1
|
Lakshminarayanan A, Kannan S, Kuppusamy MK, Sankaranarayanan K, Godla U, Punnoose AM. The effect of curcumin, catechin and resveratrol on viability, proliferation and cytotoxicity of human umbilical cord Wharton's jelly derived mesenchymal stem cells. Tissue Cell 2025; 93:102742. [PMID: 39874919 DOI: 10.1016/j.tice.2025.102742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/11/2025] [Accepted: 01/11/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION Mesenchymal stem cells possess the capability to proliferate and differentiate into diverse lineages. Their beneficial properties have been explored widely to treat various disorders. Phytochemicals like curcumin, catechin and resveratrol have been evaluated for their medicinal values and have promising potential in treating numerous diseases. In this study, we have elucidated the in vitro survival, proliferative and cytotoxic effects of these phytochemicals at selected range of concentrations on human umbilical cord derived Wharton's jelly mesenchymal stem cells (WJ-MSCs). METHODS The human WJ-MSCs were extracted using explant culture method and characterized as per International Society for Cellular Therapy (ISCT) guidelines. To analyse the effect of different phytochemicals, the WJ-MSCs were treated with various concentrations ranging from 0.1 to 1000 µM and the viability, proliferative and toxicity effects were assayed using (3-(4,5-dimethylthioazolyl-2,5-diphenyltetrozolium bromide) MTT. RESULTS Curcumin and catechin elicited no cytotoxic effect on WJ-MSCs after 48 hours of treatment between the concentrations ranging from 0.1 to 10 µM and the viability was maintained above 80 %. For both the phytochemicals, there was a significant decrease in the viability of WJ-MSCs after 50 µM. Resveratrol was well tolerated at higher doses till 100 µM with a viability above 90 % and cytotoxic effect was observed above 250 µM. CONCLUSION Curcumin, catechin and resveratrol, affect the viability and proliferation of WJ-MSCs differently at varying concentrations. This data will be useful in deciding the dose of phytochemicals when employed concomitantly with stem cells to increase their efficiency.
Collapse
Affiliation(s)
- Aishwarya Lakshminarayanan
- Stem Cell and Regenerative Biology Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, India
| | | | - M Kalaivani Kuppusamy
- Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, India
| | | | - Usharani Godla
- Obstetrics and Gynecology, Sri Ramachandra Medical Centre, India
| | - Alan M Punnoose
- Stem Cell and Regenerative Biology Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, India.
| |
Collapse
|
2
|
Ghamrawi A, Basso R, Shakik N, Haddad L, Nasr Z, Harmouch C. Wharton's Jelly Mesenchymal Stem Cells: Shaping the Future of Osteoarthritis Therapy with Advancements in Chitosan-Hyaluronic Acid Scaffolds. Stem Cells Dev 2025; 34:1-16. [PMID: 39605205 DOI: 10.1089/scd.2024.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
This review explores the potential of Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) in cartilage regeneration and osteoarthritis treatment. It covers key factors influencing chondrogenesis, including growth factors, cytokines, and hypoxia, focusing on precise timing. The effectiveness of three-dimensional cultures and scaffold-based strategies in chondrogenic differentiation is discussed. Specific biomaterials such as chitosan and hyaluronic acid are highlighted for tissue engineering. The document reviews clinical applications, incorporating evidence from animal research and early trials and molecular and histological assessments of chondrogenic differentiation processes. It addresses challenges and strategies for optimizing MSC-derived chondrocyte therapy, emphasizing the immunomodulatory properties of these cells. The review concludes as a comprehensive road map for future research and clinical applications in regenerative medicine.
Collapse
Affiliation(s)
- Ahed Ghamrawi
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli, Lebanon
| | - Rasha Basso
- Department of Medical Laboratory Sciences, Faculty of Health Sciences University of Balamand, Beirut, Lebanon
| | - Nour Shakik
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli, Lebanon
| | - Lara Haddad
- Department of Medical Laboratory Sciences, Faculty of Health Sciences University of Balamand, Beirut, Lebanon
| | - Zeina Nasr
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli, Lebanon
| | - Chaza Harmouch
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli, Lebanon
| |
Collapse
|
3
|
Jin B, Ding X, Dai J, Peng C, Zhu C, Wei Q, Chen X, Qiang R, Ding X, Du H, Deng W, Yang X. Deciphering decidual deficiencies in recurrent spontaneous abortion and the therapeutic potential of mesenchymal stem cells at single-cell resolution. Stem Cell Res Ther 2024; 15:228. [PMID: 39075579 PMCID: PMC11287859 DOI: 10.1186/s13287-024-03854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Recurrent spontaneous abortion (RSA) is a challenging condition that affects the health of women both physically and mentally, but its pathogenesis and treatment have yet to be studied in detail. In recent years, Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) have been shown to be effective in treating various diseases. Current understanding of RSA treatment using WJ-MSCs is limited, and the exact mechanisms of WJ-MSCs action in RSA remains largely unclear. In this study, we explored the decidual deficiencies in RSA and the therapeutic potential of WJ-MSCs at single-cell resolution. METHODS Three mouse models were established: a normal pregnancy group, an RSA group, and a WJ-MSC treatment group. Decidual tissue samples were collected for single-cell RNA sequencing (scRNA-seq) and functional verification, including single-cell resolution in situ hybridization on tissues (SCRINSHOT) and immunofluorescence. RESULTS We generated a single-cell atlas of decidual tissues from normal pregnant, RSA, and WJ-MSC-treated mice and identified 14 cell clusters in the decidua on day 14. Among these cell populations, stromal cells were the most abundant cell clusters in the decidua, and we further identified three novel subclusters (Str_0, Str_1, and Str_2). We also demonstrated that the IL17 and TNF signaling pathways were enriched for upregulated DEGs of stromal cells in RSA mice. Intriguingly, cell-cell communication analysis revealed that Str_1 cell-related gene expression was greatly reduced in the RSA group and rescued in the WJ-MSC treatment group. Notably, the interaction between NK cells and other cells in the RSA group was attenuated, and the expression of Spp1 (identified as an endometrial toleration-related marker) was significantly reduced in the NK cells of the RSA group but could be restored by WJ-MSC treatment. CONCLUSION Herein, we implemented scRNA-seq to systematically evaluate the cellular heterogeneity and transcriptional regulatory networks associated with RSA and its treatment with WJ-MSCs. These data revealed potential therapeutic targets of WJ-MSCs to remodel the decidual subpopulations in RSA and provided new insights into decidua-derived developmental defects at the maternal-foetal interface.
Collapse
Affiliation(s)
- Beibei Jin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medicine School of Nantong University, Nantong, Jiangsu, China
- Department of Gynecology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Xiaoying Ding
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medicine School of Nantong University, Nantong, Jiangsu, China
| | - Jiamin Dai
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medicine School of Nantong University, Nantong, Jiangsu, China
| | - Chen Peng
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Chunyu Zhu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medicine School of Nantong University, Nantong, Jiangsu, China
| | - Qinru Wei
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medicine School of Nantong University, Nantong, Jiangsu, China
| | - Xinyi Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medicine School of Nantong University, Nantong, Jiangsu, China
| | - Ronghui Qiang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medicine School of Nantong University, Nantong, Jiangsu, China
| | - Xiaoyi Ding
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medicine School of Nantong University, Nantong, Jiangsu, China
| | - Hongxiang Du
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medicine School of Nantong University, Nantong, Jiangsu, China
| | - Wenbo Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China.
