1
|
Rolband LA, Chopra K, Danai L, Beasock D, van Dam HJJ, Krueger JK, Byrnes J, Afonin KA. Small-Angle X-ray Scattering (SAXS) Combined with SAXS-Driven Molecular Dynamics for Structural Analysis of Multistranded RNA Assemblies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67178-67191. [PMID: 39593218 PMCID: PMC11637918 DOI: 10.1021/acsami.4c12397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Nucleic acids (RNA and DNA) play crucial roles in all living organisms and find wide utility in clinical settings. The convergence of rationally designed nucleic acid multistranded assemblies with embedded therapeutic properties has led to the development of a platform based on nucleic acid nanoparticles (NANPs). NANPs incorporate various functional moieties to deliver their combinations to diseased cells in a highly controlled manner. Given that the structure and composition of NANPs can also influence their immunorecognition and biological activities, thorough verification of all designs is essential. We introduce an experimental pipeline for small-angle X-ray scattering (SAXS) to gather structural details about the solution-state NANPs assembled from up to 12 RNA strands. To the best of our knowledge, this study represents the largest multistranded RNA nanoassemblies characterized in this manner to date. We show that synchronized implementation of SAXS-driven molecular dynamics simulations reveals the diverse conformational landscape inhabited by these assemblies and provides insights into their immunorecognition. The developed strategy expands the capabilities of therapeutic nucleic acids and emerging nucleic acid nanotechnologies.
Collapse
Affiliation(s)
- Lewis A Rolband
- Nanoscale Science Program, Department of Chemistry, University of North Carolina Charlotte, Charlotte, North Carolina 28223, United States
| | - Kriti Chopra
- Computational Science Initiative, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Leyla Danai
- Nanoscale Science Program, Department of Chemistry, University of North Carolina Charlotte, Charlotte, North Carolina 28223, United States
| | - Damian Beasock
- Nanoscale Science Program, Department of Chemistry, University of North Carolina Charlotte, Charlotte, North Carolina 28223, United States
| | - Hubertus J J van Dam
- Condensed Matter Physics and Materials Science Dept, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Joanna K Krueger
- Nanoscale Science Program, Department of Chemistry, University of North Carolina Charlotte, Charlotte, North Carolina 28223, United States
| | - James Byrnes
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
2
|
Williams CA, Stone DJ, Joshi SY, Yilmaz G, Farzeen P, Jeon S, Harris-Ryden Z, Becer CR, Deshmukh SA, Callmann CE. Systematic Evaluation of Macromolecular Carbohydrate-Lectin Recognition Using Precision Glycopolymers. Biomacromolecules 2024; 25:7985-7994. [PMID: 39503854 DOI: 10.1021/acs.biomac.4c01245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
The precise modulation of protein-carbohydrate interactions is critical in glycobiology, where multivalent binding governs key cellular processes. As such, synthetic glycopolymers are useful for probing these interactions. Herein, we developed precision glycopolymers (PGPs) with unambiguous local chemical composition and well-defined global structure and systematically evaluated the effect of polymer length, hydrophobicity, and backbone hybridization as well as glycan density and identity on the binding to both mammalian and plant lectins. Our studies identified glycan density as a critical factor, with PGPs below 50% grafting density showing significantly weaker lectin interactions. Coarse-grained molecular dynamics simulations suggest that the observed phenomena may be due to a decrease in carbohydrate-carbohydrate interactions in fully grafted PGPs, leading to improved solvent accessibility. In functional assays, these PGPs reduced the cell viability and migration in 4T1 breast cancer cells. Our findings establish a structure-activity relationship in glycopolymers, providing new strategies for designing synthetic glycomacromolecules for a myriad of applications.
Collapse
Affiliation(s)
- Cole A Williams
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Daniel J Stone
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Soumil Y Joshi
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Gokhan Yilmaz
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Parisa Farzeen
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Sungjin Jeon
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zamira Harris-Ryden
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Remzi Becer
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Sanket A Deshmukh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Cassandra E Callmann
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Tranchant EE, Pesce F, Jacobsen NL, Fernandes CB, Kragelund BB, Lindorff-Larsen K. On the use of dioxane as reference for determination of the hydrodynamic radius by NMR spectroscopy. Biophys J 2024; 123:3759-3770. [PMID: 39340154 PMCID: PMC11560309 DOI: 10.1016/j.bpj.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/27/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024] Open
Abstract
Measuring the compaction of a protein or complex is key to our understanding of the interactions within and between biomolecules. Experimentally, protein compaction is often probed either by estimating the radius of gyration (Rg) obtained from small-angle x-ray scattering (SAXS) experiments or the hydrodynamic radius (Rh) obtained, for example, by pulsed field gradient NMR (PFG NMR) spectroscopy. PFG NMR experiments generally report on the translational diffusion coefficient, which in turn can be used to estimate Rh using an internal standard to account for sample viscosity and uncertainty about the gradient strength. 1,4-Dioxane is one such commonly used internal standard, and the reference value of Rh is therefore important. We have revisited the basis for the commonly used reference value for the Rh of dioxane (2.12 Å) that is used to convert measured diffusion coefficients into a hydrodynamic radius. We followed the same approach that was used to establish the current reference value by measuring SAXS and PFG NMR data for a set of seven different proteins and using these as standards. Our analysis shows that the current Rh reference value for dioxane Rh is underestimated, and we instead suggest a new value of 2.27 ± 0.04 Å. Using this updated reference value results in a ∼7% increase in Rh values for proteins whose hydrodynamic radii have been measured by PFG NMR. These results are particularly important when the absolute value of Rh is of interest such as when determining or validating ensemble descriptions of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Emil E Tranchant
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark; REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Francesco Pesce
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Nina L Jacobsen
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark; REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Catarina B Fernandes
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark; REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark; REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Huang TC, Levenson R, Li Y, Kohl P, Morse DE, Shell MS, Helgeson ME. A colloidal model for the equilibrium assembly and liquid-liquid phase separation of the reflectin A1 protein. Biophys J 2024; 123:3065-3079. [PMID: 38965780 PMCID: PMC11427776 DOI: 10.1016/j.bpj.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
Reflectin is an intrinsically disordered protein known for its ability to modulate the biophotonic camouflage of cephalopods based on its assembly-induced osmotic properties. Its reversible self-assembly into discrete, size-controlled clusters and condensed droplets are known to depend sensitively on the net protein charge, making reflectin stimuli-responsive to pH, phosphorylation, and electric fields. Despite considerable efforts to characterize this behavior, the detailed physical mechanisms of reflectin's assembly are not yet fully understood. Here, we pursue a coarse-grained molecular understanding of reflectin assembly using a combination of experiments and simulations. We hypothesize that reflectin assembly and phase behavior can be explained from a remarkably simple colloidal model whereby individual protein monomers effectively interact via a short-range attractive and long-range repulsive (SA-LR) pair potential. We parameterize a coarse-grained SA-LR interaction potential for reflectin A1 from small-angle x-ray scattering measurements, and then extend it to a range of pH values using Gouy-Chapman theory to model monomer-monomer electrostatic interactions. The pH-dependent SA-LR interaction is then used in molecular dynamics simulations of reflectin assembly, which successfully capture a number of qualitative features of reflectin, including pH-dependent formation of discrete-sized nanoclusters and liquid-liquid phase separation at high pH, resulting in a putative phase diagram for reflectin. Importantly, we find that at low pH size-controlled reflectin clusters are equilibrium assemblies, which dynamically exchange protein monomers to maintain an equilibrium size distribution. These findings provide a mechanistic understanding of the equilibrium assembly of reflectin, and suggest that colloidal-scale models capture key driving forces and interactions to explain thermodynamic aspects of native reflectin behavior. Furthermore, the success of SA-LR interactions presented in this study demonstrates the potential of a colloidal interpretation of interactions and phenomena in a range of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Tse-Chiang Huang
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California
| | - Robert Levenson
- Life Sciences, Soka University of America, Aliso Viejo, California
| | - Youli Li
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, California
| | - Phillip Kohl
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, California
| | - Daniel E Morse
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California
| | - M Scott Shell
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California.
| | - Matthew E Helgeson
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California.
| |
Collapse
|
5
|
Streit JO, Bukvin IV, Chan SHS, Bashir S, Woodburn LF, Włodarski T, Figueiredo AM, Jurkeviciute G, Sidhu HK, Hornby CR, Waudby CA, Cabrita LD, Cassaignau AME, Christodoulou J. The ribosome lowers the entropic penalty of protein folding. Nature 2024; 633:232-239. [PMID: 39112704 PMCID: PMC11374706 DOI: 10.1038/s41586-024-07784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 07/04/2024] [Indexed: 08/17/2024]
Abstract
Most proteins fold during biosynthesis on the ribosome1, and co-translational folding energetics, pathways and outcomes of many proteins have been found to differ considerably from those in refolding studies2-10. The origin of this folding modulation by the ribosome has remained unknown. Here we have determined atomistic structures of the unfolded state of a model protein on and off the ribosome, which reveal that the ribosome structurally expands the unfolded nascent chain and increases its solvation, resulting in its entropic destabilization relative to the peptide chain in isolation. Quantitative 19F NMR experiments confirm that this destabilization reduces the entropic penalty of folding by up to 30 kcal mol-1 and promotes formation of partially folded intermediates on the ribosome, an observation that extends to other protein domains and is obligate for some proteins to acquire their active conformation. The thermodynamic effects also contribute to the ribosome protecting the nascent chain from mutation-induced unfolding, which suggests a crucial role of the ribosome in supporting protein evolution. By correlating nascent chain structure and dynamics to their folding energetics and post-translational outcomes, our findings establish the physical basis of the distinct thermodynamics of co-translational protein folding.
Collapse
Affiliation(s)
- Julian O Streit
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Ivana V Bukvin
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Sammy H S Chan
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK.
| | - Shahzad Bashir
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Lauren F Woodburn
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Tomasz Włodarski
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Angelo Miguel Figueiredo
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Gabija Jurkeviciute
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Haneesh K Sidhu
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Charity R Hornby
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Christopher A Waudby
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Lisa D Cabrita
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Anaïs M E Cassaignau
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK.
| | - John Christodoulou
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK.
- Department of Biological Sciences, Birkbeck College, London, UK.
| |
Collapse
|
6
|
Fleming PJ, Correia JJ, Fleming KG. The molecular basis for hydrodynamic properties of PEGylated human serum albumin. Biophys J 2024; 123:2379-2391. [PMID: 38778541 PMCID: PMC11365107 DOI: 10.1016/j.bpj.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Polyethylene glycol (PEG) conjugation provides a protective modification that enhances the pharmacokinetics and solubility of proteins for therapeutic use. A knowledge of the structural ensemble of these PEGylated proteins is necessary to understand the molecular details that contribute to their hydrodynamic and colligative properties. Because of the large size and dynamic flexibility of pharmaceutically important PEGylated proteins, the determination of structure is challenging. In addition, the hydration of these conjugates that contain large polymers is difficult to determine with traditional methods that identify only first shell hydration water, which does not account for the complete hydrodynamic volume of a macromolecule. Here, we demonstrate that structural ensembles, generated by coarse-grained simulations, can be analyzed with HullRad and used to predict sedimentation coefficients and concentration-dependent hydrodynamic and diffusion nonideality coefficients of PEGylated proteins. A knowledge of these concentration-dependent properties enhances the ability to design and analyze new modified protein therapeutics. HullRad accomplishes this analysis by effectively accounting for the complete hydration of a macromolecule, including that of flexible polymers.
