1
|
Brahma R, Raghuraman H. Characterization of a novel MgtE homolog and its structural dynamics in membrane mimetics. Biophys J 2024; 123:1968-1983. [PMID: 38042987 PMCID: PMC11309985 DOI: 10.1016/j.bpj.2023.11.3402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/03/2023] [Accepted: 11/30/2023] [Indexed: 12/04/2023] Open
Abstract
Magnesium (Mg2+) is the most abundant divalent cation in the cell and is critical for numerous cellular processes. Despite its importance, the mechanisms of intracellular Mg2+ transport and its regulation are poorly understood. MgtE is the main Mg2+ transport system in almost half of bacterial species and is an ortholog of mammalian SLC41A1 transporters, which are implicated in neurodegenerative diseases and cancer. To date, only MgtE from Thermus thermophilus (MgtETT) has been extensively characterized, mostly in detergent micelles, and gating-related structural dynamics in biologically relevant membranes are scarce. The MgtE homolog from Bacillus firmus (MgtEBF) is unique since it lacks the entire Mg2+-sensing N-domain but has conserved structural motifs in the TM-domain for Mg2+ transport. In this work, we have successfully purified this novel homolog in a stable and functional form, and ColabFold structure prediction analysis suggests a homodimer. Further, microscale thermophoresis experiments show that MgtEBF binds Mg2+ and ATP, similar to MgtETT. Importantly, we show that, despite lacking the N-domain, MgtEBF mediates Mg2+ transport function in the presence of an inwardly directed Mg2+ gradient in reconstituted proteoliposomes. Furthermore, comparison of the organization and dynamics of Trp residues in the TM-domain of MgtEBF in membrane mimetics, in apo- and Mg2+-bound forms, suggests that the cytoplasmic binding of Mg2+ might involve modest gating-related conformational changes at the TM-domain. Overall, our results show that the gating-related structural dynamics (hydration dynamics, conformational heterogeneity) of the full-length MgtEBF is significantly changed in functionally pertinent membrane environment, emphasizing the importance of lipid-protein interactions in MgtE gating mechanisms.
Collapse
Affiliation(s)
- Rupasree Brahma
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - H Raghuraman
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Training School Complex, Mumbai, India.
| |
Collapse
|
2
|
Mussini A, Delcanale P, Berni M, Pongolini S, Jordà-Redondo M, Agut M, Steinbach PJ, Nonell S, Abbruzzetti S, Viappiani C. Concanavalin A Delivers a Photoactive Protein to the Bacterial Wall. Int J Mol Sci 2024; 25:5751. [PMID: 38891937 PMCID: PMC11172101 DOI: 10.3390/ijms25115751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Modular supramolecular complexes, where different proteins are assembled to gather targeting capability and photofunctional properties within the same structures, are of special interest for bacterial photodynamic inactivation, given their inherent biocompatibility and flexibility. We have recently proposed one such structure, exploiting the tetrameric bacterial protein streptavidin as the main building block, to target S. aureus protein A. To expand the palette of targets, we have linked biotinylated Concanavalin A, a sugar-binding protein, to a methylene blue-labelled streptavidin. By applying a combination of spectroscopy and microscopy, we demonstrate the binding of Concanavalin A to the walls of Gram-positive S. aureus and Gram-negative E. coli. Photoinactivation is observed for both bacterial strains in the low micromolar range, although the moderate affinity for the molecular targets and the low singlet oxygen yields limit the overall efficiency. Finally, we apply a maximum entropy method to the analysis of autocorrelation traces, which proves particularly useful when interpreting signals measured for diffusing systems heterogeneous in size, such as fluorescent species bound to bacteria.
