1
|
Boutonnet M, Bünemann M, Perroy J. The voltage sensitivity of G-protein coupled receptors: Unraveling molecular mechanisms and physiological implications. Pharmacol Ther 2024:108741. [PMID: 39489434 DOI: 10.1016/j.pharmthera.2024.108741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/11/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
In the landscape of proteins controlled by membrane voltage (Vm), like voltage-gated ionotropic channels, the emergence of the voltage sensitivity within the vast family of G-protein coupled receptors (GPCRs) marked a significant milestone at the onset of the 21st century. Since its discovery, extensive research has been devoted to understanding the intricate relationship between Vm and GPCRs. Approximately 30 GPCRs out of a family comprising more than 800 receptors have been implicated in Vm-dependent positive and negative regulation. GPCRs stand out as the quintessential regulators of synaptic transmission in neurons, where they encounter substantial variations in Vm. However, the molecular mechanism underlying the Vm sensor of GPCRs remains enigmatic, hindered by the scarcity of mutant GPCRs insensitive to Vm yet functionally intact, impeding a comprehensive understanding of this unique property in physiology. Nevertheless, two decades of dedicated research have furnished numerous insights into the molecular aspects of GPCR Vm-sensing, accompanied by recently proposed physiological roles as well as pharmacological potential, which we encapsulate in this review. The Vm sensitivity of GPCRs emerges as a pivotal attribute, shedding light on previously unforeseen roles in synaptic transmission and extending beyond, underscoring its significance in cellular signaling and physiological processes.
Collapse
Affiliation(s)
- Marin Boutonnet
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Moritz Bünemann
- Department of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
| | - Julie Perroy
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
2
|
Hazan S, Tauber M, Ben-Chaim Y. Voltage dependence of M2 muscarinic receptor antagonists and allosteric modulators. Biochem Pharmacol 2024; 227:116421. [PMID: 38996933 DOI: 10.1016/j.bcp.2024.116421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/12/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Muscarinic receptors are G protein-coupled receptors (GPCRs) that play a role in various physiological functions. Previous studies have shown that these receptors, along with other GPCRs, are voltage-sensitive; both their affinity toward agonists and their activation are regulated by membrane potential. To our knowledge, whether the effect of antagonists on these receptors is voltage-dependent has not yet been studied. In this study, we used Xenopus oocytes expressing the M2 muscarinic receptor (M2R) to investigate this question. Our results indicate that the potencies of two M2R antagonists, atropine and scopolamine, are voltage-dependent; they are more effective at resting potential than under depolarization. In contrast, the M2R antagonist AF-DX 386 did not exhibit voltage-dependent potency.Furthermore, we discovered that the voltage dependence of M2R activation by acetylcholine remains unchanged in the presence of two allosteric modulators, the negative modulator gallamine and the positive modulator LY2119620. These findings enhance our understanding of GPCRs' voltage dependence and may have pharmacological implications.
Collapse
Affiliation(s)
- Shimrit Hazan
- Department of Natural Sciences, The Open University of Israel, Ra'anana, Israel
| | - Merav Tauber
- Department of Natural Sciences, The Open University of Israel, Ra'anana, Israel
| | - Yair Ben-Chaim
- Department of Natural Sciences, The Open University of Israel, Ra'anana, Israel.
| |
Collapse
|
3
|
Borroto-Escuela DO, Gonzalez-Cristo E, Ochoa-Torres V, Serra-Rojas EM, Ambrogini P, Arroyo-García LE, Fuxe K. Understanding electrical and chemical transmission in the brain. Front Cell Neurosci 2024; 18:1398862. [PMID: 38988663 PMCID: PMC11233782 DOI: 10.3389/fncel.2024.1398862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
The histochemical Falck-Hillarp method for the localization of dopamine (DA), noradrenaline (NA) and serotonin in the central nervous system (CNS) of rodents was introduced in the 1960s. It supported the existence of chemical neurotransmission in the CNS. The monoamine neurons in the lower brain stem formed monosynaptic ascending systems to the telencephalon and diencephalon and monoamine descending systems to the entire spinal cord. The monoamines were early on suggested to operate via synaptic chemical transmission in the CNS. This chemical transmission reduced the impact of electrical transmission. In 1969 and the 1970s indications were obtained that important modes of chemical monoamine communication in the CNS also took place through the extra-synaptic fluid, the extracellular fluid, and long-distance communication in the cerebrospinal fluid involving diffusion and flow of transmitters like DA, NA and serotonin. In 1986, this type of transmission was named volume transmission (VT) by Agnati and Fuxe and their colleagues, also characterized by transmitter varicosity and receptor mismatches. The short and long-distance VT pathways were characterized by volume fraction, tortuosity and clearance. Electrical transmission also exists in the mammalian CNS, but chemical transmission is in dominance. One electrical mode is represented by electrical synapses formed by gap junctions which represent low resistant passages between nerve cells. It allows for a more rapid passage of action potentials between nerve cells compared to chemical transmission. The second mode is based on the ability of synaptic currents to generate electrical fields to modulate chemical transmission. One aim is to understand how chemical transmission can be integrated with electrical transmission and how putative (aquaporin water channel, dopamine D2R and adenosine A2AR) complexes in astrocytes can significancy participate in the clearance of waste products from the glymphatic system. VT may also help accomplish the operation of the acupuncture meridians essential for Chinese medicine in view of the indicated existence of extracellular VT pathways.