Collapse
Affiliation(s)
- Patrick J Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - John J Correia
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
7
|
Kozak F, Brandis D, Pötzl C, Epasto LM, Reichinger D, Obrist D, Peterlik H, Polyansky A, Zagrovic B, Daus F, Geyer A, Becker CFW, Kurzbach D. An Atomistic View on the Mechanism of Diatom Peptide-Guided Biomimetic Silica Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401239. [PMID: 38874418 PMCID: PMC11321707 DOI: 10.1002/advs.202401239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/23/2024] [Indexed: 06/15/2024]
Abstract
Deciphering nature's remarkable way of encoding functions in its biominerals holds the potential to enable the rational development of nature-inspired materials with tailored properties. However, the complex processes that convert solution-state precursors into solid biomaterials remain largely unknown. In this study, an unconventional approach is presented to characterize these precursors for the diatom-derived peptides R5 and synthetic Silaffin-1A1 (synSil-1A1). These molecules can form defined supramolecular assemblies in solution, which act as templates for solid silica structures. Using a tailored structural biology toolbox, the structure-function relationships of these self-assemblies are unveiled. NMR-derived constraints are employed to enable a recently developed fractal-cluster formalism and then reveal the architecture of the peptide assemblies in atomistic detail. Finally, by monitoring the self-assembly activities during silica formation at simultaneous high temporal and residue resolution using real-time spectroscopy, the mechanism is elucidated underlying template-driven silica formation. Thus, it is demonstrated how to exercise morphology control over bioinorganic solids by manipulating the template architectures. It is found that the morphology of the templates is translated into the shape of bioinorganic particles via a mechanism that includes silica nucleation on the solution-state complexes' surfaces followed by complete surface coating and particle precipitation.
Collapse
Affiliation(s)
- Fanny Kozak
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Dörte Brandis
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Christopher Pötzl
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Ludovica M. Epasto
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Daniela Reichinger
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Dominik Obrist
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Herwig Peterlik
- Faculty of PhysicsUniversity of ViennaBoltzmanngasse 5Vienna1090Austria
| | - Anton Polyansky
- Department of Structural and Computational BiologyMax Perutz LabsUniversity of ViennaCampus Vienna Biocenter 5ViennaA‐1030Austria
| | - Bojan Zagrovic
- Department of Structural and Computational BiologyMax Perutz LabsUniversity of ViennaCampus Vienna Biocenter 5ViennaA‐1030Austria
| | - Fabian Daus
- Faculty of ChemistryPhilipps‐Universität Marburg35032MarburgGermany
| | - Armin Geyer
- Faculty of ChemistryPhilipps‐Universität Marburg35032MarburgGermany
| | - Christian FW Becker
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Dennis Kurzbach
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| |
Collapse
|
8
|
Waszkiewicz R, Michaś A, Białobrzewski MK, Klepka BP, Cieplak-Rotowska MK, Staszałek Z, Cichocki B, Lisicki M, Szymczak P, Niedzwiecka A. Hydrodynamic Radii of Intrinsically Disordered Proteins: Fast Prediction by Minimum Dissipation Approximation and Experimental Validation. J Phys Chem Lett 2024; 15:5024-5033. [PMID: 38696815 PMCID: PMC11103702 DOI: 10.1021/acs.jpclett.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
The diffusion coefficients of globular and fully unfolded proteins can be predicted with high accuracy solely from their mass or chain length. However, this approach fails for intrinsically disordered proteins (IDPs) containing structural domains. We propose a rapid predictive methodology for estimating the diffusion coefficients of IDPs. The methodology uses accelerated conformational sampling based on self-avoiding random walks and includes hydrodynamic interactions between coarse-grained protein subunits, modeled using the generalized Rotne-Prager-Yamakawa approximation. To estimate the hydrodynamic radius, we rely on the minimum dissipation approximation recently introduced by Cichocki et al. Using a large set of experimentally measured hydrodynamic radii of IDPs over a wide range of chain lengths and domain contributions, we demonstrate that our predictions are more accurate than the Kirkwood approximation and phenomenological approaches. Our technique may prove to be valuable in predicting the hydrodynamic properties of both fully unstructured and multidomain disordered proteins.
Collapse
Affiliation(s)
- Radost Waszkiewicz
- Institute
of Theoretical Physics, Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland
| | - Agnieszka Michaś
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Michał K. Białobrzewski
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Barbara P. Klepka
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| | | | - Zuzanna Staszałek
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Bogdan Cichocki
- Institute
of Theoretical Physics, Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland
| | - Maciej Lisicki
- Institute
of Theoretical Physics, Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland
| | - Piotr Szymczak
- Institute
of Theoretical Physics, Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland
| | - Anna Niedzwiecka
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| |
Collapse
|
9
|
Rossotti M, Arceri D, Mansuelle P, Bornet O, Durand A, Ouchane S, Launay H, Dorlet P. The green cupredoxin CopI is a multicopper protein able to oxidize Cu(I). J Inorg Biochem 2024; 254:112503. [PMID: 38364337 DOI: 10.1016/j.jinorgbio.2024.112503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Anthropogenic activities in agriculture and health use the antimicrobial properties of copper. This has led to copper accumulation in the environment and contributed to the emergence of copper resistant microorganisms. Understanding bacterial copper homeostasis diversity is therefore highly relevant since it could provide valuable targets for novel antimicrobial treatments. The periplasmic CopI protein is a monodomain cupredoxin comprising several copper binding sites and is directly involved in copper resistance in bacteria. However, its structure and mechanism of action are yet to be determined. To study the different binding sites for cupric and cuprous ions and to understand their possible interactions, we have used mutants of the putative copper binding modules of CopI and spectroscopic methods to characterize their properties. We show that CopI is able to bind a cuprous ion in its central histidine/methionine-rich region and oxidize it thanks to its cupredoxin center. The resulting cupric ion can bind to a third site at the N-terminus of the protein. Nuclear magnetic resonance spectroscopy revealed that the central histidine/methionine-rich region exhibits a dynamic behavior and interacts with the cupredoxin binding region. CopI is therefore likely to participate in copper resistance by detoxifying the cuprous ions from the periplasm.
Collapse
Affiliation(s)
- Melanie Rossotti
- CNRS, Aix Marseille Univ, BIP, Institut de Microbiologie de la Méditerranée (IMM), Marseille, France
| | - Diletta Arceri
- CNRS, Aix Marseille Univ, BIP, Institut de Microbiologie de la Méditerranée (IMM), Marseille, France
| | - Pascal Mansuelle
- CNRS, FR3479, Institut de Microbiologie de la Méditerranée (IMM), Plateforme Protéomique, Marseille Protéomique (MaP), IbiSA Labelled, Aix Marseille Univ, Marseille, France
| | - Olivier Bornet
- CNRS, Aix Marseille Univ, Institut de Microbiologie de la Méditerranée (IMM), Marseille, France
| | - Anne Durand
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Soufian Ouchane
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Hélène Launay
- CNRS, Aix Marseille Univ, BIP, Institut de Microbiologie de la Méditerranée (IMM), Marseille, France
| | - Pierre Dorlet
- CNRS, Aix Marseille Univ, BIP, Institut de Microbiologie de la Méditerranée (IMM), Marseille, France.
| |
Collapse
|
10
|
Olsen JG, Prestel A, Kassem N, Broendum SS, Shamim HM, Simonsen S, Grysbæk M, Mortensen J, Rytkjær LL, Haxholm GW, Marabini R, Holmberg C, Carr AM, Crehuet R, Nielsen O, Kragelund BB. Checkpoint activation by Spd1: a competition-based system relying on tandem disordered PCNA binding motifs. Nucleic Acids Res 2024; 52:2030-2044. [PMID: 38261971 PMCID: PMC10939359 DOI: 10.1093/nar/gkae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
DNA regulation, replication and repair are processes fundamental to all known organisms and the sliding clamp proliferating cell nuclear antigen (PCNA) is central to all these processes. S-phase delaying protein 1 (Spd1) from S. pombe, an intrinsically disordered protein that causes checkpoint activation by inhibiting the enzyme ribonucleotide reductase, has one of the most divergent PCNA binding motifs known. Using NMR spectroscopy, in vivo assays, X-ray crystallography, calorimetry, and Monte Carlo simulations, an additional PCNA binding motif in Spd1, a PIP-box, is revealed. The two tandemly positioned, low affinity sites exchange rapidly on PCNA exploiting the same binding sites. Increasing or decreasing the binding affinity between Spd1 and PCNA through mutations of either motif compromised the ability of Spd1 to cause checkpoint activation in yeast. These results pinpoint a role for PCNA in Spd1-mediated checkpoint activation and suggest that its tandemly positioned short linear motifs create a neatly balanced competition-based system, involving PCNA, Spd1 and the small ribonucleotide reductase subunit, Suc22R2. Similar mechanisms may be relevant in other PCNA binding ligands where divergent binding motifs so far have gone under the PIP-box radar.
Collapse
Affiliation(s)
- Johan G Olsen
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and REPIN, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Andreas Prestel
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and REPIN, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Noah Kassem
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and REPIN, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Sebastian S Broendum
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and REPIN, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Hossain Mohammad Shamim
- Cell cycle and Genome Stability Group, Functional Genomics, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Signe Simonsen
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and REPIN, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Martin Grysbæk
- Cell cycle and Genome Stability Group, Functional Genomics, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Josefine Mortensen
- Cell cycle and Genome Stability Group, Functional Genomics, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Louise Lund Rytkjær
- Cell cycle and Genome Stability Group, Functional Genomics, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Gitte W Haxholm
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and REPIN, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Riccardo Marabini
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and REPIN, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Christian Holmberg
- Cell cycle and Genome Stability Group, Functional Genomics, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Antony M Carr
- Genome Damage and Stability Centre, University of Sussex, John Maynard Smith Building, Falmer, BN1 9RQ, Brighton
| | - Ramon Crehuet
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, c/ Jordi Girona 18-26, 08034 Barcelona
| | - Olaf Nielsen
- Cell cycle and Genome Stability Group, Functional Genomics, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and REPIN, Department of Biology, Ole Maaloes Vej 5, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
11
|
Khatua S, Roy A, Sen P, Ray S. Elucidation of the structural dynamics of mutations in PHB2 protein associated with growth suppression and cancer progression. Gene 2024; 890:147820. [PMID: 37739195 DOI: 10.1016/j.gene.2023.147820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/03/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Prohibitin is a multifunctional protein that plays an important role in numerous cellular processes. Membrane-associated mitochondrial prohibitin complex is made up of two subunits, PHB1 and PHB2 which are ubiquitously expressed and analogous to each other. High levels of prohibitin expression have consequently been found in esophageal cancer, endometrial adenocarcinoma, gastric cancer, hepatocellular carcinoma, breast cancer and bladder cancer. The aim of this study is to analyse two-point mutation PHB2_MT1(I → A) and PHB2_MT2(I → P), their effect on PHB2 protein and its effect on formation of mitochondrial complex. It is a residual level study, based on current experimental validation. To establish the effects of the two-point mutations, computational approaches such as molecular modelling, molecular docking, normal mode simulation, molecular dynamics simulations and MM/GBSA were used. An analysis of the energy dynamics of both unbound and complex proteins was conducted to elucidate how mutations impact the energy distribution of PHB2. Our study confirmed that the two mutations decreased the overall stability of PHB2. This was evidenced by heightened atomic fluctuations within the mutated region, accompanied by elevated deviations observed in RMSD and Rg values. Furthermore, these mutations were correlated with a decline in the organization of secondary structural elements. The mutations in PHB2_MT1 and PHB2_MT2 resulted in formation a less stable prohibitin complex. Thus, PHB1 and PHB2 may act as molecular target or novel biomarkers for therapeutic intervention in numerous forms of malignancies.