Collapse
Affiliation(s)
- Andrea Mussini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Pietro Delcanale
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Melissa Berni
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Strada dei Mercati, 13/A, 43126 Parma, Italy
| | - Stefano Pongolini
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Strada dei Mercati, 13/A, 43126 Parma, Italy
| | - Mireia Jordà-Redondo
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Montserrat Agut
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Peter J. Steinbach
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| |
Collapse
|
3
|
Gersing S, Schulze TK, Cagiada M, Stein A, Roth FP, Lindorff-Larsen K, Hartmann-Petersen R. Characterizing glucokinase variant mechanisms using a multiplexed abundance assay. Genome Biol 2024; 25:98. [PMID: 38627865 PMCID: PMC11021015 DOI: 10.1186/s13059-024-03238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Amino acid substitutions can perturb protein activity in multiple ways. Understanding their mechanistic basis may pinpoint how residues contribute to protein function. Here, we characterize the mechanisms underlying variant effects in human glucokinase (GCK) variants, building on our previous comprehensive study on GCK variant activity. RESULTS Using a yeast growth-based assay, we score the abundance of 95% of GCK missense and nonsense variants. When combining the abundance scores with our previously determined activity scores, we find that 43% of hypoactive variants also decrease cellular protein abundance. The low-abundance variants are enriched in the large domain, while residues in the small domain are tolerant to mutations with respect to abundance. Instead, many variants in the small domain perturb GCK conformational dynamics which are essential for appropriate activity. CONCLUSIONS In this study, we identify residues important for GCK metabolic stability and conformational dynamics. These residues could be targeted to modulate GCK activity, and thereby affect glucose homeostasis.
Collapse
Affiliation(s)
- Sarah Gersing
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark.
| | - Thea K Schulze
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| | - Matteo Cagiada
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| | - Amelie Stein
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| | - Frederick P Roth
- Donnelly Centre, University of Toronto, M5S 3E1, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, M5S 1A8, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, M5G 1X5, Toronto, ON, Canada
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, 15213, Pittsburgh, USA
| | - Kresten Lindorff-Larsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark.
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
4
|
Gersing S, Schulze TK, Cagiada M, Stein A, Roth FP, Lindorff-Larsen K, Hartmann-Petersen R. Characterizing glucokinase variant mechanisms using a multiplexed abundance assay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542036. [PMID: 37292969 PMCID: PMC10245906 DOI: 10.1101/2023.05.24.542036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Amino acid substitutions can perturb protein activity in multiple ways. Understanding their mechanistic basis may pinpoint how residues contribute to protein function. Here, we characterize the mechanisms of human glucokinase (GCK) variants, building on our previous comprehensive study on GCK variant activity. We assayed the abundance of 95% of GCK missense and nonsense variants, and found that 43% of hypoactive variants have a decreased cellular abundance. By combining our abundance scores with predictions of protein thermodynamic stability, we identify residues important for GCK metabolic stability and conformational dynamics. These residues could be targeted to modulate GCK activity, and thereby affect glucose homeostasis.
Collapse
Affiliation(s)
- Sarah Gersing
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Thea K. Schulze
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Matteo Cagiada
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Amelie Stein
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Frederick P. Roth
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5T 3A1, Canada
| | - Kresten Lindorff-Larsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| |
Collapse
|
5
|
Gersing S, Cagiada M, Gebbia M, Gjesing AP, Coté AG, Seesankar G, Li R, Tabet D, Weile J, Stein A, Gloyn AL, Hansen T, Roth FP, Lindorff-Larsen K, Hartmann-Petersen R. A comprehensive map of human glucokinase variant activity. Genome Biol 2023; 24:97. [PMID: 37101203 PMCID: PMC10131484 DOI: 10.1186/s13059-023-02935-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Glucokinase (GCK) regulates insulin secretion to maintain appropriate blood glucose levels. Sequence variants can alter GCK activity to cause hyperinsulinemic hypoglycemia or hyperglycemia associated with GCK-maturity-onset diabetes of the young (GCK-MODY), collectively affecting up to 10 million people worldwide. Patients with GCK-MODY are frequently misdiagnosed and treated unnecessarily. Genetic testing can prevent this but is hampered by the challenge of interpreting novel missense variants. RESULT Here, we exploit a multiplexed yeast complementation assay to measure both hyper- and hypoactive GCK variation, capturing 97% of all possible missense and nonsense variants. Activity scores correlate with in vitro catalytic efficiency, fasting glucose levels in carriers of GCK variants and with evolutionary conservation. Hypoactive variants are concentrated at buried positions, near the active site, and at a region of known importance for GCK conformational dynamics. Some hyperactive variants shift the conformational equilibrium towards the active state through a relative destabilization of the inactive conformation. CONCLUSION Our comprehensive assessment of GCK variant activity promises to facilitate variant interpretation and diagnosis, expand our mechanistic understanding of hyperactive variants, and inform development of therapeutics targeting GCK.
