1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Shelley SP, James RS, Tallis J. The effects of muscle starting length on work loop power output of isolated mouse soleus and extensor digitorum longus muscle. J Exp Biol 2024; 227:jeb247158. [PMID: 38584504 DOI: 10.1242/jeb.247158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Force-length relationships derived from isometric activations may not directly apply to muscle force production during dynamic contractions. As such, different muscle starting lengths between isometric and dynamic conditions could be required to achieve maximal force and power. Therefore, this study examined the effects of starting length [±5-10% of length corresponding to maximal twitch force (L0)] on work loop (WL) power output (PO), across a range of cycle frequencies, of the soleus (SOL) and extensor digitorum longus muscle (EDL; N=8-10) isolated from ∼8 week old C57 mice. Furthermore, passive work was examined at a fixed cycle frequency to determine the association of passive work and active net work. Starting length affected maximal WL PO of the SOL and EDL across evaluated cycle frequencies (P<0.030, ηp2>0.494). For the SOL, PO produced at -5% L0 was greater than that at most starting lengths (P<0.015, Cohen's d>0.6), except -10% L0 (P=0.135, d<0.4). However, PO produced at -10% L0 versus L0 did not differ (P=0.138, d=0.35-0.49), indicating -5% L0 is optimal for maximal SOL WL PO. For the EDL, WL PO produced at -10% L0 was lower than that at most starting lengths (P<0.032, d>1.08), except versus -5% L0 (P=0.124, d<0.97). PO produced at other starting lengths did not differ (P>0.163, d<1.04). For the SOL, higher passive work was associated with reduced PO (Spearman's r=0.709, P<0.001), but no relationship was observed between passive work and PO of the EDL (Pearson's r=0.191, r2=0.04, P=0.184). This study suggests that starting length should be optimised for both static and dynamic contractions and confirms that the force-length curve during dynamic contractions is muscle specific.
Collapse
Affiliation(s)
- Sharn P Shelley
- Research Centre for Physical Activity, Sport and Exercise Science, Coventry University, Coventry, CV1 5FB, UK
| | - Rob S James
- Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Jason Tallis
- Research Centre for Physical Activity, Sport and Exercise Science, Coventry University, Coventry, CV1 5FB, UK
| |
Collapse
|
3
|
Li W, Zhang XC, Qian YL, Chen XX, Quan RL, Yang T, Xiong CM, Gu Q, He JG. Biventricular intraventricular mechanical and electrical dyssynchrony in pulmonary arterial hypertension. Heliyon 2024; 10:e23352. [PMID: 38163214 PMCID: PMC10755332 DOI: 10.1016/j.heliyon.2023.e23352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
Background Pulmonary arterial hypertension (PAH) leads to myocardial remodeling, manifesting as mechanical dyssynchrony (M-dys) and electrical dyssynchrony (E-dys), in both right (RV) and left ventricles (LV). However, the impacts of layer-specific intraventricular M-dys on biventricular functions and its association with E-dys in PAH remain unclear. Methods Seventy-nine newly diagnosed patients with PAH undergoing cardiac magnetic resonance scanning were consecutively recruited between January 2011 and December 2017. The biventricular volumetric and layer-specific intraventricular M-dys were analyzed. The QRS duration z-scores were calculated after adjusting for age and sex. Results 77.22 % of patients were female (mean age 30.30 ± 9.79 years; median follow-up 5.53 years). Further, 29 (36.71 %) patients succumbed to all-cause mortality by the end of the study. At the baseline, LV layer-specific intraventricular M-dys had apparent transmural gradients compared with RV in the radial and circumferential directions. However, deceased patients lost the transmural gradients. The LV longitudinal strain rate time to late diastolic peak in the myocardial region (LVmyoLSRTTLDPintra) predicted long-term survival. The Kaplan-Meier curve revealed that patients with PAH with LVmyoLSRTTLDPintra <20.01 milliseconds had a worse prognosis. Larger right ventricle (RV) intraventricular M-dys resulted in worse RV ejection fraction. However, larger LV intraventricular M-dys in the late diastolic phase indicated remarkable exercise capacity and higher LV stroke volume index. E-dys and intraventricular M-dys had no direct correlations. Conclusions The layer-specific intraventricular M-dys had varying impacts on biventricular functions in PAH. PAH patients with LVmyoLSRTTLDPintra <20.01 milliseconds had a worse prognosis. LV intraventricular M-dys in the late diastolic phase needs more attention to precisely evaluate LV function.
Collapse
Affiliation(s)
- Wen Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Yu-ling Qian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-xi Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui-lin Quan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Yang
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chang-ming Xiong
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Gu
- Emergency Center, State Key Laboratory of Cardiovascular Disease, Key Laboratory of Pulmonary Vascular Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Jian-guo He
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Lookin O, Boulali N, Cazorla O, de Tombe P. Impact of stretch on sarcomere length variability in isolated fully relaxed rat cardiac myocytes. Pflugers Arch 2023; 475:1203-1210. [PMID: 37603101 DOI: 10.1007/s00424-023-02848-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
The contractility of cardiac muscle is greatly affected by preload via the Frank-Starling mechanism (FSM). It is based on preload-dependent activation of sarcomeres-the elementary contractile units in muscle cells. Recent findings show a natural variability in sarcomere length (SL) in resting cardiomyocytes that, moreover, is altered in an actively contracting myocyte. SL variability may contribute to the FSM, but it remains unresolved whether the change in the SL variability is regulated by activation process per se or simply by changes in cell stretch, i.e., average SL. To separate the roles of activation and SL, we characterized SL variability in isolated, fully relaxed rat ventricular cardiomyocytes (n = 12) subjected to a longitudinal stretch with the carbon fiber (CF) technique. Each cell was tested in three states: without CF attachment (control, no preload), with CF attachment without stretch, and with CF attachment and ~ 10% stretch of initial SL. The cells were imaged by transmitted light microscopy to retrieve and analyze individual SL and SL variability off-line by multiple quantitative measures such as coefficient of variation or median absolute deviation. We found that CF attachment without stretch did not affect the extent of SL variability nor average SL. In stretched myocytes, the averaged SL significantly increased, while the SL variability remained unchanged. This result clearly indicates that the non-uniformity of individual SL is not sensitive to the average SL itself in fully relaxed myocytes. We conclude that SL variability per se does not contribute to the FSM in the heart.
