1
|
Gunasekara H, Perera T, Chao CJ, Bruno J, Saed B, Anderson J, Zhao Z, Hu YS. Phalloidin-PAINT: Enhanced quantitative nanoscale imaging of F-actin. Biophys J 2024; 123:3051-3064. [PMID: 38961624 PMCID: PMC11427775 DOI: 10.1016/j.bpj.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
We present phalloidin-based points accumulation for imaging in nanoscale topography (phalloidin-PAINT), enabling quantitative superresolution imaging of filamentous actin (F-actin) in the cell body and delicate membrane protrusions. We demonstrate that the intrinsic phalloidin dissociation enables PAINT superresolution microscopy in an imaging buffer containing low concentrations of dye-conjugated phalloidin. We further show enhanced single-molecule labeling by chemically promoting phalloidin dissociation. Two benefits of phalloidin-PAINT are its ability to consistently quantify F-actin at the nanoscale throughout the entire cell and its enhanced preservation of fragile cellular structures. In a proof-of-concept study, we employed phalloidin-PAINT to superresolve F-actin structures in U2OS and dendritic cells (DCs). We demonstrate more consistent F-actin quantification in the cell body and structurally delicate membrane protrusions of DCs compared with direct stochastic optical reconstruction microscopy (dSTORM). Using DC2.4 mouse DCs as the model system, we show F-actin redistribution from podosomes to actin filaments and altered prevalence of F-actin-associated membrane protrusions on the culture glass surface after lipopolysaccharide exposure. The concept of our work opens new possibilities for quantitative protein-specific PAINT using commercially available reagents.
Collapse
Affiliation(s)
- Hirushi Gunasekara
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Thilini Perera
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Chih-Jia Chao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois
| | - Joshua Bruno
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Badeia Saed
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Jesse Anderson
- Department of Chemical Engineering, College of Engineering, University of Illinois Chicago, Chicago, Illinois
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois
| | - Ying S Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois.
| |
Collapse
|
2
|
Sengupta K, Dillard P, Limozin L. Morphodynamics of T-lymphocytes: Scanning to spreading. Biophys J 2024; 123:2224-2233. [PMID: 38425041 PMCID: PMC11331044 DOI: 10.1016/j.bpj.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
Binding of the T cell receptor complex to its ligand, the subsequent molecular rearrangement, and the concomitant cell-scale shape changes represent the very first steps of adaptive immune recognition. The first minutes of the interaction of T cells and antigen presenting cells have been extensively scrutinized; yet, gaps remain in our understanding of how the biophysical properties of the environment may impact the sequence of events. In particular, many pioneering experiments were done on immobilized ligands and gave major insights into the process of T cell activation, whereas later experiments have indicated that ligand mobility was of paramount importance, especially to enable the formation of T cell receptor clusters. Systematic experiments to compare and reconcile the two schools are still lacking. Furthermore, recent investigations using compliant substrates have elucidated other intriguing aspects of T cell mechanics. Here we review experiments on interaction of T cells with planar artificial antigen presenting cells to explore the impact of mechanics on adhesion and actin morphodynamics during the spreading process. We enumerate a sequence tracing first contact to final spread state that is consistent with current understanding. Finally, we interpret the presented experimental results in light of a mechanical model that captures all the different morphodynamic states.
Collapse
Affiliation(s)
- Kheya Sengupta
- Aix-Marseille Université, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France.
| | - Pierre Dillard
- Aix-Marseille Université, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France; Aix-Marseille Université, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France
| | - Laurent Limozin
- Aix-Marseille Université, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
3
|
Migueles-Ramírez RA, Cambi A, Hayer A, Wiseman PW, van den Dries K. Quantifying superimposed protein flow dynamics in live cells using spatial filtering and spatiotemporal image correlation spectroscopy. J Microsc 2024. [PMID: 38963095 DOI: 10.1111/jmi.13342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Flow or collective movement is a frequently observed phenomenon for many cellular components including the cytoskeletal proteins actin and myosin. To study protein flow in living cells, we and others have previously used spatiotemporal image correlation spectroscopy (STICS) analysis on fluorescence microscopy image time series. Yet, in cells, multiple protein flows often occur simultaneously on different scales resulting in superimposed fluorescence intensity fluctuations that are challenging to separate using STICS. Here, we exploited the characteristic that distinct protein flows often occur at different spatial scales present in the image series to disentangle superimposed protein flow dynamics. We employed a newly developed and an established spatial filtering algorithm to alternatively accentuate or attenuate local image intensity heterogeneity across different spatial scales. Subsequently, we analysed the spatially filtered time series with STICS, allowing the quantification of two distinct superimposed flows within the image time series. As a proof of principle of our analysis approach, we used simulated fluorescence intensity fluctuations as well as time series of nonmuscle myosin II in endothelial cells and actin-based podosomes in dendritic cells and revealed simultaneously occurring contiguous and noncontiguous flow dynamics in each of these systems. Altogether, this work extends the application of STICS for the quantification of multiple protein flow dynamics in complex biological systems including the actomyosin cytoskeleton.
Collapse
Affiliation(s)
- Rodrigo A Migueles-Ramírez
- Department of Quantitative Life Sciences, McGill University, Montreal, Quebec, Canada
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
- Department of Physics, McGill University, Montreal, Quebec, Canada
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Alessandra Cambi
- Department of Medical BioSciences, Radboud university medical center, Nijmegen, Netherlands
| | - Arnold Hayer
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Paul W Wiseman
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
- Department of Physics, McGill University, Montreal, Quebec, Canada
| | - Koen van den Dries
- Department of Medical BioSciences, Radboud university medical center, Nijmegen, Netherlands
| |
Collapse
|
4
|
Zhou W, Tao Y, Qiao Q, Xu N, Li J, Wang G, Fang X, Chen J, Liu W, Xu Z. Cell-Impermeable Buffering Fluorogenic Probes for Live-Cell Super-Resolution Imaging of Plasma Membrane Morphology Dynamics. ACS Sens 2024; 9:3170-3177. [PMID: 38859630 DOI: 10.1021/acssensors.4c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Super-resolution fluorescence imaging has emerged as a potent tool for investigating the nanoscale structure and function of the plasma membrane (PM). Nevertheless, the challenge persists in achieving super-resolution imaging of PM dynamics due to limitations in probe photostability and issues with cell internalization staining. Herein, we report assembly-mediated buffering fluorogenic probes BMP-14 and BMP-16 exhibiting fast PM labeling and extended retention time (over 2 h) on PM. The incorporation of alkyl chains proves effective in promoting the aggregation of BMP-14 and BMP-16 into nonfluorescent nanoparticles to realize fluorogenicity and regulate the buffering capacity to rapidly replace photobleached probes ensuring stable long-term super-resolution imaging of PM. Utilizing these PM-buffering probes, we observed dynamic movements of PM filopodia and continuous shrinkage, leading to the formation of extracellular vesicles (EVs) using structured illumination microscopy (SIM). Furthermore, we discovered two distinct modes of EV fusion: one involving fusion through adjacent lipids and the other through filamentous lipid traction. The entire process of EV fusion outside the PM was dynamically tracked. Additionally, BMP-16 exhibited a unique capability of inducing single-molecule fluorescence blinking when used for cell membrane staining. This property makes BMP-16 suitable for the PAINT imaging of cell membranes.
