1
|
Hasdemir HS, Pozzi N, Tajkhorshid E. Atomistic characterization of β2-glycoprotein I domain V interaction with anionic membranes. J Thromb Haemost 2024; 22:3277-3289. [PMID: 39047943 DOI: 10.1016/j.jtha.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Interaction of β2-glycoprotein I (β2GPI) with anionic membranes is crucial in antiphospholipid syndrome (APS), implicating the role of its membrane-binding domain, domain V (DV). The mechanism of DV binding to anionic lipids is not fully understood. OBJECTIVES This study aimed to elucidate the molecular details of β2GPI DV binding to anionic membranes. METHODS We utilized molecular dynamics simulations to investigate the structural basis of anionic lipid recognition by DV. To corroborate the membrane-binding mode identified in the highly mobile membrane mimetic simulations, we conducted additional simulations using a full membrane model. RESULTS The study identified critical regions in DV, namely the lysine-rich loop and the hydrophobic loop, which are essential for membrane association via electrostatic and hydrophobic interactions, respectively. A novel lysine pair contributing to membrane binding was also discovered, providing new insights into β2GPI's membrane interaction. Simulations revealed 2 distinct binding modes of DV to the membrane, with mode 1 characterized by the insertion of the hydrophobic loop into the lipid bilayer, suggesting a dominant mechanism for membrane association. This interaction is pivotal for the pathogenesis of APS, as it facilitates the recognition of β2GPI by antiphospholipid antibodies. CONCLUSION The study advances our understanding of the molecular interactions between β2GPI's DV and anionic membranes, which are crucial for APS pathogenesis. It highlights the importance of specific regions in DV for membrane binding and reveals a predominant binding mode. These findings have significant implications for APS diagnostics and therapeutics, offering a deeper insight into the molecular basis of the syndrome.
Collapse
Affiliation(s)
- Hale S Hasdemir
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA. https://www.twitter.com/LabPozzi
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
2
|
Shen H, Chen L, Yang H. The critical role of aromatic residues in the binding of the SARS-CoV-2 fusion peptide to phospholipid bilayer membranes. Phys Chem Chem Phys 2024; 26:26342-26354. [PMID: 39385589 DOI: 10.1039/d4cp03045a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Based on the SARS-CoV-2 fusion peptide (FP) structure determined from the NMR experiment, we created six FP models under different environmental conditions to explore the effects of salt and cholesterol on FP-membrane binding. The all-atom molecular dynamics (MD) simulation results indicated that ionic environments notably impact the FP structure as well as the stability of the helical elements within the peptide. Our findings highlighted the unpredictable influence of ions on the secondary structures and dynamics of the FP, emphasizing the complexity and sensitivity of the peptide's conformations to ionic conditions. When exploring the peptide's interaction with a cholesterol-free phospholipid bilayer membrane, we found that the helical elements of the FP remain stable irrespective of the salt type (Na+ or Ca2+). This result emphasizes the crucial role of phospholipid bilayer membranes in supporting the secondary structures of the FP. The MD simulation results showed that Ca2+ ions facilitated deeper membrane penetration than Na+ ions, highlighting the critical role of calcium ions in the FP-membrane binding. Our study indicates the essential role of the aromatic residues (such as Phe833 and Tyr837) in the FP-membrane binding process. Finally, we investigated the FP-membrane binding patterns in the presence of cholesterol. The MD simulation results demonstrated that the coupling of Ca2+ ions and cholesterol would also benefit the FP-membrane binding. Furthermore, our findings reveal that while the type of ion and cholesterol content exert varied and unpredictable influences on FP-membrane binding patterns, aromatic residues like tyrosine (Tyr) and phenylalanine (Phe) play an essential role in FP-membrane binding. In particular, deep mutational scanning (DMS) experiments have confirmed that mutating phenylalanine in the FP significantly decreases viral mutational fitness, emphasizing the pivotal role of phenylalanine residues in membrane fusion. This knowledge can aid in developing more effective therapeutic strategies targeting the viral fusion peptide and its key amino acids, ultimately contributing to developing treatments and vaccines against the virus.
Collapse
Affiliation(s)
- Hujun Shen
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China.
| | - Ling Chen
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China.
| | - Hengxiu Yang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China.
| |
Collapse
|
3
|
Birtles D, Guiyab L, Abbas W, Lee J. Positive residues of the SARS-CoV-2 fusion domain are key contributors to the initiation of membrane fusion. J Biol Chem 2024; 300:107564. [PMID: 39002677 PMCID: PMC11357847 DOI: 10.1016/j.jbc.2024.107564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
SARS-CoV-2 is one of the most infectious viruses ever recorded. Despite a plethora of research over the last several years, the viral life cycle is still not well understood, particularly membrane fusion. This process is initiated by the fusion domain (FD), a highly conserved stretch of amino acids consisting of a fusion peptide (FP) and fusion loop (FL), which in synergy perturbs the target cells' lipid membrane to lower the energetic cost necessary for fusion. In this study, through a mutagenesis-based approach, we have investigated the basic residues within the FD (K825, K835, R847, K854) utilizing an in vitro fusion assay and 19F NMR, validated by traditional 13C 15N techniques. Alanine and charge-conserving mutants revealed every basic residue plays a highly specific role within the mechanism of initiating fusion. Intriguingly, K825A led to increased fusogenecity which was found to be correlated to the number of amino acids within helix one, further implicating the role of this specific helix within the FD's fusion mechanism. This work has found basic residues to be important within the FDs fusion mechanism and highlights K825A, a specific mutation made within the FD of the SARS-CoV-2 spike protein, as requiring further investigation due to its potential to contribute to a more virulent strain of SARS-CoV-2.
Collapse
Affiliation(s)
- Daniel Birtles
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Lijon Guiyab
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Wafa Abbas
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
4
|
Vaknin A, Grossman A, Durham ND, Lupovitz I, Goren S, Golani G, Roichman Y, Munro JB, Sorkin R. Ebola Virus Glycoprotein Strongly Binds to Membranes in the Absence of Receptor Engagement. ACS Infect Dis 2024; 10:1590-1601. [PMID: 38684073 PMCID: PMC11091876 DOI: 10.1021/acsinfecdis.3c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Ebola virus (EBOV) is an enveloped virus that must fuse with the host cell membrane in order to release its genome and initiate infection. This process requires the action of the EBOV envelope glycoprotein (GP), encoded by the virus, which resides in the viral envelope and consists of a receptor binding subunit, GP1, and a membrane fusion subunit, GP2. Despite extensive research, a mechanistic understanding of the viral fusion process is incomplete. To investigate GP-membrane association, a key step in the fusion process, we used two approaches: high-throughput measurements of single-particle diffusion and single-molecule measurements with optical tweezers. Using these methods, we show that the presence of the endosomal Niemann-Pick C1 (NPC1) receptor is not required for primed GP-membrane binding. In addition, we demonstrate this binding is very strong, likely attributed to the interaction between the GP fusion loop and the membrane's hydrophobic core. Our results also align with previously reported findings, emphasizing the significance of acidic pH in the protein-membrane interaction. Beyond Ebola virus research, our approach provides a powerful toolkit for studying other protein-membrane interactions, opening new avenues for a better understanding of protein-mediated membrane fusion events.
