1
|
Mapar M, Taghdir M, Ranjbar B. Comparative study of stability and activity of wild-type and mutant human carbonic anhydrase II enzymes using molecular dynamics and docking simulations. Biochem Biophys Res Commun 2024; 734:150720. [PMID: 39353361 DOI: 10.1016/j.bbrc.2024.150720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/31/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
The human carbonic anhydrase II (HCA II) enzyme is a cytosolic protein located in the membrane of red blood cells that reversible hydration of carbon dioxide (CO2). Considering the critical role of the HCA II and the effects of some mutations on the activity and stability of the enzyme in humans, several computational methods are used to study the structure and dynamics of the wild-type and the mutant enzymes with three ligands, CO2, 4-nitrophenyl acetate and acetazolamide. Our results of MD simulation of a wild-type enzyme with 4-nitrophenyl acetate show that it created essential effects on the fluctuation of this enzyme and made it more unstable and less compact than the same enzyme without ligand. In the MD of the mutant enzyme with 4-nitrophenyl acetate ligand, no significant difference is observed between with and without ligand. The affinity of the wild-type enzyme to the 4-nitrophenyl acetate is notably higher than the mutant enzyme with the same ligand. Furthermore, results showed that wild-type and mutant enzymes with CO2 are more favorable in stability and flexibility than the same enzymes without ligand. The MD results of wild-type with acetazolamide indicate instability compare without ligand, but in MD of mutant enzyme with acetazolamide show that it more stable and compact than the same enzyme without ligand. Finally, Comparing protein trajectories to assess the impact of ligands on the stability and activity of HCA II enzymes can have medical applications and can in the engineering and design of new variants of carbonic anhydrase enzyme.
Collapse
Affiliation(s)
- Maryam Mapar
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Taghdir
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Bijan Ranjbar
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Faisal M, Sarnaik AP, Kannoju N, Hajinajaf N, Asad MJ, Davis RW, Varman AM. RuBisCO activity assays: a simplified biochemical redox approach for in vitro quantification and an RNA sensor approach for in vivo monitoring. Microb Cell Fact 2024; 23:83. [PMID: 38486280 PMCID: PMC10938803 DOI: 10.1186/s12934-024-02357-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the most abundant soluble protein in nature. Extensive studies have been conducted for improving its activity in photosynthesis through approaches like protein engineering. Concurrently, multiple biochemical and radiolabeling assays have been developed for determining its activity. Although these existing assays yield reliable results, they require addition of multiple external components, rendering them less convenient and expensive. Therefore, in this study, we have developed two relatively cheaper, convenient, and easily reproducible assays for quantitative and qualitative estimation of RuBisCO activity. RESULTS We simplified a contemporary NADH based spectrophotometric RuBisCO assay by using cyanobacterial cell lysate as the source for Calvin cycle enzymes. We analyzed the influence of inorganic carbon substrates, CO2 and NaHCO3, and varying protein concentrations on RuBisCO activity. Ribulose-1,5-bisphosphate (RuBP) consumption rates for the cultures grown under 5% CO2 were 5-7 times higher than the ones grown with 20 mM NaHCO3, at different protein concentrations. The difference could be due to the impaired activity of carbonic anhydrase in the cell lysate, which is required for the conversion of HCO3- to CO2. The highest RuBisCO activity of 2.13 nmol of NAD+/ µg of Chl-a/ min was observed with 50 µg of protein and 5% CO2. Additionally, we developed a novel RNA-sensor based fluorescence assay that is based on the principle of tracking the kinetics of ATP hydrolysis to ADP during the conversion of 3-phosphoglycerate (3-PG) to 1,3-bisphosphoglycerate (1,3-BPG) in the