Collapse
Affiliation(s)
| | - Najlae Boulali
- Laboratoire "Physiologie Et Médecine Expérimentale du Coeur Et Des Muscles," Phymedexp, INSERM, CNRS, Montpellier University, CHU Arnaud de Villeneuve, 34295, Montpellier, France
| | - Olivier Cazorla
- Laboratoire "Physiologie Et Médecine Expérimentale du Coeur Et Des Muscles," Phymedexp, INSERM, CNRS, Montpellier University, CHU Arnaud de Villeneuve, 34295, Montpellier, France
| | - Pieter de Tombe
- Laboratoire "Physiologie Et Médecine Expérimentale du Coeur Et Des Muscles," Phymedexp, INSERM, CNRS, Montpellier University, CHU Arnaud de Villeneuve, 34295, Montpellier, France.
- Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
5
|
Boschi F. How to estimate the sarcomere size based on oblique sections of skeletal muscle. J Anat 2023; 243:648-657. [PMID: 37243921 PMCID: PMC10485579 DOI: 10.1111/joa.13892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023] Open
Abstract
Ultrastructural analysis of muscular biopsy is based on images of longitudinal sections of the fibers. Sometimes, due to experimental limitations, the resulting sections are instead oblique, and no accurate morphological information can be extracted with standard analysis methods. Thus, the biopsy is performed again, but this is too invasive and time-consuming. In this study, we focused our attention on the sarcomere's shape and we investigated which is the structural information that can be obtained from oblique sections. A routine was written in MATLAB to allow the visualization of how a sarcomere's section appears in ultrastructural images obtained by Transmission Electron Microscopy (TEM) at different secant angles. The routine was used also to analyze the intersection between a cylinder and a plane to show how the Z-bands and M-line lengths vary at different secant angles. Moreover, we explored how to calculate sarcomere's radius and length as well as the secant angle from ultrastructural images, based only on geometrical considerations (Pythagorean theorem and trigonometric functions). The equations to calculate these parameters starting from ultrastructural image measurements were found. Noteworthy, to obtain the real sarcomere length in quasi-longitudinal sections, a small correction in the standard procedure is needed and highlighted in the text. In conclusion, even non-longitudinal sections of skeletal muscles can be used to extrapolate morphological information of sarcomeres, which are important parameters for diagnostic purposes.
Collapse
Affiliation(s)
- Federico Boschi
- Department of Engineering of Innovation MedicineUniversity of VeronaVeronaItaly
| |
Collapse
|
6
|
Li J, Sundnes J, Hou Y, Laasmaa M, Ruud M, Unger A, Kolstad TR, Frisk M, Norseng PA, Yang L, Setterberg IE, Alves ES, Kalakoutis M, Sejersted OM, Lanner JT, Linke WA, Lunde IG, de Tombe PP, Louch WE. Stretch Harmonizes Sarcomere Strain Across the Cardiomyocyte. Circ Res 2023; 133:255-270. [PMID: 37401464 PMCID: PMC10355805 DOI: 10.1161/circresaha.123.322588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Increasing cardiomyocyte contraction during myocardial stretch serves as the basis for the Frank-Starling mechanism in the heart. However, it remains unclear how this phenomenon occurs regionally within cardiomyocytes, at the level of individual sarcomeres. We investigated sarcomere contractile synchrony and how intersarcomere dynamics contribute to increasing contractility during cell lengthening. METHODS Sarcomere strain and Ca2+ were simultaneously recorded in isolated left ventricular cardiomyocytes during 1 Hz field stimulation at 37 °C, at resting length and following stepwise stretch. RESULTS We observed that in unstretched rat cardiomyocytes, differential sarcomere deformation occurred during each beat. Specifically, while most sarcomeres shortened during the stimulus, ≈10% to 20% of sarcomeres were stretched or remained stationary. This nonuniform strain was not traced to regional Ca2+ disparities but rather shorter resting lengths and lower force production in systolically stretched sarcomeres. Lengthening of the cell recruited additional shortening sarcomeres, which increased contractile efficiency as less negative, wasted work was performed by stretched sarcomeres. Given the known role of titin in setting sarcomere dimensions, we next hypothesized that modulating titin expression would alter intersarcomere dynamics. Indeed, in cardiomyocytes from mice with titin haploinsufficiency, we observed greater variability in resting sarcomere length, lower recruitment of shortening sarcomeres, and impaired work performance during cell lengthening. CONCLUSIONS Graded sarcomere recruitment directs cardiomyocyte work performance, and harmonization of sarcomere strain increases contractility during cell stretch. By setting sarcomere dimensions, titin controls sarcomere recruitment, and its lowered expression in haploinsufficiency mutations impairs cardiomyocyte contractility.
Collapse
Affiliation(s)
- Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | | | - Yufeng Hou
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Martin Laasmaa
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Marianne Ruud
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Andreas Unger
- Institute of Physiology II, University of Münster, Germany (A.U., W.A.L.)
| | - Terje R. Kolstad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Per Andreas Norseng
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
| | | | - Ingunn E. Setterberg
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Estela S. Alves
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.S.A., M.K., J.T.L.)
| | - Michaeljohn Kalakoutis
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.S.A., M.K., J.T.L.)
| | - Ole M. Sejersted
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Johanna T. Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.S.A., M.K., J.T.L.)
| | - Wolfgang A. Linke
- Institute of Physiology II, University of Münster, Germany (A.U., W.A.L.)
| | - Ida G. Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Pieter P. de Tombe
- Department of Physiology and Biophysics, University of Illinois at Chicago (P.P.d.T.)