Collapse
Affiliation(s)
- Wei Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yi Tao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Ning Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Guangying Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiangning Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Wenjuan Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Gunasekara H, Perera T, Chao CJ, Bruno J, Saed B, Anderson J, Zhao Z, Hu YS. Quantitative Superresolution Imaging of F-Actin in the Cell Body and Cytoskeletal Protrusions Using Phalloidin-Based Single-Molecule Labeling and Localization Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583337. [PMID: 38496456 PMCID: PMC10942307 DOI: 10.1101/2024.03.04.583337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
We present single-molecule labeling and localization microscopy (SMLLM) using dye-conjugated phalloidin to achieve enhanced superresolution imaging of filamentous actin (F-actin). We demonstrate that the intrinsic phalloidin dissociation enables SMLLM in an imaging buffer containing low concentrations of dye-conjugated phalloidin. We further show enhanced single-molecule labeling by chemically promoting phalloidin dissociation. Two benefits of phalloidin-based SMLLM are better preservation of cellular structures sensitive to mechanical and shear forces during standard sample preparation and more consistent F-actin quantification at the nanoscale. In a proof-of-concept study, we employed SMLLM to super-resolve F-actin structures in U2OS and dendritic cells (DCs) and demonstrate more consistent F-actin quantification in the cell body and structurally delicate cytoskeletal proportions, which we termed membrane fibers, of DCs compared to direct stochastic optical reconstruction microscopy (dSTORM). Using DC2.4 mouse dendritic cells as the model system, we show F-actin redistribution from podosomes to actin filaments and altered prevalence of F-actin-associated membrane fibers on the culture glass surface after lipopolysaccharide exposure. While our work demonstrates SMLLM for F-actin, the concept opens new possibilities for protein-specific single-molecule labeling and localization in the same step using commercially available reagents.
Collapse
Affiliation(s)
- Hirushi Gunasekara
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Thilini Perera
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Chih-Jia Chao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Joshua Bruno
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Badeia Saed
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Jesse Anderson
- Department of Chemical Engineering, College of Engineering, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Ying S. Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
6
|
Manca F, Eich G, N'Dao O, Normand L, Sengupta K, Limozin L, Puech PH. Probing mechanical interaction of immune receptors and cytoskeleton by membrane nanotube extraction. Sci Rep 2023; 13:15652. [PMID: 37730849 PMCID: PMC10511455 DOI: 10.1038/s41598-023-42599-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
The role of force application in immune cell recognition is now well established, the force being transmitted between the actin cytoskeleton to the anchoring ligands through receptors such as integrins. In this chain, the mechanics of the cytoskeleton to receptor link, though clearly crucial, remains poorly understood. To probe this link, we combine mechanical extraction of membrane tubes from T cells using optical tweezers, and fitting of the resulting force curves with a viscoelastic model taking into account the cell and relevant molecules. We solicit this link using four different antibodies against various membrane bound receptors: antiCD3 to target the T Cell Receptor (TCR) complex, antiCD45 for the long sugar CD45, and two clones of antiCD11 targeting open or closed conformation of LFA1 integrins. Upon disruption of the cytoskeleton, the stiffness of the link changes for two of the receptors, exposing the existence of a receptor to cytoskeleton link-namely TCR-complex and open LFA1, and does not change for the other two where a weaker link was expected. Our integrated approach allows us to probe, for the first time, the mechanics of the intracellular receptor-cytoskeleton link in immune cells.
Collapse
Affiliation(s)
- Fabio Manca
- CNRS, INSERM, Laboratoire Adhesion et Inflammation (LAI), Aix Marseille University, 13009, Marseille, France.
- CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Aix Marseille University, 13009, Marseille, France.
- Turing Center for Living Systems (CENTURI), 13009, Marseille, France.
| | - Gautier Eich
- CNRS, INSERM, Laboratoire Adhesion et Inflammation (LAI), Aix Marseille University, 13009, Marseille, France
| | - Omar N'Dao
- CNRS, INSERM, Laboratoire Adhesion et Inflammation (LAI), Aix Marseille University, 13009, Marseille, France
| | - Lucie Normand
- CNRS, INSERM, Laboratoire Adhesion et Inflammation (LAI), Aix Marseille University, 13009, Marseille, France
| | - Kheya Sengupta
- CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Aix Marseille University, 13009, Marseille, France.
- Turing Center for Living Systems (CENTURI), 13009, Marseille, France.
| | - Laurent Limozin
- CNRS, INSERM, Laboratoire Adhesion et Inflammation (LAI), Aix Marseille University, 13009, Marseille, France.
- Turing Center for Living Systems (CENTURI), 13009, Marseille, France.
| | - Pierre-Henri Puech
- CNRS, INSERM, Laboratoire Adhesion et Inflammation (LAI), Aix Marseille University, 13009, Marseille, France.
- Turing Center for Living Systems (CENTURI), 13009, Marseille, France.
| |
Collapse
|
7
|
Sankaran J, Wohland T. Current capabilities and future perspectives of FCS: super-resolution microscopy, machine learning, and in vivo applications. Commun Biol 2023; 6:699. [PMID: 37419967 PMCID: PMC10328937 DOI: 10.1038/s42003-023-05069-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023] Open
Abstract
Fluorescence correlation spectroscopy (FCS) is a single molecule sensitive tool for the quantitative measurement of biomolecular dynamics and interactions. Improvements in biology, computation, and detection technology enable real-time FCS experiments with multiplexed detection even in vivo. These new imaging modalities of FCS generate data at the rate of hundreds of MB/s requiring efficient data processing tools to extract information. Here, we briefly review FCS's capabilities and limitations before discussing recent directions that address these limitations with a focus on imaging modalities of FCS, their combinations with super-resolution microscopy, new evaluation strategies, especially machine learning, and applications in vivo.
Collapse
Affiliation(s)
- Jagadish Sankaran
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138632, Singapore.
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.
| |
Collapse
|
8
|
Mouttou A, Lemarchand F, Koc C, Moreau A, Lumeau J, Favard C, Lereu AL. Resonant dielectric multilayer with controlled absorption for enhanced total internal reflection fluorescence microscopy. OPTICS EXPRESS 2022; 30:15365-15375. [PMID: 35473257 DOI: 10.1016/j.omx.2022.100223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Total internal reflection fluorescence microscopy (TIRF-M) is widely used in biological imaging. Evanescent waves, generated at the glass-sample interface, theoretically strongly improve the axial resolution down to a hundred of nanometers. However, objective based TIRF-M suffers from different limitations such as interference fringes and uneven illumination, mixing both propagating and evanescent waves, which degrade the image quality. In principle, uneven illumination could be avoided by increasing the excitation angle, but this results in a drastic loss of excitation power. We designed dedicated 1D photonic crystals in order to circumvent this power loss by directly acting on the intensity of the evanescent field at controlled incident angles. In this framework, we used dedicated resonant multi-dielectric stacks, supporting Bloch surface waves and resulting in large field enhancement when illuminated under the conditions of total internal reflection. Here, we present a numerical optimization of such resonant stacks by adapting the resulting resonance to the angular illumination conditions in TIRF-M and to the fluorescence collection constraints. We thus propose a dedicated resonant structure with a control of the absorption during thin film deposition. A first experimental demonstration illustrates the concept with a 3-fold fluorescence enhancement in agreement with the numerical predictions.