Collapse
Affiliation(s)
- Susmita Khatua
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Alankar Roy
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Pritha Sen
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India.
| |
Collapse
|
12
|
Lebedenko OO, Salikov VA, Izmailov SA, Podkorytov IS, Skrynnikov NR. Using NMR diffusion data to validate MD models of disordered proteins: Test case of N-terminal tail of histone H4. Biophys J 2024; 123:80-100. [PMID: 37990496 PMCID: PMC10808029 DOI: 10.1016/j.bpj.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
MD simulations can provide uniquely detailed models of intrinsically disordered proteins (IDPs). However, these models need careful experimental validation. The coefficient of translational diffusion Dtr, measurable by pulsed field gradient NMR, offers a potentially useful piece of experimental information related to the compactness of the IDP's conformational ensemble. Here, we investigate, both experimentally and via the MD modeling, the translational diffusion of a 25-residue N-terminal fragment from histone H4 (N-H4). We found that the predicted values of Dtr, as obtained from mean-square displacement of the peptide in the MD simulations, are largely determined by the viscosity of the MD water (which has been reinvestigated as a part of our study). Beyond that, our analysis of the diffusion data indicates that MD simulations of N-H4 in the TIP4P-Ew water give rise to an overly compact conformational ensemble for this peptide. In contrast, TIP4P-D and OPC simulations produce the ensembles that are consistent with the experimental Dtr result. These observations are supported by the analyses of the 15N spin relaxation rates. We also tested a number of empirical methods to predict Dtr based on IDP's coordinates extracted from the MD snapshots. In particular, we show that the popular approach involving the program HYDROPRO can produce misleading results. This happens because HYDROPRO is not intended to predict the diffusion properties of highly flexible biopolymers such as IDPs. Likewise, recent empirical schemes that exploit the relationship between the small-angle x-ray scattering-informed conformational ensembles of IDPs and the respective experimental Dtr values also prove to be problematic. In this sense, the first-principle calculations of Dtr from the MD simulations, such as demonstrated in this work, should provide a useful benchmark for future efforts in this area.
Collapse
Affiliation(s)
- Olga O Lebedenko
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, Russia
| | - Vladislav A Salikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, Russia
| | - Sergei A Izmailov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, Russia
| | - Ivan S Podkorytov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, Russia
| | - Nikolai R Skrynnikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, Russia; Department of Chemistry, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
13
|
Moharana M, Maharana PC, Pattanayak SK, Khan F. Effect of temperature on hepatitis a virus and exploration of binding mode mechanism of phytochemicals from tinospora cordifolia: an insight into molecular docking, MM/GBSA, and molecular dynamics simulation study. J Biomol Struct Dyn 2024; 42:598-614. [PMID: 36995189 DOI: 10.1080/07391102.2023.2194429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023]
Abstract
The hepatitis A virus (HAV), which causes hepatitis A, is a contagious liver ailment. The infections are not specifically treated by any medications. Therefore, the development of less harmful, more effective and cost-effective antiviral agents are necessary. The present work highlighted the in-silico activity of phytocompounds from tinospora cordifolia against HAV. The binding interaction of HAV with the phytocompounds was analyzed through molecular docking. Molecular docking revealed that chasmanthin, malabarolide, menispermacide, tinosporaside, and tinosporinone compounds bind with HAV more efficiently than other compounds. Further evaluation using 100 ns molecular dynamics simulation, MM/GBSA and free energy landscape indicated that all phytocompounds studied here were found to be most promising drug candidate against hepatitis A virus. Our computational study will encourage promoting in further investigation for in vitro and in vivo clinical trials.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maheswata Moharana
- Department of Chemistry, National Institute of Technology, Raipur, India
| | | | | | - Fahmida Khan
- Department of Chemistry, National Institute of Technology, Raipur, India
| |
Collapse
|
14
|
Harnish MT, Lopez D, Morrison CT, Narayanan R, Fernandez EJ, Shen T. Novel Covalent Modifier-Induced Local Conformational Changes within the Intrinsically Disordered Region of the Androgen Receptor. BIOLOGY 2023; 12:1442. [PMID: 37998041 PMCID: PMC10669190 DOI: 10.3390/biology12111442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/18/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023]
Abstract
Intrinsically disordered regions (IDRs) of transcription factors play an important biological role in liquid condensate formation and gene regulation. It is thus desirable to investigate the druggability of IDRs and how small-molecule binders can alter their conformational stability. For the androgen receptor (AR), certain covalent ligands induce important changes, such as the neutralization of the condensate. To understand the specificity of ligand-IDR interaction and potential implications for the mechanism of neutralizing liquid-liquid phase separation (LLPS), we modeled and performed computer simulations of ligand-bound peptide segments obtained from the human AR. We analyzed how different covalent ligands affect local secondary structure, protein contact map, and protein-ligand contacts for these protein systems. We find that effective neutralizers make specific interactions (such as those between cyanopyrazole and tryptophan) that alter the helical propensity of the peptide segments. These findings on the mechanism of action can be useful for designing molecules that influence IDR structure and condensate of the AR in the future.
Collapse
Affiliation(s)
- Michael T. Harnish
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; (M.T.H.); (D.L.); (C.T.M.); (E.J.F.)
| | - Daniel Lopez
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; (M.T.H.); (D.L.); (C.T.M.); (E.J.F.)
| | - Corbin T. Morrison
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; (M.T.H.); (D.L.); (C.T.M.); (E.J.F.)
| | - Ramesh Narayanan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA;
| | - Elias J. Fernandez
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; (M.T.H.); (D.L.); (C.T.M.); (E.J.F.)
| | - Tongye Shen
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; (M.T.H.); (D.L.); (C.T.M.); (E.J.F.)
| |
Collapse
|
15
|
Forsberg Z, Stepnov AA, Tesei G, Wang Y, Buchinger E, Kristiansen SK, Aachmann FL, Arleth L, Eijsink VGH, Lindorff-Larsen K, Courtade G. The effect of linker conformation on performance and stability of a two-domain lytic polysaccharide monooxygenase. J Biol Chem 2023; 299:105262. [PMID: 37734553 PMCID: PMC10598543 DOI: 10.1016/j.jbc.2023.105262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
A considerable number of lytic polysaccharide monooxygenases (LPMOs) and other carbohydrate-active enzymes are modular, with catalytic domains being tethered to additional domains, such as carbohydrate-binding modules, by flexible linkers. While such linkers may affect the structure, function, and stability of the enzyme, their roles remain largely enigmatic, as do the reasons for natural variation in length and sequence. Here, we have explored linker functionality using the two-domain cellulose-active ScLPMO10C from Streptomyces coelicolor as a model system. In addition to investigating the WT enzyme, we engineered three linker variants to address the impact of both length and sequence and characterized these using small-angle X-ray scattering, NMR, molecular dynamics simulations, and functional assays. The resulting data revealed that, in the case of ScLPMO10C, linker length is the main determinant of linker conformation and enzyme performance. Both the WT and a serine-rich variant, which have the same linker length, demonstrated better performance compared with those with either a shorter linker or a longer linker. A highlight of our findings was the substantial thermostability observed in the serine-rich variant. Importantly, the linker affects thermal unfolding behavior and enzyme stability. In particular, unfolding studies show that the two domains unfold independently when mixed, whereas the full-length enzyme shows one cooperative unfolding transition, meaning that the impact of linkers in biomass-processing enzymes is more complex than mere structural tethering.
Collapse
Affiliation(s)
- Zarah Forsberg
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Anton A Stepnov
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Giulio Tesei
- Structural Biology and NMR Laboratory, Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Yong Wang
- Structural Biology and NMR Laboratory, Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark; College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Edith Buchinger
- Vectron Biosolutions AS, Trondheim, Norway; Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Sandra K Kristiansen
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Finn L Aachmann
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Lise Arleth
- X-ray and Neutron Science, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Gaston Courtade
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
16
|
Khusnutdinova NR, Markelov DA. Hydrodynamic radius of dendrimers in solvents. Phys Chem Chem Phys 2023; 25:28220-28229. [PMID: 37823286 DOI: 10.1039/d3cp03382a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The diffusion properties and hydrodynamic radius, Rh, of macromolecules are important for theoretical studies and practical application. Moreover, comparison of Rh values obtained from simulation and experimental data is used to check the correctness of simulation results. Here, we study the translation mobility of poly(butylcarbosilane) dendrimers in chloroform solution using molecular dynamics simulations and consider simulation details that may influence the accuracy of the result. Different methods to estimate Rh for a dendrimer are discussed with comparison to our experimental data. It was shown that the traditional MD simulation method for extraction of the diffusion coefficient (and calculation of Rh) of dendrimers as a rule faces difficulties and requires simulation resources several times greater than, for example, the same for a linear analogue. In the majority of MD simulation papers, the diffusion coefficient and/or Rh are calculated incorrectly. Also, we establish that correction of Rh according to the simulation box or estimation of Rh by using the gyration radius does not give values close to experimental data. To avoid the mentioned problems, we found an alternative way: to consider rotational diffusion, which gives an Rh similar to that from experiment and is practically independent of the size of the simulation box and other simulation parameters.
Collapse
Affiliation(s)
- Naira R Khusnutdinova
- Saint Petersburg State University, 7/9 Universitetskaya nab., St Petersburg 199034, Russia.
- Kazan State Power Engineering University, 51 Krasnoselskaya st., Kazan 420066, Russia.
| | - Denis A Markelov
- Saint Petersburg State University, 7/9 Universitetskaya nab., St Petersburg 199034, Russia.
| |
Collapse
|
17
|
Białobrzewski MK, Klepka BP, Michaś A, Cieplak-Rotowska MK, Staszałek Z, Niedźwiecka A. Diversity of hydrodynamic radii of intrinsically disordered proteins. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:607-618. [PMID: 37831084 PMCID: PMC10618399 DOI: 10.1007/s00249-023-01683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/08/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023]
Abstract
Intrinsically disordered proteins (IDPs) form an important class of biomolecules regulating biological processes in higher organisms. The lack of a fixed spatial structure facilitates them to perform their regulatory functions and allows the efficiency of biochemical reactions to be controlled by temperature and the cellular environment. From the biophysical point of view, IDPs are biopolymers with a broad configuration state space and their actual conformation depends on non-covalent interactions of its amino acid side chain groups at given temperature and chemical conditions. Thus, the hydrodynamic radius (Rh) of an IDP of a given polymer length (N) is a sequence- and environment-dependent variable. We have reviewed the literature values of hydrodynamic radii of IDPs determined experimentally by SEC, AUC, PFG NMR, DLS, and FCS, and complement them with our FCS results obtained for a series of protein fragments involved in the regulation of human gene expression. The data collected herein show that the values of hydrodynamic radii of IDPs can span the full space between the folded globular and denatured proteins in the Rh(N) diagram.
