1
|
Lo CH. TNF receptors: Structure-function relationships and therapeutic targeting strategies. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184394. [PMID: 39442606 DOI: 10.1016/j.bbamem.2024.184394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Tumor necrosis factor receptors (TNFR1 and TNFR2) play key roles in mediating inflammatory response and cell death signaling, which are associated with autoimmune disorders, neurodegenerative diseases, and cancers. The structure-function relationships of TNF receptors and their ligands determine the activation or inhibition of downstream signaling pathways. Available crystal structures have provided critical insights into the therapeutic targeting strategies of TNF receptors and their signaling networks. In this review, we discuss the potential of targeting receptor-ligand and receptor-receptor interactions in a competitive manner as well as perturbing receptor conformational dynamics through an allosteric mechanism to modulate TNF receptor signaling. We propose that conformational states of TNF receptors can act as a molecular switch in determining their functions and are important therapeutic targets. The knowledge of the structure-function relationships of TNF receptors can be applied to translational high-throughput drug screening and design of novel receptor-specific modulators with enhanced pharmacological properties.
Collapse
MESH Headings
- Humans
- Structure-Activity Relationship
- Signal Transduction/drug effects
- Ligands
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor/chemistry
- Receptors, Tumor Necrosis Factor, Type I/chemistry
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Animals
- Protein Conformation
- Receptors, Tumor Necrosis Factor, Type II/chemistry
- Receptors, Tumor Necrosis Factor, Type II/metabolism
Collapse
Affiliation(s)
- Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; Department of Biology, Syracuse University, NY 13244, USA; Interdisciplinary Neuroscience Program, Syracuse University, NY 13244, USA.
| |
Collapse
|
2
|
Vunnam N, Young MC, Liao EE, Lo CH, Huber E, Been M, Thomas DD, Sachs JN. Nimesulide, a COX-2 inhibitor, sensitizes pancreatic cancer cells to TRAIL-induced apoptosis by promoting DR5 clustering †. Cancer Biol Ther 2023; 24:2176692. [PMID: 36775838 PMCID: PMC9928464 DOI: 10.1080/15384047.2023.2176692] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Nimesulide is a nonsteroidal anti-inflammatory drug and a COX-2 inhibitor with antitumor and antiproliferative activities that induces apoptosis in oral, esophagus, breast, and pancreatic cancer cells. Despite being removed from the market due to hepatotoxicity, nimesulide is still an important research tool being used to develop new anticancer drugs. Multiple studies have been done to modify the nimesulide skeleton to develop more potent anticancer agents and related compounds are promising scaffolds for future development. As such, establishing a mechanism of action for nimesulide remains an important part of realizing its potential. Here, we show that nimesulide enhances TRAIL-induced apoptosis in resistant pancreatic cancer cells by promoting clustering of DR5 in the plasma membrane. In this way, nimesulide acts like a related compound, DuP-697, which sensitizes TRAIL-resistant colon cancer cells in a similar manner. Our approach applies a time-resolved FRET-based biosensor that monitors DR5 clustering and conformational states in the plasma membrane. We show that this tool can be used for future high-throughput screens to identify novel, nontoxic small molecule scaffolds to overcome TRAIL resistance in cancer cells.
Collapse
Affiliation(s)
- Nagamani Vunnam
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Malaney C Young
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Elly E Liao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Chih Hung Lo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Evan Huber
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - MaryJane Been
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jonathan N Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Increased stability of the TM helix oligomer abrogates the apoptotic activity of the human Fas receptor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2022; 1864:183807. [PMID: 34662567 DOI: 10.1016/j.bbamem.2021.183807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 11/21/2022]
Abstract
Human death receptors control apoptotic events during cell differentiation, cell homeostasis and the elimination of damaged or infected cells. Receptor activation involves ligand-induced structural reorganizations of preformed receptor trimers. Here we show that the death receptor transmembrane domains only have a weak intrinsic tendency to homo-oligomerize within a membrane, and thus these domains potentially do not significantly contribute to receptor trimerization. However, mutation of Pro183 in the human CD95/Fas receptor transmembrane helix results in a dramatically increased interaction propensity, as shown by genetic assays. The increased interaction of the transmembrane domain is coupled with a decreased ligand-sensitivity of cells expressing the Fas receptor, and thus in a decreased number of apoptotic events. Mutation of Pro183 likely results in a substantial rearrangement of the self-associated Fas receptor transmembrane trimer, which likely abolishes further signaling of the apoptotic signal but may activate other signaling pathways. Our study shows that formation of a stable Fas receptor transmembrane helix oligomer does not per se result in receptor activation.