Collapse
|
9
|
Mouttou A, Lemarchand F, Koc C, Moreau A, Lumeau J, Favard C, Lereu AL. Resonant dielectric multilayer with controlled absorption for enhanced total internal reflection fluorescence microscopy. OPTICS EXPRESS 2022; 30:15365-15375. [PMID: 35473257 DOI: 10.1364/oe.457353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Total internal reflection fluorescence microscopy (TIRF-M) is widely used in biological imaging. Evanescent waves, generated at the glass-sample interface, theoretically strongly improve the axial resolution down to a hundred of nanometers. However, objective based TIRF-M suffers from different limitations such as interference fringes and uneven illumination, mixing both propagating and evanescent waves, which degrade the image quality. In principle, uneven illumination could be avoided by increasing the excitation angle, but this results in a drastic loss of excitation power. We designed dedicated 1D photonic crystals in order to circumvent this power loss by directly acting on the intensity of the evanescent field at controlled incident angles. In this framework, we used dedicated resonant multi-dielectric stacks, supporting Bloch surface waves and resulting in large field enhancement when illuminated under the conditions of total internal reflection. Here, we present a numerical optimization of such resonant stacks by adapting the resulting resonance to the angular illumination conditions in TIRF-M and to the fluorescence collection constraints. We thus propose a dedicated resonant structure with a control of the absorption during thin film deposition. A first experimental demonstration illustrates the concept with a 3-fold fluorescence enhancement in agreement with the numerical predictions.
Collapse
|
10
|
Johanson TM, Keenan CR, Allan RS. Shedding Structured Light on Molecular Immunity: The Past, Present and Future of Immune Cell Super Resolution Microscopy. Front Immunol 2021; 12:754200. [PMID: 34975842 PMCID: PMC8715013 DOI: 10.3389/fimmu.2021.754200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
In the two decades since the invention of laser-based super resolution microscopy this family of technologies has revolutionised the way life is viewed and understood. Its unparalleled resolution, speed, and accessibility makes super resolution imaging particularly useful in examining the highly complex and dynamic immune system. Here we introduce the super resolution technologies and studies that have already fundamentally changed our understanding of a number of central immunological processes and highlight other immunological puzzles only addressable in super resolution.
Collapse
Affiliation(s)
- Timothy M. Johanson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Christine R. Keenan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Rhys S. Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
11
|
Perfilov MM, Gavrikov AS, Lukyanov KA, Mishin AS. Transient Fluorescence Labeling: Low Affinity-High Benefits. Int J Mol Sci 2021; 22:11799. [PMID: 34769228 PMCID: PMC8583718 DOI: 10.3390/ijms222111799] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
Fluorescent labeling is an established method for visualizing cellular structures and dynamics. The fundamental diffraction limit in image resolution was recently bypassed with the development of super-resolution microscopy. Notably, both localization microscopy and stimulated emission depletion (STED) microscopy impose tight restrictions on the physico-chemical properties of labels. One of them-the requirement for high photostability-can be satisfied by transiently interacting labels: a constant supply of transient labels from a medium replenishes the loss in the signal caused by photobleaching. Moreover, exchangeable tags are less likely to hinder the intrinsic dynamics and cellular functions of labeled molecules. Low-affinity labels may be used both for fixed and living cells in a range of nanoscopy modalities. Nevertheless, the design of optimal labeling and imaging protocols with these novel tags remains tricky. In this review, we highlight the pros and cons of a wide variety of transiently interacting labels. We further discuss the state of the art and future perspectives of low-affinity labeling methods.
Collapse
Affiliation(s)
| | | | | | - Alexander S. Mishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (M.M.P.); (A.S.G.); (K.A.L.)
| |
Collapse
|
12
|
Garlick E, Thomas SG, Owen DM. Super-Resolution Imaging Approaches for Quantifying F-Actin in Immune Cells. Front Cell Dev Biol 2021; 9:676066. [PMID: 34490240 PMCID: PMC8416680 DOI: 10.3389/fcell.2021.676066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/20/2021] [Indexed: 11/21/2022] Open
Abstract
Immune cells comprise a diverse set of cells that undergo a complex array of biological processes that must be tightly regulated. A key component of cellular machinery that achieves this is the cytoskeleton. Therefore, imaging and quantitatively describing the architecture and dynamics of the cytoskeleton is an important research goal. Optical microscopy is well suited to this task. Here, we review the latest in the state-of-the-art methodology for labeling the cytoskeleton, fluorescence microscopy hardware suitable for such imaging and quantitative statistical analysis software applicable to describing cytoskeletal structures. We also highlight ongoing challenges and areas for future development.
Collapse
Affiliation(s)
- Evelyn Garlick
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, United Kingdom
| | - Steven G Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, United Kingdom
| | - Dylan M Owen
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, United Kingdom.,Institute for Immunology and Immunotherapy, College of Medical and Dental Science and School of Mathematics, College of Engineering and Physical Science, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
13
|
Bhanja A, Rey-Suarez I, Song W, Upadhyaya A. Bidirectional feedback between BCR signaling and actin cytoskeletal dynamics. FEBS J 2021; 289:4430-4446. [PMID: 34124846 PMCID: PMC8669062 DOI: 10.1111/febs.16074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022]
Abstract
When B cells are exposed to antigens, they use their B-cell receptors (BCRs) to transduce this external signal into internal signaling cascades and uptake antigen, which activate transcriptional programs. Signaling activation requires complex cytoskeletal remodeling initiated by BCR signaling. The actin cytoskeletal remodeling drives B-cell morphological changes, such as spreading, protrusion, contraction, and endocytosis of antigen by mechanical forces, which in turn affect BCR signaling. Therefore, the relationship between the actin cytoskeleton and BCR signaling is a two-way feedback loop. These morphological changes represent the indirect ways by which the actin cytoskeleton regulates BCR signaling. Recent studies using high spatiotemporal resolution microscopy techniques have revealed that actin also can directly influence BCR signaling. Cortical actin networks directly affect BCR mobility, not only during the resting stage by serving as diffusion barriers, but also at the activation stage by altering BCR diffusivity through enhanced actin flow velocities. Furthermore, the actin cytoskeleton, along with myosin, enables B cells to sense the physical properties of its environment and generate and transmit forces through the BCR. Consequently, the actin cytoskeleton modulates the signaling threshold of BCR to antigenic stimulation. This review discusses the latest research on the relationship between BCR signaling and actin remodeling, and the research techniques. Exploration of the role of actin in BCR signaling will expand fundamental understanding of the relationship between cell signaling and the cytoskeleton and the mechanisms underlying cytoskeleton-related immune disorders and cancer.
