1
|
Lem O, Kekki R, Koivuniemi A, Efimov A, Laaksonen T, Durandin N. The role of lipid oxidation pathway in reactive oxygen species-mediated cargo release from liposomes. MATERIALS ADVANCES 2024; 5:8878-8888. [PMID: 39444431 PMCID: PMC11491990 DOI: 10.1039/d4ma00535j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Reactive oxygen species (ROS)-mediated photooxidation is an efficient method for triggering a drug release from liposomes. In addition to the release of small molecules, it also allows the release of large macromolecules, making it a versatile tool for controlled drug delivery. However, the exact release mechanism of large macromolecules from ROS-sensitive liposomes is still unclear. There are no studies on the effect of lipid oxidation on the release of cargo molecules of different sizes. By using HPLC-HRMS method we analyzed the oxidation products of ROS-sensitive DOTAP lipid in phthalocyanine-loaded DOTAP:Cholesterol:DSPE-PEG liposomes after 630 nm light irradiation of different durations. Shorter illumination time (1-2 minutes) led to the formation of hydroperoxides and vic-alcohols predominantly. Longer 9-minute irradiation resulted already in aldehydes generation. Interestingly, the presence of epoxides/mono-hydroperoxides and vic-alcohols in a lipid bilayer ensured a high 90% release of small hydrophilic cargo molecules i.e. calcein, but not large (≥10 KDa) macromolecules. Oxidation till aldehydes was mandatory to deliver e.g. dextrans of 10-70 kDa with ca. 30% efficiency. Molecular dynamics simulations revealed that the formation of aldehydes is required to form pores or even fully disrupt the lipid membrane, while e.g. presence of hydroperoxides is enough to make the bilayer more permeable just for water and small molecules. This is an important finding that shed a light on the release mechanism of different cargo molecules from ROS-sensitive drug delivery systems.
Collapse
Affiliation(s)
- Olga Lem
- Tampere University, Engineering and Natural Science, Materials Science and Environmental Engineering Tampere Finland
| | - Roosa Kekki
- University of Helsinki, Faculty of Pharmacy, Division of Pharmaceutical Biosciences Helsinki Finland
| | - Artturi Koivuniemi
- University of Helsinki, Faculty of Pharmacy, Division of Pharmaceutical Biosciences Helsinki Finland
| | - Alexander Efimov
- Tampere University, Engineering and Natural Science, Materials Science and Environmental Engineering Tampere Finland
| | - Timo Laaksonen
- Tampere University, Engineering and Natural Science, Materials Science and Environmental Engineering Tampere Finland
- University of Helsinki, Faculty of Pharmacy, Division of Pharmaceutical Biosciences Helsinki Finland
| | - Nikita Durandin
- Tampere University, Engineering and Natural Science, Materials Science and Environmental Engineering Tampere Finland
| |
Collapse
|
2
|
Mandal P, Roy S, Karmakar M, Bhatta SR, Ghosh CC, Thakur A, Parui PP. Determination of divalent metal ion-regulated proton concentration and polarity at the interface of anionic phospholipid membranes. SOFT MATTER 2024; 20:7646-7656. [PMID: 39291663 DOI: 10.1039/d4sm00876f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
We studied the influence of trace quantities of divalent metal ions (M2+: Ca2+, Mg2+, and Zn2+) on proton concentration (-log[H+], designated as pH') and polarity at the interface of anionic PG-phospholipid membranes comprising saturated and unsaturated acrylic chains. A spiro-rhodamine-6G-gallic acid (RGG) pH-probe was synthesized to monitor the interfacial pH' of large unilamellar vesicles (LUVs) at a physiologically appropriate bulk pH (6.0-7.5). 1H-NMR spectroscopy and fluorescence microscopy showed that RGG interacted with the LUV interface. The pH-dependent equilibrium between the spiro-closed and spiro-open forms of RGG at the interface from the bulk phase was compared using fluorescence spectra to obtain interfacial pH'. Interfacial dielectric constant (κ) was estimated using a porphyrin-based polarity-probe (GPP) that exhibits a κ-induced equilibrium between monomeric and oligomeric forms. M2+ interaction decreased LUV interfacial κ from ∼67 to 61, regardless of lipid/M2+ types. Fluorescence spectral and microscopic analysis revealed that low Ca2+ and Mg2+ amounts (M2+/lipid = 1 : 20 for unsaturated DOPG and POPG and ∼1 : 10 for saturated DMPG lipids), but not Zn2+, decreased LUV interfacial acidity from pH' ∼3.8 to 4.4 at bulk pH 7.0. Although membrane surface charges are normally responsible for pH' deviation from the bulk to the interface, they cannot explain M2+-mediated interfacial pH' increase since there is little change in surface charges up to a low M2+/lipid ratio of <1/10. M2+-induced tight lipid headgroup packing and the resulting increased surface rigidity inhibit interfacial H+/H2O penetration, reducing interfacial acidity and polarity. Our findings revealed that in certain cases, essential M2+ ion-induced bio-membrane reactivity can be attributed to the influence of interfacial pH'/polarity.
Collapse
Affiliation(s)
- Pratima Mandal
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Snigdha Roy
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Manisha Karmakar
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | | | | | - Arunabha Thakur
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | | |
Collapse
|
3
|
Chen B, Cheng C, Wu Y, Li S, Han M, Zhen L, Peng Y, Guo S, Shen K, Gao X, Chai R, Wang G, Zhou F. PGC-1 α-mediated imbalance of mitochondria-lipid droplet homeostasis in neomycin-induced ototoxicity and nephrotoxicity. Acta Pharm Sin B 2024; 14:4413-4430. [PMID: 39525588 PMCID: PMC11544387 DOI: 10.1016/j.apsb.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/23/2024] [Accepted: 04/24/2024] [Indexed: 11/16/2024] Open
Abstract
Ototoxicity and nephrotoxicity are the most prevalent side effects of aminoglycoside antibiotics (gentamicin, amikacin, neomycin) and platinum anti-tumor drugs (cisplatin, carboplatin). The inner ear and kidney share similarities in drug deposition and toxicity, but the underlying pathophysiological mechanisms remain unclear. Investigating the shared mechanisms and metabolic alterations in these distinct organs will provide valuable insights for clinical therapy. A strong correlation has been identified between the spatiotemporal accumulation patterns of neomycin and the specific occurrence of lipid metabolism disorders in these two organs. The primary allocation of neomycin to mitochondria results in a notable escalation in the accumulation of lipid droplets (LDs) and more interactions between mitochondria and LDs, leading to a sequence of disturbances in lipid metabolism, such as increased lipid ROS and the blocked transfer of fatty acids from LDs to mitochondria. PGC-1α deficiency worsens the neomycin-induced disorders in lipid metabolism and intensifies the pathological interactions between mitochondria and LDs, as indicated by the exacerbated disturbance of dynamic LD turnover, increased level of oxidized lipids and decreased use of fatty acids. This investigation provides a fresh perspective on the lipid metabolic dysfunction related to mitochondria-LD interactions in drug-induced ototoxicity and nephrotoxicity, potentially providing novel avenues for intervention strategies.
