi Uchida
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institute of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institute of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| |
Collapse
|
24
|
Banzawa N, Saito S, Imagawa T, Kashio M, Takahashi K, Tominaga M, Ohta T. Molecular basis determining inhibition/activation of nociceptive receptor TRPA1 protein: a single amino acid dictates species-specific actions of the most potent mammalian TRPA1 antagonist. J Biol Chem 2014; 289:31927-31939. [PMID: 25271161 DOI: 10.1074/jbc.m114.586891] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The transient receptor potential ankyrin 1 (TRPA1) is a Ca(2+)-permeable, nonselective cation channel mainly expressed in a subset of nociceptive neurons. TRPA1 functions as a cellular sensor detecting mechanical, chemical, and thermal stimuli. Because TRPA1 is considered to be a key player in nociception and inflammatory pain, TRPA1 antagonists have been developed as analgesic agents. Recently, by utilizing species differences, we identified the molecular basis of the antagonistic action of A967079, one of the most potent mammalian TRPA1 antagonists. Here, we show a unique effect of A967079 on TRPA1 from diverse vertebrate species, i.e. it acts as an agonist but not as an antagonist for chicken and frog TRPA1s. By characterizing chimeric channels of human and chicken TRPA1s, as well as point mutants, we found that a single specific amino acid residue located within the putative fifth transmembrane domain was involved in not only the stimulatory but also the inhibitory actions of A967079. AP18, structurally related to A967079, exerted similar pharmacological properties to A967079. Our findings and previous reports on species differences in the sensitivity to TRPA1 antagonists supply useful information in the search for novel analgesic medicines targeting TRPA1.
Collapse
Affiliation(s)
- Nagako Banzawa
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, 680-8553
| | - Shigeru Saito
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki 444-8787, and
| | - Toshiaki Imagawa
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Makiko Kashio
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki 444-8787, and
| | - Kenji Takahashi
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, 680-8553
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki 444-8787, and
| | - Toshio Ohta
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, 680-8553,.
| |
Collapse
|
25
|
Moldenhauer H, Latorre R, Grandl J. The pore-domain of TRPA1 mediates the inhibitory effect of the antagonist 6-methyl-5-(2-(trifluoromethyl)phenyl)-1H-indazole. PLoS One 2014; 9:e106776. [PMID: 25181545 PMCID: PMC4152324 DOI: 10.1371/journal.pone.0106776] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/01/2014] [Indexed: 11/25/2022] Open
Abstract
The transient receptor potential ion channel TRPA1 confers the ability to detect tissue damaging chemicals to sensory neurons and as a result mediates chemical nociception in vivo. Mouse TRPA1 is activated by electrophilic compounds such as mustard-oil and several physical stimuli such as cold temperature. Due to its sensory function inhibition of TRPA1 activity might provide an effective treatment against chronic and inflammatory pain. Therefore, TRPA1 has become a target for the development of analgesic drugs. 6-Methyl-5-(2-(trifluoromethyl)phenyl)-1H-indazole (Compound 31) has been identified by a chemical screen and lead optimization as an inhibitor of chemical activation of TRPA1. However, the structures or domains of TRPA1 that mediate the inhibitory effect of Compound 31 are unknown. Here, we screened 12,000 random mutant clones of mouse TRPA1 for their sensitivity to mustard-oil and the ability of Compound 31 to inhibit chemical activation by mustard-oil. In addition, we separately screened this mutant library while stimulating it with cold temperatures. We found that the single-point mutation I624N in the N-terminus of TRPA1 specifically affects the sensitivity to mustard-oil, but not to cold temperatures. This is evidence that sensitivity of TRPA1 to chemicals and cold temperatures is conveyed by separable mechanisms. We also identified five mutations located within the pore domain that cause loss of inhibition by Compound 31. This result demonstrates that the pore-domain is a regulator of chemical activation and suggests that Compound 31 might be acting directly on the pore-domain.