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Xiaoqing Yang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
4
|
Xu W, Fei X, Cui Z, Pan D, Liu Y, Liu T. DNMT1 driven by mouse amniotic fluid mesenchymal stem cell exosomes improved corneal cryoinjury via inducing microRNA-33 promoter DNA hypermethylation modification in corneal epithelium cells. Hum Cell 2024; 37:1091-1106. [PMID: 38782857 DOI: 10.1007/s13577-024-01082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Severe corneal cryoinjury can cause permanent corneal swelling and bullous keratopathy, one of the main reason for loss of sight. Mouse amniotic fluid mesenchymal stem cells (mAF-MSCs) can repair corneal damage caused by freezing; however, whether the exosomes derived from mAF-MSCs have the same repair effect is unknown. In this study, the mAF-MSC-exosomes were transplanted into the eyeballs of corneal cryoinjured mice. Histopathological examination showed that the mAF-MSC-exosomes improved the corneal structure and status of corneal epithelial cells in corneal cryoinjured mice. RRBS-sequencing showed that compared with the control group, four genes (Rpl13-ps6, miR-33, Hymai, and Plagl1), underwent DNA hypermethylation modification after mAF-MSC-exosomes treatment. The result of FISH indicated that miR-33-3p hybridization signals were enhanced in corneal epithelial cells from mice treated with mAF-MSC-exosomes. Semi-quantitative PCR and western blotting indicated that mAF-MSC-exosomes contained high levels of DNMT1 mRNA and protein. Additionally, luciferase report assays indicated that miR-33-3p overexpression in NIH-3T3 mouse embryonic fibroblast cells inhibited the activity of luciferase carrying a sequence from the 3' untranslated region of Bcl6. Moreover, BCL6 mRNA and protein levels in corneal tissues from mice treated with mAF-MSC-exosomes were higher than those in the control group. Therefore, our results suggested that mAF-MSC-exosomes could repair corneal cryoinjury by releasing DNMT1, which induced hypermethylation of the miR-33 promoter in corneal epithelial cells. Consequent downregulated miR-33 transcription upregulated Bcl6 expression, ultimately achieving the repair of corneal cryoinjury in mice.
Collapse
Affiliation(s)
- Weiqi Xu
- Department of Ophthalmology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Xinfeng Fei
- Department of Ophthalmology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Zeyu Cui
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Building C, 365 Xiangyang Road, Shanghai, 200031, China
| | - Dikang Pan
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yan Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Building C, 365 Xiangyang Road, Shanghai, 200031, China.
| |
Collapse
|
5
|
Rahmatinejad F, Kharat Z, Jalili H, Renani MK, Mobasheri H. Comparison of morphology, protein concentration, and size distribution of bone marrow and Wharton's jelly-derived mesenchymal stem cells exosomes isolated by ultracentrifugation and polymer-based precipitation techniques. Tissue Cell 2024; 88:102427. [PMID: 38833940 DOI: 10.1016/j.tice.2024.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/26/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Exosomes which are tiny extracellular vesicles (30-150 nm), transport vital proteins and gene materials such as miRNA, mRNA, or DNA, whose role in cell communication and epithelia regulation is critical. Many techniques have been developed as a result of studying exosomes' biochemical and physicochemical properties, although there is still no standard method to isolate exosomes simply with high yield. Commercial kits have gained popularity for exosome extraction despite concerns about their effectiveness in scientific research. On the other hand, ultracentrifugation remains the gold standard isolation method. This study compares these two common exosome isolation methods to determine their impact on the quality and quantity of exosomes isolated from bone marrow (BM) and Wharton's jelly (WJ)-derived mesenchymal stem cells. Isolated exosomes from the two sources of the cell's conditioned medium by two methods (polymer kit and ultracentrifuge) were characterized using western blotting, scanning electron microscopy (SEM), dynamic light scattering (DLS), and the Bradford assay. Western blot analysis confirmed separation efficiency based on CD81 and CD63 markers, with the absence of calnexin serving as a negative control. The Morphology of exosomes studied by SEM image analysis revealed a similar round shape appearance and their sizes (30-150 nm) were the same in both isolation techniques. The DLS analysis of the sample results was consistent with the SEM ones, showing a similar size range and very low disparity. The exosome protein content concentration analysis revealed that exosomes isolated by the polymer-based kits contained higher protein concentration density and purity (p <0.001). In general, though the protein yield was higher when the polymer-based kits were used, there were no significant differences in morphology, or size between WJ-derived and BM-derived exosomes, regardless of the isolation method employed.
Collapse
Affiliation(s)
- Fatemeh Rahmatinejad
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Zahra Kharat
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Hasan Jalili
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
| | | | - Hamid Mobasheri
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
6
|
Maraldi T, Russo V. Amniotic Fluid and Placental Membranes as Sources of Stem Cells: Progress and Challenges 2.0. Int J Mol Sci 2023; 24:16020. [PMID: 38003210 PMCID: PMC10671515 DOI: 10.3390/ijms242216020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of the second edition of this Special Issue was to collect both review and original research articles that investigate and elucidate the possible therapeutic role of perinatal stem cells in pathological conditions, such as cardiovascular and metabolic diseases, as well as inflammatory, autoimmune, musculoskeletal, and degenerative diseases [...].
Collapse
Affiliation(s)
- Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41125 Modena, Italy
| | - Valentina Russo
- Faculty of Bioscience and Agro-Food and Environmental Technology, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| |
Collapse
|
7
|
Habib R, Fahim S, Wahid M, Ainuddin J. Optimisation of a Method for the Differentiation of Human Umbilical Cord-derived Mesenchymal Stem Cells Toward Renal Epithelial-like Cells. Altern Lab Anim 2023; 51:363-375. [PMID: 37831588 DOI: 10.1177/02611929231207774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Human umbilical cord-derived mesenchymal stem cells (hucMSCs) can differentiate into multiple cell lineages, but few methods have been developed to generate kidney lineage cells. Due to their human origin, pluripotent nature and immunomodulatory properties, these stem cells are attractive candidates for clinical applications such as the repair or regeneration of damaged organs. This study evaluated the renal differentiation potential of hucMSCs, when exposed for 10 days to optimised concentrations of retinoic acid, activin-A and bone morphogenetic protein-7 (BMP-7) in various combinations, with and without the priming of the cells with a Wnt signalling pathway activator (CHIR99021). The hucMSCs were isolated and characterised according to surface marker expression (CD73, CD90, CD44, CD146 and CD8) and tri-lineage differentiation potential. The expression of key marker genes (OSR1, TBXT, HOXA13, SIX2, PAX2, KRT18 and ZO1) was examined by qRT-PCR. Specific marker protein expression (E-cadherin, cytokeratin-8 and cytokeratin-19) was analysed by immunocytochemistry. CHIR99021-primed cells treated with the retinoic acid, activin-A and BMP-7 cocktail showed epithelial cell-like differentiation - i.e. distinct phenotypic changes, as well as upregulated gene and protein expression, were observed that were consistent with an epithelial cell phenotype. Thus, our results showed that hucMSCs can efficiently differentiate into renal epithelial-like cells. This work may help in the development of focused therapeutic strategies, in which lineage-defined human stem cells can be used for renal regeneration.