Collapse
Affiliation(s)
- Alisa Vaknin
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Alon Grossman
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Natasha D. Durham
- Department
of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Inbal Lupovitz
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shahar Goren
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gonen Golani
- Department
of Physics and Haifa Research Center for Theoretical Physics and Astrophysics, University of Haifa, Haifa 3498838, Israel
| | - Yael Roichman
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- Raymond
and Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
| | - James B. Munro
- Department
of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
- Department
of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Raya Sorkin
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
5
|
Radka CD, Grace CR, Hasdemir HS, Li Y, Rodriguez CC, Rodrigues P, Oldham ML, Qayyum MZ, Pitre A, MacCain WJ, Kalathur RC, Tajkhorshid E, Rock CO. The carboxy terminus causes interfacial assembly of oleate hydratase on a membrane bilayer. J Biol Chem 2024; 300:105627. [PMID: 38211817 PMCID: PMC10847778 DOI: 10.1016/j.jbc.2024.105627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024] Open
Abstract
The soluble flavoprotein oleate hydratase (OhyA) hydrates the 9-cis double bond of unsaturated fatty acids. OhyA substrates are embedded in membrane bilayers; OhyA must remove the fatty acid from the bilayer and enclose it in the active site. Here, we show that the positively charged helix-turn-helix motif in the carboxy terminus (CTD) is responsible for interacting with the negatively charged phosphatidylglycerol (PG) bilayer. Super-resolution microscopy of Staphylococcus aureus cells expressing green fluorescent protein fused to OhyA or the CTD sequence shows subcellular localization along the cellular boundary, indicating OhyA is membrane-associated and the CTD sequence is sufficient for membrane recruitment. Using cryo-electron microscopy, we solved the OhyA dimer structure and conducted 3D variability analysis of the reconstructions to assess CTD flexibility. Our surface plasmon resonance experiments corroborated that OhyA binds the PG bilayer with nanomolar affinity and we found the CTD sequence has intrinsic PG binding properties. We determined that the nuclear magnetic resonance structure of a peptide containing the CTD sequence resembles the OhyA crystal structure. We observed intermolecular NOE from PG liposome protons next to the phosphate group to the CTD peptide. The addition of paramagnetic MnCl2 indicated the CTD peptide binds the PG surface but does not insert into the bilayer. Molecular dynamics simulations, supported by site-directed mutagenesis experiments, identify key residues in the helix-turn-helix that drive membrane association. The data show that the OhyA CTD binds the phosphate layer of the PG surface to obtain bilayer-embedded unsaturated fatty acids.
Collapse
Affiliation(s)
- Christopher D Radka
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA; Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
| | - Christy R Grace
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Hale S Hasdemir
- Theoretical and Computational Biophysics Group, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yupeng Li
- Theoretical and Computational Biophysics Group, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Carlos C Rodriguez
- Theoretical and Computational Biophysics Group, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Patrick Rodrigues
- Hartwell Center of Biotechnology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Michael L Oldham
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - M Zuhaib Qayyum
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Aaron Pitre
- Cell and Tissue Imaging Center, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - William J MacCain
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ravi C Kalathur
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Charles O Rock
- Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
6
|
Van Doren SR, Scott BS, Koppisetti RK. SARS-CoV-2 fusion peptide sculpting of a membrane with insertion of charged and polar groups. Structure 2023; 31:1184-1199.e3. [PMID: 37625399 PMCID: PMC10592393 DOI: 10.1016/j.str.2023.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
The fusion peptide of SARS-CoV-2 spike is essential for infection. How this charged and hydrophobic domain occupies and affects membranes needs clarification. Its depth in zwitterionic, bilayered micelles at pH 5 (resembling late endosomes) was measured by paramagnetic NMR relaxation enhancements used to bias molecular dynamics simulations. Asp830 inserted deeply, along with Lys825 or Lys835. Protonation of Asp830 appeared to enhance agreement of simulated and NMR-measured depths. While the fusion peptide occupied a leaflet of the DMPC bilayer, the opposite leaflet invaginated with influx of water and choline head groups in around Asp830 and bilayer-inserted polar side chains. NMR-detected hydrogen exchange found corroborating hydration of the backbone of Thr827-Phe833 inserted deeply in bicelles. Pinching of the membrane at the inserted charge and the intramembrane hydration of polar groups agree with theory. Formation of corridors of hydrated, inward-turned head groups was accompanied by flip-flop of head groups. Potential roles of the defects are discussed.
Collapse
Affiliation(s)
- Steven R Van Doren
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA.
| | - Benjamin S Scott
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Rama K Koppisetti
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
7
|
Nguyen H, Nguyen HL, Lan PD, Thai NQ, Sikora M, Li MS. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chem Soc Rev 2023; 52:6497-6553. [PMID: 37650302 DOI: 10.1039/d1cs01170g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the devastating global COVID-19 pandemic announced by WHO in March 2020. Through unprecedented scientific effort, several vaccines, drugs and antibodies have been developed, saving millions of lives, but the fight against COVID-19 continues as immune escape variants of concern such as Delta and Omicron emerge. To develop more effective treatments and to elucidate the side effects caused by vaccines and therapeutic agents, a deeper understanding of the molecular interactions of SARS-CoV-2 with them and human cells is required. With special interest in computational approaches, we will focus on the structure of SARS-CoV-2 and the interaction of its spike protein with human angiotensin-converting enzyme-2 (ACE2) as a prime entry point of the virus into host cells. In addition, other possible viral receptors will be considered. The fusion of viral and human membranes and the interaction of the spike protein with antibodies and nanobodies will be discussed, as well as the effect of SARS-CoV-2 on protein synthesis in host cells.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Pham Dang Lan
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
| | - Mateusz Sikora
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
8
|
Niort K, Dancourt J, Boedec E, Al Amir Dache Z, Lavieu G, Tareste D. Cholesterol and Ceramide Facilitate Membrane Fusion Mediated by the Fusion Peptide of the SARS-CoV-2 Spike Protein. ACS OMEGA 2023; 8:32729-32739. [PMID: 37720777 PMCID: PMC10500581 DOI: 10.1021/acsomega.3c03610] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/17/2023] [Indexed: 09/19/2023]
Abstract
SARS-CoV-2 entry into host cells is mediated by the Spike (S) protein of the viral envelope. The S protein is composed of two subunits: S1 that induces binding to the host cell via its interaction with the ACE2 receptor of the cell surface and S2 that triggers fusion between viral and cellular membranes. Fusion by S2 depends on its heptad repeat domains that bring membranes close together and its fusion peptide (FP) that interacts with and perturbs the membrane structure to trigger fusion. Recent studies have suggested that cholesterol and ceramide lipids from the cell surface may facilitate SARS-CoV-2 entry into host cells, but their exact mode of action remains unknown. We have used a combination of in vitro liposome-liposome and in situ cell-cell fusion assays to study the lipid determinants of S-mediated membrane fusion. Our findings reveal that both cholesterol and ceramide lipids facilitate fusion, suggesting that targeting these lipids could be effective against SARS-CoV-2. As a proof of concept, we examined the effect of chlorpromazine (CPZ), an antipsychotic drug known to perturb membrane structure. Our results show that CPZ effectively inhibits S-mediated membrane fusion, thereby potentially impeding SARS-CoV-2 entry into the host cell.