Calvin cycle. Under in vitro conditions, the fluorometric assay exhibited ~ 3.4-fold slower reaction rate (0.37 min-1) than the biochemical assay when using 5% CO2. We also confirmed the in vivo application of this assay, where increase in the fluorescence was observed with the recombinant strain of Synechocystis sp. PCC 6803 (SSL142) expressing the ADP-specific RNA sensor, compared to the WT. In addition, SSL142 exhibited three-fold higher fluorescence when supplemented with 20 mM NaHCO3 as compared to the cells that were grown without NaHCO3 supplementation. CONCLUSIONS Overall, we have developed a simplified biochemical assay for monitoring RuBisCO activity and demonstrated that it can provide reliable results as compared to the prior literature. Furthermore, the biochemical assay using 5% CO2 (100% relative activity) provided faster RuBP consumption rate compared to the biochemical assay utilizing 20 mM NaHCO3 (30.70% relative activity) and the in vitro fluorometric assay using 5% CO2 (29.64% relative activity). Therefore, the absorbance-based biochemical assay using 5% CO2 or higher would be suitable for in vitro quantification of the RuBisCO activity. On the other hand, the RNA-sensor based in vivo fluorometric assay can be applied for qualitative analysis and be used for high-throughput screening of RuBisCO variants. As RuBisCO is an enzyme shared amongst all the photoautotrophs, the assays developed in this study can easily be extended for analyzing the RuBisCO activities even in microalgae and higher plants.
Collapse
Affiliation(s)
- Muhammad Faisal
- Chemical Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University, Tempe, AZ, 85281, USA
- University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46000, Pakistan
| | - Aditya P Sarnaik
- Chemical Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University, Tempe, AZ, 85281, USA
| | - Nandini Kannoju
- Chemical Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University, Tempe, AZ, 85281, USA
| | - Nima Hajinajaf
- Chemical Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University, Tempe, AZ, 85281, USA
| | - Muhammad Javaid Asad
- University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46000, Pakistan
| | - Ryan W Davis
- Sandia National Laboratories, Livermore, CA, USA
| | - Arul M Varman
- Chemical Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University, Tempe, AZ, 85281, USA.
| |
Collapse
|
3
|
Somalinga V, Foss E, Grunden AM. Biochemical characterization of a psychrophilic and halotolerant α-carbonic anhydrase from a deep-sea bacterium, Photobacterium profundum. AIMS Microbiol 2023; 9:540-553. [PMID: 37649802 PMCID: PMC10462458 DOI: 10.3934/microbiol.2023028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 09/01/2023] Open
Abstract
Prokaryotic α-carbonic anhydrases (α-CA) are metalloenzymes that catalyze the reversible hydration of CO2 to bicarbonate and proton. We had reported the first crystal structure of a pyschrohalophilic α-CA from a deep-sea bacterium, Photobacterium profundum SS9. In this manuscript, we report the first biochemical characterization of P. profundum α-CA (PprCA) which revealed several catalytic properties that are atypical for this class of CA's. Purified PprCA exhibited maximal catalytic activity at psychrophilic temperatures with substantial decrease in activity at mesophilic and thermophilic range. Similar to other α-CA's, Ppr9A showed peak activity at alkaline pH (pH 11), although, PprCA retained 88% of its activity even at acidic pH (pH 5). Exposing PprCA to varying concentrations of oxidizing and reducing agents revealed that N-terminal cysteine residues in PprCA may play a role in the structural stability of the enzyme. Although inefficient in CO2 hydration activity under mesophilic and thermophilic temperatures, PprCA exhibited salt-dependent thermotolerance and catalytic activity under extreme halophilic conditions. Similar to other well-characterized α-CA's, PprCA is also inhibited by monovalent anions even at low concentrations. Finally, we demonstrate that PprCA accelerates CO2 biomineralization to calcium carbonate under alkaline conditions.