Collapse
Affiliation(s)
- Bin Chen
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Cheng
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yunhao Wu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Siyu Li
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210096, China
| | - Mo Han
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Le Zhen
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ying Peng
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Suhan Guo
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Kaidi Shen
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210096, China
| | - Renjie Chai
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Malik VK, Pak OS, Feng J. Curvature-Assisted Vesicle Explosion Under Light-Induced Asymmetric Oxidation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400504. [PMID: 39136143 PMCID: PMC11481189 DOI: 10.1002/advs.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/14/2024] [Indexed: 10/17/2024]
Abstract
Exposure of cell membranes to reactive oxygen species can cause oxidation of membrane lipids. Oxidized lipids undergo drastic conformational changes, compromising the mechanical integrity of the membrane and causing cell death. For giant unilamellar vesicles, a classic cell mimetic system, a range of mechanical responses under oxidative assault has been observed including formation of nanopores, transient micron-sized pores, and total sudden catastrophic collapse (i.e., explosion). However, the physical mechanism regarding how lipid oxidation causes vesicles to explode remains elusive. Here, with light-induced asymmetric oxidation experiments, the role of spontaneous curvature on vesicle instability and its link to the conformational changes of oxidized lipid products is systematically investigated. A comprehensive membrane model is proposed for pore-opening dynamics incorporating spontaneous curvature and membrane curling, which captures the experimental observations well. The kinetics of lipid oxidation are further characterized and how light-induced asymmetric oxidation generates spontaneous curvature in a non-monotonic temporal manner is rationalized. Using the framework, a phase diagram with an analytical criterion to predict transient pore formation or catastrophic vesicle collapse is provided. The work can shed light on understanding biomembrane stability under oxidative assault and strategizing release dynamics of vesicle-based drug delivery systems.
Collapse
Affiliation(s)
- Vinit Kumar Malik
- Department of Mechanical Science and EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - On Shun Pak
- Department of Mechanical Engineering and Department of Applied MathematicsSanta Clara UniversitySanta ClaraCA95053USA
| | - Jie Feng
- Department of Mechanical Science and EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
- Materials Research LaboratoryUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
5
|
Kilicarslan You D, Fuwad A, Lee KH, Kim HK, Kang L, Kim SM, Jeon TJ. Evaluation of the Protective Role of Vitamin E against ROS-Driven Lipid Oxidation in Model Cell Membranes. Antioxidants (Basel) 2024; 13:1135. [PMID: 39334794 PMCID: PMC11428522 DOI: 10.3390/antiox13091135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Reactive oxygen species (ROS) are chemically reactive oxygen-containing compounds generated by various factors in the body. Antioxidants mitigate the damaging effects of ROS by playing a critical role in regulating redox balance and signaling. In this study, the interplay between reactive oxygen species (ROS) and antioxidants in the context of lipid dynamics were investigated. The interaction between hydrogen peroxide (H2O2) as an ROS and vitamin E (α-tocopherol) as an antioxidant was examined. Model membranes containing both saturated and unsaturated lipids served as experimental platforms to investigate the influence of H2O2 on phospholipid unsaturation and the role of antioxidants in this process. The results demonstrated that H2O2 has a negative effect on membrane stability and disrupts the lipid membrane structure, whereas the presence of antioxidants protects the lipid membrane from the detrimental effects of ROS. The model membranes used here are a useful tool for understanding ROS-antioxidant interactions at the molecular level in vitro.
Collapse
Affiliation(s)
- Dilara Kilicarslan You
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Ahmed Fuwad
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Ki Hyok Lee
- Department of Materials Research Center, Genpeau Corporation, Incheon 21990, Republic of Korea
| | - Hyung Kyo Kim
- Department of Materials Research Center, Genpeau Corporation, Incheon 21990, Republic of Korea
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, Sydney, NSW 2006, Australia
| | - Sun Min Kim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Tae-Joon Jeon
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, Sydney, NSW 2006, Australia
- Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
6
|
Thaden O, Schneider N, Walther T, Spiller E, Taoum A, Göpfrich K, Duarte Campos D. Bioprinting of Synthetic Cell-like Lipid Vesicles to Augment the Functionality of Tissues after Manufacturing. ACS Synth Biol 2024; 13:2436-2446. [PMID: 39025476 PMCID: PMC11334175 DOI: 10.1021/acssynbio.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024]
Abstract
Bioprinting is an automated bioassembly method that enables the formation of human tissue-like constructs to restore or replace damaged tissues. Regardless of the employed bioprinting method, cells undergo mechanical stress that can impact their survival and function postprinting. In this study, we investigate the use of a synthetic cell-like unit, giant unilamellar vesicles (GUVs), as adjuvants of the cellular function of human cells postprinting, or in future as the complete replacement of human cells. We analyzed the impact of two nozzle-based bioprinting methods (drop-on-demand and extrusion bioprinting) on the structure, stability, and function of GUVs. We showed that over 65% of the GUVs remain intact when printing at 0.5 bar, demonstrating the potential of using GUVs as a synthetic cell source. We further increased the stability of GUVs in a cell culture medium by introducing polyethylene glycol (PEG) into the GUV lipid membrane. The presence of PEG, however, diminished the structural properties of GUVs postprinting, and reduced the interaction of GUVs with human cells. Although the design of PEG-GUVs can still be modified in future studies for better cell-GUV interactions, we demonstrated that GUVs are functional postprinting. Chlorin e6-PEG-GUVs loaded with a fluorescent dye were bioprinted, and they released the dye postprinting only upon illumination. This is a new strategy to deliver carriers, such as growth factors, drugs, nutrients, or gases, inside large bioprinted specimens on a millimeter to centimeter scale. Overall, we showed that printed GUVs can augment the functionality of manufactured human tissues.
Collapse
Affiliation(s)
- Ole Thaden
- Bioprinting
& Tissue Engineering Group, Center for
Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - Nicole Schneider
- Bioprinting
& Tissue Engineering Group, Center for
Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - Tobias Walther
- Biophysical
Engineering of Life Group, Center for Molecular
Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
- Max
Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Erin Spiller
- Bioprinting
& Tissue Engineering Group, Center for
Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - Alexandre Taoum
- Bioprinting
& Tissue Engineering Group, Center for
Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - Kerstin Göpfrich
- Biophysical
Engineering of Life Group, Center for Molecular
Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
- Max
Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Daniela Duarte Campos
- Bioprinting
& Tissue Engineering Group, Center for
Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| |
Collapse
|
7
|
Gahlot P, Kravic B, Rota G, van den Boom J, Levantovsky S, Schulze N, Maspero E, Polo S, Behrends C, Meyer H. Lysosomal damage sensing and lysophagy initiation by SPG20-ITCH. Mol Cell 2024; 84:1556-1569.e10. [PMID: 38503285 DOI: 10.1016/j.molcel.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
Cells respond to lysosomal membrane permeabilization by membrane repair or selective macroautophagy of damaged lysosomes, termed lysophagy, but it is not fully understood how this decision is made. Here, we uncover a pathway in human cells that detects lipid bilayer perturbations in the limiting membrane of compromised lysosomes, which fail to be repaired, and then initiates ubiquitin-triggered lysophagy. We find that SPG20 binds the repair factor IST1 on damaged lysosomes and, importantly, integrates that with the detection of damage-associated lipid-packing defects of the lysosomal membrane. Detection occurs via sensory amphipathic helices in SPG20 before rupture of the membrane. If lipid-packing defects are extensive, such as during lipid peroxidation, SPG20 recruits and activates ITCH, which marks the damaged lysosome with lysine-63-linked ubiquitin chains to initiate lysophagy and thus triages the lysosome for destruction. With SPG20 being linked to neurodegeneration, these findings highlight the relevance of a coordinated lysosomal damage response for cellular homeostasis.