Collapse
Affiliation(s)
- Rakhshinda Habib
- Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences (Ojha campus), Karachi, Pakistan
| | - Shumaila Fahim
- Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences (Ojha campus), Karachi, Pakistan
| | - Mohsin Wahid
- Department of Pathology, Dow International Medical College, Dow University of Health Sciences (Ojha campus), Karachi, Pakistan
| | - Jahanara Ainuddin
- Department of Gynaecology and Obstetrics, Dow University Hospital, Karachi, Pakistan
| |
Collapse
|
8
|
Rosner M, Horer S, Feichtinger M, Hengstschläger M. Multipotent fetal stem cells in reproductive biology research. Stem Cell Res Ther 2023; 14:157. [PMID: 37287077 DOI: 10.1186/s13287-023-03379-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023] Open
Abstract
Due to the limited accessibility of the in vivo situation, the scarcity of the human tissue, legal constraints, and ethical considerations, the underlying molecular mechanisms of disorders, such as preeclampsia, the pathological consequences of fetomaternal microchimerism, or infertility, are still not fully understood. And although substantial progress has already been made, the therapeutic strategies for reproductive system diseases are still facing limitations. In the recent years, it became more and more evident that stem cells are powerful tools for basic research in human reproduction and stem cell-based approaches moved into the center of endeavors to establish new clinical concepts. Multipotent fetal stem cells derived from the amniotic fluid, amniotic membrane, chorion leave, Wharton´s jelly, or placenta came to the fore because they are easy to acquire, are not associated with ethical concerns or covered by strict legal restrictions, and can be banked for autologous utilization later in life. Compared to adult stem cells, they exhibit a significantly higher differentiation potential and are much easier to propagate in vitro. Compared to pluripotent stem cells, they harbor less mutations, are not tumorigenic, and exhibit low immunogenicity. Studies on multipotent fetal stem cells can be invaluable to gain knowledge on the development of dysfunctional fetal cell types, to characterize the fetal stem cells migrating into the body of a pregnant woman in the context of fetomaternal microchimerism, and to obtain a more comprehensive picture of germ cell development in the course of in vitro differentiation experiments. The in vivo transplantation of fetal stem cells or their paracrine factors can mediate therapeutic effects in preeclampsia and can restore reproductive organ functions. Together with the use of fetal stem cell-derived gametes, such strategies could once help individuals, who do not develop functional gametes, to conceive genetically related children. Although there is still a long way to go, these developments regarding the usage of multipotent fetal stem cells in the clinic should continuously be accompanied by a wide and detailed ethical discussion.
Collapse
Affiliation(s)
- Margit Rosner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria
| | - Stefanie Horer
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria
| | | | - Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria.
| |
Collapse
|
9
|
Li S, Ding X, Yan X, Qian J, Tan Q. ceAF Ameliorates Diabetic Wound Healing by Alleviating Inflammation and Oxidative Stress via TLR4/NF-κB and Nrf2 Pathways. J Diabetes Res 2023; 2023:2422303. [PMID: 37064758 PMCID: PMC10098416 DOI: 10.1155/2023/2422303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/24/2022] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
Background. With the rise in diabetes incidence, diabetic foot ulcers have become the most common clinically chronic refractory wounds. Persistent chronic inflammation is a typical feature of diabetic cutaneous wounds, and diabetic wound healing can be improved by alleviating inflammation and oxidative stress. Chick early amniotic fluids (ceAF) consist of native conglutinant substances with balanced amounts of growth factors, cytokines, and chemokines. However, whether ceAF modulates inflammation and oxidative stress and thus promotes diabetic wound healing remains unknown. Materials and Methods. RAW264.7 cells were categorized into four groups: negative control, LPS, LPS + ceAF, and ceAF. 10% of ceAF was selected to treat different groups of mice with a full-thickness skin defect wound. Then, RT-qPCR, western blot, immunofluorescence, and other assays were carried out to explore the effect of ceAF on wound healing and its molecular mechanism. Results. Topical administration of ceAF improved M2 macrophage polarization and inflammatory response in the wound tissues, thereby ameliorating delayed wound healing. Histological improvement could be observed in the grade of inflammation, collagen deposition, and neovascularization in wound edge tissues. ceAF also increased M2 macrophage-specific markers expression and exogenous ceAF suppressed LPS-induced cellular inflammatory response in vitro high glucose environment. Additionally, ceAF could activate TLR4/NF-κB and Nrf2 signal transductions to promote M2 macrophage polarization in vitro. Conclusions. In summary, ceAF downregulates inflammatory response, regulates M2 macrophage transition via TLR4/NF-κB and Nrf2 signaling pathways, and thus improves diabetic wound healing.
Collapse
Affiliation(s)
- Shiyan Li
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China
| | - Xiaofeng Ding
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China
| | - Xin Yan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China
| | - Jin Qian
- Anhui Hygeiancells BioMedical Co. Ltd., Huangshan, Anhui, China
- Stem Cell Application Research Center, The Hangzhou Branch of Yangtze Delta Region Institute of Tsinghua University, Hangzhou, Zhejiang 310019, China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China
- Department of Burns and Plastic Surgery, Anqing Shihua Hospital, Nanjing Drum Tower Hospital Group, Anqing 246002, China
| |
Collapse
|
10
|
Zhang M, He Y, Zhang X, Gan S, Xie X, Zheng Z, Liao J, Chen W. Engineered cell-overexpression of circular RNA hybrid hydrogels promotes healing of calvarial defects. Biomater Sci 2023; 11:1665-1676. [PMID: 36472132 DOI: 10.1039/d2bm01472f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Craniomaxillofacial bone defects seriously affect the physical and mental health of patients. Bone marrow mesenchymal stem cells (BMSCs) are "gold standard" cells used for bone repair. However, the collection of BMSCs is invasive, and the osteogenic capacity is limited with age. Human umbilical cord mesenchymal stem cells (hUCMSCs) are promising alternative seed cells for bone tissue engineering. Our group previously used high-throughput sequencing technology and bioinformatics methods to detect circ-CTTN (hsa-circ_0003376) molecules, which may play an essential role in the osteogenic differentiation of hUCMSCs. In this study, osteogenic induction in vitro showed that the overexpressing circ-CTTN (OE group) exhibits a more pronounced osteogenic phenotype. The levels of osteogenesis-related genes in the OE group were highly expressed. The gelatin-methacrylate (GelMA) hydrogel possessed excellent biocompatibility and was used to load hUCMSCs. In the rat calvarial defect, the OE group presented a larger bone healing volume and denser bone trabecular distribution than other groups. So far, the overexpression of circ-CTTN could enhance the osteogenic differentiation of hUCMSCs and accelerate bone reconstruction. Our research could provide a new strategy and a strong theoretical basis for promoting hUCMSC clinical application in bone tissue engineering.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China. .,Department of Oral Prosthodontics & Jinjiang out-patient section, West China Hospital of Stomatology, Sichuan University, China
| | - Yanjing He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China. .,Department of Oral Prosthodontics & Jinjiang out-patient section, West China Hospital of Stomatology, Sichuan University, China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China.
| | - Shuaiqi Gan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China. .,Department of Oral Prosthodontics & Jinjiang out-patient section, West China Hospital of Stomatology, Sichuan University, China
| | - Xi Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China.