Collapse
Affiliation(s)
- Anshuman Bhanja
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Ivan Rey-Suarez
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Arpita Upadhyaya
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA.,Department Physics, University of Maryland, College Park, MD, USA
| |
Collapse
|
14
|
Yang X, Annaert W. The Nanoscopic Organization of Synapse Structures: A Common Basis for Cell Communication. MEMBRANES 2021; 11:248. [PMID: 33808285 PMCID: PMC8065904 DOI: 10.3390/membranes11040248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022]
Abstract
Synapse structures, including neuronal and immunological synapses, can be seen as the plasma membrane contact sites between two individual cells where information is transmitted from one cell to the other. The distance between the two plasma membranes is only a few tens of nanometers, but these areas are densely populated with functionally different proteins, including adhesion proteins, receptors, and transporters. The narrow space between the two plasma membranes has been a barrier for resolving the synaptic architecture due to the diffraction limit in conventional microscopy (~250 nm). Various advanced super-resolution microscopy techniques, such as stimulated emission depletion (STED), structured illumination microscopy (SIM), and single-molecule localization microscopy (SMLM), bypass the diffraction limit and provide a sub-diffraction-limit resolving power, ranging from 10 to 100 nm. The studies using super-resolution microscopy have revealed unprecedented details of the nanoscopic organization and dynamics of synaptic molecules. In general, most synaptic proteins appear to be heterogeneously distributed and form nanodomains at the membranes. These nanodomains are dynamic functional units, playing important roles in mediating signal transmission through synapses. Herein, we discuss our current knowledge on the super-resolution nanoscopic architecture of synapses and their functional implications, with a particular focus on the neuronal synapses and immune synapses.
Collapse
Affiliation(s)
| | - Wim Annaert
- VIB Center for Brain and Disease Research and KU Leuven, Department of Neurosciences, Gasthuisberg, B-3000 Leuven, Belgium;
| |
Collapse
|
15
|
Cainero I, Cerutti E, Faretta M, Dellino GI, Pelicci PG, Diaspro A, Lanzanò L. Measuring Nanoscale Distances by Structured Illumination Microscopy and Image Cross-Correlation Spectroscopy (SIM-ICCS). SENSORS (BASEL, SWITZERLAND) 2021; 21:2010. [PMID: 33809144 PMCID: PMC8001887 DOI: 10.3390/s21062010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/27/2022]
Abstract
Since the introduction of super-resolution microscopy, there has been growing interest in quantifying the nanoscale spatial distributions of fluorescent probes to better understand cellular processes and their interactions. One way to check if distributions are correlated or not is to perform colocalization analysis of multi-color acquisitions. Among all the possible methods available to study and quantify the colocalization between multicolor images, there is image cross-correlation spectroscopy (ICCS). The main advantage of ICCS, in comparison with other co-localization techniques, is that it does not require pre-segmentation of the sample into single objects. Here we show that the combination of structured illumination microscopy (SIM) with ICCS (SIM-ICCS) is a simple approach to quantify colocalization and measure nanoscale distances from multi-color SIM images. We validate the SIM-ICCS analysis on SIM images of optical nanorulers, DNA-origami-based model samples containing fluorophores of different colors at a distance of 80 nm. The SIM-ICCS analysis is compared with an object-based analysis performed on the same samples. Finally, we show that SIM-ICCS can be used to quantify the nanoscale spatial distribution of functional nuclear sites in fixed cells.
Collapse
Affiliation(s)
- Isotta Cainero
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genoa, Italy; (I.C.); (E.C.)
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16143 Genoa, Italy
| | - Elena Cerutti
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genoa, Italy; (I.C.); (E.C.)
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Mario Faretta
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20100 Milan, Italy; (M.F.); (G.I.D.); (P.G.P.)
| | - Gaetano Ivan Dellino
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20100 Milan, Italy; (M.F.); (G.I.D.); (P.G.P.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20100 Milan, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20100 Milan, Italy; (M.F.); (G.I.D.); (P.G.P.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20100 Milan, Italy
| | - Alberto Diaspro
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genoa, Italy; (I.C.); (E.C.)
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16143 Genoa, Italy
| | - Luca Lanzanò
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genoa, Italy; (I.C.); (E.C.)
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| |
Collapse
|
16
|
Mazloom-Farsibaf H, Farzam F, Fazel M, Wester MJ, Meddens MBM, Lidke KA. Comparing lifeact and phalloidin for super-resolution imaging of actin in fixed cells. PLoS One 2021; 16:e0246138. [PMID: 33508018 PMCID: PMC7842966 DOI: 10.1371/journal.pone.0246138] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/13/2021] [Indexed: 01/14/2023] Open
Abstract
Visualizing actin filaments in fixed cells is of great interest for a variety of topics in cell biology such as cell division, cell movement, and cell signaling. We investigated the possibility of replacing phalloidin, the standard reagent for super-resolution imaging of F-actin in fixed cells, with the actin binding peptide 'lifeact'. We compared the labels for use in single molecule based super-resolution microscopy, where AlexaFluor 647 labeled phalloidin was used in a dSTORM modality and Atto 655 labeled lifeact was used in a single molecule imaging, reversible binding modality. We found that imaging with lifeact had a comparable resolution in reconstructed images and provided several advantages over phalloidin including lower costs, the ability to image multiple regions of interest on a coverslip without degradation, simplified sequential super-resolution imaging, and more continuous labeling of thin filaments.
Collapse
Affiliation(s)
- Hanieh Mazloom-Farsibaf
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Farzin Farzam
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Mohamadreza Fazel
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Michael J Wester
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, United States of America
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Marjolein B M Meddens
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Keith A Lidke
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, United States of America
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
17
|
Zhang X, Mariano CF, Ando Y, Shen K. Bioengineering tools for probing intracellular events in T lymphocytes. WIREs Mech Dis 2020; 13:e1510. [PMID: 33073545 DOI: 10.1002/wsbm.1510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 11/11/2022]
Abstract
T lymphocytes are the central coordinator and executor of many immune functions. The activation and function of T lymphocytes are mediated through the engagement of cell surface receptors and regulated by a myriad of intracellular signaling network. Bioengineering tools, including imaging modalities and fluorescent probes, have been developed and employed to elucidate the cellular events throughout the functional lifespan of T cells. A better understanding of these events can broaden our knowledge in the immune systems biology, as well as accelerate the development of effective diagnostics and immunotherapies. Here we review the commonly used and recently developed techniques and probes for monitoring T lymphocyte intracellular events, following the order of intracellular events in T cells from activation, signaling, metabolism to apoptosis. The techniques introduced here can be broadly applied to other immune cells and cell systems. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Immune System Diseases > Biomedical Engineering Infectious Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Chelsea F Mariano
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Yuta Ando
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Keyue Shen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.,USC Stem Cell, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
18
|
Saeed MB, Record J, Westerberg LS. Two sides of the coin: Cytoskeletal regulation of immune synapses in cancer and primary immune deficiencies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:1-97. [DOI: 10.1016/bs.ircmb.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Peripheral (not central) corneal epithelia contribute to the closure of an annular debridement injury. Proc Natl Acad Sci U S A 2019; 116:26633-26643. [PMID: 31843909 PMCID: PMC6936562 DOI: 10.1073/pnas.1912260116] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The well-accepted proposition that central corneal epithelia have limited self-renewal and therefore poor regenerative capacity has recently been challenged. However, methods for real-time monitoring to identify which cells take part in this process are scant. In this study, we visualized and quantified the contribution of central versus peripheral/limbal epithelia during annular wound healing by intravital imaging, through an organ culture system, and via computational modeling. Our results verify the contribution of K14+ limbal-derived stem cells and their early progeny in playing a vital role in this process, while central corneal epithelia contribute minimally to wound closure. Corneal epithelia have limited self-renewal and therefore reparative capacity. They are continuously replaced by transient amplifying cells which spawn from stem cells and migrate from the periphery. Because this view has recently been challenged, our goal was to resolve the conflict by giving mice annular injuries in different locations within the corneolimbal epithelium, then spatiotemporally fate-mapping cell behavior during healing. Under these conditions, elevated proliferation was observed in the periphery but not the center, and wounds predominantly resolved by centripetally migrating limbal epithelia. After wound closure, the central corneal epithelium was completely replaced by K14+ limbal-derived clones, an observation supported by high-resolution fluorescence imaging of genetically marked cells in organ-cultured corneas and via computational modeling. These results solidify the essential role of K14+ limbal epithelial stem cells for wound healing and refute the notion that stem cells exist within the central cornea and that their progeny have the capacity to migrate centrifugally.