Collapse
Affiliation(s)
- Kristina Niort
- Université
Paris Cité, Inserm UMR-S 1266, Institute of Psychiatry and
Neuroscience of Paris (IPNP), Paris 75014, France
| | - Julia Dancourt
- Université
Paris Cité, Inserm U 1316, CNRS UMR 7057, Laboratoire Matières
et Systèmes Complexes (MSC), Paris 75006, France
| | - Erwan Boedec
- Université
Paris Cité, Inserm UMR-S 1266, Institute of Psychiatry and
Neuroscience of Paris (IPNP), Paris 75014, France
| | - Zahra Al Amir Dache
- Université
Paris Cité, Inserm U 1316, CNRS UMR 7057, Laboratoire Matières
et Systèmes Complexes (MSC), Paris 75006, France
| | - Grégory Lavieu
- Université
Paris Cité, Inserm U 1316, CNRS UMR 7057, Laboratoire Matières
et Systèmes Complexes (MSC), Paris 75006, France
| | - David Tareste
- Université
Paris Cité, Inserm UMR-S 1266, Institute of Psychiatry and
Neuroscience of Paris (IPNP), Paris 75014, France
| |
Collapse
|
9
|
Su R, Zeng J, Marcink TC, Porotto M, Moscona A, O’Shaughnessy B. Host Cell Membrane Capture by the SARS-CoV-2 Spike Protein Fusion Intermediate. ACS CENTRAL SCIENCE 2023; 9:1213-1228. [PMID: 37396856 PMCID: PMC10255576 DOI: 10.1021/acscentsci.3c00158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Indexed: 07/04/2023]
Abstract
Cell entry by SARS-CoV-2 is accomplished by the S2 subunit of the spike S protein on the virion surface by capture of the host cell membrane and fusion with the viral envelope. Capture and fusion require the prefusion S2 to transit to its potent fusogenic form, the fusion intermediate (FI). However, the FI structure is unknown, detailed computational models of the FI are unavailable, and the mechanisms and timing of membrane capture and fusion are not established. Here, we constructed a full-length model of the SARS-CoV-2 FI by extrapolating from known SARS-CoV-2 pre- and postfusion structures. In atomistic and coarse-grained molecular dynamics simulations the FI was remarkably flexible and executed giant bending and extensional fluctuations due to three hinges in the C-terminal base. The simulated configurations and their giant fluctuations are quantitatively consistent with SARS-CoV-2 FI configurations measured recently using cryo-electron tomography. Simulations suggested a host cell membrane capture time of ∼2 ms. Isolated fusion peptide simulations identified an N-terminal helix that directed and maintained binding to the membrane but grossly underestimated the binding time, showing that the fusion peptide environment is radically altered when attached to its host fusion protein. The large configurational fluctuations of the FI generated a substantial exploration volume that aided capture of the target membrane, and may set the waiting time for fluctuation-triggered refolding of the FI that draws the viral envelope and host cell membrane together for fusion. These results describe the FI as machinery that uses massive configurational fluctuations for efficient membrane capture and suggest novel potential drug targets.
Collapse
Affiliation(s)
- Rui Su
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Jin Zeng
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Tara C. Marcink
- Department
of Pediatrics, Columbia University Vagelos
College of Physicians & Surgeons, New York, New York 10032, United States
- Center
for Host−Pathogen Interaction, Columbia
University Vagelos College of Physicians & Surgeons, New York, New York 10032, United States
| | - Matteo Porotto
- Department
of Pediatrics, Columbia University Vagelos
College of Physicians & Surgeons, New York, New York 10032, United States
- Center
for Host−Pathogen Interaction, Columbia
University Vagelos College of Physicians & Surgeons, New York, New York 10032, United States
- Department
of Experimental Medicine, University of
Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Anne Moscona
- Department
of Pediatrics, Columbia University Vagelos
College of Physicians & Surgeons, New York, New York 10032, United States
- Center
for Host−Pathogen Interaction, Columbia
University Vagelos College of Physicians & Surgeons, New York, New York 10032, United States
- Department
of Microbiology & Immunology, Columbia
University Vagelos College of Physicians & Surgeons, New York, New York 10032, United States
- Department
of Physiology, Columbia University Vagelos
College of Physicians & Surgeons, New York, New York 10032, United States
| | - Ben O’Shaughnessy
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
10
|
Siebert HC, Eckert T, Bhunia A, Klatte N, Mohri M, Siebert S, Kozarova A, Hudson JW, Zhang R, Zhang N, Li L, Gousias K, Kanakis D, Yan M, Jiménez-Barbero J, Kožár T, Nifantiev NE, Vollmer C, Brandenburger T, Kindgen-Milles D, Haak T, Petridis AK. Blood pH Analysis in Combination with Molecular Medical Tools in Relation to COVID-19 Symptoms. Biomedicines 2023; 11:biomedicines11051421. [PMID: 37239092 DOI: 10.3390/biomedicines11051421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The global outbreak of SARS-CoV-2/COVID-19 provided the stage to accumulate an enormous biomedical data set and an opportunity as well as a challenge to test new concepts and strategies to combat the pandemic. New research and molecular medical protocols may be deployed in different scientific fields, e.g., glycobiology, nanopharmacology, or nanomedicine. We correlated clinical biomedical data derived from patients in intensive care units with structural biology and biophysical data from NMR and/or CAMM (computer-aided molecular modeling). Consequently, new diagnostic and therapeutic approaches against SARS-CoV-2 were evaluated. Specifically, we tested the suitability of incretin mimetics with one or two pH-sensitive amino acid residues as potential drugs to prevent or cure long-COVID symptoms. Blood pH values in correlation with temperature alterations in patient bodies were of clinical importance. The effects of biophysical parameters such as temperature and pH value variation in relation to physical-chemical membrane properties (e.g., glycosylation state, affinity of certain amino acid sequences to sialic acids as well as other carbohydrate residues and lipid structures) provided helpful hints in identifying a potential Achilles heel against long COVID. In silico CAMM methods and in vitro NMR experiments (including 31P NMR measurements) were applied to analyze the structural behavior of incretin mimetics and SARS-CoV fusion peptides interacting with dodecylphosphocholine (DPC) micelles. These supramolecular complexes were analyzed under physiological conditions by 1H and 31P NMR techniques. We were able to observe characteristic interaction states of incretin mimetics, SARS-CoV fusion peptides and DPC membranes. Novel interaction profiles (indicated, e.g., by 31P NMR signal splitting) were detected. Furthermore, we evaluated GM1 gangliosides and sialic acid-coated silica nanoparticles in complex with DPC micelles in order to create a simple virus host cell membrane model. This is a first step in exploring the structure-function relationship between the SARS-CoV-2 spike protein and incretin mimetics with conserved pH-sensitive histidine residues in their carbohydrate recognition domains as found in galectins. The applied methods were effective in identifying peptide sequences as well as certain carbohydrate moieties with the potential to protect the blood-brain barrier (BBB). These clinically relevant observations on low blood pH values in fatal COVID-19 cases open routes for new therapeutic approaches, especially against long-COVID symptoms.