Collapse
|
4
|
Fluorescence-Based TNFR1 Biosensor for Monitoring Receptor Structural and Conformational Dynamics and Discovery of Small Molecule Modulators. Methods Mol Biol 2021; 2248:121-137. [PMID: 33185872 DOI: 10.1007/978-1-0716-1130-2_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inhibition of tumor necrosis factor receptor 1 (TNFR1) is a billion-dollar industry for treatment of autoimmune and inflammatory diseases. As current therapeutics of anti-TNF leads to dangerous side effects due to global inhibition of the ligand, receptor-specific inhibition of TNFR1 signaling is an intensely pursued strategy. To monitor directly the structural changes of the receptor in living cells, we engineered a fluorescence resonance energy transfer (FRET) biosensor by fusing green and red fluorescent proteins to TNFR1. Expression of the FRET biosensor in living cells allows for detection of receptor-receptor interactions and receptor structural dynamics. Using the TNFR1 FRET biosensor, in conjunction with a high-precision and high-throughput fluorescence lifetime detection technology, we developed a time-resolved FRET-based high-throughput screening platform to discover small molecules that directly target and modulate TNFR1 functions. Using this method in screening multiple pharmaceutical libraries, we have discovered a competitive inhibitor that disrupts receptor-receptor interactions, and allosteric modulators that alter the structural states of the receptor. This enables scientists to conduct high-throughput screening through a biophysical approach, with relevance to compound perturbation of receptor structure, for the discovery of novel lead compounds with high specificity for modulation of TNFR1 signaling.
Collapse
|
5
|
Vunnam N, Szymonski S, Hirsova P, Gores GJ, Sachs JN, Hackel BJ. Noncompetitive Allosteric Antagonism of Death Receptor 5 by a Synthetic Affibody Ligand. Biochemistry 2020; 59:3856-3868. [PMID: 32941010 PMCID: PMC7658720 DOI: 10.1021/acs.biochem.0c00529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Fatty acid-induced upregulation of death receptor 5 (DR5) and its cognate ligand, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), promotes hepatocyte lipoapoptosis, which is a key mechanism in the progression of fatty liver disease. Accordingly, inhibition of DR5 signaling represents an attractive strategy for treating fatty liver disease. Ligand competition strategies are prevalent in tumor necrosis factor receptor antagonism, but recent studies have suggested that noncompetitive inhibition through perturbation of the receptor conformation may be a compelling alternative. To this end, we used yeast display and a designed combinatorial library to identify a synthetic 58-amino acid affibody ligand that specifically binds DR5. Biophysical and biochemical studies show that the affibody neither blocks TRAIL binding nor prevents the receptor-receptor interaction. Live-cell fluorescence lifetime measurements indicate that the affibody induces a conformational change in transmembrane dimers of DR5 and favors an inactive state of the receptor. The affibody inhibits apoptosis in TRAIL-treated Huh-7 cells, an in vitro model of fatty liver disease. Thus, this lead affibody serves as a potential drug candidate, with a unique mechanism of action, for fatty liver disease.