Collapse
|
20
|
Oneto M, Scipioni L, Sarmento MJ, Cainero I, Pelicci S, Furia L, Pelicci PG, Dellino GI, Bianchini P, Faretta M, Gratton E, Diaspro A, Lanzanò L. Nanoscale Distribution of Nuclear Sites by Super-Resolved Image Cross-Correlation Spectroscopy. Biophys J 2019; 117:2054-2065. [PMID: 31732142 PMCID: PMC6895719 DOI: 10.1016/j.bpj.2019.10.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Deciphering the spatiotemporal coordination between nuclear functions is important to understand its role in the maintenance of human genome. In this context, super-resolution microscopy has gained considerable interest because it can be used to probe the spatial organization of functional sites in intact single-cell nuclei in the 20-250 nm range. Among the methods that quantify colocalization from multicolor images, image cross-correlation spectroscopy (ICCS) offers several advantages, namely it does not require a presegmentation of the image into objects and can be used to detect dynamic interactions. However, the combination of ICCS with super-resolution microscopy has not been explored yet. Here, we combine dual-color stimulated emission depletion (STED) nanoscopy with ICCS (STED-ICCS) to quantify the nanoscale distribution of functional nuclear sites. We show that super-resolved ICCS provides not only a value of the colocalized fraction but also the characteristic distances associated to correlated nuclear sites. As a validation, we quantify the nanoscale spatial distribution of three different pairs of functional nuclear sites in MCF10A cells. As expected, transcription foci and a transcriptionally repressive histone marker (H3K9me3) are not correlated. Conversely, nascent DNA replication foci and the proliferating cell nuclear antigen(PCNA) protein have a high level of proximity and are correlated at a nanometer distance scale that is close to the limit of our experimental approach. Finally, transcription foci are found at a distance of 130 nm from replication foci, indicating a spatial segregation at the nanoscale. Overall, our data demonstrate that STED-ICCS can be a powerful tool for the analysis of the nanoscale distribution of functional sites in the nucleus.
Collapse
Affiliation(s)
- Michele Oneto
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Lorenzo Scipioni
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy; Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, California
| | - Maria J Sarmento
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Isotta Cainero
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy; Department of Physics, University of Genoa, Genoa, Italy
| | - Simone Pelicci
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy; Department of Physics, University of Genoa, Genoa, Italy
| | - Laura Furia
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Pier G Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Gaetano I Dellino
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Paolo Bianchini
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Mario Faretta
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, California
| | - Alberto Diaspro
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy; Department of Physics, University of Genoa, Genoa, Italy.
| | - Luca Lanzanò
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy.
| |
Collapse
|
21
|
Jimenez A, Friedl K, Leterrier C. About samples, giving examples: Optimized Single Molecule Localization Microscopy. Methods 2019; 174:100-114. [PMID: 31078795 DOI: 10.1016/j.ymeth.2019.05.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/28/2022] Open
Abstract
Super-resolution microscopy has profoundly transformed how we study the architecture of cells, revealing unknown structures and refining our view of cellular assemblies. Among the various techniques, the resolution of Single Molecule Localization Microscopy (SMLM) can reach the size of macromolecular complexes and offer key insights on their nanoscale arrangement in situ. SMLM is thus a demanding technique and taking advantage of its full potential requires specifically optimized procedures. Here we describe how we perform the successive steps of an SMLM workflow, focusing on single-color Stochastic Optical Reconstruction Microscopy (STORM) as well as multicolor DNA Points Accumulation for imaging in Nanoscale Topography (DNA-PAINT) of fixed samples. We provide detailed procedures for careful sample fixation and immunostaining of typical cellular structures: cytoskeleton, clathrin-coated pits, and organelles. We then offer guidelines for optimal imaging and processing of SMLM data in order to optimize reconstruction quality and avoid the generation of artifacts. We hope that the tips and tricks we discovered over the years and detail here will be useful for researchers looking to make the best possible SMLM images, a pre-requisite for meaningful biological discovery.
Collapse
Affiliation(s)
- Angélique Jimenez
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, Marseille, France
| | - Karoline Friedl
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, Marseille, France; Abbelight, Paris, France
| | | |
Collapse
|
22
|
Hammer JA, Wang JC, Saeed M, Pedrosa AT. Origin, Organization, Dynamics, and Function of Actin and Actomyosin Networks at the T Cell Immunological Synapse. Annu Rev Immunol 2019; 37:201-224. [PMID: 30576253 PMCID: PMC8343269 DOI: 10.1146/annurev-immunol-042718-041341] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The engagement of a T cell with an antigen-presenting cell (APC) or activating surface results in the formation within the T cell of several distinct actin and actomyosin networks. These networks reside largely within a narrow zone immediately under the T cell's plasma membrane at its site of contact with the APC or activating surface, i.e., at the immunological synapse. Here we review the origin, organization, dynamics, and function of these synapse-associated actin and actomyosin networks. Importantly, recent insights into the nature of these actin-based cytoskeletal structures were made possible in several cases by advances in light microscopy.
Collapse
Affiliation(s)
- John A Hammer
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Jia C Wang
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Mezida Saeed
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Antonio T Pedrosa
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
23
|
Pereira PM, Albrecht D, Culley S, Jacobs C, Marsh M, Mercer J, Henriques R. Fix Your Membrane Receptor Imaging: Actin Cytoskeleton and CD4 Membrane Organization Disruption by Chemical Fixation. Front Immunol 2019; 10:675. [PMID: 31024536 PMCID: PMC6460894 DOI: 10.3389/fimmu.2019.00675] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/12/2019] [Indexed: 12/25/2022] Open
Abstract
Single-molecule localization microscopy (SMLM) techniques allow near molecular scale resolution (~ 20 nm) as well as precise and robust analysis of protein organization at different scales. SMLM hardware, analytics and probes have been the focus of a variety of studies and are now commonly used in laboratories across the world. Protocol reliability and artifact identification are increasingly seen as important aspects of super-resolution microscopy. The reliability of these approaches thus requires in-depth evaluation so that biological findings are based on solid foundations. Here we explore how different fixation approaches that disrupt or preserve the actin cytoskeleton affect membrane protein organization. Using CD4 as a model, we show that fixation-mediated disruption of the actin cytoskeleton correlates with changes in CD4 membrane organization. We highlight how these artifacts are easy to overlook and how careful sample preparation is essential for extracting meaningful results from super-resolution microscopy.