Collapse
Affiliation(s)
- Pinki Gahlot
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Bojana Kravic
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Giulia Rota
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Johannes van den Boom
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Sophie Levantovsky
- Munich Cluster for Systems Neurology, Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
| | - Nina Schulze
- Imaging Center Campus Essen, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Elena Maspero
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Simona Polo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Christian Behrends
- Munich Cluster for Systems Neurology, Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
| | - Hemmo Meyer
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
8
|
Ramos S, Hartenian E, Santos JC, Walch P, Broz P. NINJ1 induces plasma membrane rupture and release of damage-associated molecular pattern molecules during ferroptosis. EMBO J 2024; 43:1164-1186. [PMID: 38396301 PMCID: PMC10987646 DOI: 10.1038/s44318-024-00055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Ferroptosis is a regulated form of necrotic cell death caused by iron-dependent accumulation of oxidized phospholipids in cellular membranes, culminating in plasma membrane rupture (PMR) and cell lysis. PMR is also a hallmark of other types of programmed necrosis, such as pyroptosis and necroptosis, where it is initiated by dedicated pore-forming cell death-executing factors. However, whether ferroptosis-associated PMR is also actively executed by proteins or driven by osmotic pressure remains unknown. Here, we investigate a potential ferroptosis role of ninjurin-1 (NINJ1), a recently identified executor of pyroptosis-associated PMR. We report that NINJ1 oligomerizes during ferroptosis, and that Ninj1-deficiency protects macrophages and fibroblasts from ferroptosis-associated PMR. Mechanistically, we find that NINJ1 is dispensable for the initial steps of ferroptosis, such as lipid peroxidation, channel-mediated calcium influx, and cell swelling. In contrast, NINJ1 is required for early loss of plasma membrane integrity, which precedes complete PMR. Furthermore, NINJ1 mediates the release of cytosolic proteins and danger-associated molecular pattern (DAMP) molecules from ferroptotic cells, suggesting that targeting NINJ1 could be a therapeutic option to reduce ferroptosis-associated inflammation.
Collapse
Affiliation(s)
- Saray Ramos
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Ella Hartenian
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - José Carlos Santos
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Philipp Walch
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
9
|
Xie M, Koch EHW, van Walree CA, Sobota A, Sonnen AFP, Breukink E, Killian JA, Lorent JH. Two separate mechanisms are involved in membrane permeabilization during lipid oxidation. Biophys J 2023; 122:4503-4517. [PMID: 37905401 PMCID: PMC10719051 DOI: 10.1016/j.bpj.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
Lipid oxidation is a universal degradative process of cell membrane lipids that is induced by oxidative stress and reactive oxygen and nitrogen species (RONS) in multiple pathophysiological situations. It has been shown that certain oxidized lipids alter membrane properties, leading to a loss of membrane function. Alteration of membrane properties is thought to depend on the initial membrane lipid composition, such as the number of acyl chain unsaturations. However, it is unclear how oxidative damage is related to biophysical properties of membranes. We therefore set out to quantify lipid oxidation through various analytical methods and determine key biophysical membrane parameters using model membranes containing lipids with different degrees of lipid unsaturation. As source for RONS, we used cold plasma, which is currently developed as treatment for infections and cancer. Our data revealed complex lipid oxidation that can lead to two main permeabilization mechanisms. The first one appears upon direct contact of membranes with RONS and depends on the formation of truncated oxidized phospholipids. These lipids seem to be partly released from the bilayer, implying that they are likely to interact with other membranes and potentially act as signaling molecules. This mechanism is independent of lipid unsaturation, does not rely on large variations in lipid packing, and is most probably mediated via short-living RONS. The second mechanism takes over after longer incubation periods and probably depends on the continued formation of lipid oxygen adducts such as lipid hydroperoxides or ketones. This mechanism depends on lipid unsaturation and involves large variations in lipid packing. This study indicates that polyunsaturated lipids, which are present in mammalian membranes rather than in bacteria, do not sensitize membranes to instant permeabilization by RONS but could promote long-term damage.
Collapse
Affiliation(s)
- Min Xie
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, the Netherlands
| | - Eveline H W Koch
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, the Netherlands
| | - Cornelis A van Walree
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, the Netherlands; University College Utrecht, Campusplein 1, Utrecht, the Netherlands
| | - Ana Sobota
- Atmospheric Pressure Non-Thermal Plasmas and Their Interaction with Targets, Applied Physics Department, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Andreas F P Sonnen
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, the Netherlands; Pathology Department, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Eefjan Breukink
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, the Netherlands
| | - J Antoinette Killian
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, the Netherlands
| | - Joseph H Lorent
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, the Netherlands; Cellular and Molecular Pharmacology, Translational Research from Experimental and Clinical Pharmacology to Treatment Optimization, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium.
| |
Collapse
|
10
|
Loriette V, Fragola A, Kruglik SG, Sridhar S, Hubert A, Orieux F, Sepulveda E, Sureau F, Bonneau S. Dynamics of mitochondrial membranes under photo-oxidative stress with high spatiotemporal resolution. Front Cell Dev Biol 2023; 11:1307502. [PMID: 38046667 PMCID: PMC10691360 DOI: 10.3389/fcell.2023.1307502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
In our study, we harnessed an original Enhanced Speed Structured Illumination Microscopy (Fast-SIM) imaging setup to explore the dynamics of mitochondrial and inner membrane ultrastructure under specific photo-oxidation stress induced by Chlorin-e6 and light irradiation. Notably, our Fast-SIM system allowed us to observe and quantify a distinct remodeling and shortening of the mitochondrial structure after 60-80 s of irradiation. These changes were accompanied by fusion events of adjacent inner membrane cristae and global swelling of the organelle. Preceding these alterations, a larger sequence was characterized by heightened dynamics within the mitochondrial network, featuring events such as mitochondrial fission, rapid formation of tubular prolongations, and fluctuations in cristae structure. Our findings provide compelling evidence that, among enhanced-resolution microscopy techniques, Fast-SIM emerges as the most suitable approach for non-invasive dynamic studies of mitochondrial structure in living cells. For the first time, this approach allows quantitative and qualitative characterization of successive steps in the photo-induced oxidation process with sufficient spatial and temporal resolution.
Collapse
Affiliation(s)
- Vincent Loriette
- ESPCI, PSL Research University, Sorbonne Université, CNRS, Laboratoire de Physique et D’Étude des Matériaux (LPEM), Paris, France
| | - Alexandra Fragola
- ESPCI, PSL Research University, Sorbonne Université, CNRS, Laboratoire de Physique et D’Étude des Matériaux (LPEM), Paris, France
| | - Sergei G. Kruglik
- Sorbonne Université, CNRS, Laboratoire Jean Perrin (LJP), Paris, France
| | - Susmita Sridhar
- ESPCI, PSL Research University, Sorbonne Université, CNRS, Laboratoire de Physique et D’Étude des Matériaux (LPEM), Paris, France
- Sorbonne Université, CNRS, Laboratoire Jean Perrin (LJP), Paris, France
| | - Antoine Hubert
- ESPCI, PSL Research University, Sorbonne Université, CNRS, Laboratoire de Physique et D’Étude des Matériaux (LPEM), Paris, France
- Sorbonne Université, CNRS, Laboratoire Jean Perrin (LJP), Paris, France
| | - François Orieux
- Centrale Supelec, Université Paris Saclay, CNRS, Laboratoire des Signaux et Systémes (L2S), Gif-sur-Yvette, France
| | - Eduardo Sepulveda
- Sorbonne Université, Université Paris Cité, CNRS, Laboratoire de physique nucléaire et de hautes énergies (LPNHE), Paris, France
| | - Franck Sureau
- Sorbonne Université, CNRS, Laboratoire Jean Perrin (LJP), Paris, France
| | - Stephanie Bonneau
- Sorbonne Université, CNRS, Laboratoire Jean Perrin (LJP), Paris, France
| |
Collapse
|
11
|
Wagner MP, Chitnis CE. Lipid peroxidation and its repair in malaria parasites. Trends Parasitol 2023; 39:200-211. [PMID: 36642689 DOI: 10.1016/j.pt.2022.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
During its life cycle, the human malaria parasite Plasmodium falciparum is subjected to elevated levels of oxidative stress that cause damage to membrane lipids, a process referred to as lipid peroxidation. Control and repair of lipid peroxidation is critical for survival of P. falciparum. Here, we present an introduction into lipid peroxidation and review the current knowledge about the control and repair of the damage caused by lipid peroxidation in P. falciparum blood stages. We also review the recent identification of host peroxiredoxin 6 (PRDX6), as a key lipid-peroxidation-repair enzyme in P. falciparum blood stages. Such critical host factors provide novel targets for development of drugs against malaria.