Collapse
Affiliation(s)
- Nagamani Vunnam
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN
| | - Sophia Szymonski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Jonathan N. Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN
| | - Benjamin J. Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN
| |
Collapse
|
6
|
Lo CH, Huber EC, Sachs JN. Conformational states of TNFR1 as a molecular switch for receptor function. Protein Sci 2020; 29:1401-1415. [PMID: 31960514 DOI: 10.1002/pro.3829] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
Tumor necrosis factor receptor 1 (TNFR1) is a transmembrane receptor that plays a key role in the regulation of the inflammatory pathway. While inhibition of TNFR1 has been the focus of many studies for the treatment of autoimmune diseases such as rheumatoid arthritis, activation of the receptor is important for the treatment of immunodeficiency diseases such as HIV and neurodegenerative diseases such as Alzheimer's disease where a boost in immune signaling is required. In addition, activation of other TNF receptors such as death receptor 5 or FAS receptor is important for cancer therapy. Here, we used a previously established TNFR1 fluorescence resonance energy transfer (FRET) biosensor together with a fluorescence lifetime technology as a high-throughput screening platform to identify a novel small molecule that activates TNFR1 by increasing inter-monomeric spacing in a ligand-independent manner. This shows that the conformational rearrangement of pre-ligand assembled receptor dimers can determine the activity of the receptor. By probing the interaction between the receptor and its downstream signaling molecule (TRADD) our findings support a new model of TNFR1 activation in which varying conformational states of the receptor act as a molecular switch in determining receptor function.
Collapse
Affiliation(s)
- Chih Hung Lo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Evan C Huber
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Jonathan N Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
7
|
Liu X, Zhao Y, Shi H, Zhang Y, Yin X, Liu M, Zhang H, He Y, Lu B, Jin T, Li F. Human immunoglobulin G hinge regulates agonistic anti-CD40 immunostimulatory and antitumour activities through biophysical flexibility. Nat Commun 2019; 10:4206. [PMID: 31562320 PMCID: PMC6765011 DOI: 10.1038/s41467-019-12097-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/20/2019] [Indexed: 12/31/2022] Open
Abstract
Human immunoglobulin G (IgG) agonistic antibodies targeting costimulatory immunoreceptors represent promising cancer immunotherapies yet to be developed. Whether, and how, human IgG hinge and Fc impact on their agonistic functions have been disputed. Here, we show that different natural human IgGs confer divergent agonistic anti-CD40 immunostimulatory and antitumour activities in FcγR-humanized mice, including inactive IgG3 and superior IgG2. This divergence is primarily due to their CH1-hinges despite all human IgGs requiring Fc-FcγR binding for optimal agonistic activities. Unexpectedly, biophysical flexibility of these CH1-hinges inversely correlates with, and can modulate, their agonistic potency. Furthermore, IgG Fcs optimized for selective FcγR binding synergize with and still require IgG hinge, selected for rigidity, to confer improved anti-CD40 immunostimulatory and antitumour activities. These findings highlight the importance of both hinge rigidity and selective FcγR binding in antibody agonistic function, and the need for newer strategies to modulate antibody agonism for improved clinical application. Conserved regions of the antibody molecule impact its downstream biological effects. Here the authors show that a rigid hinge conformation increases the agonistic activity of CD40 and DR5 antibodies, distinctly from FcγR-binding, suggesting that the hinge and FcR binding regions can be separately modified to optimize therapies.
Collapse
Affiliation(s)
- Xiaobo Liu
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yingjie Zhao
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huan Shi
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Zhang
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xueying Yin
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | | | | | - Yongning He
- State Key Laboratory of Molecular Biology, National Center for Protein Science, Shanghai Science Research Center, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Boxun Lu
- State Key Laboratory of Genetic Engineering, Department of Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Tengchuan Jin
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Fubin Li
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Lo CH, Schaaf TM, Grant BD, Lim CKW, Bawaskar P, Aldrich CC, Thomas DD, Sachs JN. Noncompetitive inhibitors of TNFR1 probe conformational activation states. Sci Signal 2019; 12:12/592/eaav5637. [PMID: 31363069 DOI: 10.1126/scisignal.aav5637] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumor necrosis factor receptor 1 (TNFR1) is a central mediator of the inflammatory pathway and is associated with several autoimmune diseases such as rheumatoid arthritis. A revision to the canonical model of TNFR1 activation suggests that activation involves conformational rearrangements of preassembled receptor dimers. Here, we identified small-molecule allosteric inhibitors of TNFR1 activation and probed receptor dimerization and function. Specifically, we used a fluorescence lifetime-based high-throughput screen and biochemical, biophysical, and cellular assays to identify small molecules that noncompetitively inhibited the receptor without reducing ligand affinity or disrupting receptor dimerization. We also found that residues in the ligand-binding loop that are critical to the dynamic coupling between the extracellular and the transmembrane domains played a key gatekeeper role in the conformational dynamics associated with signal propagation. Last, using a simple structure-activity relationship analysis, we demonstrated that these newly found molecules could be further optimized for improved potency and specificity. Together, these data solidify and deepen the new model for TNFR1 activation.