- Phymedexp, Université de Montpellier, INSERM, CNRS, France (P.P.d.T.)
| | - William E. Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| |
Collapse
|
7
|
Lookin O, Boulali N, Cazorla O, Tombe P. Impact of stretch on sarcomere length variability in isolated fully relaxed rat cardiac myocytes. RESEARCH SQUARE 2023:rs.3.rs-3043911. [PMID: 37398289 PMCID: PMC10312908 DOI: 10.21203/rs.3.rs-3043911/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The contractility of cardiac muscle is greatly affected by preload via the Frank-Starling Mechanism (FSM). It is based on the preload-dependent activation of sarcomeres - the elementary contractile units in muscle cells. Recent findings show a natural variability in sarcomere length (SL) in resting cardiomyocytes that, moreover, is altered in an actively contracting myocyte. SL variability may contribute to the FSM but it remains unresolved whether the change in the SL variability is regulated by activation process per se or simply by changes in cell stretch, i.e. average SL. To separate the roles of activation and SL, we characterized SL variability in isolated fully relaxed rat ventricular cardiomyocytes ( n = 12) subjected to a longitudinal stretch with the carbon fiber (CF) technique. Each cell was tested in three states: without CF attachment (control, no preload), with CF attachment without stretch, and with CF attachment and ~ 10% stretch of initial SL. The cells were imaged by transmitted light microscopy to retrieve and analyze individual SL and SL variability off-line by multiple quantitative measures like coefficient of variation or median absolute deviation. We found that CF attachment without stretch did not affect the extent of SL variability and averaged SL. In stretched myocytes, the averaged SL significantly increased while the SL variability remained unchanged. This result clearly indicates that the non-uniformity of individual SL is not sensitive to the average SL itself in fully relaxed myocytes. We conclude that SL variability per se does not contribute to the FSM in the heart.
Collapse
Affiliation(s)
| | - Najlae Boulali
- Université de Montpellier, INSERM, CNRS, CHU Arnaud de Villeneuve
| | - Olivier Cazorla
- Université de Montpellier, INSERM, CNRS, CHU Arnaud de Villeneuve
| | - Pieter Tombe
- Université de Montpellier, INSERM, CNRS, CHU Arnaud de Villeneuve
| |
Collapse
|
8
|
Wakeling JM, Febrer-Nafría M, De Groote F. A review of the efforts to develop muscle and musculoskeletal models for biomechanics in the last 50 years. J Biomech 2023; 155:111657. [PMID: 37285780 DOI: 10.1016/j.jbiomech.2023.111657] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
Both the Hill and the Huxley muscle models had already been described by the time the International Society of Biomechanics was founded 50 years ago, but had seen little use before the 1970s due to the lack of computing. As computers and computational methods became available in the 1970s, the field of musculoskeletal modeling developed and Hill type muscle models were adopted by biomechanists due to their relative computational simplicity as compared to Huxley type muscle models. Muscle forces computed by Hill type muscle models provide good agreement in conditions similar to the initial studies, i.e. for small muscles contracting under steady and controlled conditions. However, more recent validation studies have identified that Hill type muscle models are least accurate for natural in vivo locomotor behaviours at submaximal activations, fast speeds and for larger muscles, and thus need to be improved for their use in understanding human movements. Developments in muscle modelling have tackled these shortcomings. However, over the last 50 years musculoskeletal simulations have been largely based on traditional Hill type muscle models or even simplifications of this model that neglected the interaction of the muscle with a compliant tendon. The introduction of direct collocation in musculoskeletal simulations about 15 years ago along with further improvements in computational power and numerical methods enabled the use of more complex muscle models in simulations of whole-body movement. Whereas Hill type models are still the norm, we may finally be ready to adopt more complex muscle models into musculoskeletal simulations of human movement.
Collapse
Affiliation(s)
- James M Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada.
| | - Míriam Febrer-Nafría
- Biomechanical Engineering Lab, Department of Mechanical Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain; Health Technologies and Innovation, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | | |
Collapse
|
9
|
Winter L, Staszewska-Daca I, Zittrich S, Elhamine F, Zrelski MM, Schmidt K, Fischer I, Jüngst C, Schauss A, Goldmann WH, Stehle R, Wiche G. Z-Disk-Associated Plectin (Isoform 1d): Spatial Arrangement, Interaction Partners, and Role in Filamin C Homeostasis. Cells 2023; 12:1259. [PMID: 37174658 PMCID: PMC10177080 DOI: 10.3390/cells12091259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/15/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Plectin, a highly versatile cytolinker protein, is crucial for myofiber integrity and function. Accordingly, mutations in the human gene (PLEC) cause several rare diseases, denoted as plectinopathies, with most of them associated with progressive muscle weakness. Of several plectin isoforms expressed in skeletal muscle and the heart, P1d is the only isoform expressed exclusively in these tissues. Using high-resolution stimulated emission depletion (STED) microscopy, here we show that plectin is located within the gaps between individual α-actinin-positive Z-disks, recruiting and bridging them to desmin intermediate filaments (IFs). Loss of plectin in myofibril bundles led to a complete loss of desmin IFs. Loss of Z-disk-associated plectin isoform P1d led to disorganization of muscle fibers and slower relaxation of myofibrils upon mechanical strain, in line with an observed inhomogeneity of muscle ultrastructure. In addition to binding to α-actinin and thereby providing structural support, P1d forms a scaffolding platform for the chaperone-assisted selective autophagy machinery (CASA) by directly interacting with HSC70 and synpo2. In isoform-specific knockout (P1d-KO) mouse muscle and mechanically stretched plectin-deficient myoblasts, we found high levels of undigested filamin C, a bona fide substrate of CASA. Similarly, subjecting P1d-KO mice to forced swim tests led to accumulation of filamin C aggregates in myofibers, highlighting a specific role of P1d in tension-induced proteolysis activated upon high loads of physical exercise and muscle contraction.