Collapse
Affiliation(s)
- Matthias Paulus Wagner
- Institut Pasteur, Université Paris Cité, Malaria Parasite Biology and Vaccines Unit, Paris, France
| | - Chetan E Chitnis
- Institut Pasteur, Université Paris Cité, Malaria Parasite Biology and Vaccines Unit, Paris, France.
| |
Collapse
|
12
|
Firsov AM, Pfeffermann J, Benditkis AS, Rokitskaya TI, Kozlov AS, Kotova EA, Krasnovsky AA, Pohl P, Antonenko YN. Photodynamic activity rather than drilling causes membrane damage by a light-powered molecular nanomotor. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 239:112633. [PMID: 36608401 DOI: 10.1016/j.jphotobiol.2022.112633] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The chase toward endowing chemical compounds with machine-like functions mimicking those of biological molecular machineries has yielded a variety of artificial molecular motors (AMMs). Pharmaceutical applications of photoexcited monomolecular unidirectionally-rotating AMMs have been envisioned in view of their ability to permeabilize biological membranes. Nonetheless, the mechanical properties of lipid membranes render the proposed drilling activity of AMMs doubtful. Here, we show that singlet oxygen released by a photoexcited "molecular drill" oxidized unsaturated lipids composing giant unilamellar vesicles. In contrast, giant liposomes built of saturated lipids were inert to AMM photoactuation. The AMM did not mechanically destroy gramicidin A ion channels in planar bilayer lipid membranes but instead photoinactivated them. Sodium azide, a singlet oxygen quencher, reduced both AMM-mediated light-induced dye release from unsaturated large unilamellar vesicles and protected gramicidin A from photoinactivation. Upon additional consideration of the underlying bilayer mechanics, we conclude that AMMs' envisioned therapeutic and pharmaceutical applications rely on their photodynamic activity rather than their nanomechanical drilling abilities.
Collapse
Affiliation(s)
- Alexander M Firsov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Juergen Pfeffermann
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Anton S Benditkis
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Anton S Kozlov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander A Krasnovsky
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria.
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
13
|
Sakaya A, Bacellar IOL, Fonseca JL, Durantini AM, McCain J, Xu L, Vignoni M, Thomas AH, Baptista MS, Cosa G. Singlet Oxygen Flux, Associated Lipid Photooxidation, and Membrane Expansion Dynamics Visualized on Giant Unilamellar Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:442-452. [PMID: 36576408 DOI: 10.1021/acs.langmuir.2c02720] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The physical properties of lipid membranes depend on their lipid composition. Photosensitized singlet oxygen (1O2) provides a handle to spatiotemporally control the generation of lipid hydroperoxides via the ene reaction, enabling fundamental studies on membrane dynamics in response to chemical composition changes. Critical to relating the physical properties of the lipid membrane to hydroperoxide formation is the availability of a sensitive reporter to quantify the arrival of 1O2. Here, we show that a fluorogenic α-tocopherol analogue, H4BPMHC, undergoes a >360-fold emission intensity enhancement in liposomes following a reaction with 1O2. Rapid quenching of 1O2 by the probe (kq = 4.9 × 108 M-1 s-1) ensures zero-order kinetics of probe consumption. The remarkable intensity enhancement of H4BPMHC upon 1O2 trapping, its linear temporal behavior, and its protective role in outcompeting membrane damage provide a sensitive and reliable method to quantify the 1O2 flux on lipid membranes. Armed with this probe, fluorescence microscopy studies were devised to enable (i) monitoring the flux of photosensitized 1O2 into giant unilamellar vesicles (GUVs), (ii) establishing the onset of the ene reaction with the double bonds of monounsaturated lipids, and (iii) visualizing the ensuing collective membrane expansion dynamics associated with molecular changes in the lipid structure upon hydroperoxide formation. A correlation was observed between the time for antioxidant H4BPMHC consumption by 1O2 and the onset of membrane fluctuations and surface expansion. Together, our imaging studies with H4BPMHC in GUVs provide a methodology to explore the intimate relationship between photosensitizer activity, chemical insult, membrane morphology, and its collective dynamics.
Collapse
Affiliation(s)
- Aya Sakaya
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrook Street West, Montreal, QuebecH3A 0B8, Canada
| | - Isabel O L Bacellar
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrook Street West, Montreal, QuebecH3A 0B8, Canada
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, São PauloCEP 05508-000, Brazil
| | - José Luis Fonseca
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrook Street West, Montreal, QuebecH3A 0B8, Canada
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, Casilla de Correo 16, Sucursal 4, La Plata1900, Argentina
| | - Andrés M Durantini
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrook Street West, Montreal, QuebecH3A 0B8, Canada
| | - Julia McCain
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrook Street West, Montreal, QuebecH3A 0B8, Canada
| | - Laiyi Xu
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrook Street West, Montreal, QuebecH3A 0B8, Canada
| | - Mariana Vignoni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, Casilla de Correo 16, Sucursal 4, La Plata1900, Argentina
| | - Andrés H Thomas
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, Casilla de Correo 16, Sucursal 4, La Plata1900, Argentina
| | - Mauricio S Baptista
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, São PauloCEP 05508-000, Brazil
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrook Street West, Montreal, QuebecH3A 0B8, Canada
| |
Collapse
|
14
|
Havaux M. Review of Lipid Biomarkers and Signals of Photooxidative Stress in Plants. Methods Mol Biol 2023; 2642:111-128. [PMID: 36944875 DOI: 10.1007/978-1-0716-3044-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The degree of unsaturation of plant lipids is high, making them sensitive to oxidation. They thus constitute primary targets of reactive oxygen species and oxidative stress. Moreover, the hydroperoxides generated during lipid peroxidation decompose in a variety of secondary products which can propagate oxidative stress or trigger signaling mechanisms. Both primary and secondary products of lipid oxidation are helpful markers of oxidative stress in plants. This chapter describes a number of methods that have been developed to measure those biomarkers and signals, with special emphasis on the monitoring of photooxidative stress. Depending on their characteristics, those lipid markers provide information not only on the oxidation status of plant tissues but also on the origin of lipid peroxidation, the localization of the damage, or the type of reactive oxygen species involved.
Collapse
Affiliation(s)
- Michel Havaux
- Aix-Marseille University, CEA, CNRS, UMR7265, Bioscience and Biotechnology Institute of Aix-Marseille, CEA/Cadarache, Saint-Paul-lez-Durance, France.
| |
Collapse
|
15
|
Mitchell W, Tamucci JD, Ng EL, Liu S, Birk AV, Szeto HH, May ER, Alexandrescu AT, Alder NN. Structure-activity relationships of mitochondria-targeted tetrapeptide pharmacological compounds. eLife 2022; 11:75531. [PMID: 35913044 PMCID: PMC9342957 DOI: 10.7554/elife.75531] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 07/03/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria play a central role in metabolic homeostasis, and dysfunction of this organelle underpins the etiology of many heritable and aging-related diseases. Tetrapeptides with alternating cationic and aromatic residues such as SS-31 (elamipretide) show promise as therapeutic compounds for mitochondrial disorders. In this study, we conducted a quantitative structure-activity analysis of three alternative tetrapeptide analogs, benchmarked against SS-31, that differ with respect to aromatic side chain composition and sequence register. We present the first structural models for this class of compounds, obtained with Nuclear Magnetic Resonance (NMR) and molecular dynamics approaches, showing that all analogs except for SS-31 form compact reverse turn conformations in the membrane-bound state. All peptide analogs bound cardiolipin-containing membranes, yet they had significant differences in equilibrium binding behavior and membrane interactions. Notably, analogs had markedly different effects on membrane surface charge, supporting a mechanism in which modulation of membrane electrostatics is a key feature of their mechanism of action. The peptides had no strict requirement for side chain composition or sequence register to permeate cells and target mitochondria in mammalian cell culture assays. All four peptides were pharmacologically active in serum withdrawal cell stress models yet showed significant differences in their abilities to restore mitochondrial membrane potential, preserve ATP content, and promote cell survival. Within our peptide set, the analog containing tryptophan side chains, SPN10, had the strongest impact on most membrane properties and showed greatest efficacy in cell culture studies. Taken together, these results show that side chain composition and register influence the activity of these mitochondria-targeted peptides, helping provide a framework for the rational design of next-generation therapeutics with enhanced potency.