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China. .,Department of Oral Prosthodontics & Jinjiang out-patient section, West China Hospital of Stomatology, Sichuan University, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China.
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China. .,Department of Oral Prosthodontics & Jinjiang out-patient section, West China Hospital of Stomatology, Sichuan University, China
| |
Collapse
|
11
|
Pampanella L, Abruzzo PM, Tassinari R, Alessandrini A, Petrocelli G, Ragazzini G, Cavallini C, Pizzuti V, Collura N, Canaider S, Facchin F, Ventura C. Cytochalasin B Influences Cytoskeletal Organization and Osteogenic Potential of Human Wharton's Jelly Mesenchymal Stem Cells. Pharmaceuticals (Basel) 2023; 16:289. [PMID: 37259432 PMCID: PMC9966134 DOI: 10.3390/ph16020289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 09/01/2023] Open
Abstract
Among perinatal stem cells of the umbilical cord, human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) are of great interest for cell-based therapy approaches in regenerative medicine, showing some advantages over other MSCs. In fact, hWJ-MSCs, placed between embryonic and adult MSCs, are not tumorigenic and are harvested with few ethical concerns. Furthermore, these cells can be easily cultured in vitro, maintaining both stem properties and a high proliferative rate for several passages, as well as trilineage capacity of differentiation. Recently, it has been demonstrated that cytoskeletal organization influences stem cell biology. Among molecules able to modulate its dynamics, Cytochalasin B (CB), a cyto-permeable mycotoxin, influences actin microfilament polymerization, thus affecting several cell properties, such as the ability of MSCs to differentiate towards a specific commitment. Here, we investigated for the first time the effects of a 24 h-treatment with CB at different concentrations (0.1-3 μM) on hWJ-MSCs. CB influenced the cytoskeletal organization in a dose-dependent manner, inducing changes in cell number, proliferation, shape, and nanomechanical properties, thus promoting the osteogenic commitment of hWJ-MSCs, as confirmed by the expression analysis of osteogenic/autophagy markers.
Collapse
Affiliation(s)
- Luca Pampanella
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Provvidenza Maria Abruzzo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | | | - Andrea Alessandrini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy
| | - Giovannamaria Petrocelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Gregorio Ragazzini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy
| | | | - Valeria Pizzuti
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Nicoletta Collura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) c/o Eldor Lab, Via Corticella 183, 40129 Bologna, Italy
| |
Collapse
|
12
|
Valiulienė G, Zentelytė A, Beržanskytė E, Navakauskienė R. Effect of 3D Spheroid Culturing on NF-κB Signaling Pathway and Neurogenic Potential in Human Amniotic Fluid Stem Cells. Int J Mol Sci 2023; 24:ijms24043584. [PMID: 36834995 PMCID: PMC9963588 DOI: 10.3390/ijms24043584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Human amniotic fluid stem cells (hAFSCs) are known for their advantageous properties when compared to somatic stem cells from other sources. Recently hAFSCs have gained attention for their neurogenic potential and secretory profile. However, hAFSCs in three-dimensional (3D) cultures remain poorly investigated. Therefore, we aimed to evaluate cellular properties, neural differentiation, and gene and protein expression in 3D spheroid cultures of hAFSCs in comparison to traditional two-dimensional (2D) monolayer cultures. For this purpose, hAFSCs were obtained from amniotic fluid of healthy pregnancies and cultivated in vitro, either in 2D, or 3D under untreated or neuro-differentiated conditions. We observed upregulated expression of pluripotency genes OCT4, NANOG, and MSI1 as well as augmentation in gene expression of NF-κB-TNFα pathway genes (NFKB2, RELA and TNFR2), associated miRNAs (miR103a-5p, miR199a-3p and miR223-3p), and NF-κB p65 protein levels in untreated hAFSC 3D cultures. Additionally, MS analysis of the 3D hAFSCs secretome revealed protein upregulation of IGFs signaling the cascade and downregulation of extracellular matrix proteins, whereas neural differentiation of hAFSC spheroids increased the expression of SOX2, miR223-3p, and MSI1. Summarizing, our study provides novel insights into how 3D culture affects neurogenic potential and signaling pathways of hAFSCs, especially NF-κB, although further studies are needed to elucidate the benefits of 3D cultures more thoroughly.
Collapse
|
13
|
Medvediev VV, Oleksenko NP, Pichkur LD, Verbovska SA, Savosko SI, Draguntsova NG, Lontkovskyi YA, Vaslovych VV, Tsymbalyuk VI. Implantation Effect of a Fibrin Matrix Associated with Mesenchymal Wharton’s Jelly Stromal Cells on the Course of an Experimental Spinal Cord Injury. CYTOL GENET+ 2023. [DOI: 10.3103/s0095452723010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
14
|
Perinatal Stem Cell Therapy to Treat Type 1 Diabetes Mellitus: A Never-Say-Die Story of Differentiation and Immunomodulation. Int J Mol Sci 2022; 23:ijms232314597. [PMID: 36498923 PMCID: PMC9738084 DOI: 10.3390/ijms232314597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Human term placenta and other postpartum-derived biological tissues are promising sources of perinatal cells with unique stem cell properties. Among the massive current research on stem cells, one medical focus on easily available stem cells is to exploit them in the design of immunotherapy protocols, in particular for the treatment of chronic non-curable human diseases. Type 1 diabetes is characterized by autoimmune destruction of pancreatic beta cells and perinatal cells can be harnessed both to generate insulin-producing cells for beta cell replenishment and to regulate autoimmune mechanisms via immunomodulation capacity. In this study, the strong points of cells derived from amniotic epithelial cells and from umbilical cord matrix are outlined and their potential for supporting cell therapy development. From a basic research and expert stem cell point of view, the aim of this review is to summarize information regarding the regenerative medicine field, as well as describe the state of the art on possible cell therapy approaches for diabetes.