Collapse
Affiliation(s)
- Dasiel O. Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, Málaga, Spain
| | - Emmanuell Gonzalez-Cristo
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, Málaga, Spain
| | - Verty Ochoa-Torres
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, Málaga, Spain
- Faculty of Engineering and Biotechnology, University OTR and the Regional Cooperative for Comprehensive Medical Assistance (CRAMI), Montevideo, Uruguay
| | - Emilio M. Serra-Rojas
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, Málaga, Spain
- Cardiology Service, Lozano Blesa University Clinical Hospital, Zaragoza, Spain
| | - Patrizia Ambrogini
- Department of Biomolecular Sciences, Università di Urbino Carlo Bo, Urbino, Italy
| | - Luis E. Arroyo-García
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Boutonnet M, Carpena C, Bouquier N, Chastagnier Y, Font-Ingles J, Moutin E, Tricoire L, Chemin J, Perroy J. Voltage tunes mGlu 5 receptor function, impacting synaptic transmission. Br J Pharmacol 2024; 181:1793-1811. [PMID: 38369690 DOI: 10.1111/bph.16317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/08/2023] [Accepted: 12/29/2023] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND AND PURPOSE Voltage sensitivity is a common feature of many membrane proteins, including some G-protein coupled receptors (GPCRs). However, the functional consequences of voltage sensitivity in GPCRs are not well understood. EXPERIMENTAL APPROACH In this study, we investigated the voltage sensitivity of the post-synaptic metabotropic glutamate receptor mGlu5 and its impact on synaptic transmission. Using biosensors and electrophysiological recordings in non-excitable HEK293T cells or neurons. KEY RESULTS We found that mGlu5 receptor function is optimal at resting membrane potentials. We observed that membrane depolarization significantly reduced mGlu5 receptor activation, Gq-PLC/PKC stimulation, Ca2+ release and mGlu5 receptor-gated currents through transient receptor potential canonical, TRPC6, channels or glutamate ionotropic NMDA receptors. Notably, we report a previously unknown activity of the NMDA receptor at the resting potential of neurons, enabled by mGlu5. CONCLUSIONS AND IMPLICATIONS Our findings suggest that mGlu5 receptor activity is directly regulated by membrane voltage which may have a significant impact on synaptic processes and pathophysiological functions.
Collapse
Affiliation(s)
- Marin Boutonnet
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Camille Carpena
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Yan Chastagnier
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Joan Font-Ingles
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
- SpliceBio, Barcelona, Spain
| | - Enora Moutin
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Ludovic Tricoire
- Neuroscience Paris Seine, Institut de biologie Paris Seine, Sorbonne universite, CNRS, INSERM, Paris, France
| | - Jean Chemin
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julie Perroy
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
5
|
Kirchhofer SB, Lim VJY, Ernst S, Karsai N, Ruland JG, Canals M, Kolb P, Bünemann M. Differential interaction patterns of opioid analgesics with µ opioid receptors correlate with ligand-specific voltage sensitivity. eLife 2023; 12:e91291. [PMID: 37983079 PMCID: PMC10849675 DOI: 10.7554/elife.91291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/19/2023] [Indexed: 11/21/2023] Open
Abstract
The µ opioid receptor (MOR) is the key target for analgesia, but the application of opioids is accompanied by several issues. There is a wide range of opioid analgesics, differing in their chemical structure and their properties of receptor activation and subsequent effects. A better understanding of ligand-receptor interactions and the resulting effects is important. Here, we calculated the respective binding poses for several opioids and analyzed interaction fingerprints between ligand and receptor. We further corroborated the interactions experimentally by cellular assays. As MOR was observed to display ligand-induced modulation of activity due to changes in membrane potential, we further analyzed the effects of voltage sensitivity on this receptor. Combining in silico and in vitro approaches, we defined discriminating interaction patterns responsible for ligand-specific voltage sensitivity and present new insights into their specific effects on activation of the MOR.
Collapse
Affiliation(s)
- Sina B Kirchhofer
- Department of Pharmacology and Clinical Pharmacy, University of MarburgMarburgGermany
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of NottinghamNottinghamUnited Kingdom
- Centre of Membrane Protein and Receptors, Universities of Birmingham and NottinghamMidlandsUnited Kingdom
| | - Victor Jun Yu Lim
- Department of Pharmaceutical Chemistry, University of MarburgMarburgGermany
| | - Sebastian Ernst
- Department of Pharmacology and Clinical Pharmacy, University of MarburgMarburgGermany
| | - Noemi Karsai
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of NottinghamNottinghamUnited Kingdom
- Centre of Membrane Protein and Receptors, Universities of Birmingham and NottinghamMidlandsUnited Kingdom
| | - Julia G Ruland
- Department of Pharmacology and Clinical Pharmacy, University of MarburgMarburgGermany
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of NottinghamNottinghamUnited Kingdom
- Centre of Membrane Protein and Receptors, Universities of Birmingham and NottinghamMidlandsUnited Kingdom
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, University of MarburgMarburgGermany
| | - Moritz Bünemann
- Department of Pharmacology and Clinical Pharmacy, University of MarburgMarburgGermany
| |
Collapse
|
6
|
Cohen-Armon M. Are Voltage Sensors Really Embedded in Muscarinic Receptors? Int J Mol Sci 2023; 24:ijms24087538. [PMID: 37108699 PMCID: PMC10142193 DOI: 10.3390/ijms24087538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Unexpectedly, the affinity of the seven-transmembrane muscarinic acetylcholine receptors for their agonists is modulated by membrane depolarization. Recent reports attribute this characteristic to an embedded charge movement in the muscarinic receptor, acting as a voltage sensor. However, this explanation is inconsistent with the results of experiments measuring acetylcholine binding to muscarinic receptors in brain synaptoneurosomes. According to these results, the gating of the voltage-dependent sodium channel (VDSC) acts as the voltage sensor, generating activation of Go-proteins in response to membrane depolarization, and this modulates the affinity of muscarinic receptors for their cholinergic agonists.
Collapse
Affiliation(s)
- Malka Cohen-Armon
- The Sackler School of Medicine, Department of Physiology and Pharmacology, and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
7
|
David D, Bentulila Z, Tauber M, Ben-Chaim Y. G Protein-Coupled Receptors Regulated by Membrane Potential. Int J Mol Sci 2022; 23:ijms232213988. [PMID: 36430466 PMCID: PMC9696401 DOI: 10.3390/ijms232213988] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are involved in a vast majority of signal transduction processes. Although they span the cell membrane, they have not been considered to be regulated by the membrane potential. Numerous studies over the last two decades have demonstrated that several GPCRs, including muscarinic, adrenergic, dopaminergic, and glutamatergic receptors, are voltage regulated. Following these observations, an effort was made to elucidate the molecular basis for this regulatory effect. In this review, we will describe the advances in understanding the voltage dependence of GPCRs, the suggested molecular mechanisms that underlie this phenomenon, and the possible physiological roles that it may play.