Collapse
Affiliation(s)
- Wayne Mitchell
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Jeffrey D Tamucci
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Emery L Ng
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Shaoyi Liu
- Social Profit Network, Menlo Park, CA, United States
| | - Alexander V Birk
- Department of Biology, York College of CUNY, New York, NY, United States
| | - Hazel H Szeto
- Social Profit Network, Menlo Park, CA, United States
| | - Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Andrei T Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
16
|
Defunctionalizing intracellular organelles such as mitochondria and peroxisomes with engineered phospholipase A/acyltransferases. Nat Commun 2022; 13:4413. [PMID: 35906209 PMCID: PMC9338259 DOI: 10.1038/s41467-022-31946-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/11/2022] [Indexed: 11/08/2022] Open
Abstract
Organelles vitally achieve multifaceted functions to maintain cellular homeostasis. Genetic and pharmacological approaches to manipulate individual organelles are powerful in probing their physiological roles. However, many of them are either slow in action, limited to certain organelles, or rely on toxic agents. Here, we design a generalizable molecular tool utilizing phospholipase A/acyltransferases (PLAATs) for rapid defunctionalization of organelles via remodeling of the membrane phospholipids. In particular, we identify catalytically active PLAAT truncates with minimal unfavorable characteristics. Chemically-induced translocation of the optimized PLAAT to the mitochondria surface results in their rapid deformation in a phospholipase activity dependent manner, followed by loss of luminal proteins as well as dissipated membrane potential, thus invalidating the functionality. To demonstrate wide applicability, we then adapt the molecular tool in peroxisomes, and observe leakage of matrix-resident functional proteins. The technique is compatible with optogenetic control, viral delivery and operation in primary neuronal cultures. Due to such versatility, the PLAAT strategy should prove useful in studying organelle biology of diverse contexts.
Collapse
|
17
|
Havaux M, Ksas B. Imaging of Lipid Peroxidation-Associated Chemiluminescence in Plants: Spectral Features, Regulation and Origin of the Signal in Leaves and Roots. Antioxidants (Basel) 2022; 11:antiox11071333. [PMID: 35883824 PMCID: PMC9312247 DOI: 10.3390/antiox11071333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Plants, like most living organisms, spontaneously emit photons of visible light. This ultraweak endogenous chemiluminescence is linked to the oxidative metabolism, with lipid peroxidation constituting a major source of photons in plants. We imaged this signal using a very sensitive cooled CCD camera and analysed its spectral characteristics using bandpass interference filters. In vitro oxidation of lipids induced luminescence throughout the visible spectrum (450−850 nm). However, luminescence in the red spectral domain (>640 nm) occurred first, then declined in parallel with the appearance of the emission in the blue-green (<600 nm). This temporal separation suggests that the chemical species emitting in the blue-green are secondary products, possibly deriving from the red light-emitting species. This conversion did not seem to occur in planta because spontaneous chemiluminescence from plant tissues (leaves, roots) occurred only in the red/far-red light domain (>640 nm), peaking at 700−750 nm. The spectrum of plant chemiluminescence was independent of chlorophyll. The in vivo signal was modulated by cellular detoxification mechanisms and by changes in the concentration of singlet oxygen in the tissues, although the singlet oxygen luminescence bands did not appear as major bands in the spectra. Our results indicate that the intensity of endogenous chemiluminescence from plant tissues is determined by the balance between the formation of luminescent species through secondary reactions involving lipid peroxide-derived intermediates, including singlet oxygen, and their elimination by metabolizing processes. The kinetic aspects of plant chemiluminescence must be taken into account when using the signal as an oxidative stress marker.
Collapse
|
18
|
Drehmer E, Navarro-Moreno MÁ, Carrera-Juliá S, Moreno ML. A comparative study between olive oil and corn oil on oxidative metabolism. Food Funct 2022; 13:7157-7167. [PMID: 35699154 DOI: 10.1039/d2fo00919f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fats are an important part of diet, but not all lipids have the same structure and chemical properties. Unsaturated fatty acids have one or more double bonds in their structure and can be monounsaturated or polyunsaturated, respectively. Most vegetable oils, such as olive oil and corn oil, contain significant amounts of these fatty acids. The presence of double bonds in the molecule of a fatty acid constitutes vulnerable sites for oxidation reactions generating lipid peroxides, potentially toxic compounds that can cause cellular damage. In response to this oxidative damage, aerobic organisms have intracellular enzymatic antioxidant defense mechanisms. The aim of the present investigation was to study comparatively the effects of control liquid diets, of a defined composition, containing olive oil or corn oil as a lipid source respectively of monounsaturated and polyunsaturated fatty acids, on the oxidative metabolism of rats. Rats were divided into three groups which received a control animal feed diet (A.F.), olive oil liquid diet (O.O) and corn oil liquid diet (C.O) for 30 days. It was observed that the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), increased in the liver and white fat tissue of rats fed with olive oil when compared to the corn oil group. However, in brown fat tissue and blood cells, the enzyme activities showed a tendency to decrease in the olive oil group. In addition, the effect of olive oil and corn oil on several glucose metabolism parameters (pyruvate, lactate, LDH, acetoacetate and beta-hydroxybutyrate) showed that corn oil impairs to a greater extent the cellular metabolism. All these results helped in concluding that some body tissues are more adversely affected than others by the administration of corn oil or olive oil, and their antioxidant defenses and cellular metabolism respond differently too.
Collapse
Affiliation(s)
- Eraci Drehmer
- Department of Health Sciences, Universidad Católica de Valencia "San Vicente Mártir", Valencia, Spain
| | | | - Sandra Carrera-Juliá
- Department of Nutrition and Dietetics, Universidad Católica de Valencia "San Vicente Mártir", Valencia, Spain
| | - Mari Luz Moreno
- Department of Human Physiology and Anatomy, Universidad Católica de Valencia "San Vicente Mártir", C/Ramiro de Maeztu, 14., 46900 Torrente, Valencia, Spain.
| |
Collapse
|
19
|
Elbaradei A, Wang Z, Malmstadt N. Oxidation of Membrane Lipids Alters the Activity of the Human Serotonin 1A Receptor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6798-6807. [PMID: 35608952 DOI: 10.1021/acs.langmuir.1c03238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lipid oxidation has significant effects on lipid bilayer properties; these effects can be expected to extend to interactions between the lipid bilayer and integral membrane proteins. Given that G protein-coupled receptor (GPCR) activity is known to depend on the properties of the surrounding lipid bilayer, these proteins represent an intriguing class of molecules in which the impact of lipid oxidation on protein behavior is studied. Here, we study the effects of lipid oxidation on the human serotonin 1A receptor (5-HT1AR). Giant unilamellar vesicles (GUVs) containing integral 5-HT1AR were fabricated by the hydrogel swelling method; these GUVs contained polyunsaturated 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine (PLinPC) and its oxidation product 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PoxnoPC) at various ratios. 5-HT1AR-integrated GUVs were also fabricated from lipid mixtures that had been oxidized by extended exposure to the atmosphere. Both types of vesicles were used to evaluate 5-HT1AR activity using an assay to quantify GDP-GTP exchange by the coupled G protein α subunit. Results indicated that 5-HT1AR activity increases significantly in bilayers containing oxidized lipids. This work is an important step in understanding how hyperbaric oxidation can change plasma membrane properties and lead to physiological dysfunction.