Collapse
Affiliation(s)
- Hans-Christian Siebert
- RI-B-NT-Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Thomas Eckert
- Department of Chemistry and Biology, University of Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany
- RISCC-Research Institute for Scientific Computing and Consulting, Ludwig-Schunk-Str. 15, 35452 Heuchelheim, Germany
- Institut für Veterinärphysiologie und Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Gießen, Frankfurter Str. 100, 35392 Gießen, Germany
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Nele Klatte
- Department of Chemistry and Biology, University of Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany
| | - Marzieh Mohri
- RI-B-NT-Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Simone Siebert
- RI-B-NT-Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Anna Kozarova
- Department of Biomedical Sciences, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - John W Hudson
- Department of Biomedical Sciences, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Ruiyan Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Ning Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Lan Li
- Klinik für Neurochirurgie, Alfried Krupp Krankenhaus, Rüttenscheid, Alfried-Krupp-Straße 21, 45131 Essen, Germany
| | - Konstantinos Gousias
- Klinik für Neurochirurgie, Klinikum Lünen, St.-Marien-Hospital, Akad. Lehrkrankenhaus der Westfälische Wilhelms-Universität Münster, 44534 Lünen, Germany
| | - Dimitrios Kanakis
- Institute of Pathology, University of Nicosia Medical School, 2408 Egkomi, Cyprus
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | | | - Tibor Kožár
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University, Jesenná 5, 04001 Košice, Slovakia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Christian Vollmer
- Department of Anesthesiology, University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Timo Brandenburger
- Department of Anesthesiology, University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Detlef Kindgen-Milles
- Department of Anesthesiology, University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Thomas Haak
- Diabetes Klinik Bad Mergentheim, Theodor-Klotzbücher-Str. 12, 97980 Bad Mergentheim, Germany
| | - Athanasios K Petridis
- Medical School, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
11
|
Tan TJC, Mou Z, Lei R, Ouyang WO, Yuan M, Song G, Andrabi R, Wilson IA, Kieffer C, Dai X, Matreyek KA, Wu NC. High-throughput identification of prefusion-stabilizing mutations in SARS-CoV-2 spike. Nat Commun 2023; 14:2003. [PMID: 37037866 PMCID: PMC10086000 DOI: 10.1038/s41467-023-37786-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/31/2023] [Indexed: 04/12/2023] Open
Abstract
Designing prefusion-stabilized SARS-CoV-2 spike is critical for the effectiveness of COVID-19 vaccines. All COVID-19 vaccines in the US encode spike with K986P/V987P mutations to stabilize its prefusion conformation. However, contemporary methods on engineering prefusion-stabilized spike immunogens involve tedious experimental work and heavily rely on structural information. Here, we establish a systematic and unbiased method of identifying mutations that concomitantly improve expression and stabilize the prefusion conformation of the SARS-CoV-2 spike. Our method integrates a fluorescence-based fusion assay, mammalian cell display technology, and deep mutational scanning. As a proof-of-concept, we apply this method to a region in the S2 domain that includes the first heptad repeat and central helix. Our results reveal that besides K986P and V987P, several mutations simultaneously improve expression and significantly lower the fusogenicity of the spike. As prefusion stabilization is a common challenge for viral immunogen design, this work will help accelerate vaccine development against different viruses.
Collapse
Affiliation(s)
- Timothy J C Tan
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zongjun Mou
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ruipeng Lei
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Wenhao O Ouyang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Collin Kieffer
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xinghong Dai
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Kenneth A Matreyek
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Nicholas C Wu
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
12
|
Villalaín J. SARS-CoV-2 Protein S Fusion Peptide Is Capable of Wrapping Negatively-Charged Phospholipids. MEMBRANES 2023; 13:344. [PMID: 36984731 PMCID: PMC10057416 DOI: 10.3390/membranes13030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
COVID-19, caused by SARS-CoV-2, which is a positive-sense, single-stranded RNA enveloped virus, emerged in late 2019 and was declared a worldwide pandemic in early 2020 causing more than 600 million infections so far and more than 6 million deaths in the world. Although new vaccines have been implemented, the pandemic continues to impact world health dramatically. Membrane fusion, critical for the viral entry into the host cell, is one of the main targets for the development of novel antiviral therapies to combat COVID-19. The S2 subunit of the viral S protein, a class I membrane fusion protein, contains the fusion domain which is directly implicated in the fusion mechanism. The knowledge of the membrane fusion mechanism at the molecular level will undoubtedly result in the development of effective antiviral strategies. We have used all-atom molecular dynamics to analyse the binding of the SARS-CoV-2 fusion peptide to specific phospholipids in model membranes composed of only one phospholipid plus cholesterol in the presence of either Na+ or Ca2+. Our results show that the fusion peptide is capable of binding to the membrane, that its secondary structure does not change significantly upon binding, that it tends to preferentially bind electronegatively charged phospholipids, and that it does not bind cholesterol at all. Understanding the intricacies of the membrane fusion mechanism and the molecular interactions involved will lead us to the development of antiviral molecules that will allow a more efficient battle against these viruses.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universitas "Miguel Hernández", E-03202 Elche, Spain
| |
Collapse
|
13
|
Niitsu A, Sugita Y. Towards de novo design of transmembrane α-helical assemblies using structural modelling and molecular dynamics simulation. Phys Chem Chem Phys 2023; 25:3595-3606. [PMID: 36647771 DOI: 10.1039/d2cp03972a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Computational de novo protein design involves iterative processes consisting of amino acid sequence design, structural modelling and scoring, and design validation by synthesis and experimental characterisation. Recent advances in protein structure prediction and modelling methods have enabled the highly efficient and accurate design of water-soluble proteins. However, the design of membrane proteins remains a major challenge. To advance membrane protein design, considering the higher complexity of membrane protein folding, stability, and dynamic interactions between water, ions, lipids, and proteins is an important task. For introducing explicit solvents and membranes to these design methods, all-atom molecular dynamics (MD) simulations of designed proteins provide useful information that cannot be obtained experimentally. In this review, we first describe two major approaches to designing transmembrane α-helical assemblies, consensus and de novo design. We further illustrate recent MD studies of membrane protein folding related to protein design, as well as advanced treatments in molecular models and conformational sampling techniques in the simulations. Finally, we discuss the possibility to introduce MD simulations after the existing static modelling and screening of design decoys as an additional step for refinement of the design, which considers membrane protein folding dynamics and interactions with explicit membranes.
Collapse
Affiliation(s)
- Ai Niitsu
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. .,Computational Biophysics Research Team, RIKEN Center for Computational Science, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
14
|
Veneziano C, Marascio N, De Marco C, Quaresima B, Biamonte F, Trecarichi EM, Santamaria G, Quirino A, Torella D, Quattrone A, Matera G, Torti C, De Filippo C, Costanzo FS, Viglietto G. The Spread of SARS-CoV-2 Omicron Variant in CALABRIA: A Spatio-Temporal Report of Viral Genome Evolution. Viruses 2023; 15:408. [PMID: 36851622 PMCID: PMC9963258 DOI: 10.3390/v15020408] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
We investigated the evolution of SARS-CoV-2 spread in Calabria, Southern Italy, in 2022. A total of 272 RNA isolates from nasopharyngeal swabs of individuals infected with SARS-CoV-2 were sequenced by whole genome sequencing (N = 172) and/or Sanger sequencing (N = 100). Analysis of diffusion of Omicron variants in Calabria revealed the prevalence of 10 different sub-lineages (recombinant BA.1/BA.2, BA.1, BA.1.1, BA.2, BA.2.9, BA.2.10, BA.2.12.1, BA.4, BA.5, BE.1). We observed that Omicron spread in Calabria presented a similar trend as in Italy, with some notable exceptions: BA.1 disappeared in April in Calabria but not in the rest of Italy; recombinant BA.1/BA.2 showed higher frequency in Calabria (13%) than in the rest of Italy (0.02%); BA.2.9, BA.4 and BA.5 emerged in Calabria later than in other Italian regions. In addition, Calabria Omicron presented 16 non-canonical mutations in the S protein and 151 non-canonical mutations in non-structural proteins. Most non-canonical mutations in the S protein occurred mainly in BA.5 whereas non-canonical mutations in non-structural or accessory proteins (ORF1ab, ORF3a, ORF8 and N) were identified in BA.2 and BA.5 sub-lineages. In conclusion, the data reported here underscore the importance of monitoring the entire SARS-CoV-2 genome.