Collapse
|
8
|
Goldberger E, Tauber M, Ben-Chaim Y. Voltage dependence of the cannabinoid CB1 receptor. Front Pharmacol 2022; 13:1022275. [PMID: 36304142 PMCID: PMC9592857 DOI: 10.3389/fphar.2022.1022275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Cannabinoids produce their characteristic effects mainly by binding to two types of G-protein coupled receptors (GPCRs), the CB1 and CB2 cannabinoid receptors. The CB1 receptor is the main cannabinoid receptor in the central nervous system, and it participates in many brain functions. Recent studies showed that membrane potential may serve as a novel modulatory modality of many GPCRs. Here, we used Xenopus oocytes as an expression system to examine whether membrane potential modulates the activity of the CB1 receptor. We found that the potencies of the endocannabinoid 2-AG and the phytocannabinoid THC in activating the receptor are voltage dependent; depolarization enhanced the potency of these agonists and decreased their dissociation from the receptor. This voltage dependence appears to be agonist dependent as the potency of the endocannabinoid anandamide (AEA) was voltage independent. The finding of this agonist-specific modulatory factor for the CB1 receptor may contribute to our future understanding of various physiological functions mediated by the endocannabinoid system.
Collapse
|
9
|
Tauber M, Ben Chaim Y. The activity of the serotonergic 5-HT 1A receptor is modulated by voltage and sodium levels. J Biol Chem 2022; 298:101978. [PMID: 35469922 PMCID: PMC9136116 DOI: 10.1016/j.jbc.2022.101978] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022] Open
Abstract
G protein–coupled receptors are known to play a key role in many cellular signal transduction processes, including those mediating serotonergic signaling in the nervous system. Several factors have been shown to regulate the activity of these receptors, including membrane potential and the concentration of sodium ions. Whether voltage and sodium regulate the activity of serotonergic receptors is unknown. Here, we used Xenopus oocytes as an expression system to examine the effects of voltage and of sodium ions on the potency of one subtype of serotonin (5-hydroxytryptamine [5-HT]) receptor, the 5-HT1A receptor. We found that the potency of 5-HT in activating the receptor is voltage dependent and that it is higher at resting potential than under depolarized conditions. Furthermore, we found that removal of extracellular Na+ resulted in a decrease of 5-HT potency toward the 5-HT1A receptor and that a conserved aspartate in transmembrane domain 2 is crucial for this effect. Our results suggest that this allosteric effect of Na+ does not underlie the voltage dependence of this receptor. We propose that the characterization of modulatory factors that regulate this receptor may contribute to our future understanding of various physiological functions mediated by serotonergic transmission.
Collapse
Affiliation(s)
- Merav Tauber
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel
| | - Yair Ben Chaim
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel.
| |
Collapse
|
10
|
López-Serrano AL, Zamora-Cárdenas R, Aréchiga-Figueroa IA, Salazar-Fajardo PD, Ferrer T, Alamilla J, Sánchez-Chapula JA, Navarro-Polanco RA, Moreno-Galindo EG. Differential voltage-dependent modulation of the ACh-gated K+ current by adenosine and acetylcholine. PLoS One 2022; 17:e0261960. [PMID: 35030226 PMCID: PMC8759768 DOI: 10.1371/journal.pone.0261960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022] Open
Abstract
Inhibitory regulation of the heart is determined by both cholinergic M2 receptors (M2R) and adenosine A1 receptors (A1R) that activate the same signaling pathway, the ACh-gated inward rectifier K+ (KACh) channels via Gi/o proteins. Previously, we have shown that the agonist-specific voltage sensitivity of M2R underlies several voltage-dependent features of IKACh, including the ‘relaxation’ property, which is characterized by a gradual increase or decrease of the current when cardiomyocytes are stepped to hyperpolarized or depolarized voltages, respectively. However, it is unknown whether membrane potential also affects A1R and how this could impact IKACh. Upon recording whole-cell currents of guinea-pig cardiomyocytes, we found that stimulation of the A1R-Gi/o-IKACh pathway with adenosine only caused a very slight voltage dependence in concentration-response relationships (~1.2-fold EC50 increase with depolarization) that was not manifested in the relative affinity, as estimated by the current deactivation kinetics (τ = 4074 ± 214 ms at -100 mV and τ = 4331 ± 341 ms at +30 mV; P = 0.31). Moreover, IKACh did not exhibit relaxation. Contrarily, activation of the M2R-Gi/o-IKACh pathway with acetylcholine induced the typical relaxation of the current, which correlated with the clear voltage-dependent effect observed in the concentration-response curves (~2.8-fold EC50 increase with depolarization) and in the IKACh deactivation kinetics (τ = 1762 ± 119 ms at -100 mV and τ = 1503 ± 160 ms at +30 mV; P = 0.01). Our findings further substantiate the hypothesis of the agonist-specific voltage dependence of GPCRs and that the IKACh relaxation is consequence of this property.
Collapse
Affiliation(s)
- Ana Laura López-Serrano
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Col., Mexico
| | - Rodrigo Zamora-Cárdenas
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Col., Mexico
| | - Iván A. Aréchiga-Figueroa
- CONACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | | | - Tania Ferrer
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Col., Mexico
| | - Javier Alamilla
- CONACYT, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Col., Mexico
| | - José A. Sánchez-Chapula
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Col., Mexico
| | | | - Eloy G. Moreno-Galindo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Col., Mexico
- * E-mail:
| |
Collapse
|
11
|
Rozenfeld E, Tauber M, Ben-Chaim Y, Parnas M. GPCR voltage dependence controls neuronal plasticity and behavior. Nat Commun 2021; 12:7252. [PMID: 34903750 PMCID: PMC8668892 DOI: 10.1038/s41467-021-27593-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/29/2021] [Indexed: 12/25/2022] Open
Abstract
G-protein coupled receptors (GPCRs) play a paramount role in diverse brain functions. Almost 20 years ago, GPCR activity was shown to be regulated by membrane potential in vitro, but whether the voltage dependence of GPCRs contributes to neuronal coding and behavioral output under physiological conditions in vivo has never been demonstrated. Here we show that muscarinic GPCR mediated neuronal potentiation in vivo is voltage dependent. This voltage dependent potentiation is abolished in mutant animals expressing a voltage independent receptor. Depolarization alone, without a muscarinic agonist, results in a nicotinic ionotropic receptor potentiation that is mediated by muscarinic receptor voltage dependency. Finally, muscarinic receptor voltage independence causes a strong behavioral effect of increased odor habituation. Together, this study identifies a physiological role for the voltage dependency of GPCRs by demonstrating crucial involvement of GPCR voltage dependence in neuronal plasticity and behavior. Thus, this study suggests that GPCR voltage dependency plays a role in many diverse neuronal functions including learning and memory.