Collapse
Affiliation(s)
- Hans Moldenhauer
- Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| | - Jörg Grandl
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
26
|
Peng G, Shi X, Kadowaki T. Evolution of TRP channels inferred by their classification in diverse animal species. Mol Phylogenet Evol 2014; 84:145-57. [PMID: 24981559 DOI: 10.1016/j.ympev.2014.06.016] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/05/2014] [Accepted: 06/17/2014] [Indexed: 12/11/2022]
Abstract
The functions of TRP channels have primarily been characterized in model organisms within a limited evolutionary context. We thus characterize the TRP channels in choanoflagellate, sponge, Cnidaria, Lophotrochozoa, and arthropods to understand how they emerged during early evolution of animals and have changed during diversification of various species. As previously reported, five metazoan TRP subfamily members (TRPA, TRPC, TRPM, TRPML, and TRPV) were identified in choanoflagellates, demonstrating that they evolved before the emergence of multicellular animals. TRPN was identified in Hydra magnipapillata, and therefore emerged in the last common ancestor of Cnidaria-Bilateria. A novel subfamily member (TRPVL) was identified in Cnidaria and Capitella teleta, indicating that it was present in the last common ancestor of Cnidaria-Bilateria but has since been lost in most bilaterians. The characterization of arthropod TRP channels revealed that Daphnia pulex and insects have specifically expanded the TRPA subfamily, which diverged from the ancient TRPA1 channel gene. The diversity of TRPA channels except TRPA1 was detectable even within a single insect family, namely the ant lineage. The present study demonstrates the evolutionary history of TRP channel genes, which may have diverged in conjunction with the specific habitats and life histories of individual species.
Collapse
Affiliation(s)
- Guangda Peng
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Jiangsu Province 215123, China
| | - Xiao Shi
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Jiangsu Province 215123, China
| | - Tatsuhiko Kadowaki
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Jiangsu Province 215123, China.
| |
Collapse
|
27
|
Jabba S, Goyal R, Sosa-Pagán JO, Moldenhauer H, Wu J, Kalmeta B, Bandell M, Latorre R, Patapoutian A, Grandl J. Directionality of temperature activation in mouse TRPA1 ion channel can be inverted by single-point mutations in ankyrin repeat six. Neuron 2014; 82:1017-31. [PMID: 24814535 DOI: 10.1016/j.neuron.2014.04.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2014] [Indexed: 01/24/2023]
Abstract
Several transient receptor potential (TRP) ion channels are activated with high sensitivity by either cold or hot temperatures. However, structures and mechanism that determine temperature directionality (cold versus heat) are not established. Here we screened 12,000 random mutant clones of the cold-activated mouse TRPA1 ion channel with a heat stimulus. We identified three single-point mutations that are individually sufficient to make mouse TRPA1 warm activated, while leaving sensitivity to chemicals unaffected. Mutant channels have high temperature sensitivity of voltage activation, specifically of channel opening, but not channel closing, which is reminiscent of other heat-activated TRP channels. All mutations are located in ankyrin repeat six, which identifies this domain as a sensitive modulator of thermal activation. We propose that a change in the coupling of temperature sensing to channel gating generates this sensitivity to warm temperatures. Our results demonstrate that minimal changes in protein sequence are sufficient to generate a wide diversity of thermal sensitivities in TRPA1.
Collapse
Affiliation(s)
- Sairam Jabba
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Raman Goyal
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jason O Sosa-Pagán
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Hans Moldenhauer
- Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2349400, Chile
| | - Jason Wu
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Breanna Kalmeta
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael Bandell
- Department of Cell Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Genomics Institute of the Novartis Research Foundation, La Jolla, CA 92037, USA
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2349400, Chile
| | - Ardem Patapoutian
- Department of Cell Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Genomics Institute of the Novartis Research Foundation, La Jolla, CA 92037, USA
| | - Jörg Grandl
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
28
|
Species differences and molecular determinant of TRPA1 cold sensitivity. Nat Commun 2014; 4:2501. [PMID: 24071625 PMCID: PMC3791479 DOI: 10.1038/ncomms3501] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/23/2013] [Indexed: 01/08/2023] Open
Abstract
TRPA1 is an ion channel and has been proposed as a thermosensor across species. In invertebrate and ancestral vertebrates such as fly, mosquito, frog, lizard and snakes, TRPA1 serves as a heat receptor, a sensory input utilized for heat avoidance or infrared detection. However, in mammals, whether TRPA1 is a receptor for noxious cold is highly controversial, as channel activation by cold was observed by some groups but disputed by others. Here we attribute the discrepancy to species differences. We show that cold activates rat and mouse TRPA1 but not human or rhesus monkey TRPA1. At the molecular level, a single residue within the S5 transmembrane domain (G878 in rodent but V875 in primate) accounts for the observed difference in cold sensitivity. This residue difference also underlies the species-specific effects of menthol. Together, our findings identify the species-specific cold activation of TRPA1 and reveal a molecular determinant of cold-sensitive gating. TRPA1 ion channels act as thermosensors across different species; however, studies on their role in noxious cold sensation have provided conflicting results in mammals. Chen et al. show that these discrepancies arise because cold activates rat and mouse TRPA1 but not human or rhesus monkey TRPA1.