Collapse
Affiliation(s)
- Pedro M. Pereira
- MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - David Albrecht
- MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Siân Culley
- MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Caron Jacobs
- MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Mark Marsh
- MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Jason Mercer
- MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Ricardo Henriques
- MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Institute for the Physics of Living Systems, University College London, London, United Kingdom
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
24
|
Taylor RD, Heine M, Emptage NJ, Andreae LC. Neuronal Receptors Display Cytoskeleton-Independent Directed Motion on the Plasma Membrane. iScience 2018; 10:234-244. [PMID: 30557785 PMCID: PMC6297241 DOI: 10.1016/j.isci.2018.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/25/2018] [Accepted: 11/30/2018] [Indexed: 11/19/2022] Open
Abstract
Directed transport of transmembrane proteins is generally believed to occur via intracellular transport vesicles. However, using single-particle tracking in rat hippocampal neurons with a pH-sensitive quantum dot probe that specifically reports surface movement of receptors, we have identified a subpopulation of neuronal EphB2 receptors that exhibit directed motion between synapses within the plasma membrane itself. This receptor movement occurs independently of the cytoskeleton but is dependent on cholesterol and is regulated by neuronal activity.
Collapse
Affiliation(s)
- Ruth D Taylor
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Martin Heine
- Leibniz Institute of Neurobiology, Research Group Molecular Physiology, Brenneckestrasse 6, Magdeburg 39118, Germany; Otto von Guericke University Magdeburg, Center for Behavioral Brain Sciences (CBBS), Universitätsplatz 2, Magdeburg 39106, Germany; Johannes Gutenberg University Mainz, Institute for Developmental Biology and Neurobiology, AG Funktional Neurobiology, Hanns-Dieter-Hüsch Weg 15, Mainz 55128, Germany
| | - Nigel J Emptage
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | - Laura C Andreae
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
25
|
Park M, Richardson A, Pandzic E, Lobo EP, Whan R, Watson SL, Lyons JG, Wakefield D, Di Girolamo N. Visualizing the Contribution of Keratin-14 + Limbal Epithelial Precursors in Corneal Wound Healing. Stem Cell Reports 2018; 12:14-28. [PMID: 30554917 PMCID: PMC6335450 DOI: 10.1016/j.stemcr.2018.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022] Open
Abstract
It is thought that corneal epithelial injuries resolve by leading-edge cells “sliding” or “rolling” into the wound bed. Here, we challenge this notion and show by real-time imaging that corneal wounds initially heal by “basal cell migration.” The K14CreERT2-Confetti multi-colored reporter mouse was employed to spatially and temporally fate-map cellular behavior during corneal wound healing. Keratin-14+ basal epithelia are forced into the wound bed by increased population pressure gradient from the limbus to the wound edge. As the defect resolves, centripetally migrating epithelia decelerate and replication in the periphery is reduced. With time, keratin-14+-derived clones diminish in number concomitant with their expansion, indicative that clonal evolution aligns with neutral drifting. These findings have important implications for the involvement of stem cells in acute tissue regeneration, in key sensory tissues such as the cornea. Basal limbal epithelial cell proliferation is increased following a corneal injury Corneal epithelial wounds initially heal by K14+ basal cell migration STICS accurately measures clonal dynamics during wound closure Computational modeling confirms the pivotal role of LESCs in wound repair
Collapse
Affiliation(s)
- Mijeong Park
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alexander Richardson
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Elvis Pandzic
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Erwin P Lobo
- School of Mathematics and Statistics, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Renee Whan
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | | | - J Guy Lyons
- Discipline of Dermatology, Bosch Institute, Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; Immune Imaging, Centenary Institute, Sydney, NSW 2006, Australia; Cancer Services, Royal Prince Alfred Hospital, Sydney, NSW 2006, Australia
| | - Denis Wakefield
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nick Di Girolamo
- Mechanisms of Disease and Translational Research, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
26
|
Harris MJ, Wirtz D, Wu PH. Dissecting cellular mechanics: Implications for aging, cancer, and immunity. Semin Cell Dev Biol 2018; 93:16-25. [PMID: 30359779 DOI: 10.1016/j.semcdb.2018.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 01/13/2023]
Abstract
Cells are dynamic structures that must respond to complex physical and chemical signals from their surrounding environment. The cytoskeleton is a key mediator of a cell's response to the signals of both the extracellular matrix and other cells present in the local microenvironment and allows it to tune its own mechanical properties in response to these cues. A growing body of evidence suggests that altered cellular viscoelasticity is a strong indicator of disease state; including cancer, laminopathy (genetic disorders of the nuclear lamina), infection, and aging. Here, we review recent work on the characterization of cell mechanics in disease and discuss the implications of altered viscoelasticity in regulation of immune responses. Finally, we provide an overview of techniques for measuring the mechanical properties of cells deeply embedded within tissues.
Collapse
Affiliation(s)
- Michael J Harris
- Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Denis Wirtz
- Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Pei-Hsun Wu
- Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
27
|
Sharma N, Baek K, Shimokawa N, Takagi M. Effect of temperature on raft-dependent endocytic cluster formation during activation of Jurkat T cells by concanavalin A. J Biosci Bioeng 2018; 127:479-485. [PMID: 30355461 DOI: 10.1016/j.jbiosc.2018.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 01/28/2023]
Abstract
Temperature plays an important role in the immune response. Acclimatization occurs when there are changes in ambient temperature over a long period. In this study, we used the human leukemic Jurkat T cell line to study the effect of temperature on the immune system using concanavalin A (ConA), a plant-derived immunostimulant, as a trigger for T-cell activation. Previously, we have reported endocytic intracellular cluster formation during T-cell activation by ConA with the aid of rafts and polymerization of the cytoskeleton (actin and microtubules). Here, we investigated the effect of temperature on cluster formation (with the aid of three-dimensional images of the cells) and on the stability of rafts, actin, and microtubules. When the temperature was changed between 23°C and 37°C (physiological temperature), clusters could be observed throughout this temperature range. Raft structure was stabilized at lower temperatures but destabilized at higher temperatures. Actin was stable when the temperature was higher than 27°C. When actin was depolymerized, clustering was not observed at 37°C but could be observed at 23°C. There were no changes in microtubules within this temperature range. Thus, raft clustering may be associated with raft stability at lower temperatures (<27°C) and with actin at higher temperatures (≥27°C). Hence, we provided insight into the associations between temperature, rafts, actin, and microtubules in the immune response.