Collapse
Affiliation(s)
- Michał K Białobrzewski
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland
| | - Barbara P Klepka
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland
| | - Agnieszka Michaś
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland
| | - Maja K Cieplak-Rotowska
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, PL-02093, Warsaw, Poland
- The International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, Flisa 6, PL-02247, Warsaw, Poland
| | - Zuzanna Staszałek
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland
| | - Anna Niedźwiecka
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland.
| |
Collapse
|
18
|
Pesce F, Lindorff-Larsen K. Combining Experiments and Simulations to Examine the Temperature-Dependent Behavior of a Disordered Protein. J Phys Chem B 2023. [PMID: 37433228 DOI: 10.1021/acs.jpcb.3c01862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Intrinsically disordered proteins are a class of proteins that lack stable folded conformations and instead adopt a range of conformations that determine their biochemical functions. The temperature-dependent behavior of such disordered proteins is complex and can vary depending on the specific protein and environment. Here, we have used molecular dynamics simulations and previously published experimental data to investigate the temperature-dependent behavior of histatin 5, a 24-residue-long polypeptide. We examined the hypothesis that histatin 5 undergoes a loss of polyproline II (PPII) structure with increasing temperature, leading to more compact conformations. We found that the conformational ensembles generated by the simulations generally agree with small-angle X-ray scattering data for histatin 5, but show some discrepancies with the hydrodynamic radius as probed by pulsed-field gradient NMR spectroscopy, and with the secondary structure information derived from circular dichroism. We attempted to reconcile these differences by reweighting the conformational ensembles against the scattering and NMR data. By doing so, we were in part able to capture the temperature-dependent behavior of histatin 5 and to link the observed decrease in hydrodynamic radius with increasing temperature to a loss of PPII structure. We were, however, unable to achieve agreement with both the scattering and NMR data within experimental errors. We discuss different possible reasons for this including inaccuracies in the force field, differences in conditions of the NMR and scattering experiments, and issues related to the calculation of the hydrodynamic radius from conformational ensembles. Our study highlights the importance of integrating multiple types of experimental data when modeling conformational ensembles of disordered proteins and how environmental factors such as the temperature influence them.
Collapse
Affiliation(s)
- Francesco Pesce
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
19
|
Lawanprasert A, Sloand JN, Vargas MG, Singh H, Eldor T, Miller MA, Pimcharoen S, Wang J, Leighow SM, Pritchard JR, Dokholyan NV, Medina SH. Deciphering the Mechanistic Basis for Perfluoroalkyl-Protein Interactions. Chembiochem 2023; 24:e202300159. [PMID: 36943393 PMCID: PMC10364144 DOI: 10.1002/cbic.202300159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/23/2023]
Abstract
Although rarely used in nature, fluorine has emerged as an important elemental ingredient in the design of proteins with altered folding, stability, oligomerization propensities, and bioactivity. Adding to the molecular modification toolbox, here we report the ability of privileged perfluorinated amphiphiles to noncovalently decorate proteins to alter their conformational plasticity and potentiate their dispersion into fluorous phases. Employing a complementary suite of biophysical, in-silico and in-vitro approaches, we establish structure-activity relationships defining these phenomena and investigate their impact on protein structural dynamics and intracellular trafficking. Notably, we show that the lead compound, perfluorononanoic acid, is 106 times more potent in inducing non-native protein secondary structure in select proteins than is the well-known helix inducer trifluoroethanol, and also significantly enhances the cellular uptake of complexed proteins. These findings could advance the rational design of fluorinated proteins, inform on potential modes of toxicity for perfluoroalkyl substances, and guide the development of fluorine-modified biologics with desirable functional properties for drug discovery and delivery applications.
Collapse
Affiliation(s)
- Atip Lawanprasert
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Janna N. Sloand
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Mariangely González Vargas
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
- Department of Industrial Engineering, University of Puerto Rico, Mayagüez, Puerto Rico 00682
| | - Harminder Singh
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Tomer Eldor
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Michael A. Miller
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Sopida Pimcharoen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hershey, PA, USA, 17033
| | - Scott M. Leighow
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Justin R. Pritchard
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA, 16802
| | - Nikolay V. Dokholyan
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
- Department of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hershey, PA, USA, 17033
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Hershey, PA, USA, 17033
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA, 16802
| | - Scott H. Medina
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA, 16802
| |
Collapse
|
20
|
Alston JJ, Ginell GM, Soranno A, Holehouse AS. The Analytical Flory Random Coil Is a Simple-to-Use Reference Model for Unfolded and Disordered Proteins. J Phys Chem B 2023; 127:4746-4760. [PMID: 37200094 PMCID: PMC10875986 DOI: 10.1021/acs.jpcb.3c01619] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Denatured, unfolded, and intrinsically disordered proteins (collectively referred to here as unfolded proteins) can be described using analytical polymer models. These models capture various polymeric properties and can be fit to simulation results or experimental data. However, the model parameters commonly require users' decisions, making them useful for data interpretation but less clearly applicable as stand-alone reference models. Here we use all-atom simulations of polypeptides in conjunction with polymer scaling theory to parameterize an analytical model of unfolded polypeptides that behave as ideal chains (ν = 0.50). The model, which we call the analytical Flory random coil (AFRC), requires only the amino acid sequence as input and provides direct access to probability distributions of global and local conformational order parameters. The model defines a specific reference state to which experimental and computational results can be compared and normalized. As a proof-of-concept, we use the AFRC to identify sequence-specific intramolecular interactions in simulations of disordered proteins. We also use the AFRC to contextualize a curated set of 145 different radii of gyration obtained from previously published small-angle X-ray scattering experiments of disordered proteins. The AFRC is implemented as a stand-alone software package and is also available via a Google Colab notebook. In summary, the AFRC provides a simple-to-use reference polymer model that can guide intuition and aid in interpreting experimental or simulation results.
Collapse
Affiliation(s)
- Jhullian J. Alston
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Garrett M. Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
21
|
Emonts J, Buyel J. An overview of descriptors to capture protein properties - Tools and perspectives in the context of QSAR modeling. Comput Struct Biotechnol J 2023; 21:3234-3247. [PMID: 38213891 PMCID: PMC10781719 DOI: 10.1016/j.csbj.2023.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 01/13/2024] Open
Abstract
Proteins are important ingredients in food and feed, they are the active components of many pharmaceutical products, and they are necessary, in the form of enzymes, for the success of many technical processes. However, production can be challenging, especially when using heterologous host cells such as bacteria to express and assemble recombinant mammalian proteins. The manufacturability of proteins can be hindered by low solubility, a tendency to aggregate, or inefficient purification. Tools such as in silico protein engineering and models that predict separation criteria can overcome these issues but usually require the complex shape and surface properties of proteins to be represented by a small number of quantitative numeric values known as descriptors, as similarly used to capture the features of small molecules. Here, we review the current status of protein descriptors, especially for application in quantitative structure activity relationship (QSAR) models. First, we describe the complexity of proteins and the properties that descriptors must accommodate. Then we introduce descriptors of shape and surface properties that quantify the global and local features of proteins. Finally, we highlight the current limitations of protein descriptors and propose strategies for the derivation of novel protein descriptors that are more informative.
Collapse
Affiliation(s)
- J. Emonts
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Germany
| | - J.F. Buyel
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria
- Institute for Molecular Biotechnology, Worringerweg 1, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
22
|
Alston JJ, Ginell GM, Soranno A, Holehouse AS. The analytical Flory random coil is a simple-to-use reference model for unfolded and disordered proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.12.531990. [PMID: 36993592 PMCID: PMC10054940 DOI: 10.1101/2023.03.12.531990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Denatured, unfolded, and intrinsically disordered proteins (collectively referred to here as unfolded proteins) can be described using analytical polymer models. These models capture various polymeric properties and can be fit to simulation results or experimental data. However, the model parameters commonly require users' decisions, making them useful for data interpretation but less clearly applicable as stand-alone reference models. Here we use all-atom simulations of polypeptides in conjunction with polymer scaling theory to parameterize an analytical model of unfolded polypeptides that behave as ideal chains (ν = 0.50). The model, which we call the analytical Flory Random Coil (AFRC), requires only the amino acid sequence as input and provides direct access to probability distributions of global and local conformational order parameters. The model defines a specific reference state to which experimental and computational results can be compared and normalized. As a proof-of-concept, we use the AFRC to identify sequence-specific intramolecular interactions in simulations of disordered proteins. We also use the AFRC to contextualize a curated set of 145 different radii of gyration obtained from previously published small-angle X-ray scattering experiments of disordered proteins. The AFRC is implemented as a stand-alone software package and is also available via a Google colab notebook. In summary, the AFRC provides a simple-to-use reference polymer model that can guide intuition and aid in interpreting experimental or simulation results.
Collapse
Affiliation(s)
- Jhullian J. Alston
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Garrett M. Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
23
|
Fatullaev EI, Shavykin OV, Neelov IM. Molecular Dynamics of Lysine Dendrigrafts in Methanol-Water Mixtures. Int J Mol Sci 2023; 24:ijms24043063. [PMID: 36834474 PMCID: PMC9963150 DOI: 10.3390/ijms24043063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
The molecular dynamics method was used to study the structure and properties of dendrigrafts of the first and second generations in methanol-water mixtures with various volume fractions of methanol. At a small volume fraction of methanol, the size and other properties of both dendrigrafts are very similar to those in pure water. A decrease in the dielectric constant of the mixed solvent with an increase in the methanol fraction leads to the penetration of counterions into the dendrigrafts and a reduction of the effective charge. This leads to a gradual collapse of dendrigrafts: a decrease in their size, and an increase in the internal density and the number of intramolecular hydrogen bonds inside them. At the same time, the number of solvent molecules inside the dendrigraft and the number of hydrogen bonds between the dendrigraft and the solvent decrease. At small fractions of methanol in the mixture, the dominant secondary structure in both dendrigrafts is an elongated polyproline II (PPII) helix. At intermediate volume fractions of methanol, the proportion of the PPII helix decreases, while the proportion of another elongated β-sheet secondary structure gradually increases. However, at a high fraction of methanol, the proportion of compact α-helix conformations begins to increase, while the proportion of both elongated conformations decreases.
Collapse
Affiliation(s)
- Emil I. Fatullaev
- School of Computer Technologies and Control, St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
| | - Oleg V. Shavykin
- School of Computer Technologies and Control, St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russia
- Department of Mathematics, Tver State University, Sadoviy per. 35, 170102 Tver, Russia
| | - Igor M. Neelov
- School of Computer Technologies and Control, St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
24
|
Pesce F, Newcombe EA, Seiffert P, Tranchant EE, Olsen JG, Grace CR, Kragelund BB, Lindorff-Larsen K. Assessment of models for calculating the hydrodynamic radius of intrinsically disordered proteins. Biophys J 2023; 122:310-321. [PMID: 36518077 PMCID: PMC9892621 DOI: 10.1016/j.bpj.2022.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/18/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Diffusion measurements by pulsed-field gradient NMR and fluorescence correlation spectroscopy can be used to probe the hydrodynamic radius of proteins, which contains information about the overall dimension of a protein in solution. The comparison of this value with structural models of intrinsically disordered proteins is nonetheless impaired by the uncertainty of the accuracy of the methods for computing the hydrodynamic radius from atomic coordinates. To tackle this issue, we here build conformational ensembles of 11 intrinsically disordered proteins that we ensure are in agreement with measurements of compaction by small-angle x-ray scattering. We then use these ensembles to identify the forward model that more closely fits the radii derived from pulsed-field gradient NMR diffusion experiments. Of the models we examined, we find that the Kirkwood-Riseman equation provides the best description of the hydrodynamic radius probed by pulsed-field gradient NMR experiments. While some minor discrepancies remain, our results enable better use of measurements of the hydrodynamic radius in integrative modeling and for force field benchmarking and parameterization.