Collapse
Affiliation(s)
- Eyal Rozenfeld
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Merav Tauber
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel
| | - Yair Ben-Chaim
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel
| | - Moshe Parnas
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
12
|
Ozkan AD, Gettas T, Sogata A, Phaychanpheng W, Zhou M, Lacroix JJ. Mechanical and chemical activation of GPR68 probed with a genetically encoded fluorescent reporter. J Cell Sci 2021; 134:271846. [PMID: 34322699 DOI: 10.1242/jcs.255455] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 07/17/2021] [Indexed: 12/24/2022] Open
Abstract
G-protein-coupled receptor (GPCR) 68 (GPR68, or OGR1) couples extracellular acidifications and mechanical stimuli to G-protein signaling and plays important roles in vascular physiology, neuroplasticity and cancer progression. Inspired by previous GPCR-based reporters, here, we inserted a cyclic permuted fluorescent protein into the third intracellular loop of GPR68 to create a genetically encoded fluorescent reporter of GPR68 activation we call 'iGlow'. iGlow responds to known physiological GPR68 activators such as fluid shear stress and extracellular acidifications. In addition, iGlow responds to Ogerin, a synthetic GPR68-selective agonist, but not to a non-active Ogerin analog, showing the specificity of iGlow-mediated fluorescence signals. Flow-induced iGlow activation is not eliminated by pharmacological modulation of downstream G-protein signaling, disruption of actin filaments or application of GsMTx4, an inhibitor of certain mechanosensitive ion channels activated by membrane stretch. Deletion of the conserved helix 8, proposed to mediate mechanosensitivity in certain GPCRs, does not eliminate flow-induced iGlow activation. iGlow could be useful to investigate the contribution of GPR68-dependent signaling in health and disease.
Collapse
Affiliation(s)
- Alper D Ozkan
- Graduate College of Biomedical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA
| | - Tina Gettas
- Graduate College of Biomedical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA
| | - Audrey Sogata
- Chino Hills High School, 16150 Pomona Rincon Rd, Chino Hills, CA 91709, USA
| | - Wynn Phaychanpheng
- Chino Hills High School, 16150 Pomona Rincon Rd, Chino Hills, CA 91709, USA
| | - Miou Zhou
- Graduate College of Biomedical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA
| | - Jérôme J Lacroix
- Graduate College of Biomedical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA
| |
Collapse
|
13
|
Değirmenci L, Geiger D, Rogé Ferreira FL, Keller A, Krischke B, Beye M, Steffan-Dewenter I, Scheiner R. CRISPR/Cas 9-Mediated Mutations as a New Tool for Studying Taste in Honeybees. Chem Senses 2021; 45:655-666. [PMID: 32968780 DOI: 10.1093/chemse/bjaa063] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Honeybees rely on nectar as their main source of carbohydrates. Sucrose, glucose, and fructose are the main components of plant nectars. Intriguingly, honeybees express only 3 putative sugar receptors (AmGr1, AmGr2, and AmGr3), which is in stark contrast to many other insects and vertebrates. The sugar receptors are only partially characterized. AmGr1 detects different sugars including sucrose and glucose. AmGr2 is assumed to act as a co-receptor only, while AmGr3 is assumedly a fructose receptor. We show that honeybee gustatory receptor AmGr3 is highly specialized for fructose perception when expressed in Xenopus oocytes. When we introduced nonsense mutations to the respective AmGr3 gene using CRISPR/Cas9 in eggs of female workers, the resulting mutants displayed almost a complete loss of responsiveness to fructose. In contrast, responses to sucrose were normal. Nonsense mutations introduced by CRISPR/Cas9 in honeybees can thus induce a measurable behavioral change and serve to characterize the function of taste receptors in vivo. CRISPR/Cas9 is an excellent novel tool for characterizing honeybee taste receptors in vivo. Biophysical receptor characterization in Xenopus oocytes and nonsense mutation of AmGr3 in honeybees unequivocally demonstrate that this receptor is highly specific for fructose.
Collapse
Affiliation(s)
- Laura Değirmenci
- Behavioral Physiology and Sociobiology, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany
| | - Dietmar Geiger
- Julius-von-Sachs-Institute, Molecular Plant Physiology and Biophysics, University of Würzburg, Biocenter, Würzburg, Germany
| | - Fábio Luiz Rogé Ferreira
- Julius-von-Sachs-Institute, Molecular Plant Physiology and Biophysics, University of Würzburg, Biocenter, Würzburg, Germany
| | - Alexander Keller
- Department of Bioinformatics, Biocenter, Am Hubland, Würzburg, Germany
| | - Beate Krischke
- Animal Ecology and Tropical Biology, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany
| | - Martin Beye
- Evolutionary Genetics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ingolf Steffan-Dewenter
- Animal Ecology and Tropical Biology, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany
| | - Ricarda Scheiner
- Behavioral Physiology and Sociobiology, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany
| |
Collapse
|
14
|
Andriani RT, Kubo Y. Voltage-clamp fluorometry analysis of structural rearrangements of ATP-gated channel P2X2 upon hyperpolarization. eLife 2021; 10:65822. [PMID: 34009126 PMCID: PMC8184218 DOI: 10.7554/elife.65822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
Gating of the ATP-activated channel P2X2 has been shown to be dependent not only on [ATP] but also on membrane voltage, despite the absence of a canonical voltage-sensor domain. We aimed to investigate the structural rearrangements of rat P2X2 during ATP- and voltage-dependent gating, using a voltage-clamp fluorometry technique. We observed fast and linearly voltage-dependent fluorescence intensity (F) changes at Ala337 and Ile341 in the TM2 domain, which could be due to the electrochromic effect, reflecting the presence of a converged electric field. We also observed slow and voltage-dependent F changes at Ala337, which reflect structural rearrangements. Furthermore, we determined that the interaction between Ala337 in TM2 and Phe44 in TM1, which are in close proximity in the ATP-bound open state, is critical for activation. Taking these results together, we propose that the voltage dependence of the interaction within the converged electric field underlies the voltage-dependent gating.