Collapse
Affiliation(s)
- Lilli Winter
- Department of Biochemistry and Cell Biology, Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria; (L.W.); (I.S.-D.); (I.F.)
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria; (M.M.Z.); (K.S.)
| | - Ilona Staszewska-Daca
- Department of Biochemistry and Cell Biology, Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria; (L.W.); (I.S.-D.); (I.F.)
| | - Stefan Zittrich
- Institute of Vegetative Physiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (S.Z.); (F.E.); (R.S.)
| | - Fatiha Elhamine
- Institute of Vegetative Physiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (S.Z.); (F.E.); (R.S.)
| | - Michaela M. Zrelski
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria; (M.M.Z.); (K.S.)
| | - Katy Schmidt
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria; (M.M.Z.); (K.S.)
- Core Facility for Cell Imaging & Ultrastructure Research (CIUS), University of Vienna, 1030 Vienna, Austria
| | - Irmgard Fischer
- Department of Biochemistry and Cell Biology, Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria; (L.W.); (I.S.-D.); (I.F.)
| | - Christian Jüngst
- CECAD Imaging Facility, CECAD Forschungszentrum Cologne, 50931 Cologne, Germany; (C.J.); (A.S.)
| | - Astrid Schauss
- CECAD Imaging Facility, CECAD Forschungszentrum Cologne, 50931 Cologne, Germany; (C.J.); (A.S.)
| | - Wolfgang H. Goldmann
- Department of Physics, Center for Medical Physics and Technology, Friedrich-Alexander-University Erlangen-Nuremberg, 91052 Erlangen, Germany;
| | - Robert Stehle
- Institute of Vegetative Physiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (S.Z.); (F.E.); (R.S.)
| | - Gerhard Wiche
- Department of Biochemistry and Cell Biology, Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria; (L.W.); (I.S.-D.); (I.F.)
| |
Collapse
|
10
|
Lookin O, de Tombe P, Boulali N, Gergely C, Cloitre T, Cazorla O. Cardiomyocyte sarcomere length variability: Membrane fluorescence versus second harmonic generation myosin imaging. J Gen Physiol 2023; 155:213827. [PMID: 36695814 PMCID: PMC9930136 DOI: 10.1085/jgp.202213289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Sarcomere length (SL) and its variation along the myofibril strongly regulate integrated coordinated myocyte contraction. It is therefore important to obtain individual SL properties. Optical imaging by confocal fluorescence (for example, using ANEPPS) or transmitted light microscopy is often used for this purpose. However, this allows for the visualization of structures related to Z-disks only. In contrast, second-harmonic generation (SHG) microscopy visualizes A-band sarcomeric structures directly. Here, we compared averaged SL and its variability in isolated relaxed rat cardiomyocytes by imaging with ANEPPS and SHG. We found that SL variability, evaluated by several absolute and relative measures, is two times smaller using SHG vs. ANEPPS, while both optical methods give the same average (median) SL. We conclude that optical methods with similar optical spatial resolution provide valid estimations of average SL, but the use of SHG microscopy for visualization of sarcomeric A-bands may be the "gold standard" for evaluation of SL variability due to the absence of optical interference between the sarcomere center and non-sarcomeric structures. This contrasts with sarcomere edges where t-tubules may not consistently colocalize to Z-disks. The use of SHG microscopy instead of fluorescent imaging can be a prospective tool to map sarcomere variability both in vitro and in vivo conditions and to reveal its role in the functional behavior of living myocardium.
Collapse
Affiliation(s)
- Oleg Lookin
- Institute of Immunology and Physiology , Ural Branch of Russian Academy of Sciences , Yekaterinburg, Russia
| | - Pieter de Tombe
- Laboratory "Physiologie et Médecine Expérimentale du Coeur et des Muscles", Phymedexp, INSERM, CNRS, Montpellier University , Montpellier, France.,Physiology and Biophysics, University of Illinois at Chicago , Chicago, IL, USA
| | - Najlae Boulali
- Laboratory "Physiologie et Médecine Expérimentale du Coeur et des Muscles", Phymedexp, INSERM, CNRS, Montpellier University , Montpellier, France
| | - Csilla Gergely
- L2C, University of Montpellier , CNRS , Montpellier, France
| | | | - Olivier Cazorla
- Laboratory "Physiologie et Médecine Expérimentale du Coeur et des Muscles", Phymedexp, INSERM, CNRS, Montpellier University , Montpellier, France
| |
Collapse
|
11
|
Monge García MI, Jian Z, Hatib F, Settles JJ, Cecconi M, Pinsky MR. Relationship between intraventricular mechanical dyssynchrony and left ventricular systolic and diastolic performance: An in vivo experimental study. Physiol Rep 2023; 11:e15607. [PMID: 36808901 PMCID: PMC9937795 DOI: 10.14814/phy2.15607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 02/19/2023] Open
Abstract
Left ventricular mechanical dyssynchrony (LVMD) refers to the nonuniformity in mechanical contraction and relaxation timing in different ventricular segments. We aimed to determine the relationship between LVMD and LV performance, as assessed by ventriculo-arterial coupling (VAC), LV mechanical efficiency (LVeff ), left ventricular ejection fraction (LVEF), and diastolic function during sequential experimental changes in loading and contractile conditions. Thirteen Yorkshire pigs submitted to three consecutive stages with two opposite interventions each: changes in afterload (phenylephrine/nitroprusside), preload (bleeding/reinfusion and fluid bolus), and contractility (esmolol/dobutamine). LV pressure-volume data were obtained with a conductance catheter. Segmental mechanical dyssynchrony was assessed by global, systolic, and diastolic dyssynchrony (DYS) and internal flow fraction (IFF). Late systolic LVMD was related to an impaired VAC, LVeff , and LVEF, whereas diastolic LVMD was associated with delayed LV relaxation (logistic tau), decreased LV peak filling rate, and increased atrial contribution to LV filling. The hemodynamic factors related to LVMD were contractility, afterload, and heart rate. However, the relationship between these factors differed throughout the cardiac cycle. LVMD plays a significant role in LV systolic and diastolic performance and is associated with hemodynamic factors and intraventricular conduction.