Collapse
Affiliation(s)
- Claudia Veneziano
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Nadia Marascio
- Department of Health Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Barbara Quaresima
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Enrico Maria Trecarichi
- Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- “Mater Domini” University Hospital of Catanzaro, 88100 Catanzaro, Italy
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Angela Quirino
- Department of Health Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- “Mater Domini” University Hospital of Catanzaro, 88100 Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- “Mater Domini” University Hospital of Catanzaro, 88100 Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Giovanni Matera
- Department of Health Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- “Mater Domini” University Hospital of Catanzaro, 88100 Catanzaro, Italy
| | - Carlo Torti
- Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- “Mater Domini” University Hospital of Catanzaro, 88100 Catanzaro, Italy
| | | | - Francesco Saverio Costanzo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
- “Mater Domini” University Hospital of Catanzaro, 88100 Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- “Mater Domini” University Hospital of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
15
|
Yan ZS, Li XL, Ma YQ, Ding HM. Effect of the Graphene Nanosheet on Functions of the Spike Protein in Open and Closed States: Comparison between SARS-CoV-2 Wild Type and the Omicron Variant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13972-13982. [PMID: 36318181 PMCID: PMC9662070 DOI: 10.1021/acs.langmuir.2c02316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/05/2022] [Indexed: 05/24/2023]
Abstract
The spread of coronavirus disease 2019 caused by SARS-CoV-2 and its variants has become a global health crisis. Although there were many attempts to use nanomaterials-based devices to fight against SARS-CoV-2, it still remains elusive as to how the nanomaterials interact with SARS-CoV-2 and affect its biofunctions. Here, taking the graphene nanosheet (GN) as the model nanomaterial, we investigate its interaction with the spike protein in both WT and Omicron by molecular simulations. In the closed state, the GN can insert into the region between the receptor binding domain (RBD) and the N-terminal domain (NTD) in both wild type (WT) and Omicron, which keeps the RBD in the down conformation. In the open state, the GN can hamper the binding of up RBD to ACE2 in WT, but it has little impact on up RBD and, even worse, stimulates the down-to-up transition of down RBDs in Omicron. Moreover, the GN can insert in the vicinity of the fusion peptide in both WT and Omicron and prevents the detachment of S1 from the whole spike protein. The present study reveals the effect of the SARS-CoV-2 variant on the nanomaterial-spike protein interaction, which informs prospective efforts to design functional nanomaterials against SARS-CoV-2.
Collapse
Affiliation(s)
- Zeng-Shuai Yan
- National
Laboratory of Solid State Microstructures and Department of Physics,
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiao-Lei Li
- National
Laboratory of Solid State Microstructures and Department of Physics,
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yu-Qiang Ma
- National
Laboratory of Solid State Microstructures and Department of Physics,
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Hong-Ming Ding
- Center
for Soft Condensed Matter Physics and Interdisciplinary Research,
School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
16
|
Shen H, Wu Z. Effect of Disulfide Bridge on the Binding of SARS-CoV-2 Fusion Peptide to Cell Membrane: A Coarse-Grained Study. ACS OMEGA 2022; 7:36762-36775. [PMID: 36278087 PMCID: PMC9583636 DOI: 10.1021/acsomega.2c05079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
In this paper, we present the parameterization of the CAVS coarse-grained (CG) force field for 20 amino acids, and our CG simulations show that the CAVS force field could accurately predict the amino acid tendency of the secondary structure. Then, we used the CAVS force field to investigate the binding of a severe acute respiratory syndrome-associated coronavirus fusion peptide (SARS-CoV-2 FP) to a phospholipid bilayer: a long FP (FP-L) containing 40 amino acids and a short FP (FP-S) containing 26 amino acids. Our CAVS CG simulations displayed that the binding affinity of the FP-L to the bilayer is higher than that of the FP-S. We found that the FP-L interacted more strongly with membrane cholesterol than the FP-S, which should be attributed to the stable helical structure of the FP-L at the C-terminus. In addition, we discovered that the FP-S had one major and two minor membrane-bound states, in agreement with previous all-atom molecular dynamics (MD) studies. However, we found that both the C-terminal and N-terminal amino acid residues of the FP-L can strongly interact with the bilayer membrane. Furthermore, we found that the disulfide bond formed between Cys840 and Cys851 stabilized the helices of the FP-L at the C-terminus, enhancing the interaction between the FP-L and the bilayer membrane. Our work indicates that the stable helical structure is crucial for binding the SARS-CoV-2 FP to cell membranes. In particular, the helical stability of FP should have a significant influence on the FP-membrane binding.
Collapse
Affiliation(s)
- Hujun Shen
- Guizhou
Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| | - Zhenhua Wu
- Department
of Big Data and Artificial Intelligence, Guizhou Vocational Technology College of Electronics & Information, Kaili 556000, China
| |
Collapse
|
17
|
Tan TJ, Mou Z, Lei R, Ouyang WO, Yuan M, Song G, Andrabi R, Wilson IA, Kieffer C, Dai X, Matreyek KA, Wu NC. High-throughput identification of prefusion-stabilizing mutations in SARS-CoV-2 spike. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.09.24.509341. [PMID: 36203547 PMCID: PMC9536033 DOI: 10.1101/2022.09.24.509341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Designing prefusion-stabilized SARS-CoV-2 spike is critical for the effectiveness of COVID-19 vaccines. All COVID-19 vaccines in the US encode spike with K986P/V987P mutations to stabilize its prefusion conformation. However, contemporary methods on engineering prefusion-stabilized spike immunogens involve tedious experimental work and heavily rely on structural information. Here, we established a systematic and unbiased method of identifying mutations that concomitantly improve expression and stabilize the prefusion conformation of the SARS-CoV-2 spike. Our method integrated a fluorescence-based fusion assay, mammalian cell display technology, and deep mutational scanning. As a proof-of-concept, this method was applied to a region in the S2 domain that includes the first heptad repeat and central helix. Our results revealed that besides K986P and V987P, several mutations simultaneously improved expression and significantly lowered the fusogenicity of the spike. As prefusion stabilization is a common challenge for viral immunogen design, this work will help accelerate vaccine development against different viruses.