Collapse
Affiliation(s)
- Vijayakumar Somalinga
- Department of Biological & Biomedical Sciences, Southwestern Oklahoma State University, 100 Campus Drive, Weatherford, OK 73096, USA
| | - Emily Foss
- Department of Biological & Biomedical Sciences, Southwestern Oklahoma State University, 100 Campus Drive, Weatherford, OK 73096, USA
| | - Amy M. Grunden
- Department of Plant and Microbial Biology, North Carolina State University, 4550A Thomas Hall, Campus Box 7612, Raleigh, NC 27695, USA
| |
Collapse
|
4
|
Kugler M, Hadzima M, Dzijak R, Rampmaier R, Srb P, Vrzal L, Voburka Z, Majer P, Řezáčová P, Vrabel M. Identification of specific carbonic anhydrase inhibitors via in situ click chemistry, phage-display and synthetic peptide libraries: comparison of the methods and structural study. RSC Med Chem 2023; 14:144-153. [PMID: 36760748 PMCID: PMC9890587 DOI: 10.1039/d2md00330a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
The development of highly active and selective enzyme inhibitors is one of the priorities of medicinal chemistry. Typically, various high-throughput screening methods are used to find lead compounds from a large pool of synthetic compounds, and these are further elaborated and structurally refined to achieve the desired properties. In an effort to streamline this complex and laborious process, new selection strategies based on different principles have recently emerged as an alternative. Herein, we compare three such selection strategies with the aim of identifying potent and selective inhibitors of human carbonic anhydrase II. All three approaches, in situ click chemistry, phage-display libraries and synthetic peptide libraries, led to the identification of more potent inhibitors when compared to the parent compounds. In addition, one of the inhibitor-peptide conjugates identified from the phage libraries showed greater than 100-fold selectivity for the enzyme isoform used for the compound selection. In an effort to rationalize the binding properties of the conjugates, we performed detailed crystallographic and NMR structural analysis, which revealed the structural basis of the compound affinity towards the enzyme and led to the identification of a novel exosite that could be utilized in the development of isoform specific inhibitors.
Collapse
Affiliation(s)
- Michael Kugler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 16000 Prague Czech Republic
| | - Martin Hadzima
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 16000 Prague Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University Albertov 6 12800 Praha 2 Czech Republic
| | - Rastislav Dzijak
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 16000 Prague Czech Republic
| | - Robert Rampmaier
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 16000 Prague Czech Republic
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 16000 Prague Czech Republic
| | - Lukáš Vrzal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 16000 Prague Czech Republic
| | - Zdeněk Voburka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 16000 Prague Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 16000 Prague Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 16000 Prague Czech Republic
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 16000 Prague Czech Republic
| |
Collapse
|
5
|
Milliken AS, Ciesla JH, Nadtochiy SM, Brookes PS. Distinct effects of intracellular vs. extracellular acidic pH on the cardiac metabolome during ischemia and reperfusion. J Mol Cell Cardiol 2023; 174:101-114. [PMID: 36481511 PMCID: PMC9868090 DOI: 10.1016/j.yjmcc.2022.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/10/2022]
Abstract
Tissue ischemia results in intracellular pH (pHIN) acidification, and while metabolism is a known driver of acidic pHIN, less is known about how acidic pHIN regulates metabolism. Furthermore, acidic extracellular (pHEX) during early reperfusion confers cardioprotection, but how this impacts metabolism is unclear. Herein we employed LCMS based targeted metabolomics to analyze perfused mouse hearts exposed to: (i) control perfusion, (ii) hypoxia, (iii) ischemia, (iv) enforced acidic pHIN, (v) control reperfusion, and (vi) acidic pHEX (6.8) reperfusion. Surprisingly little overlap was seen between metabolic changes induced by hypoxia, ischemia, and acidic pHIN. Acidic pHIN elevated metabolites in the top half of glycolysis, and enhanced glutathione redox state. Meanwhile, acidic pHEX reperfusion induced substantial metabolic changes in addition to those seen in control reperfusion. This included elevated metabolites in the top half of glycolysis, prevention of purine nucleotide loss, and an enhancement in glutathione redox state. These data led to hypotheses regarding potential roles for methylglyoxal inhibiting the mitochondrial permeability transition pore, and for acidic inhibition of ecto-5'-nucleotidase, as potential mediators of cardioprotection by acidic pHEX reperfusion. However, neither hypothesis was supported by subsequent experiments. In contrast, analysis of cardiac effluents revealed complex effects of pHEX on metabolite transport, suggesting that mildly acidic pHEX may enhance succinate release during reperfusion. Overall, each intervention had distinct and overlapping metabolic effects, suggesting acidic pH is an independent metabolic regulator regardless which side of the cell membrane it is imposed.