Collapse
Affiliation(s)
- Francesco Pesce
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Estella A Newcombe
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Pernille Seiffert
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Emil E Tranchant
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Johan G Olsen
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Christy R Grace
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
25
|
Pedersen KB, Flores-Canales JC, Schiøtt B. Predicting molecular properties of α-synuclein using force fields for intrinsically disordered proteins. Proteins 2023; 91:47-61. [PMID: 35950933 PMCID: PMC10087257 DOI: 10.1002/prot.26409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/17/2022] [Accepted: 07/12/2022] [Indexed: 12/29/2022]
Abstract
Independent force field validation is an essential practice to keep track of developments and for performing meaningful Molecular Dynamics simulations. In this work, atomistic force fields for intrinsically disordered proteins (IDP) are tested by simulating the archetypical IDP α-synuclein in solution for 2.5 μs. Four combinations of protein and water force fields were tested: ff19SB/OPC, ff19SB/TIP4P-D, ff03CMAP/TIP4P-D, and a99SB-disp/TIP4P-disp, with four independent repeat simulations for each combination. We compare our simulations to the results of a 73 μs simulation using the a99SB-disp/TIP4P-disp combination, provided by D. E. Shaw Research. From the trajectories, we predict a range of experimental observations of α-synuclein and compare them to literature data. This includes protein radius of gyration and hydration, intramolecular distances, NMR chemical shifts, and 3 J-couplings. Both ff19SB/TIP4P-D and a99SB-disp/TIP4P-disp produce extended conformational ensembles of α-synuclein that agree well with experimental radius of gyration and intramolecular distances while a99SB-disp/TIP4P-disp reproduces a balanced α-synuclein secondary structure content. It was found that ff19SB/OPC and ff03CMAP/TIP4P-D produce overly compact conformational ensembles and show discrepancies in the secondary structure content compared to the experimental data.
Collapse
Affiliation(s)
| | | | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Aarhus C, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
26
|
Characterization Challenges of Self-Assembled Polymer-SPIONs Nanoparticles: Benefits of Orthogonal Methods. Int J Mol Sci 2022; 23:ijms232416124. [PMID: 36555765 PMCID: PMC9786186 DOI: 10.3390/ijms232416124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Size and zeta potential are critical physicochemical properties of nanoparticles (NPs), influencing their biological activity and safety profile. These are essential for further industrial upscale and clinical success. However, the characterization of polydisperse, non-spherical NPs is a challenge for traditional characterization techniques (ex., dynamic light scattering (DLS)). In this paper, superparamagnetic iron oxide nanoparticles (SPIONs) were coated with polyvinyl alcohol (PVAL) exhibiting different terminal groups at their surface, either hydroxyl (OH), carboxyl (COOH) or amino (NH2) end groups. Size, zeta potential and concentration were characterized by orthogonal methods, namely, batch DLS, nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), transmission electron microscopy (TEM), asymmetric flow field flow fractionation (AF4) coupled to multi-angle light scattering (MALS), UV-Visible and online DLS. Finally, coated SPIONs were incubated with albumin, and size changes were monitored by AF4-MALS-UV-DLS. NTA showed the biggest mean sizes, even though DLS PVAL-COOH SPION graphs presented aggregates in the micrometer range. TRPS detected more NPs in suspension than NTA. Finally, AF4-MALS-UV-DLS could successfully resolve the different sizes of the coated SPION suspensions. The results highlight the importance of combining techniques with different principles for NPs characterization. The advantages and limitations of each method are discussed here.
Collapse
|
27
|
Fischer J, Han L, Saito T, Dadmun M. When does a macromolecule transition from a polymer chain to a nanoparticle? NANOSCALE ADVANCES 2022; 4:5164-5177. [PMID: 36504741 PMCID: PMC9680937 DOI: 10.1039/d2na00617k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Frequently, the defining characteristic of a nanoparticle is simply its size, where objects that are 1-100 nm are characterized as nanoparticles. However, synthetic and biological macromolecules, in particular high molecular weight chains, can satisfy this size requirement without providing the same phenomena as one would expect from a nanoparticle. At the same time, soft polymer nanoparticles are important in a broad range of fields, including understanding protein folding, drug delivery, vitrimers, catalysis and nanomedicine. Moreover, the recent flourish of all polymer nanocomposites has led to the synthesis of soft all-polymer nanoparticles, which emerge from internal crosslinking of a macromolecule. Thus, there exists a transition of an internally crosslinked macromolecule from a polymer chain to a nanoparticle as the amount of internal crosslinks increases, where the polymer chain exhibits different behavior than the nanoparticle. Yet, this transition is not well understood. In this work, we seek to address this knowledge gap and determine the transition of a macromolecule from a polymer chain to a nanoparticle as internal crosslinking increases. In this work, small angle neutron scattering (SANS) offers insight into the structure of polystyrene and poly(ethyl hexyl methacrylate) nanostructures in dilute solutions, with crosslinking densities that vary from 0.1 to 10.7%. Analyses of the SANS data provides structural characteristics to classify a nanostructure as chain-like or particle-like and identify a crosslinking dependent transition between the two morphologies. It was found that for both types of polymeric nanostructures, a crosslinking density of 0.81% (∼ a crosslink for every 1 in 125 monomers) or higher exhibit clear particle-like behavior. Lower crosslinking density nanostructures showed amounts of collapse similar to that of a star polymer (0.1% XL) or a random walk polymer chain (0.4% XL). Thus, the transition of an internally crosslinked macromolecule from a polymer chain to a nanoparticle is not an abrupt transition but occurs via the gradual contraction of the chain with incorporated crosslinks.
Collapse
Affiliation(s)
- Jacob Fischer
- Department of Chemistry, University of Tennessee Knoxville Tennessee USA
| | - Lu Han
- Chemical Sciences Division, Oak Ridge National Lab Oak Ridge Tennessee USA
| | - Tomonori Saito
- Chemical Sciences Division, Oak Ridge National Lab Oak Ridge Tennessee USA
| | - Mark Dadmun
- Department of Chemistry, University of Tennessee Knoxville Tennessee USA
- Chemical Sciences Division, Oak Ridge National Lab Oak Ridge Tennessee USA
| |
Collapse
|
28
|
Fleury JB, Baulin VA, Le Guével X. Protein-coated nanoparticles exhibit Lévy flights on a suspended lipid bilayer. NANOSCALE 2022; 14:13178-13186. [PMID: 36043913 DOI: 10.1039/d2nr01339h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lateral diffusion of nano-objects on lipid membranes is a crucial process in cell biology. Recent studies indicate that nanoparticle lateral diffusion is affected by the presence of membrane proteins and deviates from Brownian motion. Gold nanoparticles (Au NPs) stabilized by short thiol ligands were dispersed near a free-standing bilayer formed in a 3D microfluidic chip. Using dark-field microscopy, the position of single NPs at the bilayer surface was tracked over time. Numerical analysis of the NP trajectories shows that NP diffusion on the bilayer surface corresponds to Brownian motion. The addition of bovine serum albumin (BSA) protein to the solution led to the formation of a protein corona on the NP surface. We found that protein-coated NPs show anomalous superdiffusion and that the distribution of their relative displacement obeys Lévy flight statistics. This superdiffusive motion is attributed to a drastic reduction in adhesive energies between the NPs and the bilayer in the presence of the protein corona. This hypothesis was confirmed by numerical simulations mimicking the random walk of a single particle near a weakly adhesive surface. These results may be generalized to other classes of nano-objects that experience adsorption-desorption behaviour with a weakly adhesive surface.
Collapse
Affiliation(s)
- Jean-Baptiste Fleury
- Universitat des Saarlandes, Experimental Physics and Center for Biophysics, 66123 Saarbruecken, Germany.
| | - Vladimir A Baulin
- Departament Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel.lí Domingo s/n, 43007 Tarragona, Spain
| | - Xavier Le Guével
- Cancer Targets & Experimental Therapeutics, Institute for Advanced Biosciences (IAB), University of Grenoble Alpes - INSERM U1209 - CNRS UMR 5309-38000 Grenoble, France
| |
Collapse
|
29
|
Mazmanian K, Chen T, Sargsyan K, Lim C. From quantum-derived principles underlying cysteine reactivity to combating the COVID-19 pandemic. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2022; 12:e1607. [PMID: 35600063 PMCID: PMC9111396 DOI: 10.1002/wcms.1607] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/31/2022] [Accepted: 02/13/2022] [Indexed: 12/20/2022]
Abstract
The COVID-19 pandemic poses a challenge in coming up with quick and effective means to counter its cause, the SARS-CoV-2. Here, we show how the key factors governing cysteine reactivity in proteins derived from combined quantum mechanical/continuum calculations led to a novel multi-targeting strategy against SARS-CoV-2, in contrast to developing potent drugs/vaccines against a single viral target such as the spike protein. Specifically, they led to the discovery of reactive cysteines in evolutionary conserved Zn2+-sites in several SARS-CoV-2 proteins that are crucial for viral polypeptide proteolysis as well as viral RNA synthesis, proofreading, and modification. These conserved, reactive cysteines, both free and Zn2+-bound, can be targeted using the same Zn-ejector drug (disulfiram/ebselen), which enables the use of broad-spectrum anti-virals that would otherwise be removed by the virus's proofreading mechanism. Our strategy of targeting multiple, conserved viral proteins that operate at different stages of the virus life cycle using a Zn-ejector drug combined with other broad-spectrum anti-viral drug(s) could enhance the barrier to drug resistance and antiviral effects, as compared to each drug alone. Since these functionally important nonstructural proteins containing reactive cysteines are highly conserved among coronaviruses, our proposed strategy has the potential to tackle future coronaviruses. This article is categorized under:Structure and Mechanism > Reaction Mechanisms and CatalysisStructure and Mechanism > Computational Biochemistry and BiophysicsElectronic Structure Theory > Density Functional Theory.
Collapse
Affiliation(s)
| | - Ting Chen
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
| | - Karen Sargsyan
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan
| |
Collapse
|
30
|
Zachrdla M, Savastano A, Ibáñez de Opakua A, Cima‐Omori M, Zweckstetter M. Contributions of the N-terminal intrinsically disordered region of the severe acute respiratory syndrome coronavirus 2 nucleocapsid protein to RNA-induced phase separation. Protein Sci 2022; 31:e4409. [PMID: 36040256 PMCID: PMC9387207 DOI: 10.1002/pro.4409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein is an essential structural component of mature virions, encapsulating the genomic RNA and modulating RNA transcription and replication. Several of its activities might be associated with the protein's ability to undergo liquid-liquid phase separation. NSARS-CoV-2 contains an intrinsically disordered region at its N-terminus (NTE) that can be phosphorylated and is affected by mutations found in human COVID-19 infections, including in the Omicron variant of concern. Here, we show that NTE deletion decreases the range of RNA concentrations that can induce phase separation of NSARS-CoV-2 . In addition, deletion of the prion-like NTE allows NSARS-CoV-2 droplets to retain their liquid-like nature during incubation. We further demonstrate that RNA-binding engages multiple parts of the NTE and changes NTE's structural properties. The results form the foundation to characterize the impact of N-terminal mutations and post-translational modifications on the molecular properties of the SARS-CoV-2 nucleocapsid protein. STATEMENT: The nucleocapsid protein of SARS-CoV-2 plays an important role in both genome packaging and viral replication upon host infection. Replication has been associated with RNA-induced liquid-liquid phase separation of the nucleocapsid protein. We present insights into the role of the N-terminal part of the nucleocapsid protein in the protein's RNA-mediated liquid-liquid phase separation.