Collapse
Affiliation(s)
- Sarah Gersing
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Matteo Cagiada
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Marinella Gebbia
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
| | - Anette P Gjesing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Atina G Coté
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
| | - Gireesh Seesankar
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
| | - Roujia Li
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5T 3A1, Canada
| | - Daniel Tabet
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5T 3A1, Canada
| | - Jochen Weile
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5T 3A1, Canada
| | - Amelie Stein
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Anna L Gloyn
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederick P Roth
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, M5T 3A1, Canada.
| | - Kresten Lindorff-Larsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark.
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark.
| |
Collapse
|
6
|
Das A, Raghuraman H. Conformational heterogeneity of the voltage sensor loop of KvAP in micelles and membranes: A fluorescence approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183568. [PMID: 33529577 DOI: 10.1016/j.bbamem.2021.183568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/06/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
KvAP is a tetrameric voltage-gated potassium channel that is composed of a pore domain and a voltage-sensing domain (VSD). The VSD is crucial for sensing transmembrane potential and gating. At 0 mV, the VSD adopts an activated conformation in both n-octylglucoside (OG) micelles and phospholipid membranes. Importantly, gating-modifier toxins that bind at S3b-S4 loop of KvAP-VSD exhibit pronounced differences in binding affinity in these membrane-mimetic systems. However, the conformational heterogeneity of this functionally-important sensor loop in membrane mimetics is poorly understood, and is the focus of this work. In this paper, we establish, using intrinsic fluorescence of the uniquely positioned W70 in KvAP-VSD and environment-sensitive NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl-ethylenediamine) fluorescence of the labelled S3b-S4 loop, that the surface charge of the membrane does not significantly affect the topology and structural dynamics of the sensor loop in membranes. Importantly, the dynamic variability of the sensor loop is preserved in both zwitterionic (POPC) and anionic (POPC/POPG) membranes. Further, the lifetime distribution analysis for the NBD-labelled residues by maximum entropy method (MEM) demonstrates that, in contrast to micelles, the membrane environment not only reduces the relative discrete population of sensor loop conformations, but also broadens the lifetime distribution peaks. Overall, our results strongly suggest that the conformational heterogeneity of the sensor loop is significantly altered in membranes and this correlates well with its environmental heterogeneity. This constitutes the first report demonstrating that MEM-lifetime distribution could be a powerful tool to distinguish changes in conformational heterogeneity in potassium channels with similar architecture and topology.
Collapse
Affiliation(s)
- Anindita Das
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, India
| | - H Raghuraman
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, India.
| |
Collapse
|
7
|
Chatterjee S, Brahma R, Raghuraman H. Gating-related Structural Dynamics of the MgtE Magnesium Channel in Membrane-Mimetics Utilizing Site-Directed Tryptophan Fluorescence. J Mol Biol 2020; 433:166691. [PMID: 33203509 DOI: 10.1016/j.jmb.2020.10.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 12/25/2022]
Abstract
Magnesium is the most abundant divalent cation present in the cell, and an abnormal Mg2+ homeostasis is associated with several diseases in humans. However, among ion channels, the mechanisms of intracellular regulation and transport of Mg2+ are poorly understood. MgtE is a homodimeric Mg2+-selective channel and is negatively regulated by high intracellular Mg2+ concentration where the cytoplasmic domain of MgtE acts as a Mg2+ sensor. Most of the previous biophysical studies on MgtE have been carried out in detergent micelles and the information regarding gating-related structural dynamics of MgtE in physiologically-relevant membrane environment is scarce. In this work, we monitored the changes in gating-related structural dynamics, hydration dynamics and conformational heterogeneity of MgtE in micelles and membranes using the intrinsic site-directed Trp fluorescence. For this purpose, we have engineered six single-Trp mutants in the functional Trp-less background of MgtE to obtain site-specific information on the gating-related structural dynamics of MgtE in membrane-mimetic systems. Our results indicate that Mg2+-induced gating might involve the possibility of a 'conformational wave' from the cytosolic N-domain to transmembrane domain of MgtE. Although MgtE is responsive to Mg2+-induced gating in both micelles and membranes, the organization and dynamics of MgtE is substantially altered in physiologically important phospholipid membranes compared to micelles. This is accompanied by significant changes in hydration dynamics and conformational heterogeneity. Overall, our results highlight the importance of lipid-protein interactions and are relevant for understanding gating mechanism of magnesium channels in general, and MgtE in particular.
Collapse
Affiliation(s)
- Satyaki Chatterjee
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, India
| | - Rupasree Brahma
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, India
| | - H Raghuraman
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, India.
| |
Collapse
|