Collapse
Affiliation(s)
- Timothy J.C. Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zongjun Mou
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ruipeng Lei
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenhao O. Ouyang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Collin Kieffer
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xinghong Dai
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kenneth A. Matreyek
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Nicholas C. Wu
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
18
|
Xu X, Li G, Sun B, Zuo YY. S2 Subunit of SARS-CoV-2 Spike Protein Induces Domain Fusion in Natural Pulmonary Surfactant Monolayers. J Phys Chem Lett 2022; 13:8359-8364. [PMID: 36043851 PMCID: PMC9454269 DOI: 10.1021/acs.jpclett.2c01998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Pulmonary surfactant has been attempted as a supportive therapy to treat COVID-19. Although it is mechanistically accepted that the fusion peptide in the S2 subunit of the S protein plays a predominant role in mediating viral fusion with the host cell membrane, it is still unknown how the S2 subunit interacts with the natural surfactant film. Using combined bio-physicochemical assays and atomic force microscopy imaging, it was found that the S2 subunit inhibited the biophysical properties of the surfactant and induced microdomain fusion in the surfactant monolayer. The surfactant inhibition has been attributed to membrane fluidization caused by insertion of the S2 subunit mediated by its fusion peptide. These findings may provide novel insight into the understanding of bio-physicochemical mechanisms responsible for surfactant interactions with SARS-CoV-2 and may have translational implications in the further development of surfactant replacement therapy for COVID-19 patients.
Collapse
Affiliation(s)
- Xiaojie Xu
- Department
of Mechanical Engineering, University of
Hawaii at Manoa, Honolulu 96822, Hawaii, United States
| | - Guangle Li
- Department
of Mechanical Engineering, University of
Hawaii at Manoa, Honolulu 96822, Hawaii, United States
| | - Bingbing Sun
- State
Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yi Y. Zuo
- Department
of Mechanical Engineering, University of
Hawaii at Manoa, Honolulu 96822, Hawaii, United States
- Department
of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu 96826, Hawaii, United States
| |
Collapse
|
19
|
Birtles D, Oh AE, Lee J. Exploring the
pH
dependence of the
SARS‐CoV
‐2 complete fusion domain and the role of its unique structural features. Protein Sci 2022. [PMCID: PMC9538437 DOI: 10.1002/pro.4390] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
SARS‐CoV‐2 may enter target cells through the process of membrane fusion at either the plasma (~pH 7.4–7.0) or endosomal (~pH 6.5–5.0) membrane in order to deliver its genetic information. The fusion domain (FD) of the spike glycoprotein is responsible for initiating fusion and is thus integral to the viral life cycle. The FD of SARS‐CoV‐2 is unique in that it consists of two structurally distinctive regions referred to as the fusion peptide (FP) and the fusion loop (FL); yet the molecular mechanisms behind how this FD perturbs the membrane to initiate fusion remains unclear. In this study via solution NMR, we witnessed only a slight conformational change in the FD between pH 7.4 and pH 5.0, resulting in a minor elongation of helix 1. However, we found that the FD's ability to mediate membrane fusion has a large and significant pH dependence, with fusion events being more readily induced at low pH. Interestingly, a biphasic relationship between the environmental pH and fusogenicity was discovered, suggesting a preference for the FD to initiate fusion at the late endosomal membrane. Furthermore, the conserved disulfide bond and hydrophobic motif “LLF” were found to be critical for the function of the complete FD, with minimal activity witnessed when either was perturbed. In conclusion, these findings indicate that the SARS‐CoV‐2 FD preferably initiates fusion at a pH similar to the late endosome through a mechanism that heavily relies on the internal disulfide bond of the FL and hydrophobic LLF motif within the FP.
Collapse
Affiliation(s)
- Daniel Birtles
- Department of Chemistry and Biochemistry University of Maryland College Park Maryland USA
| | - Anna E. Oh
- Department of Chemistry and Biochemistry University of Maryland College Park Maryland USA
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry University of Maryland College Park Maryland USA
| |
Collapse
|
20
|
Shen H, Wu Z, Chen L. Different Binding Modes of SARS-CoV-1 and SARS-CoV-2 Fusion Peptides to Cell Membranes: The Influence of Peptide Helix Length. J Phys Chem B 2022; 126:4261-4271. [PMID: 35658454 PMCID: PMC9195569 DOI: 10.1021/acs.jpcb.2c01295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/13/2022] [Indexed: 12/15/2022]
Abstract
Although the amino acid sequences of SARS-CoV-1 and SARS-CoV-2 fusion peptides (FPs) are highly conserved, the cryo-electron microscopy structures of the SARS-CoV-1 and SARS-CoV-2 spike proteins show that the helix length of SARS-CoV-1 FP is longer than that of SARS-CoV-2 FP. In this work, we simulated the membrane-binding models of SARS-CoV-1 and SARS-CoV-2 FPs and compared the binding modes of the FPs with the POPC/POPE/cholesterol bilayer membrane. Our simulation results show that the SARS-CoV-2 FP binds to the bilayer membrane more effectively than the SARS-CoV-1 FP. It is seen that the short N-terminal helix of SARS-CoV-2 FP is more favorable to insert into the target membrane than the long N-terminal helix of SARS-CoV-1 FP. Meanwhile, the potential of mean force calculations showed that the SARS-CoV-2 FP would prefer only one binding mode (N-terminal binding), whereas the SARS-CoV-1 FP has two favorable membrane-binding modes (C-terminal and N-terminal binding modes). Moreover, in the case of SARS-CoV-1 FP binding to the target membrane, the transition between the two binding modes is relatively fast. Finally, we discovered that the membrane-binding mode would influence the helix length of SARS-CoV-1 FP, while the helix length of SARS-CoV-2 FP could be stably maintained in the membrane-bound configurations. This work suggests that the short helix might endow the FP with high membrane-anchoring strength. In particular, the membrane-penetrating residues (Phe, Ile, and Leu) of short α-helix interact with the cell membrane more strongly than those of long α-helix.
Collapse
Affiliation(s)
- Hujun Shen
- Guizhou
Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| | - Zhenhua Wu
- Department
of Computer Science, Guizhou Vocational
Technology College of Electronics & Information, Kaili 556000, China
| | - Ling Chen
- Guizhou
Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| |
Collapse
|
21
|
Baazaoui N, Iqbal K. COVID-19 and Neurodegenerative Diseases: Prion-Like Spread and Long-Term Consequences. J Alzheimers Dis 2022; 88:399-416. [DOI: 10.3233/jad-220105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
COVID-19 emerged as a global pandemic starting from Wuhan in China and spread at a lightning speed to the rest of the world. One of the potential long-term outcomes that we speculate is the development of neurodegenerative diseases as a long-term consequence of SARS-CoV-2 especially in people that have developed severe neurological symptoms. Severe inflammatory reactions and aging are two very strong common links between neurodegenerative diseases and COVID-19. Thus, patients that have very high viral load may be at high risk of developing long-term adverse neurological consequences such as dementia. We hypothesize that people with neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and aged people are at higher risk of getting the COVID-19 than normal adults. The basis of this hypothesis is the fact that SARS-CoV-2 uses as a receptor angiotensin-converting enzyme 2 to enter the host cell and that this interaction is calcium-dependent. This could then suggest a direct relationship between neurodegenerative diseases, ACE-2 expression, and the susceptibility to COVID-19. The analysis of the available literature showed that COVID-19 virus is neurotropic and was found in the brains of patients infected with this virus. Furthermore, that the risk of having the infection increases with dementia and that infected people with severe symptoms could develop dementia as a long-term consequence. Dementia could be developed following the acceleration of the spread of prion-like proteins. In the present review we discuss current reports concerning the prevalence of COVID-19 in dementia patients, the individuals that are at high risk of suffering from dementia and the potential acceleration of prion-like proteins spread following SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
22
|
Tuerkova A, Kasson PM. Computational methods to study enveloped viral entry. Biochem Soc Trans 2021; 49:2527-2537. [PMID: 34783344 PMCID: PMC10184508 DOI: 10.1042/bst20210190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
The protein-membrane interactions that mediate viral infection occur via loosely ordered, transient assemblies, creating challenges for high-resolution structure determination. Computational methods and in particular molecular dynamics simulation have thus become important adjuncts for integrating experimental data, developing mechanistic models, and suggesting testable hypotheses regarding viral function. However, the large molecular scales of virus-host interaction also create challenges for detailed molecular simulation. For this reason, continuum membrane models have played a large historical role, although they have become less favored for high-resolution models of protein assemblies and lipid organization. Here, we review recent progress in the field, with an emphasis on the insight that has been gained using a mixture of coarse-grained and atomic-resolution molecular dynamics simulations. Based on successes and challenges to date, we suggest a multiresolution strategy that should yield the best mixture of computational efficiency and physical fidelity. This strategy may facilitate further simulations of viral entry by a broader range of viruses, helping illuminate the diversity of viral entry strategies and the essential common elements that can be targeted for antiviral therapies.