Collapse
Affiliation(s)
- Chih Hung Lo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tory M Schaaf
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Colin Kin-Wye Lim
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Prachi Bawaskar
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.,Photonic Pharma LLC, Minneapolis, MN 55410, USA
| | - Jonathan N Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
9
|
Molecular Mode of Action of TRAIL Receptor Agonists-Common Principles and Their Translational Exploitation. Cancers (Basel) 2019; 11:cancers11070954. [PMID: 31284696 PMCID: PMC6678900 DOI: 10.3390/cancers11070954] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptors TRAILR1/death receptor 4 (DR4) and TRAILR2/DR5 trigger cell death in many cancer cells but rarely exert cytotoxic activity on non-transformed cells. Against this background, a variety of recombinant TRAIL variants and anti-TRAIL death receptor antibodies have been developed and tested in preclinical and clinical studies. Despite promising results from mice tumor models, TRAIL death receptor targeting has failed so far in clinical studies to show satisfying anti-tumor efficacy. These disappointing results can largely be explained by two issues: First, tumor cells can acquire TRAIL resistance by several mechanisms defining a need for combination therapies with appropriate sensitizing drugs. Second, there is now growing preclinical evidence that soluble TRAIL variants but also bivalent anti-TRAIL death receptor antibodies typically require oligomerization or plasma membrane anchoring to achieve maximum activity. This review discusses the need for oligomerization and plasma membrane attachment for the activity of TRAIL death receptor agonists in view of what is known about the molecular mechanisms of how TRAIL death receptors trigger intracellular cell death signaling. In particular, it will be highlighted which consequences this has for the development of next generation TRAIL death receptor agonists and their potential clinical application.
Collapse
|
10
|
Death Receptor 5 Activation Is Energetically Coupled to Opening of the Transmembrane Domain Dimer. Biophys J 2017; 113:381-392. [PMID: 28746849 DOI: 10.1016/j.bpj.2017.05.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 01/01/2023] Open
Abstract
The precise mechanism by which binding of tumor necrosis factor ligands to the extracellular domain of their corresponding receptors transmits signals across the plasma membrane has remained elusive. Recent studies have proposed that activation of several tumor necrosis factor receptors, including Death Receptor 5, involves a scissorlike opening of the disulfide-linked transmembrane (TM) dimer. Using time-resolved fluorescence resonance energy transfer, we provide, to our knowledge, the first direct biophysical evidence that Death Receptor 5 TM-dimers open in response to ligand binding. Then, to probe the importance of the closed-to-open TM domain transition in the overall energetics of receptor activation, we designed point-mutants (alanine to phenylalanine) in the predicted, tightly packed TM domain dimer interface. We hypothesized that the bulky residues should destabilize the closed conformation and eliminate the ∼3 kcal/mol energy barrier to TM domain opening and the ∼2 kcal/mol energy difference between the closed and open states, thus oversensitizing the receptor. To test this, we used all-atom molecular dynamics simulations of the isolated TM domain in explicit lipid bilayers coupled to thermodynamic potential of mean force calculations. We showed that single point mutants at the interface altered the energy landscape as predicted, but were not enough to completely eliminate the barrier to opening. However, the computational model did predict that a double mutation at i, i+4 positions at the center of the TM domain dimer eliminates the barrier and stabilizes the open conformation relative to the closed. We tested these mutants in cells with time-resolved fluorescence resonance energy transfer and death assays, and show remarkable agreement with the calculations. The single mutants had a small effect on TM domain separation and cell death, whereas the double mutant significantly increased the TM domain separation and more than doubled the sensitivity of cells to ligand stimulation.