Collapse
|
15
|
Walentowicz P, Sadlecki P, Walentowicz-Sadlecka M, Bajek A, Grabiec M, Drewa T. Human amniotic fluid as a source of stem cells. Open Med (Wars) 2022; 17:648-660. [PMID: 35434378 PMCID: PMC8982042 DOI: 10.1515/med-2022-0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Human amniotic fluid collected during amniocentesis contains a heterogeneous population of differentiated and undifferentiated cells. Properties and number of these cells vary depending on the gestational age and the presence of potential fetal pathologies. The aim of this study was to analyze the effects of maternal, fetal, and environmental factors on the success rates of amniotic fluid stem cell cultures, the number of human amniotic fluid stem cells (hAFSC), their growth rates in primary cultures, and the number of cell passages. The study included 355 patients qualified for genetic amniocentesis at the Prenatal Genetic Unit, Department of Obstetrics, Gynecology and Oncologic Gynecology, Nicolaus Copernicus University Medical College in Bydgoszcz in 2011–2017. The mean age of the study participants was 34 ± 6.2 years, and mean gravidity amounted to 2.48 ± 1.4. Amniotic fluid sample volume turned out to be a highly significant (p < 0.01) predictor of culture success, and the relationship was particularly evident in women older than 40 years. Another highly significant predictor of culture success was the presence of two cell populations in the sample (p < 0.01). The likelihood of culture success correlated significantly (p < 0.05) with the season of the year at the time of amniocentesis. The number of cell passages differed significantly depending on the maternal age (p < 0.01). The number of passages also showed a highly significant relationship with the season of the year the sample was obtained (p < 0.01). Younger maternal age was identified as a determinant of high passage number (≥3), and another highly significant determinant of high passage number was the presence of two cell populations in the amniotic fluid sample (p < 0.01). Percentage of successfully established hAFSC cultures and the number of passages depended on amniotic fluid volume, the presence of two cell populations within the sample, and the season of the year. Individual characteristics of the donors, such as age and gravidity, did not exert a significant effect on the number of isolated hAFSCs and the rate of their growth. Patients’ place of residence, fetal karyotype, transportation time, and purity of the samples did not affect the success rates for primary cultures and the number of passages.
Collapse
Affiliation(s)
- Pawel Walentowicz
- Department of Obstetrics and Gynecology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University , Bydgoszcz 85-168 , Poland
- Department of Obstetrics, Gynecology and Oncological Gynecology, Regional Polyclinical Hospital , 87-100 Torun , Poland
| | - Pawel Sadlecki
- Department of Obstetrics and Gynecology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University , Bydgoszcz 85-168 , Poland
- Department of Obstetrics, Gynecology and Oncological Gynecology, Regional Polyclinical Hospital , 87-100 Torun , Poland
| | - Malgorzata Walentowicz-Sadlecka
- Department of Obstetrics and Gynecology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University , Bydgoszcz 85-168 , Poland
- 2nd Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education , 01-809 Warsaw , Poland
| | - Anna Bajek
- Department of Tissue Engineering, Nicolaus Copernicus University , Bydgoszcz 85-092 , Poland
| | - Marek Grabiec
- Department of Obstetrics and Gynecology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University , Bydgoszcz 85-168 , Poland
| | - Tomasz Drewa
- Department of Regenerative Medicine, Cell and Tissue Bank, Chair of Urology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz , 85-094 , Poland
| |
Collapse
|
16
|
Costa A, Quarto R, Bollini S. Small Extracellular Vesicles from Human Amniotic Fluid Samples as Promising Theranostics. Int J Mol Sci 2022; 23:ijms23020590. [PMID: 35054775 PMCID: PMC8775841 DOI: 10.3390/ijms23020590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Since the first evidence that stem cells can provide pro-resolving effects via paracrine secretion of soluble factors, growing interest has been addressed to define the most ideal cell source for clinical translation. Leftover or clinical waste samples of human amniotic fluid obtained following prenatal screening, clinical intervention, or during scheduled caesarean section (C-section) delivery at term have been recently considered an appealing source of mesenchymal progenitors with peculiar regenerative capacity. Human amniotic fluid stem cells (hAFSC) have been demonstrated to support tissue recovery in several preclinical models of disease by exerting paracrine proliferative, anti-inflammatory and regenerative influence. Small extracellular vesicles (EVs) concentrated from the hAFSC secretome (the total soluble trophic factors secreted in the cell-conditioned medium, hAFSC-CM) recapitulate most of the beneficial cell effects. Independent studies in preclinical models of either adult disorders or severe diseases in newborns have suggested a regenerative role of hAFSC-EVs. EVs can be eventually concentrated from amniotic fluid (hAF) to offer useful prenatal information, as recently suggested. In this review, we focus on the most significant aspects of EVs obtained from either hAFSC and hAF and consider the current challenges for their clinical translation, including isolation, characterization and quantification methods.
Collapse
Affiliation(s)
- Ambra Costa
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (R.Q.)
| | - Rodolfo Quarto
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (R.Q.)
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Sveva Bollini
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (R.Q.)
- Correspondence: ; Tel.: +39-010-555-8394
| |
Collapse
|
17
|
Yiğenoğlu TN, Başcı S, Şahin D, Ulaş T, Dal MS, Korkmaz S, Hacıbekiroğlu T, Namdaroğlu S, Erkurt MA, Turgut B, Altuntaş F. Mesenchymal stem cell transfusion: Possible beneficial effects in COVID-19 patients. Transfus Apher Sci 2021; 60:103237. [PMID: 34419356 PMCID: PMC8372452 DOI: 10.1016/j.transci.2021.103237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/15/2021] [Accepted: 08/08/2021] [Indexed: 02/06/2023]
Abstract
SARS-CoV-2 attaches to the angiotensin-converting enzyme 2 (ACE-2) receptor on human cells. The virus causes hypercytokinemia, capillary leak, pulmonary edema, acute respiratory distress syndrome, acute cardiac injury, and leads to death. Mesenchymal stem cells (MSCs) are ACE-2 negative cells; therefore, can escape from SARS-CoV-2. MSCs prevent hypercytokinemia and help the resolution of the pulmonary edema and other damages occurred during the course of COVID-19. In addition, MSCs enhance the regeneration of the lung and other tissues affected by SARS-CoV-2. The case series reported beneficial effect of MSCs in COVID-19 treatment. However, there are some concerns about the safety of MSCs, particularly referring to the increased risk of disseminated intravascular coagulation, and thromboembolism due to the expression of TF/CD142. Prospective, randomized, large scale studies are needed to reveal the optimum dose, administration way, time, efficacy, and safety of MSCs in the COVID-19 treatment.