Collapse
Affiliation(s)
- Rizki Tsari Andriani
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Aichi, Japan.,Department of Physiological Sciences, The Graduate University for Advanced Studies, School of Life Science, Kanagawa, Japan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Aichi, Japan.,Department of Physiological Sciences, The Graduate University for Advanced Studies, School of Life Science, Kanagawa, Japan
| |
Collapse
|
15
|
Inhibition of the hERG potassium channel by phenanthrene: a polycyclic aromatic hydrocarbon pollutant. Cell Mol Life Sci 2021; 78:7899-7914. [PMID: 34727194 PMCID: PMC8629796 DOI: 10.1007/s00018-021-03967-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/25/2021] [Accepted: 10/01/2021] [Indexed: 11/07/2022]
Abstract
The lipophilic polycyclic aromatic hydrocarbon (PAH) phenanthrene is relatively abundant in polluted air and water and can access and accumulate in human tissue. Phenanthrene has been reported to interact with cardiac ion channels in several fish species. This study was undertaken to investigate the ability of phenanthrene to interact with hERG (human Ether-à-go-go-Related Gene) encoded Kv11.1 K+ channels, which play a central role in human ventricular repolarization. Pharmacological inhibition of hERG can be proarrhythmic. Whole-cell patch clamp recordings of hERG current (IhERG) were made from HEK293 cells expressing wild-type (WT) and mutant hERG channels. WT IhERG1a was inhibited by phenanthrene with an IC50 of 17.6 ± 1.7 µM, whilst IhERG1a/1b exhibited an IC50 of 1.8 ± 0.3 µM. WT IhERG block showed marked voltage and time dependence, indicative of dependence of inhibition on channel gating. The inhibitory effect of phenanthrene was markedly impaired by the attenuated inactivation N588K mutation. Remarkably, mutations of S6 domain aromatic amino acids (Y652, F656) in the canonical drug binding site did not impair the inhibitory action of phenanthrene; the Y652A mutation augmented IhERG block. In contrast, the F557L (S5) and M651A (S6) mutations impaired the ability of phenanthrene to inhibit IhERG, as did the S624A mutation below the selectivity filter region. Computational docking using a cryo-EM derived hERG structure supported the mutagenesis data. Thus, phenanthrene acts as an inhibitor of the hERG K+ channel by directly interacting with the channel, binding to a distinct site in the channel pore domain.
Collapse
|
16
|
Sodium ions allosterically modulate the M2 muscarinic receptor. Sci Rep 2020; 10:11177. [PMID: 32636499 PMCID: PMC7341750 DOI: 10.1038/s41598-020-68133-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/15/2020] [Indexed: 11/08/2022] Open
Abstract
G protein coupled receptors (GPCRs) play a key role in the vast majority of cellular signal transduction processes. Previous experimental evidence has shown that sodium ion (Na+) allosterically modulate several class A GPCRs and theoretical studies suggested that the same also holds true for muscarinic receptors. Here we examined, using Xenopus oocytes as an expression system, the effect of Na+ on a prototypical GPCR, the M2 muscarinic receptor (M2R). We found that removal of extracellular Na+ resulted in a decrease in the potency of ACh toward the M2R and that a conserved aspartate in transmembrane domain 2 is crucial for this effect. We further show that this allosteric effect of Na+ does not underlie the voltage-dependence of this receptor.
Collapse
|
17
|
López-Serrano AL, De Jesús-Pérez JJ, Zamora-Cárdenas R, Ferrer T, Rodríguez-Menchaca AA, Tristani-Firouzi M, Moreno-Galindo EG, Navarro-Polanco RA. Voltage-induced structural modifications on M2 muscarinic receptor and their functional implications when interacting with the superagonist iperoxo. Biochem Pharmacol 2020; 177:113961. [PMID: 32272111 DOI: 10.1016/j.bcp.2020.113961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/02/2020] [Indexed: 12/31/2022]
Abstract
It has been reported that muscarinic type-2 receptors (M2R) are voltage sensitive in an agonist-specific manner. In this work, we studied the effects of membrane potential on the interaction of M2R with the superagonist iperoxo (IXO), both functionally (using the activation of the ACh-gated K+ current (IKACh) in cardiomyocytes) and by molecular dynamics (MD) simulations. We found that IXO activated IKACh with remarkable high potency and clear voltage dependence, displaying a larger effect at the hyperpolarized potential. This result is consistent with a greater affinity, as validated by a slower (τ = 14.8 ± 2.3 s) deactivation kinetics of the IXO-evoked IKACh than that at the positive voltage (τ = 6.7 ± 1.2 s). The voltage-dependent M2R-IXO interaction induced IKACh to exhibit voltage-dependent features of this current, such as the 'relaxation gating' and the modulation of rectification. MD simulations revealed that membrane potential evoked specific conformational changes both at the external access and orthosteric site of M2R that underlie the agonist affinity change provoked by voltage on M2R. Moreover, our experimental data suggest that the 'tyrosine lid' (Y104, Y403, and Y426) is not the previously proposed voltage sensor of M2R. These findings provide an insight into the structural and functional framework of the biased signaling induced by voltage on GPCRs.
Collapse
Affiliation(s)
- Ana Laura López-Serrano
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Col., Mexico
| | - José J De Jesús-Pérez
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico; Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Rodrigo Zamora-Cárdenas
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Col., Mexico
| | - Tania Ferrer
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Col., Mexico
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
| | - Martin Tristani-Firouzi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA; Division of Pediatric Cardiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Eloy G Moreno-Galindo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Col., Mexico.
| | | |
Collapse
|
18
|
Kurz M, Krett AL, Bünemann M. Voltage Dependence of Prostanoid Receptors. Mol Pharmacol 2020; 97:267-277. [DOI: 10.1124/mol.119.118372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/25/2020] [Indexed: 12/16/2022] Open
|
19
|
Butler A, Helliwell MV, Zhang Y, Hancox JC, Dempsey CE. An Update on the Structure of hERG. Front Pharmacol 2020; 10:1572. [PMID: 32038248 PMCID: PMC6992539 DOI: 10.3389/fphar.2019.01572] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/04/2019] [Indexed: 01/22/2023] Open
Abstract
The human voltage-sensitive K+ channel hERG plays a fundamental role in cardiac action potential repolarization, effectively controlling the QT interval of the electrocardiogram. Inherited loss- or gain-of-function mutations in hERG can result in dangerous “long” (LQTS) or “short” QT syndromes (SQTS), respectively, and the anomalous susceptibility of hERG to block by a diverse range of drugs underlies an acquired LQTS. A recent open channel cryo-EM structure of hERG should greatly advance understanding of the molecular basis of hERG channelopathies and drug-induced LQTS. Here we describe an update of recent research that addresses the nature of the particular gated state of hERG captured in the new structure, and the insight afforded by the structure into the molecular basis for high affinity drug block of hERG, the binding of hERG activators and the molecular basis of hERG's peculiar gating properties. Interpretation of the pharmacology of natural SQTS mutants in the context of the structure is a promising approach to understanding the molecular basis of hERG inactivation, and the structure suggests how voltage-dependent changes in the membrane domain may be transmitted to an extracellular “turret” to effect inactivation through aromatic side chain motifs that are conserved throughout the KCNH family of channels.