Collapse
|
20
|
Firsov AM, Franco MSF, Chistyakov DV, Goriainov SV, Sergeeva MG, Kotova EA, Fomich MA, Bekish AV, Sharko OL, Shmanai VV, Itri R, Baptista MS, Antonenko YN, Shchepinov MS. Deuterated polyunsaturated fatty acids inhibit photoirradiation-induced lipid peroxidation in lipid bilayers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 229:112425. [PMID: 35276579 DOI: 10.1016/j.jphotobiol.2022.112425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/17/2022] [Accepted: 02/26/2022] [Indexed: 12/24/2022]
Abstract
Lipid peroxidation (LPO) plays a key role in many age-related neurodegenerative conditions and other disorders. Light irradiation can initiate LPO through various mechanisms and is of importance in retinal and dermatological pathologies. The introduction of deuterated polyunsaturated fatty acids (D-PUFA) into membrane lipids is a promising approach for protection against LPO. Here, we report the protective effects of D-PUFA against the photodynamically induced LPO, using illumination in the presence of the photosensitizer trisulfonated aluminum phthalocyanine (AlPcS3) in liposomes and giant unilamellar vesicles (GUV), as assessed in four experimental models: 1) sulforhodamine B leakage from liposomes, detected with fluorescence correlation spectroscopy (FCS); 2) formation of diene conjugates in liposomal membranes, measured by absorbance at 234 nm; 3) membrane leakage in GUV assessed by optical phase-contrast intensity observations; 4) UPLC-MS/MS method to detect oxidized linoleic acid (Lin)-derived metabolites. Specifically, in liposomes or GUV containing H-PUFA (dilinoleyl-sn-glycero-3-phosphatidylcholine), light irradiation led to an extensive oxidative damage to bilayers. By contrast, no damage was observed in lipid bilayers containing 20% or more D-PUFA (D2-Lin or D10-docosahexanenoic acid). Remarkably, addition of tocopherol increased the dye leakage from liposomes in H-PUFA bilayers compared to photoirradiation alone, signifying tocopherol's pro-oxidant properties. However, in the presence of D-PUFA the opposite effect was observed, whereby adding tocopherol increased the resistance to LPO. These findings suggest a method to augment the protective effects of D-PUFA, which are currently undergoing clinical trials in several neurological and retinal diseases that involve LPO.
Collapse
Affiliation(s)
- A M Firsov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - M S F Franco
- Biochemistry Department, Institute of Chemistry, University of São Paulo (IQUSP), AV. Professor Lineu Prestes avenue, 748, USP, CEP: 05508-000 São Paulo, Brazil
| | - D V Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - S V Goriainov
- SREC PFUR Peoples' Friendship University of Russia, Moscow, Russia
| | - M G Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - E A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - M A Fomich
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - A V Bekish
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - O L Sharko
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - V V Shmanai
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - R Itri
- Applied Physics Department, Institute of Physics, University of São Paulo, Rua do Matão, 1371 (217-B.Jafet), Butantã, USP, 05508-090 São Paulo, Brazil
| | - M S Baptista
- Biochemistry Department, Institute of Chemistry, University of São Paulo (IQUSP), AV. Professor Lineu Prestes avenue, 748, USP, CEP: 05508-000 São Paulo, Brazil.
| | - Y N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | | |
Collapse
|
21
|
Elucidation of the Interactions of Reactive Oxygen Species and Antioxidants in Model Membranes Mimicking Cancer Cells and Normal Cells. MEMBRANES 2022; 12:membranes12030286. [PMID: 35323761 PMCID: PMC8949560 DOI: 10.3390/membranes12030286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/18/2023]
Abstract
Photosensitizers (PSs) used in photodynamic therapy (PDT) have been developed to selectively destroy tumor cells. However, PSs recurrently reside on the extracellular matrix or affect normal cells in the vicinity, causing side effects. Additionally, the membrane stability of tumor cells and normal cells in the presence of reactive oxygen species (ROS) has not been studied, and the effects of ROS at the membrane level are unclear. In this work, we elucidate the stabilities of model membranes mimicking tumor cells and normal cells in the presence of ROS. The model membranes are constructed according to the degree of saturation in lipids and the bilayers are prepared either in symmetric or asymmetric form. Interestingly, membranes mimicking normal cells are the most vulnerable to ROS, while membranes mimicking tumor cells remain relatively stable. The instability of normal cell membranes may be one cause of the side effects of PDT. Moreover, we also show that ROS levels are controlled by antioxidants, helping to maintain an appropriate amount of ROS when PDT is applied.
Collapse
|
22
|
Rezende LG, Tasso TT, Candido PHS, Baptista MS. Assessing Photosensitized Membrane Damage: Available Tools and Comprehensive Mechanisms. Photochem Photobiol 2021; 98:572-590. [PMID: 34931324 DOI: 10.1111/php.13582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
Lipids are important targets of the photosensitized oxidation reactions, forming important signaling molecules, disorganizing and permeabilizing membranes, and consequently inducing a variety of biological responses. Although the initial steps of the photosensitized oxidative damage in lipids are known to occur by both Type I and Type II mechanisms, the progression of the peroxidation reaction, which leads to important end-point biological responses, is poorly known. There are many experimental tools used to study the products of lipid oxidation, but neither the methods nor their resulting observations were critically compared. In this article, we will review the tools most frequently used and the key concepts raised by them in order to rationalize a comprehensive model for the initiation and the progression steps of the photoinduced lipid oxidation.
Collapse
Affiliation(s)
- Laura G Rezende
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Thiago T Tasso
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pedro H S Candido
- Biochemistry Department, Chemistry Institute, Universidade de São Paulo, Sao Paulo, Brazil
| | - Mauricio S Baptista
- Biochemistry Department, Chemistry Institute, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
23
|
Jin R, Baumgart T. Asymmetric desorption of lipid oxidation products induces membrane bending. SOFT MATTER 2021; 17:7506-7515. [PMID: 34338699 PMCID: PMC8425771 DOI: 10.1039/d1sm00652e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipid oxidation, detected in metabolic processes, is induced in excess when the cellular membrane suffers extra oxidative stress. Lipid oxidation can compromise biomembrane function in part through perturbations of lipid packing, membrane permeability, and morphology. Two major types of oxidation products, one with a partially truncated lipid tail with a hydrophilic group at the tail-end, and secondly, a lysolipid (with one of the chains completely truncated) can disturb the membrane bilayer packing significantly. However, they also have an increased tendency to desorb from the membrane. In this study we investigated desorption kinetics of two characteristic lipid oxidation products (PAzePC and 18 : 1 LysoPC) from a model membrane system, and we evaluated the consequences of this process on membrane shape transitions. Using a microfluidic chamber coupled with micropipette aspiration, we observed the incorporation of the two lipids into the membrane of a giant unilamellar vesicle (GUV) and further determined their desorption rates, association rates and flip-flop rates. For both lipids, the desorption is on the time scale of seconds, one to two orders of magnitude faster than their flipping rates. Dilution of the outer solution of the GUVs allowed asymmetric desorption of these two lipids from the GUVs. This process induced lipid number asymmetry and charge asymmetry, specifically for PAzePC containing GUVs, and caused membrane tubulation. Our results indicate that the desorption of lipid oxidation products can alter the local structure of biomembranes and result in morphological changes that may relate to membrane function.
Collapse
Affiliation(s)
- Rui Jin
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
24
|
Dreher Y, Jahnke K, Schröter M, Göpfrich K. Light-Triggered Cargo Loading and Division of DNA-Containing Giant Unilamellar Lipid Vesicles. NANO LETTERS 2021; 21:5952-5957. [PMID: 34251204 PMCID: PMC8323123 DOI: 10.1021/acs.nanolett.1c00822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/02/2021] [Indexed: 05/24/2023]
Abstract
A minimal synthetic cell should contain a substrate for information storage and have the capability to divide. Notable efforts were made to assemble functional synthetic cells from the bottom up, however often lacking the capability to reproduce. Here, we develop a mechanism to fully control reversible cargo loading and division of DNA-containing giant unilamellar vesicles (GUVs) with light. We make use of the photosensitizer Chlorin e6 (Ce6) which self-assembles into lipid bilayers and leads to local lipid peroxidation upon illumination. On the time scale of minutes, illumination induces the formation of transient pores, which we exploit for cargo encapsulation or controlled release. In combination with osmosis, complete division of two daughter GUVs can be triggered within seconds of illumination due to a spontaneous curvature increase. We ultimately demonstrate the division of a selected DNA-containing GUV with full spatiotemporal control-proving the relevance of the division mechanism for bottom-up synthetic biology.