Collapse
Affiliation(s)
| | | | | | | | - Maurizio Cecconi
- Department Anaesthesia and Intensive Care Units, Humanitas Research HospitalHumanitas UniversityMilanItaly
| | - Michael R. Pinsky
- Department of Critical Care MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
12
|
Morales V, González A, Cabello-Verrugio C. Upregulation of CCL5/RANTES Gene Expression in the Diaphragm of Mice with Cholestatic Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:201-218. [PMID: 37093429 DOI: 10.1007/978-3-031-26163-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Chronic liver diseases are a group of pathologies affecting the liver with high prevalence worldwide. Among them, cholestatic chronic liver diseases (CCLD) are characterized by alterations in liver function and increased plasma bile acids. Secondary to liver disease, under cholestasis, is developed sarcopenia, a skeletal muscle dysfunction with decreased muscle mass, strength, and physical function. CCL5/RANTES is a chemokine involved in the immune and inflammatory response. Indeed, CCL5 is a myokine because it is produced by skeletal muscle. Several studies show that bile acids induce CCL5/RANTES expression in liver cells. However, it is unknown if the expression of CCL5/RANTES is changed in the skeletal muscle of mice with cholestatic liver disease. We used a murine model of cholestasis-induced sarcopenia by intake of hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC diet), in which we detected the mRNA levels for ccl5. We determined that mice fed the DDC diet presented high levels of serum bile acids and developed typical features of sarcopenia. Under these conditions, we detected the ccl5 gene expression in diaphragm muscle showing elevated mRNA levels compared to mice fed with a standard diet (chow diet). Our results collectively suggest an increased ccl5 gene expression in the diaphragm muscle concomitantly with elevated serum bile acids and the development of sarcopenia.
Collapse
Affiliation(s)
- Vania Morales
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Andrea González
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile.
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
13
|
Werkhausen A, Gløersen Ø, Nordez A, Paulsen G, Bojsen-Møller J, Seynnes OR. Linking muscle architecture and function in vivo: conceptual or methodological limitations? PeerJ 2023; 11:e15194. [PMID: 37077309 PMCID: PMC10108853 DOI: 10.7717/peerj.15194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/15/2023] [Indexed: 04/21/2023] Open
Abstract
Background Despite the clear theoretical link between sarcomere arrangement and force production, the relationship between muscle architecture and function remain ambiguous in vivo. Methods We used two frequently used ultrasound-based approaches to assess the relationships between vastus lateralis architecture parameters obtained in three common conditions of muscle lengths and contractile states, and the mechanical output of the muscle in twenty-one healthy subjects. The relationship between outcomes obtained in different conditions were also examined. Muscle architecture was analysed in panoramic ultrasound scans at rest with the knee fully extended and in regular scans at an angle close to maximum force (60°), at rest and under maximum contraction. Isokinetic and isometric strength tests were used to estimate muscle force production at various fascicle velocities. Results Measurements of fascicle length, pennation angle and thickness obtained under different experimental conditions correlated moderately with each other (r = 0.40-.74). Fascicle length measured at 60° at rest correlated with force during high-velocity knee extension (r = 0.46 at 400° s-1) and joint work during isokinetic knee extension (r = 0.44 at 200° s-1 and r = 0.57 at 100° s-1). Muscle thickness was related to maximum force for all measurement methods (r = 0.44-0.73). However, we found no significant correlations between fascicle length or pennation angle and any measures of muscle force or work. Most correlations between architecture and force were stronger when architecture was measured at rest close to optimal length. Conclusion These findings reflect methodological limitations of current approaches to measure fascicle length and pennation angle in vivo. They also highlight the limited value of static architecture measurements when reported in isolation or without direct experimental context.