Collapse
Affiliation(s)
- Neha Sharma
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - KeangOK Baek
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| |
Collapse
|
28
|
Wijesooriya CS, Nyamekye CKA, Smith EA. Optical Imaging of the Nanoscale Structure and Dynamics of Biological Membranes. Anal Chem 2018; 91:425-440. [DOI: 10.1021/acs.analchem.8b04755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Charles K. A. Nyamekye
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- The Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Emily A. Smith
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- The Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| |
Collapse
|
29
|
Meddens MBM, Mennens SFB, Celikkol FB, Te Riet J, Kanger JS, Joosten B, Witsenburg JJ, Brock R, Figdor CG, Cambi A. Biophysical Characterization of CD6-TCR/CD3 Interplay in T Cells. Front Immunol 2018; 9:2333. [PMID: 30356797 PMCID: PMC6189472 DOI: 10.3389/fimmu.2018.02333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/19/2018] [Indexed: 01/12/2023] Open
Abstract
Activation of the T cell receptor (TCR) on the T cell through ligation with antigen-MHC complex of an antigen-presenting cell (APC) is an essential process in the activation of T cells and induction of the subsequent adaptive immune response. Upon activation, the TCR, together with its associated co-receptor CD3 complex, assembles in signaling microclusters that are transported to the center of the organizational structure at the T cell-APC interface termed the immunological synapse (IS). During IS formation, local cell surface receptors and associated intracellular molecules are reorganized, ultimately creating the typical bull's eye-shaped pattern of the IS. CD6 is a surface glycoprotein receptor, which has been previously shown to associate with CD3 and co-localize to the center of the IS in static conditions or stable T cell-APC contacts. In this study, we report the use of different experimental set-ups analyzed with microscopy techniques to study the dynamics and stability of CD6-TCR/CD3 interaction dynamics and stability during IS formation in more detail. We exploited antibody spots, created with microcontact printing, and antibody-coated beads, and could demonstrate that CD6 and the TCR/CD3 complex co-localize and are recruited into a stimulatory cluster on the cell surface of T cells. Furthermore, we demonstrate, for the first time, that CD6 forms microclusters co-localizing with TCR/CD3 microclusters during IS formation on supported lipid bilayers. These co-localizing CD6 and TCR/CD3 microclusters are both radially transported toward the center of the IS formed in T cells, in an actin polymerization-dependent manner. Overall, our findings further substantiate the role of CD6 during IS formation and provide novel insight into the dynamic properties of this CD6-TCR/CD3 complex interplay. From a methodological point of view, the biophysical approaches used to characterize these receptors are complementary and amenable for investigation of the dynamic interactions of other membrane receptors.
Collapse
Affiliation(s)
- Marjolein B M Meddens
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Svenja F B Mennens
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - F Burcu Celikkol
- Department of Nano-BioPhysics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Joost Te Riet
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johannes S Kanger
- Department of Nano-BioPhysics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Ben Joosten
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - J Joris Witsenburg
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
30
|
Tang VW. Cell-cell adhesion interface: orthogonal and parallel forces from contraction, protrusion, and retraction. F1000Res 2018; 7. [PMID: 30345009 PMCID: PMC6173117 DOI: 10.12688/f1000research.15860.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2018] [Indexed: 01/22/2023] Open
Abstract
The epithelial lateral membrane plays a central role in the integration of intercellular signals and, by doing so, is a principal determinant in the emerging properties of epithelial tissues. Mechanical force, when applied to the lateral cell-cell interface, can modulate the strength of adhesion and influence intercellular dynamics. Yet the relationship between mechanical force and epithelial cell behavior is complex and not completely understood. This commentary aims to provide an investigative look at the usage of cellular forces at the epithelial cell-cell adhesion interface.
Collapse
Affiliation(s)
- Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL, 61801, USA
| |
Collapse
|
31
|
Peters R, Griffié J, Burn GL, Williamson DJ, Owen DM. Quantitative fibre analysis of single-molecule localization microscopy data. Sci Rep 2018; 8:10418. [PMID: 29991683 PMCID: PMC6039472 DOI: 10.1038/s41598-018-28691-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/21/2018] [Indexed: 11/18/2022] Open
Abstract
Single molecule localization microscopy (SMLM) methods produce data in the form of a spatial point pattern (SPP) of all localized emitters. Whilst numerous tools exist to quantify molecular clustering in SPP data, the analysis of fibrous structures has remained understudied. Taking the SMLM localization coordinates as input, we present an algorithm capable of tracing fibrous structures in data generated by SMLM. Based upon a density parameter tracing routine, the algorithm outputs several fibre descriptors, such as number of fibres, length of fibres, area of enclosed regions and locations and angles of fibre branch points. The method is validated in a variety of simulated conditions and experimental data acquired using the image reconstruction by integrating exchangeable single-molecule localization (IRIS) technique. For this, the nanoscale architecture of F-actin at the T cell immunological synapse in both untreated and pharmacologically treated cells, designed to perturb actin structure, was analysed.
Collapse
Affiliation(s)
- Ruby Peters
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, London, UK.
| | - Juliette Griffié
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Garth L Burn
- Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - David J Williamson
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Dylan M Owen
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
32
|
Pandžić E, Abu-Arish A, Whan RM, Hanrahan JW, Wiseman PW. Velocity landscape correlation resolves multiple flowing protein populations from fluorescence image time series. Methods 2018; 140-141:126-139. [DOI: 10.1016/j.ymeth.2018.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/06/2017] [Accepted: 02/12/2018] [Indexed: 11/16/2022] Open
|
33
|
Ashdown GW, Owen DM. Spatio-temporal image correlation spectroscopy and super-resolution microscopy to quantify molecular dynamics in T cells. Methods 2018; 140-141:112-118. [DOI: 10.1016/j.ymeth.2018.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 01/16/2023] Open
|
34
|
Calvo V, Izquierdo M. Imaging Polarized Secretory Traffic at the Immune Synapse in Living T Lymphocytes. Front Immunol 2018; 9:684. [PMID: 29681902 PMCID: PMC5897431 DOI: 10.3389/fimmu.2018.00684] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
Immune synapse (IS) formation by T lymphocytes constitutes a crucial event involved in antigen-specific, cellular and humoral immune responses. After IS formation by T lymphocytes and antigen-presenting cells, the convergence of secretory vesicles toward the microtubule-organizing center (MTOC) and MTOC polarization to the IS are involved in polarized secretion at the synaptic cleft. This specialized mechanism appears to specifically provide the immune system with a fine strategy to increase the efficiency of crucial secretory effector functions of T lymphocytes, while minimizing non-specific, cytokine-mediated stimulation of bystander cells, target cell killing and activation-induced cell death. The molecular bases involved in the polarized secretory traffic toward the IS in T lymphocytes have been the focus of interest, thus different models and several imaging strategies have been developed to gain insights into the mechanisms governing directional secretory traffic. In this review, we deal with the most widely used, state-of-the-art approaches to address the molecular mechanisms underlying this crucial, immune secretory response.