Collapse
|
29
|
Heat and Noxious Chemical Sensor, Chicken TRPA1, as a Target of Bird Repellents and Identification of Its Structural Determinants by Multispecies Functional Comparison. Mol Biol Evol 2014; 31:708-22. [DOI: 10.1093/molbev/msu001] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
30
|
Nilius B, Flockerzi V. What do we really know and what do we need to know: some controversies, perspectives, and surprises. Handb Exp Pharmacol 2014; 223:1239-80. [PMID: 24961986 DOI: 10.1007/978-3-319-05161-1_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TRP channels comprise one of the most rapid growing research topics in ion channel research, in fields related to ion channels including channelopathies and translational medicine. We provide here a critical survey on our current knowledge of TRP channels and highlight some of the still open or controversial questions. This comprises questions related to evolution of TRP channels; biophysics, i.e., permeation; pore properties and gating; modulation; the still-elusive 3D structure; and channel subunits but also their role as general sensory channels and in human diseases. We will conclude that our knowledge on TRP channels is still at the very beginning of an exciting research journey.
Collapse
Affiliation(s)
- Bernd Nilius
- Department Cell Mol Medicine, Laboratory Ion Channel Research, KU Leuven, Campus Gasthuisberg, O&N 1, Herestraat 49-Bus 802, 3000, Leuven, Belgium,
| | | |
Collapse
|
31
|
Kozai D, Kabasawa Y, Ebert M, Kiyonaka S, Otani Y, Numata T, Takahashi N, Mori Y, Ohwada T. Transnitrosylation Directs TRPA1 Selectivity in N-Nitrosamine Activators. Mol Pharmacol 2013; 85:175-85. [DOI: 10.1124/mol.113.088864] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
32
|
Identification of molecular determinants for a potent mammalian TRPA1 antagonist by utilizing species differences. J Mol Neurosci 2013; 51:754-62. [PMID: 23872983 DOI: 10.1007/s12031-013-0060-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/23/2013] [Indexed: 01/01/2023]
Abstract
The transient receptor potential A1 (TRPA1) receptor is a member of the TRP family and an excitatory nonselective cation channel. An increasing body of evidence suggests that TRPA1 acts as a nociceptor for various chemicals and physical stimuli. Thus, many TRPA1 antagonists have been developed as analgesic agents. Recently, we found that AP18, a mammalian TRPA1 antagonist, does not inhibit heterologously expressed western clawed frog TRPA1 (fTRPA1). Here, we show that fTRPA1 is also insensitive to A967079, one of the most potent mammalian TRPA1 antagonists. Neither heterologously nor endogenously expressed fTRPA1 was inhibited by A967079 upon activation by TRPA1 agonists. Mutant channel analyses revealed that two specific amino acid residues located within the putative fifth transmembrane domain were involved in the inhibitory action of A967079. Our findings and previous reports based on species differences in the sensitivity to TRPA1 antagonists provide novel insights into the structure-function relationship of TRPA1 and supply useful information in the search for new analgesic medicines targeting TRPA1.
Collapse
|
33
|
Nyman E, Franzén B, Nolting A, Klement G, Liu G, Nilsson M, Rosén A, Björk C, Weigelt D, Wollberg P, Karila P, Raboisson P. In vitro pharmacological characterization of a novel TRPA1 antagonist and proof of mechanism in a human dental pulp model. J Pain Res 2013; 6:59-70. [PMID: 23403691 PMCID: PMC3565573 DOI: 10.2147/jpr.s37567] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AZ465 is a novel selective transient receptor potential cation channel, member A1 (TRPA1) antagonist identified during a focused drug discovery effort. In vitro, AZ465 fully inhibits activation by zinc, O-chlorobenzylidene malononitrile (CS), or cinnamaldehyde of the human TRPA1 channel heterologously expressed in human embryonic kidney cells. Our data using patch-clamp recordings and mouse/human TRPA1 chimeras suggest that AZ465 binds reversibly in the pore region of the human TRPA1 channel. Finally, in an ex vivo model measuring TRPA1 agonist-stimulated release of neuropeptides from human dental pulp biopsies, AZD465 was able to block 50%–60% of CS-induced calcitonin gene-related peptide release, confirming that AZ465 inhibits the native human TRPA1 channel in neuronal tissue.
Collapse
Affiliation(s)
- Eva Nyman
- Neuroscience, Innovative Medicines CNS/Pain, AstraZeneca R&D, Södertälje, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Arch 2012; 464:425-58. [DOI: 10.1007/s00424-012-1158-z] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022]
|