Collapse
Affiliation(s)
- Andrew Butler
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, Bristol, United Kingdom
| | - Matthew V Helliwell
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, Bristol, United Kingdom
| | - Yihong Zhang
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, Bristol, United Kingdom
| | - Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, Bristol, United Kingdom
| | | |
Collapse
|
20
|
Ben-Chaim Y, Broide C, Parnas H. The coupling of the M2 muscarinic receptor to its G protein is voltage dependent. PLoS One 2019; 14:e0224367. [PMID: 31671117 PMCID: PMC6822938 DOI: 10.1371/journal.pone.0224367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/10/2019] [Indexed: 11/18/2022] Open
Abstract
G protein coupled receptors (GPCRs) participate in the majority of signal transduction processes in the body. Specifically, the binding of an external agonist promotes coupling of the GPCR to its G protein and this, in turn, induces downstream signaling. Recently, it was shown that agonist binding to the M2 muscarinic receptor (M2R) and to other GPCRs is voltage dependent. Here we examine, whether the coupling of the M2R to its G protein is also voltage-dependent. We first show, in Xenopus oocytes, that the activity of the M2R in the absence of agonist (constitutive activity) can be used to report the coupling. We then show that the coupling is, by itself, voltage dependent. This novel finding is of physiological importance, as it shows that the actual signal transduction, whose first step is the coupling of the GPCR to its cognate G protein, is voltage dependent.
Collapse
Affiliation(s)
- Yair Ben-Chaim
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel
- * E-mail: (HP); (YBC)
| | - Chava Broide
- Department of Neurobiology, Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Hanna Parnas
- Department of Neurobiology, Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
- * E-mail: (HP); (YBC)
| |
Collapse
|
21
|
Zarzycka B, Zaidi SA, Roth BL, Katritch V. Harnessing Ion-Binding Sites for GPCR Pharmacology. Pharmacol Rev 2019; 71:571-595. [PMID: 31551350 PMCID: PMC6782022 DOI: 10.1124/pr.119.017863] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Endogenous ions play important roles in the function and pharmacology of G-protein coupled receptors (GPCRs). Historically the evidence for ionic modulation of GPCR function dates to 1973 with studies of opioid receptors, where it was demonstrated that physiologic concentrations of sodium allosterically attenuated agonist binding. This Na+-selective effect was distinct from effects of other monovalent and divalent cations, with the latter usually counteracting sodium's negative allosteric modulation of binding. Since then, numerous studies documenting the effects of mono- and divalent ions on GPCR function have been published. While ions can act selectively and nonselectively at many sites in different receptors, the discovery of the conserved sodium ion site in class A GPCR structures in 2012 revealed the unique nature of Na+ site, which has emerged as a near-universal site for allosteric modulation of class A GPCR structure and function. In this review, we synthesize and highlight recent advances in the functional, biophysical, and structural characterization of ions bound to GPCRs. Taken together, these findings provide a molecular understanding of the unique roles of Na+ and other ions as GPCR allosteric modulators. We will also discuss how this knowledge can be applied to the redesign of receptors and ligand probes for desired functional and pharmacological profiles. SIGNIFICANCE STATEMENT: The function and pharmacology of GPCRs strongly depend on the presence of mono and divalent ions in experimental assays and in living organisms. Recent insights into the molecular mechanism of this ion-dependent allosterism from structural, biophysical, biochemical, and computational studies provide quantitative understandings of the pharmacological effects of drugs in vitro and in vivo and open new avenues for the rational design of chemical probes and drug candidates with improved properties.
Collapse
Affiliation(s)
- Barbara Zarzycka
- Departments of Biological Sciences (B.Z., S.A.Z., V.K.) and Chemistry (V.K.), Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California; and Department of Pharmacology (B.L.R.) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy (B.L.R.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Saheem A Zaidi
- Departments of Biological Sciences (B.Z., S.A.Z., V.K.) and Chemistry (V.K.), Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California; and Department of Pharmacology (B.L.R.) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy (B.L.R.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Bryan L Roth
- Departments of Biological Sciences (B.Z., S.A.Z., V.K.) and Chemistry (V.K.), Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California; and Department of Pharmacology (B.L.R.) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy (B.L.R.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Vsevolod Katritch
- Departments of Biological Sciences (B.Z., S.A.Z., V.K.) and Chemistry (V.K.), Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California; and Department of Pharmacology (B.L.R.) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy (B.L.R.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
22
|
Kariev AM, Green ME. Quantum Calculation of Proton and Other Charge Transfer Steps in Voltage Sensing in the Kv1.2 Channel. J Phys Chem B 2019; 123:7984-7998. [DOI: 10.1021/acs.jpcb.9b05448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alisher M. Kariev
- Department of Chemistry and Biochemistry, City College of New York, New York, New York 10011, United States
| | - Michael E. Green
- Department of Chemistry and Biochemistry, City College of New York, New York, New York 10011, United States
| |
Collapse
|
23
|
Shalaeva DN, Cherepanov DA, Galperin MY, Vriend G, Mulkidjanian AY. G protein-coupled receptors of class A harness the energy of membrane potential to increase their sensitivity and selectivity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183051. [PMID: 31449800 DOI: 10.1016/j.bbamem.2019.183051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/28/2019] [Accepted: 08/21/2019] [Indexed: 12/31/2022]
Abstract
The human genome contains about 700 genes of G protein-coupled receptors (GPCRs) of class A; these seven-helical membrane proteins are the targets of almost half of all known drugs. In the middle of the helix bundle, crystal structures reveal a highly conserved sodium-binding site, which is connected with the extracellular side by a water-filled tunnel. This binding site contains a sodium ion in those GPCRs that are crystallized in their inactive conformations but does not in those GPCRs that are trapped in agonist-bound active conformations. The escape route of the sodium ion upon the inactive-to-active transition and its very direction have until now remained obscure. Here, by modeling the available experimental data, we show that the sodium gradient over the cell membrane increases the sensitivity of GPCRs if their activation is thermodynamically coupled to the sodium ion translocation into the cytoplasm but decreases it if the sodium ion retreats into the extracellular space upon receptor activation. The model quantitatively describes the available data on both activation and suppression of distinct GPCRs by membrane voltage. The model also predicts selective amplification of the signal from (endogenous) agonists if only they, but not their (partial) analogs, induce sodium translocation. Comparative structure and sequence analyses of sodium-binding GPCRs indicate a key role for the conserved leucine residue in the second transmembrane helix (Leu2.46) in coupling sodium translocation to receptor activation. Hence, class A GPCRs appear to harness the energy of the transmembrane sodium potential to increase their sensitivity and selectivity.