Collapse
|
11
|
Sarabipour S. Parallels and Distinctions in FGFR, VEGFR, and EGFR Mechanisms of Transmembrane Signaling. Biochemistry 2017. [DOI: 10.1021/acs.biochem.7b00399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sarvenaz Sarabipour
- Institute for Computational
Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
12
|
Lo CH, Vunnam N, Lewis AK, Chiu TL, Brummel BE, Schaaf TM, Grant BD, Bawaskar P, Thomas DD, Sachs JN. An Innovative High-Throughput Screening Approach for Discovery of Small Molecules That Inhibit TNF Receptors. SLAS DISCOVERY 2017; 22:950-961. [PMID: 28530838 DOI: 10.1177/2472555217706478] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor necrosis factor receptor 1 (TNFR1) is a transmembrane receptor that binds tumor necrosis factor or lymphotoxin-alpha and plays a critical role in regulating the inflammatory response. Upregulation of these ligands is associated with inflammatory and autoimmune diseases. Current treatments reduce symptoms by sequestering free ligands, but this can cause adverse side effects by unintentionally inhibiting ligand binding to off-target receptors. Hence, there is a need for new small molecules that specifically target the receptors, rather than the ligands. Here, we developed a TNFR1 FRET biosensor expressed in living cells to screen compounds from the NIH Clinical Collection. We used an innovative high-throughput fluorescence lifetime screening platform that has exquisite spatial and temporal resolution to identify two small-molecule compounds, zafirlukast and triclabendazole, that inhibit the TNFR1-induced IκBα degradation and NF-κB activation. Biochemical and computational docking methods were used to show that zafirlukast disrupts the interactions between TNFR1 pre-ligand assembly domain (PLAD), whereas triclabendazole acts allosterically. Importantly, neither compound inhibits ligand binding, proving for the first time that it is possible to inhibit receptor activation by targeting TNF receptor-receptor interactions. This strategy should be generally applicable to other members of the TNFR superfamily, as well as to oligomeric receptors in general.
Collapse
Affiliation(s)
- Chih Hung Lo
- 1 Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Nagamani Vunnam
- 1 Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Andrew K Lewis
- 1 Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ting-Lan Chiu
- 1 Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin E Brummel
- 1 Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Tory M Schaaf
- 2 Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | | | - Prachi Bawaskar
- 2 Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - David D Thomas
- 2 Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.,4 Photonic Pharma LLC, Minneapolis, MN, USA
| | - Jonathan N Sachs
- 1 Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
13
|
Schaaf TM, Peterson KC, Grant BD, Bawaskar P, Yuen S, Li J, Muretta JM, Gillispie GD, Thomas DD. High-Throughput Spectral and Lifetime-Based FRET Screening in Living Cells to Identify Small-Molecule Effectors of SERCA. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2017; 22:262-273. [PMID: 27899691 PMCID: PMC5323330 DOI: 10.1177/1087057116680151] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A robust high-throughput screening (HTS) strategy has been developed to discover small-molecule effectors targeting the sarco/endoplasmic reticulum calcium ATPase (SERCA), based on a fluorescence microplate reader that records both the nanosecond decay waveform (lifetime mode) and the complete emission spectrum (spectral mode), with high precision and speed. This spectral unmixing plate reader (SUPR) was used to screen libraries of small molecules with a fluorescence resonance energy transfer (FRET) biosensor expressed in living cells. Ligand binding was detected by FRET associated with structural rearrangements of green fluorescent protein (GFP, donor) and red fluorescent protein (RFP, acceptor) fused to the cardiac-specific SERCA2a isoform. The results demonstrate accurate quantitation of FRET along with high precision of hit identification. Fluorescence lifetime analysis resolved SERCA's distinct structural states, providing a method to classify small-molecule chemotypes on the basis of their structural effect on the target. The spectral analysis was also applied to flag interference by fluorescent compounds. FRET hits were further evaluated for functional effects on SERCA's ATPase activity via both a coupled-enzyme assay and a FRET-based calcium sensor. Concentration-response curves indicated excellent correlation between FRET and function. These complementary spectral and lifetime FRET detection methods offer an attractive combination of precision, speed, and resolution for HTS.