Collapse
Affiliation(s)
- Tuğçe Nur Yiğenoğlu
- University of Health Sciences, Ankara Oncology Training and Research Hospital, Department of Hematology and Bone Marrow Transplantation Center, Ankara, Turkey
| | - Semih Başcı
- University of Health Sciences, Ankara Oncology Training and Research Hospital, Department of Hematology and Bone Marrow Transplantation Center, Ankara, Turkey,Corresponding author
| | - Derya Şahin
- University of Health Sciences, Ankara Oncology Training and Research Hospital, Department of Hematology and Bone Marrow Transplantation Center, Ankara, Turkey
| | - Turgay Ulaş
- Near East University, School of Medicine, Department of Internal Medicine, Department of Hematology, Cyprus
| | - Mehmet Sinan Dal
- University of Health Sciences, Ankara Oncology Training and Research Hospital, Department of Hematology and Bone Marrow Transplantation Center, Ankara, Turkey
| | - Serdal Korkmaz
- University of Health Sciences, Kayseri Training and Research Hospital, Department of Hematology and Bone Marrow Transplantation Center, Kayseri, Turkey
| | - Tuba Hacıbekiroğlu
- Sakarya University, School of Medicine, Department of Internal Medicine, Division of Hematology, Sakarya, Turkey
| | - Sinem Namdaroğlu
- University of Health Sciences, Bozyaka Training and Research Hospital, Department of Hematology and Bone Marrow Transplantation Center, Izmir, Turkey
| | - Mehmet Ali Erkurt
- Inonu University, School of Medicine, Department of Internal Medicine, Division of Hematology and Bone Marrow Transplantation Center, Malatya, Turkey
| | - Burhan Turgut
- Namık Kemal University, School of Medicine, Department of Internal Medicine, Division of Hematology and Bone Marrow Transplantation Center, Tekirdağ, Turkey
| | - Fevzi Altuntaş
- University of Health Sciences, Ankara Oncology Training and Research Hospital, Department of Hematology and Bone Marrow Transplantation Center, Ankara, Turkey,Ankara Yıldırım Beyazıt University, School of Medicine, Department of Internal Medicine, Division of Hematology, Ankara, Turkey
| |
Collapse
|
18
|
Sharma HS, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Sahib S, Tian ZR, Bryukhovetskiy I, Manzhulo I, Menon PK, Patnaik R, Wiklund L, Sharma A. Alzheimer's disease neuropathology is exacerbated following traumatic brain injury. Neuroprotection by co-administration of nanowired mesenchymal stem cells and cerebrolysin with monoclonal antibodies to amyloid beta peptide. PROGRESS IN BRAIN RESEARCH 2021; 265:1-97. [PMID: 34560919 DOI: 10.1016/bs.pbr.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Military personnel are prone to traumatic brain injury (TBI) that is one of the risk factors in developing Alzheimer's disease (AD) at a later stage. TBI induces breakdown of the blood-brain barrier (BBB) to serum proteins into the brain and leads to extravasation of plasma amyloid beta peptide (ΑβP) into the brain fluid compartments causing AD brain pathology. Thus, there is a need to expand our knowledge on the role of TBI in AD. In addition, exploration of the novel roles of nanomedicine in AD and TBI for neuroprotection is the need of the hour. Since stem cells and neurotrophic factors play important roles in TBI and in AD, it is likely that nanodelivery of these agents exert superior neuroprotection in TBI induced exacerbation of AD brain pathology. In this review, these aspects are examined in details based on our own investigations in the light of current scientific literature in the field. Our observations show that TBI exacerbates AD brain pathology and TiO2 nanowired delivery of mesenchymal stem cells together with cerebrolysin-a balanced composition of several neurotrophic factors and active peptide fragments, and monoclonal antibodies to amyloid beta protein thwarted the development of neuropathology following TBI in AD, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
19
|
Liu Y, Su YY, Yang Q, Zhou T. Stem cells in the treatment of renal fibrosis: a review of preclinical and clinical studies of renal fibrosis pathogenesis. Stem Cell Res Ther 2021; 12:333. [PMID: 34112221 PMCID: PMC8194041 DOI: 10.1186/s13287-021-02391-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/14/2021] [Indexed: 02/05/2023] Open
Abstract
Renal fibrosis commonly leads to glomerulosclerosis and renal interstitial fibrosis and the main pathological basis involves tubular atrophy and the abnormal increase and excessive deposition of extracellular matrix (ECM). Renal fibrosis can progress to chronic kidney disease. Stem cells have multilineage differentiation potential under appropriate conditions and are easy to obtain. At present, there have been some studies showing that stem cells can alleviate the accumulation of ECM and renal fibrosis. However, the sources of stem cells and the types of renal fibrosis or renal fibrosis models used in these studies have differed. In this review, we summarize the pathogenesis (including signaling pathways) of renal fibrosis, and the effect of stem cell therapy on renal fibrosis as described in preclinical and clinical studies. We found that stem cells from various sources have certain effects on improving renal function and alleviating renal fibrosis. However, additional clinical studies should be conducted to confirm this conclusion in the future.
Collapse
Affiliation(s)
- Yiping Liu
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Yan-Yan Su
- Department of Nephrology, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou, China
| | - Qian Yang
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Tianbiao Zhou
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China.
| |
Collapse
|
20
|
Yang Y, Zhao Y, Zhang L, Zhang F, Li L. The Application of Mesenchymal Stem Cells in the Treatment of Liver Diseases: Mechanism, Efficacy, and Safety Issues. Front Med (Lausanne) 2021; 8:655268. [PMID: 34136500 PMCID: PMC8200416 DOI: 10.3389/fmed.2021.655268] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation is a novel treatment for liver diseases due to the roles of MSCs in regeneration, fibrosis inhibition and immune regulation. However, the mechanisms are still not completely understood. Despite the significant efficacy of MSC therapy in animal models and preliminary clinical trials, issues remain. The efficacy and safety of MSC-based therapy in the treatment of liver diseases remains a challenging issue that requires more investigation. This article reviews recent studies on the mechanisms of MSCs in liver diseases and the associated challenges and suggests potential future applications.
Collapse
Affiliation(s)
- Ya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yalei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lingjian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Fen Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Kabatas S, Civelek E, Savrunlu EC, Kaplan N, Boyalı O, Diren F, Can H, Genç A, Akkoç T, Karaöz E. Feasibility of allogeneic mesenchymal stem cells in pediatric hypoxic-ischemic encephalopathy: Phase I study. World J Stem Cells 2021; 13:470-484. [PMID: 34136076 PMCID: PMC8176840 DOI: 10.4252/wjsc.v13.i5.470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/26/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is one of the leading causes of death and long-term neurological impairment in the pediatric population. Despite a limited number of treatments to cure HIE, stem cell therapies appear to be a potential treatment option for brain injury resulting from HIE.
AIM To investigate the efficacy and safety of stem cell-based therapies in pediatric patients with HIE.
METHODS The study inclusion criteria were determined as the presence of substantial deficit and disability caused by HIE. Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) were intrathecally (IT), intramuscularly (IM), and intravenously administered to participants at a dose of 1 × 106/kg for each administration route twice monthly for 2 mo. In different follow-up durations, the effect of WJ-MSCs administration on HIE, the quality of life, prognosis of patients, and side effects were investigated, and patients were evaluated for neurological, cognitive functions, and spasticity using the Wee Functional Independence Measure (Wee FIM) Scale and Modified Ashworth (MA) Scale.
RESULTS For all participants (n = 6), the mean duration of exposure to hypoxia was 39.17 + 18.82 min, the mean time interval after HIE was 21.83 ± 26.60 mo, the mean baseline Wee FIM scale score was 13.5 ± 0.55, and the mean baseline MA scale score was 35 ± 9.08. Three patients developed only early complications such as low-grade fever, mild headache associated with IT injection, and muscle pain associated with IM injection, all of which were transient and disappeared within 24 h. The treatment was evaluated to be safe and effective as demonstrated by magnetic resonance imaging examinations, electroencephalographies, laboratory tests, and neurological and functional scores of patients. Patients exhibited significant improvements in all neurological functions through a 12-mo follow-up. The mean Wee FIM scale score of participants increased from 13.5 ± 0.55 to 15.17 ± 1.6 points (mean ± SD) at 1 mo (z = - 1.826, P = 0.068) and to 23.5 ± 3.39 points at 12 mo (z = -2.207, P = 0.027) post-treatment. The percentage of patients who achieved an excellent functional improvement (Wee FIM scale total score = 126) increased from 10.71% (at baseline) to 12.03% at 1 mo and to 18.65% at 12 mo post-treatment.