Collapse
Affiliation(s)
- Amelie Werkhausen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Øyvind Gløersen
- Smart Sensors and Microsystems, SINTEF Digital, Oslo, Norway
| | - Antoine Nordez
- Movement - Interactions - Performance, MIP, Nantes Université, Nantes, France
- Institut Universitaire de France, IUF, France
| | - Gøran Paulsen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Jens Bojsen-Møller
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Olivier R. Seynnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
14
|
Mostert D, Groenen B, Klouda L, Passier R, Goumans MJ, Kurniawan NA, Bouten CVC. Human pluripotent stem cell-derived cardiomyocytes align under cyclic strain when guided by cardiac fibroblasts. APL Bioeng 2022; 6:046108. [PMID: 36567768 PMCID: PMC9771596 DOI: 10.1063/5.0108914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
The myocardium is a mechanically active tissue typified by anisotropy of the resident cells [cardiomyocytes (CMs) and cardiac fibroblasts (cFBs)] and the extracellular matrix (ECM). Upon ischemic injury, the anisotropic tissue is replaced by disorganized scar tissue, resulting in loss of coordinated contraction. Efforts to re-establish tissue anisotropy in the injured myocardium are hampered by a lack of understanding of how CM and/or cFB structural organization is affected by the two major physical cues inherent in the myocardium: ECM organization and cyclic mechanical strain. Herein, we investigate the singular and combined effect of ECM (dis)organization and cyclic strain in a two-dimensional human in vitro co-culture model of the myocardial microenvironment. We show that (an)isotropic ECM protein patterning can guide the orientation of CMs and cFBs, both in mono- and co-culture. Subsequent application of uniaxial cyclic strain-mimicking the local anisotropic deformation of beating myocardium-causes no effect when applied parallel to the anisotropic ECM. However, when cultured on isotropic substrates, cFBs, but not CMs, orient away from the direction of cyclic uniaxial strain (strain avoidance). In contrast, CMs show strain avoidance via active remodeling of their sarcomeres only when co-cultured with at least 30% cFBs. Paracrine signaling or N-cadherin-mediated communication between CMs and cFBs was no contributing factor. Our findings suggest that the mechanoresponsive cFBs provide structural guidance for CM orientation and elongation. Our study, therefore, highlights a synergistic mechanobiological interplay between CMs and cFBs in shaping tissue organization, which is of relevance for regenerating functionally organized myocardium.
Collapse
Affiliation(s)
| | - Bart Groenen
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Leda Klouda
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | | | - Marie-Jose Goumans
- Department of Cell and Chemical Biology and Center for Biomedical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | |
Collapse
|
15
|
Al-Sabri MH, Behare N, Alsehli AM, Berkins S, Arora A, Antoniou E, Moysiadou EI, Anantha-Krishnan S, Cosmen PD, Vikner J, Moulin TC, Ammar N, Boukhatmi H, Clemensson LE, Rask-Andersen M, Mwinyi J, Williams MJ, Fredriksson R, Schiöth HB. Statins Induce Locomotion and Muscular Phenotypes in Drosophila melanogaster That Are Reminiscent of Human Myopathy: Evidence for the Role of the Chloride Channel Inhibition in the Muscular Phenotypes. Cells 2022; 11:3528. [PMID: 36428957 PMCID: PMC9688544 DOI: 10.3390/cells11223528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
The underlying mechanisms for statin-induced myopathy (SIM) are still equivocal. In this study, we employ Drosophila melanogaster to dissect possible underlying mechanisms for SIM. We observe that chronic fluvastatin treatment causes reduced general locomotion activity and climbing ability. In addition, transmission microscopy of dissected skeletal muscles of fluvastatin-treated flies reveals strong myofibrillar damage, including increased sarcomere lengths and Z-line streaming, which are reminiscent of myopathy, along with fragmented mitochondria of larger sizes, most of which are round-like shapes. Furthermore, chronic fluvastatin treatment is associated with impaired lipid metabolism and insulin signalling. Mechanistically, knockdown of the statin-target Hmgcr in the skeletal muscles recapitulates fluvastatin-induced mitochondrial phenotypes and lowered general locomotion activity; however, it was not sufficient to alter sarcomere length or elicit myofibrillar damage compared to controls or fluvastatin treatment. Moreover, we found that fluvastatin treatment was associated with reduced expression of the skeletal muscle chloride channel, ClC-a (Drosophila homolog of CLCN1), while selective knockdown of skeletal muscle ClC-a also recapitulated fluvastatin-induced myofibril damage and increased sarcomere lengths. Surprisingly, exercising fluvastatin-treated flies restored ClC-a expression and normalized sarcomere lengths, suggesting that fluvastatin-induced myofibrillar phenotypes could be linked to lowered ClC-a expression. Taken together, these results may indicate the potential role of ClC-a inhibition in statin-associated muscular phenotypes. This study underlines the importance of Drosophila melanogaster as a powerful model system for elucidating the locomotion and muscular phenotypes, promoting a better understanding of the molecular mechanisms underlying SIM.
Collapse
Affiliation(s)
- Mohamed H. Al-Sabri
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Neha Behare
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Ahmed M. Alsehli
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
- Faculty of Medicine, King Abdulaziz University and Hospital, Al Ehtifalat St., Jeddah 21589, Saudi Arabia
| | - Samuel Berkins
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Aadeya Arora
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Eirini Antoniou
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Eleni I. Moysiadou
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Sowmya Anantha-Krishnan
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Patricia D. Cosmen
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Johanna Vikner
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Thiago C. Moulin
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
- Faculty of Medicine, Department of Experimental Medical Science, Lund University, Sölvegatan 19, BMC F10, 221 84 Lund, Sweden
| | - Nourhene Ammar
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS, UMR6290, 35065 Rennes, France
| | - Hadi Boukhatmi
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS, UMR6290, 35065 Rennes, France
| | - Laura E. Clemensson
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
| | - Jessica Mwinyi
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Michael J. Williams
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| |
Collapse
|
16
|
Contini M, Altman D, Cornachione A, Rassier DE, Bagni MA. An increase in force after stretch of diaphragm fibers and myofibrils is accompanied by an increase in sarcomere length non-uniformities and Ca 2+ sensitivity. Am J Physiol Cell Physiol 2022; 323:C14-C28. [PMID: 35613356 DOI: 10.1152/ajpcell.00394.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When muscle fibers from limb muscles are stretched while activated, the force increases to a steady-state level that is higher than that produced during isometric contractions at a corresponding sarcomere length, a phenomenon known as residual force enhancement (RFE). The mechanisms responsible for the RFE are an increased stiffness of titin molecules which may lead to an increased Ca2+ sensitivity of the contractile apparatus,and the development of sarcomere length non-uniformities. RFE is not observed in cardiac muscles, which makes this phenomenon specific to certain preparations. The aim of this study was to investigate if the RFE is present in the diaphragm, and its potential association with an increased Ca2+ sensitivity and the development of sarcomere length non-uniformities. We used two preparations: single intact fibers and myofibrils isolated from the diaphragm from mice. We investigated RFE in a variety of lengths across the force-length relationship. RFE was observed in both preparations at all lengths investigated, and was larger with increasing magnitudes of stretch. RFE was accompanied by an increased Ca2+ sensitivity as shown by a change in the force-pCa2+-curve, and increased sarcomere length non-uniformities. Therefore, RFE is a phenomenon commonly observed in skeletal muscles, with mechanisms that are similar across preparations.