Collapse
Affiliation(s)
- Milan Zachrdla
- Research group Translational Structural BiologyGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Adriana Savastano
- Research group Translational Structural BiologyGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Alain Ibáñez de Opakua
- Research group Translational Structural BiologyGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Maria‐Sol Cima‐Omori
- Research group Translational Structural BiologyGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Markus Zweckstetter
- Research group Translational Structural BiologyGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
- NMR‐based Structural BiologyMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| |
Collapse
|
31
|
Conformational buffering underlies functional selection in intrinsically disordered protein regions. Nat Struct Mol Biol 2022; 29:781-790. [PMID: 35948766 DOI: 10.1038/s41594-022-00811-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/23/2022] [Indexed: 02/02/2023]
Abstract
Many disordered proteins conserve essential functions in the face of extensive sequence variation, making it challenging to identify the mechanisms responsible for functional selection. Here we identify the molecular mechanism of functional selection for the disordered adenovirus early gene 1A (E1A) protein. E1A competes with host factors to bind the retinoblastoma (Rb) protein, subverting cell cycle regulation. We show that two binding motifs tethered by a hypervariable disordered linker drive picomolar affinity Rb binding and host factor displacement. Compensatory changes in amino acid sequence composition and sequence length lead to conservation of optimal tethering across a large family of E1A linkers. We refer to this compensatory mechanism as conformational buffering. We also detect coevolution of the motifs and linker, which can preserve or eliminate the tethering mechanism. Conformational buffering and motif-linker coevolution explain robust functional encoding within hypervariable disordered linkers and could underlie functional selection of many disordered protein regions.
Collapse
|
32
|
Sist P, Bandiera A, Urbani R, Passamonti S. Macromolecular and Solution Properties of the Recombinant Fusion Protein HUG. Biomacromolecules 2022; 23:3336-3348. [PMID: 35876275 PMCID: PMC9364316 DOI: 10.1021/acs.biomac.2c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The recombinant fusion protein HELP-UnaG (HUG) is a bifunctional
product that exhibits human elastin-like polypeptide (HELP)-specific
thermal behavior, defined as a reverse phase transition, and UnaG-specific
bilirubin-dependent fluorescence emission. HUG provides an interesting
model to understand how its two domains influence each other’s
properties. Turbidimetric, calorimetric, and light scattering measurements
were used to determine different parameters for the reverse temperature
transition and coacervation behavior. This shows that the UnaG domain
has a measurable but limited effect on the thermal properties of HELP.
Although the HELP domain decreased the affinity of UnaG for bilirubin,
HUG retained the property of displacing bilirubin from bovine serum
albumin and thus remains one of the strongest bilirubin-binding proteins
known to date. These data demonstrate that HELP can be used to create
new bifunctional fusion products that pave the way for expanded technological
applications.
Collapse
Affiliation(s)
- Paola Sist
- Department of Life Sciences, University of Trieste, Via Giorgieri 1, Trieste I-34127, Italy
| | - Antonella Bandiera
- Department of Life Sciences, University of Trieste, Via Giorgieri 1, Trieste I-34127, Italy
| | - Ranieri Urbani
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, Trieste I-34127, Italy
| | - Sabina Passamonti
- Department of Life Sciences, University of Trieste, Via Giorgieri 1, Trieste I-34127, Italy
| |
Collapse
|
33
|
Mignon J, Mottet D, Leyder T, Uversky VN, Perpète EA, Michaux C. Structural characterisation of amyloidogenic intrinsically disordered zinc finger protein isoforms DPF3b and DPF3a. Int J Biol Macromol 2022; 218:57-71. [PMID: 35863661 DOI: 10.1016/j.ijbiomac.2022.07.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 11/05/2022]
Abstract
Double PHD fingers 3 (DPF3) is a zinc finger protein, found in the BAF chromatin remodelling complex, and is involved in the regulation of gene expression. Two DPF3 isoforms have been identified, respectively named DPF3b and DPF3a. Very limited structural information is available for these isoforms, and their specific functionality still remains poorly studied. In a previous work, we have demonstrated the first evidence of DPF3a being a disordered protein sensitive to amyloid fibrillation. Intrinsically disordered proteins (IDPs) lack a defined tertiary structure, existing as a dynamic conformational ensemble, allowing them to act as hubs in protein-protein interaction networks. In the present study, we have more thoroughly characterised DPF3a in vitro behaviour, as well as unravelled and compared the structural properties of the DPF3b isoform, using an array of predictors and biophysical techniques. Predictions, spectroscopy, and dynamic light scattering have revealed a high content in disorder: prevalence of random coil, aromatic residues partially to fully exposed to the solvent, and large hydrodynamic diameters. DPF3a appears to be more disordered than DPF3b, and exhibits more expanded conformations. Furthermore, we have shown that they both time-dependently aggregate into amyloid fibrils, as revealed by typical circular dichroism, deep-blue autofluorescence, and amyloid-dye binding assay fingerprints. Although spectroscopic and microscopic analyses have unveiled that they share a similar aggregation pathway, DPF3a fibrillates at a faster rate, likely through reordering of its C-terminal domain.
Collapse
Affiliation(s)
- Julien Mignon
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium; Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.
| | - Denis Mottet
- University of Liège, GIGA-Molecular Biology of Diseases, Gene Expression and Cancer Laboratory, B34, Avenue de l'Hôpital, 4000 Liège, Belgium.
| | - Tanguy Leyder
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| | - Eric A Perpète
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium; Institute of Life, Earth and Environment (ILEE), University of Namur, Namur, Belgium.
| | - Catherine Michaux
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium; Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.
| |
Collapse
|
34
|
Structural and functional evaluation mammalian and plant lipoxygenases upon association with nanodics as membrane mimetics. Biophys Chem 2022; 288:106855. [PMID: 35849958 DOI: 10.1016/j.bpc.2022.106855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/02/2022]
Abstract
Lipoxygenases (LOX) are a family lipid oxygenating enzymes that can generate bioactive lipids of clinical relevance from polyunsaturated fatty acids. Most LOXs display a Ca2+-dependent association with membranes for their activity. Nanodiscs (ND) are stable self-assembled discoidal fragments of lipid bilayers that can mimic the plasma membrane. In this study, we evaluated the association of mammalian 15-LOXs (ALOX15 and ALOX15B) and soybean LOX-1 with NDs (LOX-ND), their enzymatic activities and inhibition. Mammalian LOXs associated with NDs showed better retention of enzymatic function compared to soybean LOX-1. Treatment of both LOX-NDs and free enzymes with the pan-LOX inhibitor nordihydroguaiaretic acid (NDGA) showed an approximately 5-fold more effective inhibition of the enzymes associated with NDs compared to the free form. NDs are easy to generate membrane mimics that can be used as an effective tool to determine enzymatic function and inhibition of membrane associated proteins.
Collapse
|
35
|
Frank K, Bernau C, Buyel J. Spherical nanoparticles can be used as non-penetrating tracers to determine the extra-particle void volume in packed-bed chromatography columns. J Chromatogr A 2022; 1675:463174. [DOI: 10.1016/j.chroma.2022.463174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/24/2022]
|
36
|
Ahn SH, Huber GA, McCammon JA. Investigating Intrinsically Disordered Proteins With Brownian Dynamics. Front Mol Biosci 2022; 9:898838. [PMID: 35755809 PMCID: PMC9213797 DOI: 10.3389/fmolb.2022.898838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) have recently become systems of great interest due to their involvement in modulating many biological processes and their aggregation being implicated in many diseases. Since IDPs do not have a stable, folded structure, however, they cannot be easily studied with experimental techniques. Hence, conducting a computational study of these systems can be helpful and be complementary with experimental work to elucidate their mechanisms. Thus, we have implemented the coarse-grained force field for proteins (COFFDROP) in Browndye 2.0 to study IDPs using Brownian dynamics (BD) simulations, which are often used to study large-scale motions with longer time scales and diffusion-limited molecular associations. Specifically, we have checked our COFFDROP implementation with eight naturally occurring IDPs and have investigated five (Glu-Lys)25 IDP sequence variants. From measuring the hydrodynamic radii of eight naturally occurring IDPs, we found the ideal scaling factor of 0.786 for non-bonded interactions. We have also measured the entanglement indices (average C α distances to the other chain) between two (Glu-Lys)25 IDP sequence variants, a property related to molecular association. We found that entanglement indices decrease for all possible pairs at excess salt concentration, which is consistent with long-range interactions of these IDP sequence variants getting weaker at increasing salt concentration.
Collapse
Affiliation(s)
- Surl-Hee Ahn
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA, United States
| | - Gary A. Huber
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA, United States
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA, United States
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
37
|
Szabó CL, Sebák F, Bodor A. Monitoring Protein Global and Local Parameters in Unfolding and Binding Studies: The Extended Applicability of the Diffusion Coefficient─Molecular Size Empirical Relations. Anal Chem 2022; 94:7885-7891. [PMID: 35617314 DOI: 10.1021/acs.analchem.2c00481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein unfolding and denaturation are main issues in biochemical and pharmaceutical research. Using a global parameter, the translational diffusion coefficient D, folded, unfolded, and intrinsically disordered proteins of a given molar mass M can be distinguished based on their distinct hydrodynamic properties. For broader applications, we provide generalized, PFG-NMR-based empirical D-M relations validated at different temperatures and ready to use with the corresponding corrections in different media. We demonstrate that these relations enable a more accurate molecular mass determination and show fewer potential errors than those of the common methods based on small-molecular diffusion standards. We monitor unfolding of three model proteins using 8 M urea and dimethyl sulfoxide (DMSO)-water mixtures as denaturing agents, highlighting the effect of disulfide bonds. Denaturation in 8 M urea is pH-dependent; in addition, for proteins with highly stable disulfide bonds, a reducing agent (TCEP) is required to achieve complete unfolding. Regarding the effect of local parameters, we show that at low DMSO concentrations─common conditions in pharmaceutical binding studies─the PFG-NMR-derived global parameters are not significantly affected. Still, the atomic environments can change, and the bound solvent molecule can inhibit the binding of a partner molecule. Using proteins with natural isotopic abundance, this effect can be proven by fast 1H-15N 2D correlation spectra. Our results enable fast and easy estimation of protein molecular mass and the degree of folding in various media; moreover, the effect of the cosolvent on the atomic-level structure can be traced without the need of isotope labeling.
Collapse
Affiliation(s)
- Csenge Lilla Szabó
- Institute of Chemistry, Analytical and BioNMR Laboratory, Eötvös Loránd University, Pázmány Péter sétány 1/a, Budapest 1117, Hungary.,Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/a, Budapest 1117, Hungary
| | - Fanni Sebák
- Institute of Chemistry, Analytical and BioNMR Laboratory, Eötvös Loránd University, Pázmány Péter sétány 1/a, Budapest 1117, Hungary
| | - Andrea Bodor
- Institute of Chemistry, Analytical and BioNMR Laboratory, Eötvös Loránd University, Pázmány Péter sétány 1/a, Budapest 1117, Hungary
| |
Collapse
|
38
|
Tashiro D, Suetaka S, Sato N, Ooka K, Kunihara T, Kudo H, Inatomi J, Hayashi Y, Arai M. Intron-Encoded Domain of Herstatin, An Autoinhibitor of Human Epidermal Growth Factor Receptors, Is Intrinsically Disordered. Front Mol Biosci 2022; 9:862910. [PMID: 35573740 PMCID: PMC9100580 DOI: 10.3389/fmolb.2022.862910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
Human epidermal growth factor receptors (HER/ERBB) form dimers that promote cell proliferation, migration, and differentiation, but overexpression of HER proteins results in cancer. Consequently, inhibitors of HER dimerization may function as effective antitumor drugs. An alternatively spliced variant of HER2, called herstatin, is an autoinhibitor of HER proteins, and the intron 8-encoded 79-residue domain of herstatin, called Int8, binds HER family receptors even in isolation. However, the structure of Int8 remains poorly understood. Here, we revealed by circular dichroism, NMR, small-angle X-ray scattering, and structure prediction that isolated Int8 is largely disordered but has a residual helical structure. The radius of gyration of Int8 was almost the same as that of fully unfolded states, although the conformational ensemble of Int8 was less flexible than random coils. These results demonstrate that Int8 is intrinsically disordered. Thus, Int8 is an interesting example of an intrinsically disordered region with tumor-suppressive activity encoded by an intron. Furthermore, we show that the R371I mutant of Int8, which is defective in binding to HER2, is prone to aggregation, providing a rationale for the loss of function.