Collapse
Affiliation(s)
- Tory M. Schaaf
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | | | | | - Prachi Bawaskar
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Samantha Yuen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Ji Li
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Joseph M. Muretta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | | | - David D. Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
- Photonic Pharma LLC, Minneapolis, MN 55410
| |
Collapse
|
14
|
Valley CC, Lewis AK, Sachs JN. Piecing it together: Unraveling the elusive structure-function relationship in single-pass membrane receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1398-1416. [PMID: 28089689 DOI: 10.1016/j.bbamem.2017.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/17/2022]
Abstract
The challenge of crystallizing single-pass plasma membrane receptors has remained an obstacle to understanding the structural mechanisms that connect extracellular ligand binding to cytosolic activation. For example, the complex interplay between receptor oligomerization and conformational dynamics has been, historically, only inferred from static structures of isolated receptor domains. A fundamental challenge in the field of membrane receptor biology, then, has been to integrate experimentally observable dynamics of full-length receptors (e.g. diffusion and conformational flexibility) into static structural models of the disparate domains. In certain receptor families, e.g. the ErbB receptors, structures have led somewhat linearly to a putative model of activation. In other families, e.g. the tumor necrosis factor (TNF) receptors, structures have produced divergent hypothetical mechanisms of activation and transduction. Here, we discuss in detail these and other related receptors, with the goal of illuminating the current challenges and opportunities in building comprehensive models of single-pass receptor activation. The deepening understanding of these receptors has recently been accelerated by new experimental and computational tools that offer orthogonal perspectives on both structure and dynamics. As such, this review aims to contextualize those technological developments as we highlight the elegant and complex conformational communication between receptor domains. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova.
Collapse
Affiliation(s)
| | - Andrew K Lewis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jonathan N Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
15
|
Lewis AK, Valley CC, Peery SL, Brummel B, Braun AR, Karim CB, Sachs JN. Death Receptor 5 Networks Require Membrane Cholesterol for Proper Structure and Function. J Mol Biol 2016; 428:4843-4855. [PMID: 27720987 DOI: 10.1016/j.jmb.2016.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 09/16/2016] [Accepted: 10/02/2016] [Indexed: 12/13/2022]
Abstract
Death receptor 5 (DR5) is an apoptosis-inducing member of the tumor necrosis factor receptor superfamily, whose activity has been linked to membrane cholesterol content. Upon ligand binding, DR5 forms large clusters within the plasma membrane that have often been assumed to be manifestations of receptor co-localization in cholesterol-rich membrane domains. However, we have recently shown that DR5 clusters are more than just randomly aggregated receptors. Instead, these are highly structured networks held together by receptor dimers. These dimers are stabilized by specific transmembrane helix-helix interactions, including a disulfide bond in the long isoform of the receptor. The complex relationships among DR5 network formation, transmembrane helix dimerization, membrane cholesterol, and receptor activity has not been established. It is unknown whether the membrane itself plays an active role in driving DR5 transmembrane helix interactions or in the formation of the networks. We show that cholesterol depletion in cells does not inhibit the formation of DR5 networks. However, the networks that form in cholesterol-depleted cells fail to induce caspase cleavage. These results suggest a potential structural difference between active and inactive networks. As evidence, we show that cholesterol is necessary for the covalent dimerization of DR5 transmembrane domains. Molecular simulations and experiments in synthetic vesicles on the DR5 transmembrane dimer suggest that dimerization is facilitated by increased helicity in a thicker bilayer.
Collapse
Affiliation(s)
- Andrew K Lewis
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Christopher C Valley
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Stephen L Peery
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Benjamin Brummel
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Anthony R Braun
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Christine B Karim
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Jonathan N Sachs
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|