Collapse
Affiliation(s)
- Víctor Calvo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Manuel Izquierdo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| |
Collapse
|
35
|
Carisey AF, Mace EM, Saeed MB, Davis DM, Orange JS. Nanoscale Dynamism of Actin Enables Secretory Function in Cytolytic Cells. Curr Biol 2018; 28:489-502.e9. [PMID: 29398219 PMCID: PMC5835143 DOI: 10.1016/j.cub.2017.12.044] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/13/2017] [Accepted: 12/20/2017] [Indexed: 11/21/2022]
Abstract
Natural killer (NK) cells are innate immune effectors that lyse virally infected and tumorigenic cells through the formation of an immunological synapse. Actin remodeling at the lytic immunological synapse is a critical requirement for multiple facets of cytotoxic function. Activating receptor and integrin signaling leads to the regulated turnover and remodeling of actin, which is required for adhesion, sustained receptor signaling, and ultimately exocytosis. NK cells undergo lytic granule exocytosis in hypodense regions of a pervasive actin network. Although these requirements have been well demonstrated, neither the dynamic regulation of synaptic actin nor its specific function, however, has been determined at a nanoscale level. Here, live-cell super-resolution microscopy demonstrates nanoscale filamentous actin dynamism in NK cell lytic granule secretion. Following cell spreading, the overall content of the branched actin network at an immune synapse is stable over time and contains branched actin fibers and discrete actin foci. Similar actin architecture is generated in cytolytic T cells, although the timescale differs from that of NK cells. Individual filament displacement leads to stochastic clearance formation and disappearance, which are independent of lytic granule positioning. Actin dynamism is dependent upon branched network formation mediated by Arp2/3 and contractility generated by myosin IIA. Importantly, the use of small-molecule inhibitors demonstrates that actin dynamism is ultimately needed for granule secretion. Thus, we describe a requirement for nanoscale actin fiber rearrangement in generating the complex actin architecture that enables lytic granule secretion.
Collapse
Affiliation(s)
- Alexandre F Carisey
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA; Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Emily M Mace
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
| | - Mezida B Saeed
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Daniel M Davis
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Jordan S Orange
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
36
|
Abstract
Superresolution microscopy has become increasingly widespread over the past 5 years and allows users to image biological processes below the diffraction limit of traditional fluorescence microscopy where resolution is restricted to approximately 250 nm. Superresolution refers to a wide range of techniques which employ different approaches to circumvent the diffraction limit. Two of these approaches, structured illumination microscopy (SIM) and single-molecule localization microscopy (SMLM), which provide a doubling and tenfold increase in resolution respectively, are dominating the field. This is partly because of the insights into biology they offer and partly because of their commercialization by the main microscope manufacturers. This chapter provides background to the two techniques, practical considerations for their use, and protocols for their application to platelet biology.
Collapse
|
37
|
Sawicka A, Babataheri A, Dogniaux S, Barakat AI, Gonzalez-Rodriguez D, Hivroz C, Husson J. Micropipette force probe to quantify single-cell force generation: application to T-cell activation. Mol Biol Cell 2017; 28:3229-3239. [PMID: 28931600 PMCID: PMC5687025 DOI: 10.1091/mbc.e17-06-0385] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 11/11/2022] Open
Abstract
We describe the micropipette force probe, a novel technique that uses a micropipette as a flexible cantilever that aspirates a coated microbead and brings it into contact with a cell. We apply the technique to quantify mechanical and morphological events occurring during T-cell activation. In response to engagement of surface molecules, cells generate active forces that regulate many cellular processes. Developing tools that permit gathering mechanical and morphological information on these forces is of the utmost importance. Here we describe a new technique, the micropipette force probe, that uses a micropipette as a flexible cantilever that can aspirate at its tip a bead that is coated with molecules of interest and is brought in contact with the cell. This technique simultaneously allows tracking the resulting changes in cell morphology and mechanics as well as measuring the forces generated by the cell. To illustrate the power of this technique, we applied it to the study of human primary T lymphocytes (T-cells). It allowed the fine monitoring of pushing and pulling forces generated by T-cells in response to various activating antibodies and bending stiffness of the micropipette. We further dissected the sequence of mechanical and morphological events occurring during T-cell activation to model force generation and to reveal heterogeneity in the cell population studied. We also report the first measurement of the changes in Young’s modulus of T-cells during their activation, showing that T-cells stiffen within the first minutes of the activation process.
Collapse
Affiliation(s)
- Anna Sawicka
- Laboratoire d'Hydrodynamique (LadHyX), Department of Mechanics, Ecole polytechnique-CNRS UMR7646, 91128 Palaiseau, France.,Institut Curie Section Recherche, INSERM U932 and PSL Research University, 75005 Paris, France
| | - Avin Babataheri
- Laboratoire d'Hydrodynamique (LadHyX), Department of Mechanics, Ecole polytechnique-CNRS UMR7646, 91128 Palaiseau, France
| | - Stéphanie Dogniaux
- Institut Curie Section Recherche, INSERM U932 and PSL Research University, 75005 Paris, France
| | - Abdul I Barakat
- Laboratoire d'Hydrodynamique (LadHyX), Department of Mechanics, Ecole polytechnique-CNRS UMR7646, 91128 Palaiseau, France
| | | | - Claire Hivroz
- Institut Curie Section Recherche, INSERM U932 and PSL Research University, 75005 Paris, France
| | - Julien Husson
- Laboratoire d'Hydrodynamique (LadHyX), Department of Mechanics, Ecole polytechnique-CNRS UMR7646, 91128 Palaiseau, France
| |
Collapse
|
38
|
Raft-dependent endocytic movement and intracellular cluster formation during T cell activation triggered by concanavalin A. J Biosci Bioeng 2017; 124:685-693. [PMID: 28711300 DOI: 10.1016/j.jbiosc.2017.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 01/10/2023]
Abstract
Certain food ingredients can stimulate the human immune system. A lectin, concanavalin A (ConA), from Canavalia ensiformis (jack bean) is one of the most well-known food-derived immunostimulants and mediates activation of cell-mediated immunity through T cell proliferation. Generally, T cell activation is known to be triggered by the interaction between T cells and antigen-presenting cells (APCs) via a juxtacrine (contact-dependent) signaling pathway. The mechanism has been well characterized and is referred to as formation of the immunological synapse (IS). We were interested in the mechanism behind the T cell activation by food-derived ConA which might be different from that of T cell activation by APCs. The purpose of this study was to characterize T cell activation by ConA with regard to (i) movement of raft domain, (ii) endocytic vesicular transport, (iii) the cytoskeleton (actin and microtubules), and (iv) cholesterol composition. We found that raft-dependent endocytic movement was important for T cell activation by ConA and this movement was dependent on actin, microtubules, and cholesterol. The T cell signaling mechanism triggered by ConA can be defined as endocrine signaling which is distinct from the activation process triggered by interaction between T cells and APCs by juxtacrine signaling. Therefore, we hypothesized that T cell activation by ConA includes both two-dimensional superficial raft movement on the membrane surface along actin filaments and three-dimensional endocytic movement toward the inside of the cell along microtubules. These findings are important for developing new methods for immune stimulation and cancer therapy based on the function of ConA.
Collapse
|