Collapse
Affiliation(s)
- Alexander S Milliken
- Department of Pharmacology and Physiology, University of Rochester Medical Center, USA
| | - Jessica H Ciesla
- Department of Biochemistry, University of Rochester Medical Center, USA
| | - Sergiy M Nadtochiy
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, USA
| | - Paul S Brookes
- Department of Pharmacology and Physiology, University of Rochester Medical Center, USA; Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, USA.
| |
Collapse
|
6
|
Baronas D, Dudutienė V, Paketurytė V, Kairys V, Smirnov A, Juozapaitienė V, Vaškevičius A, Manakova E, Gražulis S, Zubrienė A, Matulis D. Structure and mechanism of secondary sulfonamide binding to carbonic anhydrases. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:993-1011. [PMID: 34328515 DOI: 10.1007/s00249-021-01561-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/02/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Zinc-containing metalloenzyme carbonic anhydrase (CA) binds primary sulfonamides with extremely high, up to picomolar, affinity by forming a coordination bond between the negatively charged amino group and the zinc ion and making hydrogen bonds and hydrophobic contacts with other parts of the inhibitor molecule. However, N-methyl-substituted, secondary or tertiary sulfonamides bind CA with much lower affinity. In search for an explanation for this diminished affinity, a series of secondary sulfonamides were synthesized and, together with analogous primary sulfonamides, the affinities for 12 recombinant catalytically active human CA isoforms were determined by the fluorescent thermal shift assay, stopped-flow assay of the inhibition of enzymatic activity and isothermal titration calorimetry. The binding profile of secondary sulfonamides as a function of pH showed the same U-shape dependence seen for primary sulfonamides. This dependence demonstrated that there were protein binding-linked protonation reactions that should be dissected for the estimation of the intrinsic binding constants to perform structure-thermodynamics analysis. X-ray crystallographic structures of secondary sulfonamides and computational modeling dissected the atomic contributions to the binding energetics. Secondary sulfonamides bind to carbonic anhydrases via coordination bond between the negatively charged nitrogen of alkylated amino group and Zn(II) in the active site of CA. The binding reaction is linked to deprotonation of the amino group and protonation of the Zn(II)-bound hydroxide. To perform the structure-thermodynamics analysis, contributions of these linked reactions must be subtracted to determine the intrinsic energetics. In this aspect, the secondary sulfonamides are similar to primary sulfonamides as CA inhibitors.
Collapse
Affiliation(s)
- Denis Baronas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257, Vilnius, Lithuania
| | - Virginija Dudutienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257, Vilnius, Lithuania
| | - Vaida Paketurytė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257, Vilnius, Lithuania
| | - Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257, Vilnius, Lithuania
| | - Alexey Smirnov
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257, Vilnius, Lithuania
| | - Vaida Juozapaitienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257, Vilnius, Lithuania
| | - Aivaras Vaškevičius
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257, Vilnius, Lithuania
| | - Elena Manakova
- Department of Protein-DNA Interactions, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257, Vilnius, Lithuania
| | - Saulius Gražulis
- Department of Protein-DNA Interactions, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257, Vilnius, Lithuania
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257, Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257, Vilnius, Lithuania.