CONCLUSION Both the triple-route and multiple WJ-MSC implantations were safe and effective in pediatric patients with HIE with significant neurological and functional improvements. The results of this study support conducting further randomized, placebo-controlled studies on this treatment in the pediatric population.
Collapse
Affiliation(s)
- Serdar Kabatas
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, Istanbul 34255, Turkey
- Pediatric Allergy-Immunology, Marmara University, Institute of Health Sciences, Istanbul 34854, Turkey
- Center for Stem Cell & Gene Therapy Research and Practice, University of Health Sciences, Istanbul 34255, Turkey
| | - Erdinç Civelek
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, Istanbul 34255, Turkey
- Pediatric Allergy-Immunology, Marmara University, Institute of Health Sciences, Istanbul 34854, Turkey
| | - Eyüp Can Savrunlu
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, Istanbul 34255, Turkey
| | - Necati Kaplan
- Department of Neurosurgery, Istanbul Rumeli University, Çorlu Reyap Hospital, Tekirdağ 59860, Turkey
| | - Osman Boyalı
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, Istanbul 34255, Turkey
| | - Furkan Diren
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, Istanbul 34255, Turkey
| | - Halil Can
- Department of Neurosurgery, Istanbul Biruni University, Faculty of Medicine, Istanbul 34010, Turkey
- Department of Neurosurgery, Istanbul Medicine Hospital, Istanbul 34203, Turkey
| | - Ali Genç
- Department of Neurosurgery, Istanbul Asya Hospital, Istanbul 34250, Turkey
| | - Tunç Akkoç
- Pediatric Allergy-Immunology, Marmara University, Istanbul 34899, Turkey
| | - Erdal Karaöz
- Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell), Liv Hospital, Istanbul 34340, Turkey
- Department of Histology and Embryology, Istinye University, Faculty of Medicine, Istanbul 34010, Turkey
- Center for Stem Cell and Tissue Engineering Research and Practice, Istinye University, Istanbul 34340, Turkey
| |
Collapse
|
22
|
Costa A, Ceresa D, De Palma A, Rossi R, Turturo S, Santamaria S, Balbi C, Villa F, Reverberi D, Cortese K, De Biasio P, Paladini D, Coviello D, Ravera S, Malatesta P, Mauri P, Quarto R, Bollini S. Comprehensive Profiling of Secretome Formulations from Fetal- and Perinatal Human Amniotic Fluid Stem Cells. Int J Mol Sci 2021; 22:ijms22073713. [PMID: 33918297 PMCID: PMC8038201 DOI: 10.3390/ijms22073713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
We previously reported that c-KIT+ human amniotic-fluid derived stem cells obtained from leftover samples of routine II trimester prenatal diagnosis (fetal hAFS) are endowed with regenerative paracrine potential driving pro-survival, anti-fibrotic and proliferative effects. hAFS may also be isolated from III trimester clinical waste samples during scheduled C-sections (perinatal hAFS), thus offering a more easily accessible alternative when compared to fetal hAFS. Nonetheless, little is known about the paracrine profile of perinatal hAFS. Here we provide a detailed characterization of the hAFS total secretome (i.e., the entirety of soluble paracrine factors released by cells in the conditioned medium, hAFS-CM) and the extracellular vesicles (hAFS-EVs) within it, from II trimester fetal- versus III trimester perinatal cells. Fetal- and perinatal hAFS were characterized and subject to hypoxic preconditioning to enhance their paracrine potential. hAFS-CM and hAFS-EV formulations were analyzed for protein and chemokine/cytokine content, and the EV cargo was further investigated by RNA sequencing. The phenotype of fetal- and perinatal hAFS, along with their corresponding secretome formulations, overlapped; yet, fetal hAFS showed immature oxidative phosphorylation activity when compared to perinatal ones. The profiling of their paracrine cargo revealed some differences according to gestational stage and hypoxic preconditioning. Both cell sources provided formulations enriched with neurotrophic, immunomodulatory, anti-fibrotic and endothelial stimulating factors, and the immature fetal hAFS secretome was defined by a more pronounced pro-vasculogenic, regenerative, pro-resolving and anti-aging profile. Small RNA profiling showed microRNA enrichment in both fetal- and perinatal hAFS-EV cargo, with a stably- expressed pro-resolving core as a reference molecular signature. Here we confirm that hAFS represents an appealing source of regenerative paracrine factors; the selection of either fetal or perinatal hAFS secretome formulations for future paracrine therapy should be evaluated considering the specific clinical scenario.
Collapse
Affiliation(s)
- Ambra Costa
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (S.T.); (P.M.)
| | - Davide Ceresa
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Antonella De Palma
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20054 Milan, Italy; (A.D.P.); (R.R.); (P.M.)
| | - Rossana Rossi
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20054 Milan, Italy; (A.D.P.); (R.R.); (P.M.)
| | - Sara Turturo
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (S.T.); (P.M.)
| | - Sara Santamaria
- Human Anatomy Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (S.S.); (K.C.); (S.R.)
| | - Carolina Balbi
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, 6900 Lugano, Switzerland;
- Center for Molecular Cardiology, University of Zurich, 8952 Zurich, Switzerland
| | - Federico Villa
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Daniele Reverberi
- Molecular Pathology Unit, IRCCS Ospedale Policlinico, San Martino, 16132 Genova, Italy;
| | - Katia Cortese
- Human Anatomy Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (S.S.); (K.C.); (S.R.)
| | - Pierangela De Biasio
- Prenatal Diagnosis and Perinatal Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Dario Paladini
- Fetal Medicine and Surgery Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Domenico Coviello
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Silvia Ravera
- Human Anatomy Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (S.S.); (K.C.); (S.R.)
| | - Paolo Malatesta
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (S.T.); (P.M.)
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Pierluigi Mauri
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20054 Milan, Italy; (A.D.P.); (R.R.); (P.M.)
| | - Rodolfo Quarto
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (S.T.); (P.M.)
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Correspondence: (R.Q.); (S.B.); Tel.: +39-010-5558-257 (S.B.)
| | - Sveva Bollini
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (S.T.); (P.M.)
- Correspondence: (R.Q.); (S.B.); Tel.: +39-010-5558-257 (S.B.)
| |
Collapse
|
23
|
Kabataş S, Civelek E, Kaplan N, Savrunlu EC, Sezen GB, Chasan M, Can H, Genç A, Akyuva Y, Boyalı O, Diren F, Karaoz E. Phase I study on the safety and preliminary efficacy of allogeneic mesenchymal stem cells in hypoxic-ischemic encephalopathy. World J Exp Med 2021; 11:17-29. [PMID: 33821203 PMCID: PMC8010270 DOI: 10.5493/wjem.v11.i2.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/19/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is a leading cause of morbidity and mortality in the adult as well as in the neonate, with limited options for treatment and significant dysfunctionality.
AIM To investigate the safety and preliminary efficacy of allogeneic mesenchymal stem cells (MSCs) in HIE patients.