Collapse
Affiliation(s)
- Alzbeta Tuerkova
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Peter M Kasson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
- Departments of Molecular Physiology and Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, U.S.A
| |
Collapse
|
23
|
Rodal Canales FJ, Pérez-Campos Mayoral L, Hernández-Huerta MT, Sánchez Navarro LM, Matias-Cervantes CA, Martínez Cruz M, Cruz Parada E, Zenteno E, Ramos-Martínez EG, Pérez-Campos Mayoral E, Romero Díaz C, Pérez-Campos E. Interaction of Spike protein and lipid membrane of SARS-CoV-2 with Ursodeoxycholic acid, an in-silico analysis. Sci Rep 2021; 11:22288. [PMID: 34782703 PMCID: PMC8593036 DOI: 10.1038/s41598-021-01705-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022] Open
Abstract
Numerous repositioned drugs have been sought to decrease the severity of SARS-CoV-2 infection. It is known that among its physicochemical properties, Ursodeoxycholic Acid (UDCA) has a reduction in surface tension and cholesterol solubilization, it has also been used to treat cholesterol gallstones and viral hepatitis. In this study, molecular docking was performed with the SARS-CoV-2 Spike protein and UDCA. In order to confirm this interaction, we used Molecular Dynamics (MD) in “SARS-CoV-2 Spike protein-UDCA”. Using another system, we also simulated MD with six UDCA residues around the Spike protein at random, naming this “SARS-CoV-2 Spike protein-6UDCA”. Finally, we evaluated the possible interaction between UDCA and different types of membranes, considering the possible membrane conformation of SARS-CoV-2, this was named “SARS-CoV-2 membrane-UDCA”. In the “SARS-CoV-2 Spike protein-UDCA”, we found that UDCA exhibits affinity towards the central region of the Spike protein structure of − 386.35 kcal/mol, in a region with 3 alpha helices, which comprises residues from K986 to C1032 of each monomer. MD confirmed that UDCA remains attached and occasionally forms hydrogen bonds with residues R995 and T998. In the presence of UDCA, we observed that the distances between residues atoms OG1 and CG2 of T998 in the monomers A, B, and C in the prefusion state do not change and remain at 5.93 ± 0.62 and 7.78 ± 0.51 Å, respectively, compared to the post-fusion state. Next, in “SARS-CoV-2 Spike protein-6UDCA”, the three UDCA showed affinity towards different regions of the Spike protein, but only one of them remained bound to the region between the region's heptad repeat 1 and heptad repeat 2 (HR1 and HR2) for 375 ps of the trajectory. The RMSD of monomer C was the smallest of the three monomers with a value of 2.89 ± 0.32, likewise, the smallest RMSF was also of the monomer C (2.25 ± 056). In addition, in the simulation of “SARS-CoV-2 membrane-UDCA”, UDCA had a higher affinity toward the virion-like membrane; where three of the four residues remained attached once they were close (5 Å, to the centre of mass) to the membrane by 30 ns. However, only one of them remained attached to the plasma-like membrane and this was in a cluster of cholesterol molecules. We have shown that UDCA interacts in two distinct regions of Spike protein sequences. In addition, UDCA tends to stay bound to the membrane, which could potentially reduce the internalization of SARS-CoV-2 in the host cell.
Collapse
Affiliation(s)
- Francisco Javier Rodal Canales
- Research Centre Faculty of Medicine UNAM-UABJO, Faculty of Medicine and Surgery, Autonomous University "Benito Juárez" of Oaxaca, 68020, Oaxaca, Mexico
| | - Laura Pérez-Campos Mayoral
- Research Centre Faculty of Medicine UNAM-UABJO, Faculty of Medicine and Surgery, Autonomous University "Benito Juárez" of Oaxaca, 68020, Oaxaca, Mexico
| | | | - Luis Manuel Sánchez Navarro
- Research Centre Faculty of Medicine UNAM-UABJO, Faculty of Medicine and Surgery, Autonomous University "Benito Juárez" of Oaxaca, 68020, Oaxaca, Mexico
| | | | | | - Eli Cruz Parada
- National Technology of Mexico/IT Oaxaca, 68030, Oaxaca, Mexico
| | - Edgar Zenteno
- Faculty of Medicine, National Autonomous University of Mexico, 04360, Mexico City, Mexico
| | | | - Eduardo Pérez-Campos Mayoral
- Research Centre Faculty of Medicine UNAM-UABJO, Faculty of Medicine and Surgery, Autonomous University "Benito Juárez" of Oaxaca, 68020, Oaxaca, Mexico
| | - Carlos Romero Díaz
- Research Centre Faculty of Medicine UNAM-UABJO, Faculty of Medicine and Surgery, Autonomous University "Benito Juárez" of Oaxaca, 68020, Oaxaca, Mexico.
| | - Eduardo Pérez-Campos
- National Technology of Mexico/IT Oaxaca, 68030, Oaxaca, Mexico. .,Clinical Pathology Laboratory, "Eduardo Pérez Ortega", 68000, Oaxaca, Mexico.
| |
Collapse
|
24
|
Birtles D, Lee J. Identifying Distinct Structural Features of the SARS-CoV-2 Spike Protein Fusion Domain Essential for Membrane Interaction. Biochemistry 2021; 60:2978-2986. [PMID: 34570469 PMCID: PMC8491435 DOI: 10.1021/acs.biochem.1c00543] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/20/2021] [Indexed: 12/23/2022]
Abstract
The SARS-CoV-2 spike protein is the primary antigenic determinant of the virus and has been studied extensively, yet the process of membrane fusion remains poorly understood. The fusion domain (FD) of viral glycoproteins is well established as facilitating the initiation of membrane fusion. An improved understanding of the structural plasticity associated with these highly conserved regions aids in our knowledge of the molecular mechanisms that drive viral fusion. Within the spike protein, the FD of SARS-CoV-2 exists immediately following S2' cleavage at the N-terminus of the S2 domain. Here we have shown that following the introduction of a membrane at pH 7.4, the FD undergoes a transition from a random coil to a more structurally well-defined postfusion state. Furthermore, we have classified the domain into two distinct regions, a fusion peptide (FP, S816-G838) and a fusion loop (FL, D839-F855). The FP forms a helix-turn-helix motif upon association with a membrane, and the favorable entropy gained during this transition from a random coil is likely the driving force behind membrane insertion. Membrane depth experiments then revealed the FP is found inserted within the membrane below the lipid headgroups, while the interaction of the FL with the membrane is shallower in nature. Thus, we propose a structural model relevant to fusion at the plasma membrane in which the FP inserts itself just below the phospholipid headgroups and the FL lays upon the lipid membrane surface.