| |
Collapse
|
7
|
Nocentini A, Angeli A, Carta F, Winum JY, Zalubovskis R, Carradori S, Capasso C, Donald WA, Supuran CT. Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. J Enzyme Inhib Med Chem 2021; 36:561-580. [PMID: 33615947 PMCID: PMC7901698 DOI: 10.1080/14756366.2021.1882453] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inorganic anions inhibit the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) generally by coordinating to the active site metal ion. Cyanate was reported as a non-coordinating CA inhibitor but those erroneous results were subsequently corrected by another group. We review the anion CA inhibitors (CAIs) in the more general context of drug design studies and the discovery of a large number of inhibitor classes and inhibition mechanisms, including zinc binders (sulphonamides and isosteres, dithiocabamates and isosteres, thiols, selenols, benzoxaboroles, ninhydrins, etc.); inhibitors anchoring to the zinc-coordinated water molecule (phenols, polyamines, sulfocoumarins, thioxocoumarins, catechols); CAIs occluding the entrance to the active site (coumarins and derivatives, lacosamide), as well as compounds that bind outside the active site. All these new chemotypes integrated with a general procedure for obtaining isoform-selective compounds (the tail approach) has resulted, through the guidance of rigorous X-ray crystallography experiments, in the development of highly selective CAIs for all human CA isoforms with many pharmacological applications.
Collapse
Affiliation(s)
- Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Andrea Angeli
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Fabrizio Carta
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | | | - Raivis Zalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, National Research Council, Napoli, Italy
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| |
Collapse
|
8
|
Abstract
The accumulation of carbon dioxide in the atmosphere as a result of human activities has caused a number of adverse circumstances in the world. For this reason, the proposed solutions lie within the aim of reducing carbon dioxide emissions have been quite valuable. However, as the human activity continues to increase on this planet, the possibility of reducing carbon dioxide emissions decreases with the use of conventional methods. The emergence of compounds than can be used in different fields by converting the released carbon dioxide into different chemicals will construct a fundamental solution to the problem. Although electro-catalysis or photolithography methods have emerged for this purpose, they have not been able to achieve successful results. Alternatively, another proposed solution are enzyme based systems. Among the enzyme-based systems, pyruvate decarboxylase, carbonic anhydrase and dehydrogenases have been the most studied enzymes. Pyruvate dehydrogenase and carbonic anhydrase have either been an expensive method or were incapable of producing the desired result due to the reaction cascade they catalyze. However, the studies reporting the production of industrial chemicals from carbon dioxide using dehydrogenases and in particular, the formate dehydrogenase enzyme, have been remarkable. Moreover, reported studies have shown the existence of more active and stable enzymes, especially the dehydrogenase family that can be identified from the biome. In addition to this, their redesign through protein engineering can have an immense contribution to the increased use of enzyme-based methods in CO2 reduction, resulting in an enormous expansion of the industrial capacity.
Collapse
|
9
|
Li S, An L, Araneta MF, Victorino M, Johnson CS, Shen J. Carbonic anhydrase activity in the frontal lobe of human brain. NMR IN BIOMEDICINE 2021; 34:e4501. [PMID: 33682938 PMCID: PMC10158825 DOI: 10.1002/nbm.4501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 05/06/2023]
Abstract
Carbonic anhydrase (CA) plays an important role in many biological processes. Recent technological advances have demonstrated the feasibility of measuring CA activity in the occipital lobe of human subjects in vivo. In this work we report, for the first time, in vivo measurement of CA activity in the frontal lobe of human brain, where structural and function abnormalities are strongly associated with symptoms of major psychiatric disorders. Despite the much larger magnetic field distortion in the frontal lobe, the pseudo first-order bicarbonate dehydration rate constant was determined with high precision using in vivo 13 C magnetic resonance magnetization transfer spectroscopy following oral administration of [U-13 C6 ]glucose. Nuclear Overhauser effect pulses were used to increase the signal-to-noise ratio; no proton decoupling was applied. The unidirectional dehydration rate constant of bicarbonate was found to be 0.26 ± 0.07 s-1 , which is not statistically different from the dehydration rate constant in the occipital lobe determined in our previous study, indicating that CA activity in the two brain regions is essentially indistinguishable. These results demonstrate the feasibility of characterizing CA activity in the frontal lobe for future psychiatric studies.