Collapse
Affiliation(s)
- Yannik Dreher
- Max
Planck Institute for Medical Research, Biophysical Engineering Group, Jahnstraße 29, 69120 Heidelberg, Germany
- Department
of Physics and Astronomy, Heidelberg University, 69120 Heidelberg, Germany
| | - Kevin Jahnke
- Max
Planck Institute for Medical Research, Biophysical Engineering Group, Jahnstraße 29, 69120 Heidelberg, Germany
- Department
of Physics and Astronomy, Heidelberg University, 69120 Heidelberg, Germany
| | - Martin Schröter
- Max
Planck Institute for Medical Research, Department
of Cellular Biophysics, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Kerstin Göpfrich
- Max
Planck Institute for Medical Research, Biophysical Engineering Group, Jahnstraße 29, 69120 Heidelberg, Germany
- Department
of Physics and Astronomy, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
25
|
Bordanaba-Florit G, Royo F, Kruglik SG, Falcón-Pérez JM. Using single-vesicle technologies to unravel the heterogeneity of extracellular vesicles. Nat Protoc 2021; 16:3163-3185. [PMID: 34135505 DOI: 10.1038/s41596-021-00551-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are heterogeneous lipid containers with a complex molecular cargo comprising several populations with unique roles in biological processes. These vesicles are closely associated with specific physiological features, which makes them invaluable in the detection and monitoring of various diseases. EVs play a key role in pathophysiological processes by actively triggering genetic or metabolic responses. However, the heterogeneity of their structure and composition hinders their application in medical diagnosis and therapies. This diversity makes it difficult to establish their exact physiological roles, and the functions and composition of different EV (sub)populations. Ensemble averaging approaches currently employed for EV characterization, such as western blotting or 'omics' technologies, tend to obscure rather than reveal these heterogeneities. Recent developments in single-vesicle analysis have made it possible to overcome these limitations and have facilitated the development of practical clinical applications. In this review, we discuss the benefits and challenges inherent to the current methods for the analysis of single vesicles and review the contribution of these approaches to the understanding of EV biology. We describe the contributions of these recent technological advances to the characterization and phenotyping of EVs, examination of the role of EVs in cell-to-cell communication pathways and the identification and validation of EVs as disease biomarkers. Finally, we discuss the potential of innovative single-vesicle imaging and analysis methodologies using microfluidic devices, which promise to deliver rapid and effective basic and practical applications for minimally invasive prognosis systems.
Collapse
Affiliation(s)
- Guillermo Bordanaba-Florit
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
| | - Félix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain
| | - Sergei G Kruglik
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Paris, France
| | - Juan M Falcón-Pérez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain. .,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
26
|
Lin C, Katla SK, Pérez-Mercader J. Photochemically induced cyclic morphological dynamics via degradation of autonomously produced, self-assembled polymer vesicles. Commun Chem 2021; 4:25. [PMID: 36697697 PMCID: PMC9814595 DOI: 10.1038/s42004-021-00464-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/01/2021] [Indexed: 01/28/2023] Open
Abstract
Autonomous and out-of-equilibrium vesicles synthesised from small molecules in a homogeneous aqueous medium are an emerging class of dynamically self-assembled systems with considerable potential for engineering natural life mimics. Here we report on the physico-chemical mechanism behind a dynamic morphological evolution process through which self-assembled polymeric structures autonomously booted from a homogeneous mixture, evolve from micelles to giant vesicles accompanied by periodic growth and implosion cycles when exposed to oxygen under light irradiation. The system however formed nano-objects or gelation under poor oxygen conditions or when heated. We determined the cause to be photoinduced chemical degradation within hydrated polymer cores inducing osmotic water influx and the subsequent morphological dynamics. The process also led to an increase in the population of polymeric objects through system self-replication. This study offers a new path toward the design of chemically self-assembled systems and their potential application in autonomous material artificial simulation of living systems.
Collapse
Affiliation(s)
- Chenyu Lin
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, United States
| | - Sai Krishna Katla
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, United States
| | - Juan Pérez-Mercader
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, United States.
- The Santa Fe Institute, Santa Fe, NM, United States.
| |
Collapse
|
27
|
Rac M, Shumbe L, Oger C, Guy A, Vigor C, Ksas B, Durand T, Havaux M. Luminescence imaging of leaf damage induced by lipid peroxidation products and its modulation by β-cyclocitral. PHYSIOLOGIA PLANTARUM 2021; 171:246-259. [PMID: 33215689 DOI: 10.1111/ppl.13279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 05/26/2023]
Abstract
Lipid peroxidation is a primary event associated with oxidative stress in plants. This phenomenon secondarily generates bioactive and/or toxic compounds such as reactive carbonyl species (RCS), phytoprostanes, and phytofurans, as confirmed here in Arabidopsis plants exposed to photo-oxidative stress conditions. We analyzed the effects of exogenous applications of secondary lipid oxidation products on Arabidopsis plants by luminescence techniques. Oxidative damage to attached leaves was measured by autoluminescence imaging, using a highly sensitive CCD camera, and the activity of the detoxification pathway, dependent on the transcription regulator SCARECROW-LIKE 14 (SCL14), was monitored with a bioluminescent line expressing the firefly LUCIFERASE (LUC) gene under the control of the ALKENAL REDUCTASE (AER) gene promoter. We identified 4-hydroxynonenal (HNE), and to a lesser extent 4-hydroxyhexenal (HHE), as highly reactive compounds that are harmful to leaves and can trigger AER gene expression, contrary to other RCS (pentenal, hexenal) and to isoprostanoids. Although the levels of HNE and other RCS were enhanced in the SCL14-deficient mutant (scl14), exogenously applied HNE was similarly damaging to this mutant, its wild-type parent and a SCL14-overexpressing transgenic line (OE:SCL14). However, strongly boosting the SCL14 detoxification pathway and AER expression by a pre-treatment of OE:SCL14 with the signaling apocarotenoid β-cyclocitral canceled the damaging effects of HNE. Conversely, in the scl14 mutant, the effects of β-cyclocitral and HNE were additive, leading to enhanced leaf damage. These results indicate that the cellular detoxification pathway induced by the low-toxicity β-cyclocitral targets highly toxic compounds produced during lipid peroxidation, reminiscent of a safener-type mode of action.
Collapse
Affiliation(s)
- Marek Rac
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Leonard Shumbe
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Brigitte Ksas
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Michel Havaux
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
| |
Collapse
|
28
|
Chng CP, Sadovsky Y, Hsia KJ, Huang C. Site-Specific Peroxidation Modulates Lipid Bilayer Mechanics. EXTREME MECHANICS LETTERS 2021; 42:101148. [PMID: 33748376 PMCID: PMC7978408 DOI: 10.1016/j.eml.2020.101148] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Peroxidation of plasma membranes, characterized by oxidative attack of lipidic carbon-carbon double-bonds in unsaturated fatty acids, has been identified as an important biochemical event in multiple pathological conditions, including neurodegenerative diseases, atherosclerosis, diabetes, preeclampsia, aging, cancer, etc. Changes to the lipid bilayer structure as a result of lipid peroxidation may lead to lipid membrane malfunction, and consequently initiate further downstream biochemical cascades. However, how lipid peroxidation modulates the mechanical properties of lipid membranes remains largely controversial. In this study, we investigate the peroxidation of lipids with polyunsaturated fatty acid tails using molecular dynamics simulations. By systematically varying the oxidation site, we find that lipid peroxidation alters the biophysical properties of bilayer membrane in a peroxidation site-specific manner. Specifically, our results suggest that peroxidation at sites in the bilayer interior disturbs and softens the membrane, whereas peroxidation at sites near the membrane-water interface results in a more ordered and stiffer membrane. Such a peroxidation site-specific modulation of lipid membrane mechanics provides an explanation for the contradictory results obtained in previous experiments. Our study paves the way for an improved understanding of the initiation of the downstream cellular dysfunction caused by lipid peroxidation.