Collapse
Affiliation(s)
- Daisuke Tashiro
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Shunji Suetaka
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Nao Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Ooka
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tomoko Kunihara
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hisashi Kudo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Junichi Inatomi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuuki Hayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- *Correspondence: Munehito Arai,
| |
Collapse
|
39
|
Ribeiro-Filho HV, Jara GE, Batista FAH, Schleder GR, Costa Tonoli CC, Soprano AS, Guimarães SL, Borges AC, Cassago A, Bajgelman MC, Marques RE, Trivella DBB, Franchini KG, Figueira ACM, Benedetti CE, Lopes-de-Oliveira PS. Structural dynamics of SARS-CoV-2 nucleocapsid protein induced by RNA binding. PLoS Comput Biol 2022; 18:e1010121. [PMID: 35551296 PMCID: PMC9129039 DOI: 10.1371/journal.pcbi.1010121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/24/2022] [Accepted: 04/19/2022] [Indexed: 12/23/2022] Open
Abstract
The nucleocapsid (N) protein of the SARS-CoV-2 virus, the causal agent of COVID-19, is a multifunction phosphoprotein that plays critical roles in the virus life cycle, including transcription and packaging of the viral RNA. To play such diverse roles, the N protein has two globular RNA-binding modules, the N- (NTD) and C-terminal (CTD) domains, which are connected by an intrinsically disordered region. Despite the wealth of structural data available for the isolated NTD and CTD, how these domains are arranged in the full-length protein and how the oligomerization of N influences its RNA-binding activity remains largely unclear. Herein, using experimental data from electron microscopy and biochemical/biophysical techniques combined with molecular modeling and molecular dynamics simulations, we show that, in the absence of RNA, the N protein formed structurally dynamic dimers, with the NTD and CTD arranged in extended conformations. However, in the presence of RNA, the N protein assumed a more compact conformation where the NTD and CTD are packed together. We also provided an octameric model for the full-length N bound to RNA that is consistent with electron microscopy images of the N protein in the presence of RNA. Together, our results shed new light on the dynamics and higher-order oligomeric structure of this versatile protein. The nucleocapsid (N) protein of the SARS-CoV-2 virus plays an essential role in virus particle assembly as it specifically binds to and wraps the virus genomic RNA into a well-organized structure known as the ribonucleoprotein. Understanding how the N protein wraps around the virus RNA is critical for the development of strategies to inhibit virus assembly within host cells. One of the limitations regarding the molecular structure of the ribonucleoprotein, however, is that the N protein has several unstructured and mobile regions that preclude the resolution of its full atomic structure. Moreover, the N protein can form higher-order oligomers, both in the presence and absence of RNA. Here we employed computational methods, supported by experimental data, to simulate the N protein structural dynamics in the absence and presence of RNA. Our data suggest that the N protein forms structurally dynamic dimers in the absence of RNA, with its structured N- and C-terminal domains oriented in extended conformations. In the presence of RNA, however, the N protein assumes a more compact conformation. Our model for the oligomeric structure of the N protein bound to RNA helps to understand how N protein dimers interact to each other to form the ribonucleoprotein.
Collapse
Affiliation(s)
- Helder Veras Ribeiro-Filho
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Gabriel Ernesto Jara
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | | | - Gabriel Ravanhani Schleder
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Celisa Caldana Costa Tonoli
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Adriana Santos Soprano
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Samuel Leite Guimarães
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Antonio Carlos Borges
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Alexandre Cassago
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Marcio Chaim Bajgelman
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | | | - Kleber Gomes Franchini
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | | | - Celso Eduardo Benedetti
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- * E-mail: (CEB); (PSLO)
| | - Paulo Sergio Lopes-de-Oliveira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- * E-mail: (CEB); (PSLO)
| |
Collapse
|
40
|
Rasouli S, Hashemianzadeh SM, Moghbeli MR. Role of physicochemical characteristics of poly(N,N-diethylacrylamide) on the polymer thermal responsivity and interfacial properties in aqueous solution: All-atom simulation study. J Mol Graph Model 2022; 112:108140. [DOI: 10.1016/j.jmgm.2022.108140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 11/26/2022]
|
41
|
Simonik O, Bubenickova F, Tumova L, Frolikova M, Sur VP, Beran J, Havlikova K, Hackerova L, Spevakova D, Komrskova K, Postlerova P. Boar Sperm Cryopreservation Improvement Using Semen Extender Modification by Dextran and Pentaisomaltose. Animals (Basel) 2022; 12:868. [PMID: 35405857 PMCID: PMC8997129 DOI: 10.3390/ani12070868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
The long-term storage of boar sperm presents an ongoing challenge, and the modification of the cryoprotective compounds in semen extenders is crucial for improving cryopreservation's success rate. The aim of our study was to reduce the percentage of glycerol in the extender by elimination or substitution with biocompatible, non-toxic polysaccharides. For boar semen extender improvement, we tested a novel modification with the polysaccharides dextran and pentaisomaltose in combination with unique in silico predictive modeling. We targeted the analysis of in vitro qualitative sperm parameters such as motility, viability, mitochondrial activity, acrosome integrity, and DNA integrity. Non-penetrating polysaccharide-based cryoprotective agents interact with sperm surface proteins such as spermadhesins, which are recognized as fertility markers of boar sperm quality. The in silico docking study showed a moderate binding affinity of dextran and pentaisomaltose toward one specific spermadhesin known as AWN, which is located in the sperm plasma membrane. Pentaisomaltose formed a hydrophobic pocket for the AWN protein, and the higher energy of this protein-ligand complex compared with dextran was calculated. In addition, the root mean square deviation (RMSD) analysis for the molecular dynamics (MD) of both polysaccharides and AWN simulation suggests their interaction was highly stable. The in silico results were supported by in vitro experiments. In the experimental groups where glycerol was partially or entirely substituted, the use of pentaisomaltose resulted in improved sperm mitochondrial activity and DNA integrity after thawing when compared with dextran. In this paper, we demonstrate that pentaisomaltose, previously used for cryopreservation in hematopoietic stem cells, represents a promising compound for the elimination or reduction of glycerol in extenders for boar semen cryopreservation. This novel approach, using in silico computer prediction and in vitro testing, represents a promising technique to help identify new cryoprotectants for use in animal breeding or genetic resource programs.
Collapse
Affiliation(s)
- Ondrej Simonik
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic; (O.S.); (M.F.); (V.P.S.); (D.S.); (K.K.)
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (F.B.); (L.T.); (K.H.); (L.H.)
| | - Filipa Bubenickova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (F.B.); (L.T.); (K.H.); (L.H.)
| | - Lucie Tumova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (F.B.); (L.T.); (K.H.); (L.H.)
| | - Michaela Frolikova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic; (O.S.); (M.F.); (V.P.S.); (D.S.); (K.K.)
| | - Vishma Pratap Sur
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic; (O.S.); (M.F.); (V.P.S.); (D.S.); (K.K.)
| | - Jan Beran
- Department of Zootechnical Sciences, Faculty of Agriculture, University of South Bohemia in Ceske Budejovice, Studentska 1668, 37005 Ceske Budejovice, Czech Republic;
| | - Katerina Havlikova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (F.B.); (L.T.); (K.H.); (L.H.)
| | - Lenka Hackerova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (F.B.); (L.T.); (K.H.); (L.H.)
| | - Daniela Spevakova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic; (O.S.); (M.F.); (V.P.S.); (D.S.); (K.K.)
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (F.B.); (L.T.); (K.H.); (L.H.)
| | - Katerina Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic; (O.S.); (M.F.); (V.P.S.); (D.S.); (K.K.)
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| | - Pavla Postlerova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic; (O.S.); (M.F.); (V.P.S.); (D.S.); (K.K.)
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (F.B.); (L.T.); (K.H.); (L.H.)
| |
Collapse
|
42
|
Stelzl L, Pietrek LM, Holla A, Oroz J, Sikora M, Köfinger J, Schuler B, Zweckstetter M, Hummer G. Global Structure of the Intrinsically Disordered Protein Tau Emerges from Its Local Structure. JACS AU 2022; 2:673-686. [PMID: 35373198 PMCID: PMC8970000 DOI: 10.1021/jacsau.1c00536] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 05/13/2023]
Abstract
The paradigmatic disordered protein tau plays an important role in neuronal function and neurodegenerative diseases. To disentangle the factors controlling the balance between functional and disease-associated conformational states, we build a structural ensemble of the tau K18 fragment containing the four pseudorepeat domains involved in both microtubule binding and amyloid fibril formation. We assemble 129-residue-long tau K18 chains with atomic detail from an extensive fragment library constructed with molecular dynamics simulations. We introduce a reweighted hierarchical chain growth (RHCG) algorithm that integrates experimental data reporting on the local structure into the assembly process in a systematic manner. By combining Bayesian ensemble refinement with importance sampling, we obtain well-defined ensembles and overcome the problem of exponentially varying weights in the integrative modeling of long-chain polymeric molecules. The resulting tau K18 ensembles capture nuclear magnetic resonance (NMR) chemical shift and J-coupling measurements. Without further fitting, we achieve very good agreement with measurements of NMR residual dipolar couplings. The good agreement with experimental measures of global structure such as single-molecule Förster resonance energy transfer (FRET) efficiencies is improved further by ensemble refinement. By comparing wild-type and mutant ensembles, we show that pathogenic single-point P301L, P301S, and P301T mutations shift the population from the turn-like conformations of the functional microtubule-bound state to the extended conformations of disease-associated tau fibrils. RHCG thus provides us with an atomically detailed view of the population equilibrium between functional and aggregation-prone states of tau K18, and demonstrates that global structural characteristics of this intrinsically disordered protein emerge from its local structure.