Collapse
Affiliation(s)
- Shizhe Li
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Li An
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | | | - Milalynn Victorino
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | | | - Jun Shen
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Address correspondence to: Jun Shen, Ph.D., Molecular Imaging Branch, National Institute of Mental Health, Bldg. 10, Rm. 2D51A, 9000 Rockville Pike, Bethesda, MD 20892-1527, Tel.: (301) 451-3408, Fax: (301) 480-2397,
| |
Collapse
|
10
|
Smirnovienė J, Smirnov A, Zakšauskas A, Zubrienė A, Petrauskas V, Mickevičiūtė A, Michailovienė V, Čapkauskaitė E, Manakova E, Gražulis S, Baranauskienė L, Chen W, Ladbury JE, Matulis D. Switching the Inhibitor-Enzyme Recognition Profile via Chimeric Carbonic Anhydrase XII. ChemistryOpen 2021; 10:567-580. [PMID: 33945229 PMCID: PMC8095314 DOI: 10.1002/open.202100042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/08/2021] [Indexed: 01/02/2023] Open
Abstract
A key part of the optimization of small molecules in pharmaceutical inhibitor development is to vary the molecular design to enhance complementarity of chemical features of the compound with the positioning of amino acids in the active site of a target enzyme. Typically this involves iterations of synthesis, to modify the compound, and biophysical assay, to assess the outcomes. Selective targeting of the anti-cancer carbonic anhydrase isoform XII (CA XII), this process is challenging because the overall fold is very similar across the twelve CA isoforms. To enhance drug development for CA XII we used a reverse engineering approach where mutation of the key six amino acids in the active site of human CA XII into the CA II isoform was performed to provide a protein chimera (chCA XII) which is amenable to structure-based compound optimization. Through determination of structural detail and affinity measurement of the interaction with over 60 compounds we observed that the compounds that bound CA XII more strongly than CA II, switched their preference and bound more strongly to the engineered chimera, chCA XII, based on CA II, but containing the 6 key amino acids from CA XII, behaved as CA XII in its compound recognition profile. The structures of the compounds in the chimeric active site also resembled those determined for complexes with CA XII, hence validating this protein engineering approach in the development of new inhibitors.
Collapse
Affiliation(s)
- Joana Smirnovienė
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Alexey Smirnov
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Audrius Zakšauskas
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Vytautas Petrauskas
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Aurelija Mickevičiūtė
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Vilma Michailovienė
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Edita Čapkauskaitė
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Elena Manakova
- Department of Protein-DNA InteractionsInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Saulius Gražulis
- Department of Protein-DNA InteractionsInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Lina Baranauskienė
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Wen‐Yih Chen
- Department of Chemical and Materials EngineeringInstitute of Systems Biology and BioinformaticsNational Central UniversityTaiwan
| | - John E. Ladbury
- School of Molecular and Cellular BiologyUniversity of LeedsLC Miall BuildingLeedsLS2 9JTUK
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| |
Collapse
|
11
|
Supuran CT. Experimental Carbonic Anhydrase Inhibitors for the Treatment of Hypoxic Tumors. J Exp Pharmacol 2020; 12:603-617. [PMID: 33364855 DOI: 10.2147/jep.s265620] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/28/2020] [Indexed: 12/18/2022] Open
Abstract
Carbonic anhydrase (CA, EC 4.2.1.1) isoforms IX and XII are overexpressed in many hypoxic tumors as a consequence of the hypoxia inducible factor (HIF) activation cascade, being present in limited amounts in normal tissues. These enzymes together with many others are involved in the pH regulation and metabolism of hypoxic cancer cells, and were validated as antitumor targets recently. A multitude of targeting strategies against these enzymes have been proposed and are reviewed in this article. The small molecule inhibitors, small molecule drug conjugates (SMDCs), antibody-drug conjugates (ADACs) or cytokine-drug conjugates but not the monoclonal antibodies against CA IX/XII will be discussed. Relevant synthetic chemistry efforts, coupled with a multitude of preclinical studies, demonstrated that CA IX/XII inhibition leads to the inhibition of growth of primary tumors and metastases and depletes cancer stem cell populations, all factors highly relevant in clinical settings. One small molecule inhibitor, sulfonamide SLC-0111, is the most advanced candidate, having completed Phase I and being now in Phase Ib/II clinical trials for the treatment of advanced hypoxic solid tumors.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence 50019, Italy