Collapse
Affiliation(s)
- Massimo Contini
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - David Altman
- Department of Physics, Willamette University, Salem, OR, United States
| | - Anabelle Cornachione
- Department of Physiological Sciences, Federal University of São Carlos, São Paulo, Brazil
| | | | - Maria Angela Bagni
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| |
Collapse
|
17
|
Hinks A, Franchi MV, Power GA. The influence of longitudinal muscle fascicle growth on mechanical function. J Appl Physiol (1985) 2022; 133:87-103. [DOI: 10.1152/japplphysiol.00114.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle has the remarkable ability to remodel and adapt, such as the increase in serial sarcomere number (SSN) or fascicle length (FL) observed after overstretching a muscle. This type of remodelling is termed longitudinal muscle fascicle growth, and its impact on biomechanical function has been of interest since the 1960s due to its clinical applications in muscle strain injury, muscle spasticity, and sarcopenia. Despite simplified hypotheses on how longitudinal muscle fascicle growth might influence mechanical function, existing literature presents conflicting results partly due to a breadth of methodologies. The purpose of this review is to outline what is currently known about the influence of longitudinal muscle fascicle growth on mechanical function and suggest future directions to address current knowledge gaps and methodological limitations. Various interventions indicate longitudinal muscle fascicle growth can increase the optimal muscle length for active force, but whether the whole force-length relationship widens has been less investigated. Future research should also explore the ability for longitudinal fascicle growth to broaden the torque-angle relationship's plateau region, and the relation to increased force during shortening. Without a concurrent increase in intramuscular collagen, longitudinal muscle fascicle growth also reduces passive tension at long muscle lengths; further research is required to understand whether this translates to increased joint range of motion. Lastly, some evidence suggests longitudinal fascicle growth can increase maximum shortening velocity and peak isotonic power, however, there has yet to be direct assessment of these measures in a neurologically intact model of longitudinal muscle fascicle growth.
Collapse
Affiliation(s)
- Avery Hinks
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Martino V. Franchi
- Department of Biomedical Sciences,, University of Padua, Padova, Veneto, Italy
| | - Geoffrey A. Power
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
18
|
Lookin O, Khokhlova A, Myachina T, Butova X, Cazorla O, de Tombe P. Contractile State Dependent Sarcomere Length Variability in Isolated Guinea-Pig Cardiomyocytes. Front Physiol 2022; 13:857471. [PMID: 35444559 PMCID: PMC9013801 DOI: 10.3389/fphys.2022.857471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiomyocytes contract keeping their sarcomere length (SL) close to optimal values for force generation. Transmural heterogeneity in SL across the ventricular wall coordinates the contractility of the whole-ventricle. SL heterogeneity (variability) exists not only at the tissue (macroscale) level, but also presents at the level of a single cardiomyocyte (microscale level). However, transmural differences in intracellular SL variability and its possible dependence on the state of contraction (e.g. end-diastole or end-systole) have not been previously reported. In the present study, we studied three aspects of sarcomere-to-sarcomere variability in intact cardiomyocytes isolated from the left ventricle of healthy guinea-pig: 1) transmural differences in SL distribution between subepi- (EPI) and subendocardial (ENDO) cardiomyocytes; 2) the dependence of intracellular variability in SL upon the state of contraction; 3) local differences in SL variability, comparing SL distributions between central and peripheral regions within the cardiomyocyte. To characterize the intracellular variability of SL, we used different normality tests for the assessment of SL distributions, as well as nonparametric coefficients to quantify the variability. We found that individual SL values in the end-systolic state of contraction followed a normal distribution to a lesser extent as compared to the end-diastolic state of contraction (∼1.3-fold and ∼1.6-fold in ENDO and EPI, respectively). The relative and absolute coefficients of sarcomere-to-sarcomere variability in end-systolic SL were significantly greater (∼1.3-fold) as compared to end-diastolic SL. This was independent of both the transmural region across the left ventricle and the intracellular region within the cardiomyocyte. We conclude that the intracellular variability in SL, which exists in normal intact guinea-pig cardiomyocytes, is affected by the contractile state of the myocyte. This phenomenon may play a role in inter-sarcomere communication in the beating heart.