Collapse
Affiliation(s)
- Daria N Shalaeva
- School of Physics, Osnabrueck University, 49069 Osnabrück, Germany; A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Dmitry A Cherepanov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Russia.
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Gert Vriend
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, 6525 HP Nijmegen, the Netherlands.
| | - Armen Y Mulkidjanian
- School of Physics, Osnabrueck University, 49069 Osnabrück, Germany; A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
24
|
Okamura Y, Kawanabe A, Kawai T. Voltage-Sensing Phosphatases: Biophysics, Physiology, and Molecular Engineering. Physiol Rev 2019; 98:2097-2131. [PMID: 30067160 DOI: 10.1152/physrev.00056.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Voltage-sensing phosphatase (VSP) contains a voltage sensor domain (VSD) similar to that in voltage-gated ion channels, and a phosphoinositide phosphatase region similar to phosphatase and tensin homolog deleted on chromosome 10 (PTEN). The VSP gene is conserved from unicellular organisms to higher vertebrates. Membrane depolarization induces electrical driven conformational rearrangement in the VSD, which is translated into catalytic enzyme activity. Biophysical and structural characterization has revealed details of the mechanisms underlying the molecular functions of VSP. Coupling between the VSD and the enzyme is tight, such that enzyme activity is tuned in a graded fashion to the membrane voltage. Upon VSP activation, multiple species of phosphoinositides are simultaneously altered, and the profile of enzyme activity depends on the history of the membrane potential. VSPs have been the obvious candidate link between membrane potential and phosphoinositide regulation. However, patterns of voltage change regulating VSP in native cells remain largely unknown. This review addresses the current understanding of the biophysical biochemical properties of VSP and provides new insight into the proposed functions of VSP.
Collapse
Affiliation(s)
- Yasushi Okamura
- Department of Physiology, Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University , Osaka , Japan ; and Graduate School of Frontier Biosciences, Osaka University , Osaka , Japan
| | - Akira Kawanabe
- Department of Physiology, Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University , Osaka , Japan ; and Graduate School of Frontier Biosciences, Osaka University , Osaka , Japan
| | - Takafumi Kawai
- Department of Physiology, Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University , Osaka , Japan ; and Graduate School of Frontier Biosciences, Osaka University , Osaka , Japan
| |
Collapse
|
25
|
Abstract
A voltage change across a membrane protein moves charges or dipoles producing a gating current that is an electrical expression of a conformational change. Many membrane proteins sense the voltage across the membrane where they are inserted, and their function is affected by voltage changes. The voltage sensor consists of charges or dipoles that move in response to changes in the electric field, and their movement produces an electric current that has been called gating current. In the case of voltage-gated ion channels, the kinetic and steady-state properties of the gating charges provide information of conformational changes between closed states that are not visible when observing ionic currents only. In this Journal of General Physiology Milestone, the basic principles of voltage sensing and gating currents are presented, followed by a historical description of the recording of gating currents. The results of gating current recordings are then discussed in the context of structural changes in voltage-dependent membrane proteins and how these studies have provided new insights on gating mechanisms.
Collapse
Affiliation(s)
- Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL
| |
Collapse
|
26
|
Zhang XC, Zhou Y, Cao C. Proton transfer during class-A GPCR activation: do the CWxP motif and the membrane potential act in concert? BIOPHYSICS REPORTS 2018. [DOI: 10.1007/s41048-018-0056-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
27
|
Helliwell MV, Zhang Y, El Harchi A, Du C, Hancox JC, Dempsey CE. Structural implications of hERG K + channel block by a high-affinity minimally structured blocker. J Biol Chem 2018; 293:7040-7057. [PMID: 29545312 PMCID: PMC5936838 DOI: 10.1074/jbc.ra117.000363] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/06/2018] [Indexed: 11/29/2022] Open
Abstract
Cardiac potassium channels encoded by human ether-à-go-go–related gene (hERG) are major targets for structurally diverse drugs associated with acquired long QT syndrome. This study characterized hERG channel inhibition by a minimally structured high-affinity hERG inhibitor, Cavalli-2, composed of three phenyl groups linked by polymethylene spacers around a central amino group, chosen to probe the spatial arrangement of side chain groups in the high-affinity drug-binding site of the hERG pore. hERG current (IhERG) recorded at physiological temperature from HEK293 cells was inhibited with an IC50 of 35.6 nm with time and voltage dependence characteristic of blockade contingent upon channel gating. Potency of Cavalli-2 action was markedly reduced for attenuated inactivation mutants located near (S620T; 54-fold) and remote from (N588K; 15-fold) the channel pore. The S6 Y652A and F656A mutations decreased inhibitory potency 17- and 75-fold, respectively, whereas T623A and S624A at the base of the selectivity filter also decreased potency (16- and 7-fold, respectively). The S5 helix F557L mutation decreased potency 10-fold, and both F557L and Y652A mutations eliminated voltage dependence of inhibition. Computational docking using the recent cryo-EM structure of an open channel hERG construct could only partially recapitulate experimental data, and the high dependence of Cavalli-2 block on Phe-656 is not readily explainable in that structure. A small clockwise rotation of the inner (S6) helix of the hERG pore from its configuration in the cryo-EM structure may be required to optimize Phe-656 side chain orientations compatible with high-affinity block.