| |
Collapse
|
12
|
Angeli A, Carta F, Nocentini A, Winum JY, Zalubovskis R, Onnis V, Eldehna WM, Capasso C, Carradori S, Donald WA, Dedhar S, Supuran CT. Response to Perspectives on the Classical Enzyme Carbonic Anhydrase and the Search for Inhibitors. Biophys J 2020; 120:178-181. [PMID: 33296668 DOI: 10.1016/j.bpj.2020.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Andrea Angeli
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Fabrizio Carta
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Jean-Yves Winum
- IBMM, University Montpellier, CNRS, ENSCM, Montpellier, France
| | - Raivis Zalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia; Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Valentina Onnis
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, University Campus, Monserrato, Cagliari, Italy
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry and Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, National Research Council, Napoli, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Center, Vancouver, British Columbia, Canada
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
13
|
Soydan E, Olcay AC, Bilir G, Taş Ö, Şentürk M, Ekinci D, Supuran CT. Investigation of pesticides on honey bee carbonic anhydrase inhibition. J Enzyme Inhib Med Chem 2020; 35:1923-1927. [PMID: 33078633 PMCID: PMC7594722 DOI: 10.1080/14756366.2020.1835885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 11/11/2022] Open
Abstract
Carbonic anhydrase (CA, EC 4.2.1.1) plays crucial physiological roles in many different organisms, such as in pH regulation, ion transport, and metabolic processes. CA was isolated from the European bee Apis mellifera (AmCA) spermatheca and inhibitory effects of pesticides belonging to various classes, such as carbamates, thiophosphates, and pyrethroids, were investigated herein. The inhibitory effects of methomyl, oxamyl, deltamethrin, cypermethrin, dichlorodiphenyltrichloroethane (DDT) and diazinon on AmCA were analysed. These pesticides showed effective in vitro inhibition of the enzyme, at sub-micromolar levels. The IC50 values for these pesticides ranged between of 0.0023 and 0.0385 μM. The CA inhibition mechanism with these compounds is unknown at the moment, but most of them contain ester functionalities which may be hydrolysed by the enzyme with the formation of intermediates that can either react with amino acid residues or bid to the zinc ion from the active site.
Collapse
Affiliation(s)
- Ercan Soydan
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ondokuz Mayıs University, Samsun, Turkey
| | - Ahmet Can Olcay
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ondokuz Mayıs University, Samsun, Turkey
| | - Gürkan Bilir
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ondokuz Mayıs University, Samsun, Turkey
| | - Ömer Taş
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ondokuz Mayıs University, Samsun, Turkey
| | - Murat Şentürk
- Pharmacy Faculty, Department of Biochemistry, Agri Ibrahim Cecen University, Agri, Turkey
| | - Deniz Ekinci
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ondokuz Mayıs University, Samsun, Turkey
| | | |
Collapse
|
14
|
Matulis D. Structural details of the enzymatic catalysis of carbonic anhydrase II via a mutation of valine to isoleucine. IUCRJ 2020; 7:953-954. [PMID: 33209309 PMCID: PMC7642797 DOI: 10.1107/s2052252520014244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Kim and co-workers [IUCrJ (2020). 7, 985-994] advance our understanding of the catalytic mechanism of carbonic anhydrase II by studying a mutant V143I where the change (of one hydrophobic amino acid to another that differs by a single CH2 group) is probably the smallest alteration that can be introduced into a protein. The study was performed at high pressure in a CO2 atmosphere to visualize the bound substrate; it showed the behavior of the entrance conduit waters and the substrate alteration due to the mutation.