Collapse
Affiliation(s)
- Lukas
S. Stelzl
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
- Faculty
of Biology, Johannes Gutenberg University
Mainz, Gresemundweg 2, 55128 Mainz, Germany
- KOMET 1, Institute of Physics, Johannes
Gutenberg University Mainz, 55099 Mainz, Germany
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Lisa M. Pietrek
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Andrea Holla
- Department
of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Javier Oroz
- German
Center for Neurodegenerative Diseases (DZNE), von-Siebold-Str. 3a, 37075 Göttingen, Germany
- Rocasolano
Institute for Physical Chemistry, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Mateusz Sikora
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
- Faculty
of Physics, University of Vienna, Kolingasse 14-16, 1090 Vienna, Austria
| | - Jürgen Köfinger
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Benjamin Schuler
- Department
of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
- Department
of Physics, University of Zurich, 8057 Zurich, Switzerland
| | - Markus Zweckstetter
- German
Center for Neurodegenerative Diseases (DZNE), von-Siebold-Str. 3a, 37075 Göttingen, Germany
- Department
for NMR-based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Gerhard Hummer
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
- Institute
for Biophysics, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
43
|
Vlassi E, Papagiannopoulos A, Pispas S. Star Polyelectrolytes with Mixed Arms of PDMAEMA and POEGMA: Self‐assembly and Co‐assembly with Insulin. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Eleni Vlassi
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation 48 Vassileos Constantinou Avenue Athens 11635 Greece
| | - Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation 48 Vassileos Constantinou Avenue Athens 11635 Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation 48 Vassileos Constantinou Avenue Athens 11635 Greece
| |
Collapse
|
44
|
Intricate coupling between the transactivation and basic-leucine zipper domains governs phosphorylation of transcription factor ATF4 by casein kinase 2. J Biol Chem 2022; 298:101633. [PMID: 35077711 PMCID: PMC8881488 DOI: 10.1016/j.jbc.2022.101633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
Most transcription factors possess at least one long intrinsically disordered transactivation domain that binds to a variety of coactivators and corepressors and plays a key role in modulating the transcriptional activity. Despite the crucial importance of these domains, the structural and functional basis of transactivation remains poorly understood. Here, we focused on activating transcription factor 4 (ATF4)/cAMP response element-binding protein-2, an essential transcription factor for cellular stress adaptation. Bioinformatic sequence analysis of the ATF4 transactivation domain sequence revealed that the first 125 amino acids have noticeably less propensity for structural disorder than the rest of the domain. Using solution nuclear magnetic resonance spectroscopy complemented by a range of biophysical methods, we found that the isolated transactivation domain is predominantly yet not fully disordered in solution. We also observed that a short motif at the N-terminus of the transactivation domain has a high helical propensity. Importantly, we found that the N-terminal region of the transactivation domain is involved in transient long-range interactions with the basic-leucine zipper domain involved in DNA binding. Finally, in vitro phosphorylation assays with the casein kinase 2 show that the presence of the basic-leucine zipper domain is required for phosphorylation of the transactivation domain. This study uncovers the intricate coupling existing between the transactivation and basic-leucine zipper domains of ATF4, highlighting its potential regulatory significance.
Collapse
|
45
|
Fagerberg E, Lenton S, Nylander T, Seydel T, Skepö M. Self-Diffusive Properties of the Intrinsically Disordered Protein Histatin 5 and the Impact of Crowding Thereon: A Combined Neutron Spectroscopy and Molecular Dynamics Simulation Study. J Phys Chem B 2022; 126:789-801. [PMID: 35044776 PMCID: PMC8819652 DOI: 10.1021/acs.jpcb.1c08976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Intrinsically disordered
proteins (IDPs) are proteins that, in
comparison with globular/structured proteins, lack a distinct tertiary
structure. Here, we use the model IDP, Histatin 5, for studying its
dynamical properties under self-crowding conditions with quasi-elastic
neutron scattering in combination with full atomistic molecular dynamics
(MD) simulations. The aim is to determine the effects of crowding
on the center-of-mass diffusion as well as the internal diffusive
behavior. The diffusion was found to decrease significantly, which
we hypothesize can be attributed to some degree of aggregation at
higher protein concentrations, (≥100 mg/mL), as indicated by
recent small-angle X-ray scattering studies. Temperature effects are
also considered and found to, largely, follow Stokes–Einstein
behavior. Simple geometric considerations fail to accurately predict
the rates of diffusion, while simulations show semiquantitative agreement
with experiments, dependent on assumptions of the ratio between translational
and rotational diffusion. A scaling law that previously was found
to successfully describe the behavior of globular proteins was found
to be inadequate for the IDP, Histatin 5. Analysis of the MD simulations
show that the width of the distribution with respect to diffusion
is not a simplistic mirroring of the distribution of radius of gyration,
hence, displaying the particular features of IDPs that need to be
accounted for.
Collapse
Affiliation(s)
- Eric Fagerberg
- Theoretical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
| | - Samuel Lenton
- Physical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
| | - Tommy Nylander
- Physical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
| | - Tilo Seydel
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, CS 20156, F-38042 Grenoble, France
| | - Marie Skepö
- Theoretical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden.,LINXS - Lund Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, SE-223 70 Lund, Sweden
| |
Collapse
|
46
|
Specific Inhibition of VanZ-Mediated Resistance to Lipoglycopeptide Antibiotics. Int J Mol Sci 2021; 23:ijms23010097. [PMID: 35008521 PMCID: PMC8744867 DOI: 10.3390/ijms23010097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/14/2022] Open
Abstract
Teicoplanin is a natural lipoglycopeptide antibiotic with a similar activity spectrum as vancomycin; however, it has with the added benefit to the patient of low cytotoxicity. Both teicoplanin and vancomycin antibiotics are actively used in medical practice in the prophylaxis and treatment of severe life-threatening infections caused by gram-positive bacteria, including methicillin-resistant Staphylococcus aureus, Enterococcus faecium and Clostridium difficile. The expression of vancomycin Z (vanZ), encoded either in the vancomycin A (vanA) glycopeptide antibiotic resistance gene cluster or in the genomes of E. faecium, as well as Streptococcus pneumoniae and C. difficile, was shown to specifically compromise the antibiotic efficiency through the inhibition of teicoplanin binding to the bacterial surface. However, the exact mechanisms of this action and protein structure remain unknown. In this study, the three-dimensional structure of VanZ from E. faecium EnGen0191 was predicted by using the I-TASSER web server. Based on the VanZ structure, a benzimidazole based ligand was predicted to bind to the VanZ by molecular docking. Importantly, this new ligand, named G3K, was further confirmed to specifically inhibit VanZ-mediated resistance to teicoplanin in vivo.
Collapse
|
47
|
Sun H, Qiao B, Choi W, Hampu N, McCallum NC, Thompson MP, Oktawiec J, Weigand S, Ebrahim OM, de la Cruz MO, Gianneschi NC. Origin of Proteolytic Stability of Peptide-Brush Polymers as Globular Proteomimetics. ACS CENTRAL SCIENCE 2021; 7:2063-2072. [PMID: 34963898 PMCID: PMC8704038 DOI: 10.1021/acscentsci.1c01149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 05/03/2023]
Abstract
Peptide-brush polymers (PBPs), wherein every side-chain of the polymers is peptidic, represent a new class of proteomimetic with unusually high proteolytic resistance while maintaining bioactivity. Here, we sought to determine the origin of this behavior and to assess its generality via a combined theory and experimental approach. A series of PBPs with various polymer backbone structures were prepared and examined for their proteolytic stability and bioactivity. We discovered that an increase in the hydrophobicity of the polymer backbones is predictive of an elevation in proteolytic stability of the side-chain peptides. Computer simulations, together with small-angle X-ray scattering (SAXS) analysis, revealed globular morphologies for these polymers, in which pendant peptides condense around hydrophobic synthetic polymer backbones driven by the hydrophobic effect. As the hydrophobicity of the polymer backbones increases, the extent of solvent exposure of peptide cleavage sites decreases, reducing their accessibility to proteolytic enzymes. This study provides insight into the important factors driving PBP aqueous-phase structures to behave as globular, synthetic polymer-based proteomimetics.
Collapse
Affiliation(s)
- Hao Sun
- Department
of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Chemistry and Chemical & Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Baofu Qiao
- Department
of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Wonmin Choi
- Department
of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Nicholas Hampu
- Department
of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Naneki C. McCallum
- Department
of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew P. Thompson
- Department
of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Julia Oktawiec
- Department
of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Steven Weigand
- Dupont-Northwestern-Dow
Collaborative Access Team (DND-CAT) Synchrotron Research Center, Northwestern University, Argonne, Illinois 60208, United States
| | - Omar M. Ebrahim
- Department
of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Monica Olvera de la Cruz
- Department
of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathan C. Gianneschi
- Department
of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Biomedical Engineering, Department of Pharmacology, Chemistry of
Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
48
|
DHX15-independent roles for TFIP11 in U6 snRNA modification, U4/U6.U5 tri-snRNP assembly and pre-mRNA splicing fidelity. Nat Commun 2021; 12:6648. [PMID: 34789764 PMCID: PMC8599867 DOI: 10.1038/s41467-021-26932-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 10/22/2021] [Indexed: 11/29/2022] Open
Abstract
The U6 snRNA, the core catalytic component of the spliceosome, is extensively modified post-transcriptionally, with 2'-O-methylation being most common. However, how U6 2'-O-methylation is regulated remains largely unknown. Here we report that TFIP11, the human homolog of the yeast spliceosome disassembly factor Ntr1, localizes to nucleoli and Cajal Bodies and is essential for the 2'-O-methylation of U6. Mechanistically, we demonstrate that TFIP11 knockdown reduces the association of U6 snRNA with fibrillarin and associated snoRNAs, therefore altering U6 2'-O-methylation. We show U6 snRNA hypomethylation is associated with changes in assembly of the U4/U6.U5 tri-snRNP leading to defects in spliceosome assembly and alterations in splicing fidelity. Strikingly, this function of TFIP11 is independent of the RNA helicase DHX15, its known partner in yeast. In sum, our study demonstrates an unrecognized function for TFIP11 in U6 snRNP modification and U4/U6.U5 tri-snRNP assembly, identifying TFIP11 as a critical spliceosome assembly regulator.
Collapse
|
49
|
Dynamics of oligomerization of silicate solution studied by Molecular Dynamics. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Bezrodnyi VV, Mikhtaniuk SE, Shavykin OV, Neelov IM, Sheveleva NN, Markelov DA. Size and Structure of Empty and Filled Nanocontainer Based on Peptide Dendrimer with Histidine Spacers at Different pH. Molecules 2021; 26:6552. [PMID: 34770963 PMCID: PMC8588109 DOI: 10.3390/molecules26216552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Novel peptide dendrimer with Lys-2His repeating units was recently synthesized, studied by NMR (Molecules, 2019, 24, 2481) and tested as a nanocontainer for siRNA delivery (Int. J. Mol. Sci., 2020, 21, 3138). Histidine amino acid residues were inserted in the spacers of this dendrimer. Increase of their charge with a pH decrease turns a surface-charged dendrimer into a volume-charged one and should change all properties. In this paper, the molecular dynamics simulation method was applied to compare the properties of the dendrimer in water with explicit counterions at two different pHs (at normal pH with neutral histidines and at low pH with fully protonated histidines) in a wide interval of temperatures. We obtained that the dendrimer at low pH has essentially larger size and size fluctuations. The electrostatic properties of the dendrimers are different but they are in good agreement with the theoretical soft sphere model and practically do not depend on temperature. We have shown that the effect of pairing of side imidazole groups is much stronger in the dendrimer with neutral histidines than in the dendrimer with protonated histidines. We also demonstrated that the capacity of a nanocontainer based on this dendrimer with protonated histidines is significantly larger than that of a nanocontainer with neutral histidines.
Collapse
Affiliation(s)
- Valeriy V. Bezrodnyi
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (V.V.B.); (N.N.S.); (D.A.M.)
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia;
| | - Sofia E. Mikhtaniuk
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia;
| | - Oleg V. Shavykin
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (V.V.B.); (N.N.S.); (D.A.M.)
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia;
- Tver State University, Zhelyabova St., 33, 170100 Tver, Russia
| | - Igor M. Neelov
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia;
| | - Nadezhda N. Sheveleva
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (V.V.B.); (N.N.S.); (D.A.M.)
| | - Denis A. Markelov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (V.V.B.); (N.N.S.); (D.A.M.)
| |
Collapse
|