Collapse
Affiliation(s)
- Choon-Peng Chng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - K. Jimmy Hsia
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Republic of Singapore
- Corresponding authors: and
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Republic of Singapore
- Corresponding authors: and
| |
Collapse
|
29
|
Soe TH, Watanabe K, Ohtsuki T. Photoinduced Endosomal Escape Mechanism: A View from Photochemical Internalization Mediated by CPP-Photosensitizer Conjugates. Molecules 2020; 26:E36. [PMID: 33374732 PMCID: PMC7793540 DOI: 10.3390/molecules26010036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
Endosomal escape in cell-penetrating peptide (CPP)-based drug/macromolecule delivery systems is frequently insufficient. The CPP-fused molecules tend to remain trapped inside endosomes and end up being degraded rather than delivered into the cytosol. One of the methods for endosomal escape of CPP-fused molecules is photochemical internalization (PCI), which is based on the use of light and a photosensitizer and relies on photoinduced endosomal membrane destabilization to release the cargo molecule. Currently, it remains unclear how this delivery strategy behaves after photostimulation. Recent findings, including our studies using CPP-cargo-photosensitizer conjugates, have shed light on the photoinduced endosomal escape mechanism. In this review, we discuss the structural design of CPP-photosensitizer and CPP-cargo-photosensitizer conjugates, and the PCI mechanism underlying their application.
Collapse
Affiliation(s)
- Tet Htut Soe
- Department of Biotechnology, Mandalay Technological University, Patheingyi, Mandalay 05072, Myanmar;
| | - Kazunori Watanabe
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan;
| | - Takashi Ohtsuki
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan;
| |
Collapse
|
30
|
Tsubone TM, Martins WK, Franco MSF, Silva MN, Itri R, Baptista MS. Cellular compartments challenged by membrane photo-oxidation. Arch Biochem Biophys 2020; 697:108665. [PMID: 33159891 DOI: 10.1016/j.abb.2020.108665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022]
Abstract
The lipid composition impacts directly on the structure and function of the cytoplasmic as well as organelle membranes. Depending on the type of membrane, specific lipids are required to accommodate, intercalate, or pack membrane proteins to the proper functioning of the cells/organelles. Rather than being only a physical barrier that separates the inner from the outer spaces, membranes are responsible for many biochemical events such as cell-to-cell communication, protein-lipid interaction, intracellular signaling, and energy storage. Photochemical reactions occur naturally in many biological membranes and are responsible for diverse processes such as photosynthesis and vision/phototaxis. However, excessive exposure to light in the presence of absorbing molecules produces excited states and other oxidant species that may cause cell aging/death, mutations and innumerable diseases including cancer. At the same time, targeting key compartments of diseased cells with light can be a promising strategy to treat many diseases in a clinical procedure called Photodynamic Therapy. Here we analyze the relationships between membrane alterations induced by photo-oxidation and the biochemical responses in mammalian cells. We specifically address the impact of photosensitization reactions in membranes of different organelles such as mitochondria, lysosome, endoplasmic reticulum, and plasma membrane, and the subsequent responses of eukaryotic cells.
Collapse
Affiliation(s)
| | | | - Marcia S F Franco
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | | | - Rosangela Itri
- Department of Applied Physics, Institute of Physics, University of São Paulo, SP, Brazil
| | - Mauricio S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil.
| |
Collapse
|
31
|
D'Alessandro S, Beaugelin I, Havaux M. Tanned or Sunburned: How Excessive Light Triggers Plant Cell Death. MOLECULAR PLANT 2020; 13:1545-1555. [PMID: 32992028 DOI: 10.1016/j.molp.2020.09.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/23/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Plants often encounter light intensities exceeding the capacity of photosynthesis (excessive light) mainly due to biotic and abiotic factors, which lower CO2 fixation and reduce light energy sinks. Under excessive light, the photosynthetic electron transport chain generates damaging molecules, hence leading to photooxidative stress and eventually to cell death. In this review, we summarize the mechanisms linking the excessive absorption of light energy in chloroplasts to programmed cell death in plant leaves. We highlight the importance of reactive carbonyl species generated by lipid photooxidation, their detoxification, and the integrating role of the endoplasmic reticulum in the adoption of phototolerance or cell-death pathways. Finally, we invite the scientific community to standardize the conditions of excessive light treatments.
Collapse
Affiliation(s)
- Stefano D'Alessandro
- Aix-Marseille University, CEA, CNRS, UMR7265, BIAM, Institute of Biosciences and Biotechnologies of Aix Marseille, 13108 Saint-Paul-lez-Durance, France.
| | - Inès Beaugelin
- Singapore-CEA Alliance for Research in Circular Economy (SCARCE), School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore 637459, Republic of Singapore
| | - Michel Havaux
- Aix-Marseille University, CEA, CNRS, UMR7265, BIAM, Institute of Biosciences and Biotechnologies of Aix Marseille, 13108 Saint-Paul-lez-Durance, France.
| |
Collapse
|
32
|
Jiang T, Cheng H, Su J, Wang X, Wang Q, Chu J, Li Q. Gastrodin protects against glutamate-induced ferroptosis in HT-22 cells through Nrf2/HO-1 signaling pathway. Toxicol In Vitro 2020; 62:104715. [DOI: 10.1016/j.tiv.2019.104715] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022]
|
33
|
Tsubone TM, Baptista MS, Itri R. Understanding membrane remodelling initiated by photosensitized lipid oxidation. Biophys Chem 2019; 254:106263. [DOI: 10.1016/j.bpc.2019.106263] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/13/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
|
34
|
PIP2 Reshapes Membranes through Asymmetric Desorption. Biophys J 2019; 117:962-974. [PMID: 31445680 DOI: 10.1016/j.bpj.2019.07.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 11/24/2022] Open
Abstract
Phosphatidylinositol-4,5-bisphosphate (PIP2) is an important signaling lipid in eukaryotic cell plasma membranes, playing an essential role in diverse cellular processes. The headgroup of PIP2 is highly negatively charged, and this lipid displays a high critical micellar concentration compared to housekeeping phospholipid analogs. Given the crucial role of PIP2, it is imperative to study its localization, interaction with proteins, and membrane-shaping properties. Biomimetic membranes have served extensively to elucidate structural and functional aspects of cell membranes including protein-lipid and lipid-lipid interactions, as well as membrane mechanics. Incorporation of PIP2 into biomimetic membranes, however, has at times resulted in discrepant findings described in the literature. With the goal to elucidate the mechanical consequences of PIP2 incorporation, we studied the desorption of PIP2 from biomimetic giant unilamellar vesicles by means of a fluorescent marker. A decrease in fluorescence intensity with the age of the vesicles suggested that PIP2 lipids were being desorbed from the outer leaflet of the membrane. To evaluate whether this desorption was asymmetric, the vesicles were systematically diluted. This resulted in an increase in the number of internally tubulated vesicles within minutes after dilution, suggesting that the desorption was asymmetric and also generated membrane curvature. By means of a saturated chain homolog of PIP2, we showed that the fast desorption of PIP2 is facilitated by presence of an arachidonic lipid tail and is possibly due to its oxidation. Through measurements of the pulling force of membrane tethers, we quantified the effect of this asymmetric desorption on the spontaneous membrane curvature. Furthermore, we found that the spontaneous curvature could be modulated by externally increasing the concentration of PIP2 micelles. Given that the local concentration of PIP2 in biological membranes is variable, spontaneous curvature generated by PIP2 may affect the formation of highly curved structures that can serve as initiators for signaling events.
Collapse
|