Collapse
Affiliation(s)
- Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
15
|
Angeli A, Carta F, Nocentini A, Winum JY, Zalubovskis R, Akdemir A, Onnis V, Eldehna WM, Capasso C, Simone GD, Monti SM, Carradori S, Donald WA, Dedhar S, Supuran CT. Carbonic Anhydrase Inhibitors Targeting Metabolism and Tumor Microenvironment. Metabolites 2020; 10:metabo10100412. [PMID: 33066524 PMCID: PMC7602163 DOI: 10.3390/metabo10100412] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment is crucial for the growth of cancer cells, triggering particular biochemical and physiological changes, which frequently influence the outcome of anticancer therapies. The biochemical rationale behind many of these phenomena resides in the activation of transcription factors such as hypoxia-inducible factor 1 and 2 (HIF-1/2). In turn, the HIF pathway activates a number of genes including those involved in glucose metabolism, angiogenesis, and pH regulation. Several carbonic anhydrase (CA, EC 4.2.1.1) isoforms, such as CA IX and XII, actively participate in these processes and were validated as antitumor/antimetastatic drug targets. Here, we review the field of CA inhibitors (CAIs), which selectively inhibit the cancer-associated CA isoforms. Particular focus was on the identification of lead compounds and various inhibitor classes, and the measurement of CA inhibitory on-/off-target effects. In addition, the preclinical data that resulted in the identification of SLC-0111, a sulfonamide in Phase Ib/II clinical trials for the treatment of hypoxic, advanced solid tumors, are detailed.
Collapse
Affiliation(s)
- Andrea Angeli
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (F.C.); (A.N.)
| | - Fabrizio Carta
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (F.C.); (A.N.)
| | - Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (F.C.); (A.N.)
| | - Jean-Yves Winum
- IBMM, Univ. Montpellier, CNRS, ENSCM, 34296 Montpellier, France;
| | - Raivis Zalubovskis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia, Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, 3/7 Paula Valdena Str., 1048 Riga, Latvia;
| | - Atilla Akdemir
- Computer-aided Drug Discovery Laboratory, Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Fatih, Istanbul 34093, Turkey;
| | - Valentina Onnis
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, University Campus, S.P. n° 8, Km 0.700, I-09042 Monserrato, Cagliari, Italy;
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Clemente Capasso
- Institute of Biosciences and Bioresources—National Research Council, via Pietro Castellino 111, 80131 Napoli, Italy;
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimages—National Research Council, 80131 Napoli, Italy; (G.D.S.); (S.M.M.)
| | - Simona Maria Monti
- Institute of Biostructures and Bioimages—National Research Council, 80131 Napoli, Italy; (G.D.S.); (S.M.M.)
| | - Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - William A. Donald
- School of Chemistry, University of New South Wales, 1466 Sydney, Australia;
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver Vancouver, BC V5Z 1L3, Canada;
| | - Claudiu T. Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (F.C.); (A.N.)
- Correspondence:
| |
Collapse
|
16
|
Jackson MB, Dyson J. Editors' Note. Biophys J 2020; 119:E1. [PMID: 32910901 DOI: 10.1016/j.bpj.2020.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 11/27/2022] Open
Affiliation(s)
- Meyer B Jackson
- Reviews Editor; Department of Neuroscience, University of Wisconsin, Madison, Wisconsin.
| | - Jane Dyson
- Editor-in-Chief of the Biophysical Journal; Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| |
Collapse
|