Collapse
Affiliation(s)
- Matthew V Helliwell
- From the Schools of Biochemistry and.,Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Yihong Zhang
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Aziza El Harchi
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Chunyun Du
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Jules C Hancox
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | |
Collapse
|
28
|
Point mutation of a conserved aspartate, D69, in the muscarinic M 2 receptor does not modify voltage-sensitive agonist potency. Biochem Biophys Res Commun 2018; 496:101-104. [DOI: 10.1016/j.bbrc.2018.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/01/2018] [Indexed: 12/30/2022]
|
29
|
Chai Z, Wang C, Huang R, Wang Y, Zhang X, Wu Q, Wang Y, Wu X, Zheng L, Zhang C, Guo W, Xiong W, Ding J, Zhu F, Zhou Z. Ca V2.2 Gates Calcium-Independent but Voltage-Dependent Secretion in Mammalian Sensory Neurons. Neuron 2017; 96:1317-1326.e4. [PMID: 29198756 DOI: 10.1016/j.neuron.2017.10.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/15/2017] [Accepted: 10/24/2017] [Indexed: 01/13/2023]
Abstract
Action potential induces membrane depolarization and triggers intracellular free Ca2+ concentration (Ca2+)-dependent secretion (CDS) via Ca2+ influx through voltage-gated Ca2+ channels. We report a new type of somatic exocytosis triggered by the action potential per se-Ca2+-independent but voltage-dependent secretion (CiVDS)-in dorsal root ganglion neurons. Here we uncovered the molecular mechanism of CiVDS, comprising a voltage sensor, fusion machinery, and their linker. Specifically, the voltage-gated N-type Ca2+ channel (CaV2.2) is the voltage sensor triggering CiVDS, the SNARE complex functions as the vesicle fusion machinery, the "synprint" of CaV2.2 serves as a linker between the voltage sensor and the fusion machinery, and ATP is a cargo of CiVDS vesicles. Thus, CiVDS releases ATP from the soma while CDS releases glutamate from presynaptic terminals, establishing the CaV2.2-SNARE "voltage-gating fusion pore" as a novel pathway co-existing with the canonical "Ca2+-gating fusion pore" pathway for neurotransmitter release following action potentials in primary sensory neurons.
Collapse
Affiliation(s)
- Zuying Chai
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Changhe Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of The Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Rong Huang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yuan Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Xiaoyu Zhang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; School of Stomatology, Peking University, Beijing 100871, China
| | - Qihui Wu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yeshi Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Xi Wu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Lianghong Zheng
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Chen Zhang
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Wei Guo
- THU IDG/McGovern Institute, Tsinghua University, Beijing 100084, China
| | - Wei Xiong
- THU IDG/McGovern Institute, Tsinghua University, Beijing 100084, China
| | - Jiuping Ding
- Institute of Biophysics and Biochemistry, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Feipeng Zhu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Zhuan Zhou
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| |
Collapse
|
30
|
Hoppe A, Marti-Solano M, Drabek M, Bünemann M, Kolb P, Rinne A. The allosteric site regulates the voltage sensitivity of muscarinic receptors. Cell Signal 2017; 42:114-126. [PMID: 29056499 DOI: 10.1016/j.cellsig.2017.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/28/2017] [Accepted: 10/19/2017] [Indexed: 11/18/2022]
Abstract
Muscarinic receptors (M-Rs) for acetylcholine (ACh) belong to the class A of G protein-coupled receptors. M-Rs are activated by orthosteric agonists that bind to a specific site buried in the M-R transmembrane helix bundle. In the active conformation, receptor function can be modulated either by allosteric modulators, which bind to the extracellular receptor surface or by the membrane potential via an unknown mechanism. Here, we compared the modulation of M1-Rs and M3-Rs induced by changes in voltage to their allosteric modulation by chemical compounds. We quantified changes in receptor signaling in single HEK 293 cells with a FRET biosensor for the Gq protein cycle. In the presence of ACh, M1-R signaling was potentiated by voltage, similarly to positive allosteric modulation by benzyl quinolone carboxylic acid. Conversely, signaling of M3-R was attenuated by voltage or the negative allosteric modulator gallamine. Because the orthosteric site is highly conserved among M-Rs, but allosteric sites vary, we constructed "allosteric site" M3/M1-R chimeras and analyzed their voltage dependencies. Exchanging the entire allosteric sites eliminated the voltage sensitivity of ACh responses for both receptors, but did not affect their modulation by allosteric compounds. Furthermore, a point mutation in M3-Rs caused functional uncoupling of the allosteric and orthosteric sites and abolished voltage dependence. Molecular dynamics simulations of the receptor variants indicated a subtype-specific crosstalk between both sites, involving the conserved tyrosine lid structure of the orthosteric site. This molecular crosstalk leads to receptor subtype-specific voltage effects.
Collapse
Affiliation(s)
- Anika Hoppe
- Department of Cardiovascular Physiology, Ruhr-University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Maria Marti-Solano
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6-10, 35032 Marburg, Germany
| | - Matthäus Drabek
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6-10, 35032 Marburg, Germany
| | - Moritz Bünemann
- Department of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Karl-von-Frisch-Str. 1, 35043 Marburg, Germany
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6-10, 35032 Marburg, Germany
| | - Andreas Rinne
- Department of Cardiovascular Physiology, Ruhr-University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| |
Collapse
|
31
|
Chen IS, Furutani K, Kurachi Y. Structural determinants at the M2 muscarinic receptor modulate the RGS4-GIRK response to pilocarpine by impairment of the receptor voltage sensitivity. Sci Rep 2017; 7:6110. [PMID: 28733581 PMCID: PMC5522400 DOI: 10.1038/s41598-017-05128-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/24/2017] [Indexed: 12/23/2022] Open
Abstract
Membrane potential controls the response of the M2 muscarinic receptor to its ligands. Membrane hyperpolarization increases response to the full agonist acetylcholine (ACh) while decreasing response to the partial agonist pilocarpine. We previously have demonstrated that the regulator of G-protein signaling (RGS) 4 protein discriminates between the voltage-dependent responses of ACh and pilocarpine; however, the underlying mechanism remains unclear. Here we show that RGS4 is involved in the voltage-dependent behavior of the M2 muscarinic receptor-mediated signaling in response to pilocarpine. Additionally we revealed structural determinants on the M2 muscarinic receptor underlying the voltage-dependent response. By electrophysiological recording in Xenopus oocytes expressing M2 muscarinic receptor and G-protein-gated inwardly rectifying K+ channels, we quantified voltage-dependent desensitization of pilocarpine-induced current in the presence or absence of RGS4. Hyperpolarization-induced desensitization of the current required for RGS4, also depended on pilocarpine concentration. Mutations of charged residues in the aspartic acid-arginine-tyrosine motif of the M2 muscarinic receptor, but not intracellular loop 3, significantly impaired the voltage-dependence of RGS4 function. Thus, our results demonstrated that voltage-dependence of RGS4 modulation is derived from the M2 muscarinic receptor. These results provide novel insights into how membrane potential impacts G-protein signaling by modulating GPCR communication with downstream effectors.
Collapse
Affiliation(s)
- I-Shan Chen
- Department of Pharmacology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kazuharu Furutani
- Department of Pharmacology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan. .,Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Yoshihisa Kurachi
- Department of Pharmacology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan. .,Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|