Collapse
Affiliation(s)
- Daniel Birtles
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
25
|
Dodero-Rojas E, Onuchic JN, Whitford PC. Sterically confined rearrangements of SARS-CoV-2 Spike protein control cell invasion. eLife 2021; 10:70362. [PMID: 34463614 PMCID: PMC8456623 DOI: 10.7554/elife.70362] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly contagious, and transmission involves a series of processes that may be targeted by vaccines and therapeutics. During transmission, host cell invasion is controlled by a large-scale (200–300 Å) conformational change of the Spike protein. This conformational rearrangement leads to membrane fusion, which creates transmembrane pores through which the viral genome is passed to the host. During Spike-protein-mediated fusion, the fusion peptides must be released from the core of the protein and associate with the host membrane. While infection relies on this transition between the prefusion and postfusion conformations, there has yet to be a biophysical characterization reported for this rearrangement. That is, structures are available for the endpoints, though the intermediate conformational processes have not been described. Interestingly, the Spike protein possesses many post-translational modifications, in the form of branched glycans that flank the surface of the assembly. With the current lack of data on the pre-to-post transition, the precise role of glycans during cell invasion has also remained unclear. To provide an initial mechanistic description of the pre-to-post rearrangement, an all-atom model with simplified energetics was used to perform thousands of simulations in which the protein transitions between the prefusion and postfusion conformations. These simulations indicate that the steric composition of the glycans can induce a pause during the Spike protein conformational change. We additionally show that this glycan-induced delay provides a critical opportunity for the fusion peptides to capture the host cell. In contrast, in the absence of glycans, the viral particle would likely fail to enter the host. This analysis reveals how the glycosylation state can regulate infectivity, while providing a much-needed structural framework for studying the dynamics of this pervasive pathogen.
Collapse
Affiliation(s)
- Esteban Dodero-Rojas
- Center for Theoretical Biological Physics, Rice University, Houston, United States
| | - Jose N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, United States.,Department of Physics and Astronomy, Rice University, Houston, United States.,Department of Chemistry, Rice University, Houston, United States.,Department of Biosciences, Rice University, Houston, United States
| | - Paul Charles Whitford
- Center for Theoretical Biological Physics, Northeastern University, Boston, United States.,Department of Physics, Northeastern University, Boston, United States
| |
Collapse
|
26
|
Schaefer SL, Jung H, Hummer G. Binding of SARS-CoV-2 Fusion Peptide to Host Endosome and Plasma Membrane. J Phys Chem B 2021; 125:7732-7741. [PMID: 34255499 PMCID: PMC8311640 DOI: 10.1021/acs.jpcb.1c04176] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
During infection
the SARS-CoV-2 virus fuses its viral envelope
with cellular membranes of its human host. The viral spike (S) protein
mediates both the initial contact with the host cell and the subsequent
membrane fusion. Proteolytic cleavage of S at the S2′ site
exposes its fusion peptide (FP) as the new N-terminus. By binding
to the host membrane, the FP anchors the virus to the host cell. The
reorganization of S2 between virus and host then pulls the two membranes
together. Here we use molecular dynamics (MD) simulations to study
the two core functions of the SARS-CoV-2 FP: to attach quickly to
cellular membranes and to form an anchor strong enough to withstand
the mechanical force during membrane fusion. In eight 10 μs
long MD simulations of FP in proximity to endosomal and plasma membranes,
we find that FP binds spontaneously to the membranes and that binding
proceeds predominantly by insertion of two short amphipathic helices
into the membrane interface. Connected via a flexible linker, the
two helices can bind the membrane independently, yet binding of one
promotes the binding of the other by tethering it close to the target
membrane. By simulating mechanical pulling forces acting on the C-terminus
of the FP, we then show that the bound FP can bear forces up to 250
pN before detaching from the membrane. This detachment force is more
than 10-fold higher than an estimate of the force required to pull
host and viral membranes together for fusion. We identify a fully
conserved disulfide bridge in the FP as a major factor for the high
mechanical stability of the FP membrane anchor. We conclude, first,
that the sequential binding of two short amphipathic helices allows
the SARS-CoV-2 FP to insert quickly into the target membrane, before
the virion is swept away after shedding the S1 domain connecting it
to the host cell receptor. Second, we conclude that the double attachment
and the conserved disulfide bridge establish the strong anchoring
required for subsequent membrane fusion. Multiple distinct membrane-anchoring
elements ensure high avidity and high mechanical strength of FP–membrane
binding.
Collapse
Affiliation(s)
- Stefan L Schaefer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Hendrik Jung
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.,Institute of Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
27
|
Khelashvili G, Plante A, Doktorova M, Weinstein H. Ca 2+-dependent mechanism of membrane insertion and destabilization by the SARS-CoV-2 fusion peptide. Biophys J 2021; 120:1105-1119. [PMID: 33631204 PMCID: PMC7899928 DOI: 10.1016/j.bpj.2021.02.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/10/2021] [Accepted: 02/02/2021] [Indexed: 01/05/2023] Open
Abstract
Cell penetration after recognition of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus by the ACE2 receptor and the fusion of its viral envelope membrane with cellular membranes are the early steps of infectivity. A region of the Spike protein of the virus, identified as the "fusion peptide" (FP), is liberated at its N-terminal site by a specific cleavage occurring in concert with the interaction of the receptor-binding domain of the Spike. Studies have shown that penetration is enhanced by the required binding of Ca2+ ions to the FPs of coronaviruses, but the mechanisms of membrane insertion and destabilization remain unclear. We have predicted the preferred positions of Ca2+ binding to the SARS-CoV-2-FP, the role of Ca2+ ions in mediating peptide-membrane interactions, the preferred mode of insertion of the Ca2+-bound SARS-CoV-2-FP, and consequent effects on the lipid bilayer from extensive atomistic molecular dynamics simulations and trajectory analyses. In a systematic sampling of the interactions of the Ca2+-bound peptide models with lipid membranes, SARS-CoV-2-FP penetrated the bilayer and disrupted its organization only in two modes involving different structural domains. In one, the hydrophobic residues F833/I834 from the middle region of the peptide are inserted. In the other, more prevalent mode, the penetration involves residues L822/F823 from the LLF motif, which is conserved in CoV-2-like viruses, and is achieved by the binding of Ca2+ ions to the D830/D839 and E819/D820 residue pairs. FP penetration is shown to modify the molecular organization in specific areas of the bilayer, and the extent of membrane binding of the SARS-CoV-2 FP is significantly reduced in the absence of Ca2+ ions. These findings provide novel mechanistic insights regarding the role of Ca2+ in mediating SARS-CoV-2 fusion and provide a detailed structural platform to aid the ongoing efforts in rational design of compounds to inhibit SARS-CoV-2 cell entry.
Collapse
Affiliation(s)
- George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York; Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University, New York, New York.
| | - Ambrose Plante
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York
| | - Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York; Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University, New York, New York.
| |
Collapse
|