Collapse
Affiliation(s)
- Oleg Lookin
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russia
- *Correspondence: Oleg Lookin,
| | - Anastasia Khokhlova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russia
| | - Tatiana Myachina
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russia
| | - Xenia Butova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russia
| | - Olivier Cazorla
- Laboratoire “Physiologie et Médecine Expérimentale du Coeur et des Muscles”, Phymedexp, INSERM—CNRS - Montpellier University, Montpellier, France
| | - Pieter de Tombe
- Laboratoire “Physiologie et Médecine Expérimentale du Coeur et des Muscles”, Phymedexp, INSERM—CNRS - Montpellier University, Montpellier, France
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
19
|
Jacob CDS, Barbosa GK, Rodrigues MP, Pimentel Neto J, Rocha-Braga LC, de Oliveira CG, Chacur M, Ciena AP. Ultrastructural and Molecular Development of the Myotendinous Junction Triggered by Stretching Prior to Resistance Exercise. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-6. [PMID: 35258447 DOI: 10.1017/s1431927622000186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The myotendinous junction (MTJ) is a highly specialized region of the locomotor apparatus. Here, we investigated the ultrastructural and molecular effects in the MTJ region after static stretching prior to the ladder-based resistance training. Thirty-two male, 60-day old Wistar rats were divided into four groups: Sedentary, Resistance Training, Stretching, and Stretching-Resistance Training. The gastrocnemius muscle was processed for transmission electron microscopy techniques and Western blot assay. We observed that the static stretching prior to the ladder-based resistance training increased the MTJ components, the fibroblast growth factor (FGF)-2 and FGF-6 protein expression. Also, we demonstrated the lower transforming growth factor expression and no difference in the lysyl oxidase expression after combined training. The MTJ alterations in response to combined training demonstrate adaptive mechanisms which can be used for the prescription or development of methods to reduce or prevent injuries in humans and promote the myotendinous interface benefit.
Collapse
Affiliation(s)
- Carolina Dos S Jacob
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Gabriela K Barbosa
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Mariana P Rodrigues
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Lara C Rocha-Braga
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Camilla G de Oliveira
- Laboratory of Functional Neuroanatomy of Pain (LAND), Department of Anatomy, Universidade de Sao Paulo (USP), São Paulo, SP, Brazil
| | - Marucia Chacur
- Laboratory of Functional Neuroanatomy of Pain (LAND), Department of Anatomy, Universidade de Sao Paulo (USP), São Paulo, SP, Brazil
| | - Adriano P Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| |
Collapse
|
20
|
Helmes M, Palmer BM. Sarcomere length in the beating heart: Synchronicity is optional. J Gen Physiol 2022; 154:212954. [PMID: 35015810 PMCID: PMC8756987 DOI: 10.1085/jgp.202113022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Helmes and Palmer review research by Kobirumaki-Shimozawa et al.
Collapse
Affiliation(s)
- Michiel Helmes
- Department of Physiology, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Bradley M Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| |
Collapse
|
21
|
Marston S. Force Measurements From Myofibril to Filament. Front Physiol 2022; 12:817036. [PMID: 35153821 PMCID: PMC8829514 DOI: 10.3389/fphys.2021.817036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Contractility, the generation of force and movement by molecular motors, is the hallmark of all muscles, including striated muscle. Contractility can be studied at every level of organization from a whole animal to single molecules. Measurements at sub-cellular level are particularly useful since, in the absence of the excitation-contraction coupling system, the properties of the contractile proteins can be directly investigated; revealing mechanistic details not accessible in intact muscle. Moreover, the conditions can be manipulated with ease, for instance changes in activator Ca2+, small molecule effector concentration or phosphorylation levels and introducing mutations. Subcellular methods can be successfully applied to frozen materials and generally require the smallest amount of tissue, thus greatly increasing the range of possible experiments compared with the study of intact muscle and cells. Whilst measurement of movement at the subcellular level is relatively simple, measurement of force is more challenging. This mini review will describe current methods for measuring force production at the subcellular level including single myofibril and single myofilament techniques.
Collapse
|
22
|
Kobirumaki-Shimozawa F, Shimozawa T, Oyama K, Baba S, Li J, Nakanishi T, Terui T, Louch WE, Ishiwata S, Fukuda N. Synchrony of sarcomeric movement regulates left ventricular pump function in the in vivo beating mouse heart. J Gen Physiol 2021; 153:212675. [PMID: 34605861 PMCID: PMC8493835 DOI: 10.1085/jgp.202012860] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/03/2021] [Indexed: 11/20/2022] Open
Abstract
Sarcomeric contraction in cardiomyocytes serves as the basis for the heart's pump functions. It has generally been considered that in cardiac muscle as well as in skeletal muscle, sarcomeres equally contribute to myofibrillar dynamics in myocytes at varying loads by producing similar levels of active and passive force. In the present study, we expressed α-actinin-AcGFP in Z-disks to analyze dynamic behaviors of sequentially connected individual sarcomeres along a myofibril in a left ventricular (LV) myocyte of the in vivo beating mouse heart. To quantify the magnitude of the contribution of individual sarcomeres to myofibrillar dynamics, we introduced the novel parameter "contribution index" (CI) to measure the synchrony in movements between a sarcomere and a myofibril (from -1 [complete asynchrony] to 1 [complete synchrony]). First, CI varied markedly between sarcomeres, with an average value of ∼0.3 during normal systole. Second, when the movements between adjacent sarcomeres were asynchronous (CI < 0), a sarcomere and the ones next to the adjacent sarcomeres and farther away moved in synchrony (CI > 0) along a myofibril. Third, when difference in LV pressure in diastole and systole (ΔLVP) was lowered to <10 mm Hg, diastolic sarcomere length increased. Under depressed conditions, the movements between adjacent sarcomeres were in marked asynchrony (CI, -0.3 to -0.4), and, as a result, average CI was linearly decreased in association with a decrease in ΔLVP. These findings suggest that in the left ventricle of the in vivo beating mouse heart, (1) sarcomeres heterogeneously contribute to myofibrillar dynamics due to an imbalance of active and passive force between neighboring sarcomeres, (2) the force imbalance is pronounced under depressed conditions coupled with a marked increase in passive force and the ensuing tug-of-war between sarcomeres, and (3) sarcomere synchrony via the distal intersarcomere interaction regulates the heart's pump function in coordination with myofibrillar contractility.
Collapse
Affiliation(s)
| | - Togo Shimozawa
- Technical Division, School of Science, The University of Tokyo, Tokyo, Japan
| | - Kotaro Oyama
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.,Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Gunma, Japan
| | - Shunsuke Baba
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Tomohiro Nakanishi
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takako Terui
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|