METHODS Patients who had HIE for at least 6 mo along with significant dysfunction and disability were included. All patients were given Wharton’s jelly-derived MSCs at 1 × 106/kg intrathecally, intravenously, and intramuscularly twice a month for two months. The therapeutic effects and prognostic implications of MSCs were evaluated by multiple follow-ups. Functional independence measure (FIM), modified Ashworth, and Karnofsky scales were used to assess any side effects, neurological and cognitive functions, and overall outcomes.
RESULTS The 8 subjects included in the study had a mean age of 33.25 ± 10.18 years. Mean HIE exposure and mean post-HIE durations were 45.63 ± 10.18 and 19.67 ± 29.04 mo, respectively. Mean FIM score was 18.38 ± 1.06, mean modified Ashworth score was 43.5 ± 4.63, and mean Karnofsky score was 20. For the first 24 h, 5 of the patients experienced a subfebrile state, accompanied by mild headaches due to intrathecally administration and muscle pain because of intramuscularly administration. Neurological and functional examinations, laboratory tests, electroencephalography, and magnetic resonance imaging were performed to assess safety of treatment. Mean FIM score increased by 20.88 ± 3.31 in the first month (P = 0.027) and by 31.38 ± 14.69 in 12 mo (P = 0.012). The rate of patients with an FIM score of 126 increased from 14.58% to 16.57% in the first month and 24.90% in 12 mo.
CONCLUSION Multiple triple-route Wharton’s jelly-derived MSC administrations were found to be safe for HIE patients, indicating neurological and functional improvement. Based on the findings obtained here, further randomized and placebo research could be performed.
Collapse
Affiliation(s)
- Serdar Kabataş
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, İstanbul 34255, Turkey
- Pediatric Allergy-Immunology, Marmara University, Institute of Health Sciences, İstanbul 34854, Turkey
- Center for Stem Cell and Gene Therapy Research and Practice, University of Health Sciences, İstanbul 34255, Turkey
| | - Erdinç Civelek
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, İstanbul 34255, Turkey
- Pediatric Allergy-Immunology, Marmara University, Institute of Health Sciences, İstanbul 34854, Turkey
| | - Necati Kaplan
- Department of Neurosurgery, Istanbul Rumeli University, Çorlu Reyap Hospital, Tekirdağ 59860, Turkey
| | - Eyüp Can Savrunlu
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, İstanbul 34255, Turkey
| | - Gülseli Berivan Sezen
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, İstanbul 34255, Turkey
| | - Mourat Chasan
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, İstanbul 34255, Turkey
| | - Halil Can
- Department of Neurosurgery, İstanbul Biruni University, Faculty of Medicine, İstanbul 34010, Turkey
- Department of Neurosurgery, İstanbul Medicine Hospital, İstanbul 34203, Turkey
| | - Ali Genç
- Department of Neurosurgery, İstanbul Asya Hospital, İstanbul 34250, Turkey
| | - Yener Akyuva
- Department of Neurosurgery, Mustafa Kemal University, Faculty of Medicine, Hatay 31060, Turkey
| | - Osman Boyalı
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, İstanbul 34255, Turkey
| | - Furkan Diren
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, İstanbul 34255, Turkey
| | - Erdal Karaoz
- Center for Regenerative Medicine and Stem Cell Research and Manufacturing (LivMedCell), Liv Hospital, İstanbul 34340, Turkey
- Department of Histology and Embryology, İstinye University, Faculty of Medicine, İstanbul 34010, Turkey
- Center for Stem Cell and Tissue Engineering Research and Practice, İstinye University, İstanbul 34340, Turkey
| |
Collapse
|
24
|
Soltani Khaboushan A, Shakibaei M, Kajbafzadeh AM, Majidi Zolbin M. Prenatal Neural Tube Anomalies: A Decade of Intrauterine Stem Cell Transplantation Using Advanced Tissue Engineering Methods. Stem Cell Rev Rep 2021; 18:752-767. [PMID: 33742349 DOI: 10.1007/s12015-021-10150-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
Neural tube defects (NTDs) are among the most common congenital defects during neurulation. Spina bifida is a type of NTD that can occur in different forms. Since myelomeningocele (MMC) is the most severe form of spina bifida, finding a satisfactory treatment for MMC is a gold standard for the treatment of spina bifida. The Management of Myelomeningocele Study (MOMS) demonstrated that intrauterine treatment of spina bifida could ameliorate the complications associated with spina bifida and would also reduce the placement of ventriculoperitoneal (VP) shunt by 50%. Recently developed tissue engineering (TE) approaches using scaffolds, stem cells, and growth factors allow treatment of the fetus with minimally invasive methods and promising outcomes. The application of novel patches with appropriate stem cells and growth factors leads to better coverage of the defect with fewer complications. These approaches with less invasive surgical procedures, even in animal models with similar characteristics as the human MMC defect, paves the way for the modern application of less invasive surgical methods. Significantly, the early detection of these problems and applying these approaches can increase the potential efficacy of MMC treatment with fewer complications. However, further studies should be conducted to find the most suitable scaffolds and stem cells, and their application should be evaluated in animal models. This review intends to discuss advanced TE methods for treating MMC and recent successes in increasing the efficacy of the treatment.
Collapse
Affiliation(s)
- Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419433151, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336, Munich, Germany
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419433151, Iran.
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419433151, Iran.
| |
Collapse
|
25
|
Silini AR, Di Pietro R, Lang-Olip I, Alviano F, Banerjee A, Basile M, Borutinskaite V, Eissner G, Gellhaus A, Giebel B, Huang YC, Janev A, Kreft ME, Kupper N, Abadía-Molina AC, Olivares EG, Pandolfi A, Papait A, Pozzobon M, Ruiz-Ruiz C, Soritau O, Susman S, Szukiewicz D, Weidinger A, Wolbank S, Huppertz B, Parolini O. Perinatal Derivatives: Where Do We Stand? A Roadmap of the Human Placenta and Consensus for Tissue and Cell Nomenclature. Front Bioeng Biotechnol 2020; 8:610544. [PMID: 33392174 PMCID: PMC7773933 DOI: 10.3389/fbioe.2020.610544] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/23/2020] [Indexed: 02/05/2023] Open
Abstract
Progress in the understanding of the biology of perinatal tissues has contributed to the breakthrough revelation of the therapeutic effects of perinatal derivatives (PnD), namely birth-associated tissues, cells, and secreted factors. The significant knowledge acquired in the past two decades, along with the increasing interest in perinatal derivatives, fuels an urgent need for the precise identification of PnD and the establishment of updated consensus criteria policies for their characterization. The aim of this review is not to go into detail on preclinical or clinical trials, but rather we address specific issues that are relevant for the definition/characterization of perinatal cells, starting from an understanding of the development of the human placenta, its structure, and the different cell populations that can be isolated from the different perinatal tissues. We describe where the cells are located within the placenta and their cell morphology and phenotype. We also propose nomenclature for the cell populations and derivatives discussed herein. This review is a joint effort from the COST SPRINT Action (CA17116), which broadly aims at approaching consensus for different aspects of PnD research, such as providing inputs for future standards for the processing and in vitro characterization and clinical application of PnD.
Collapse
Affiliation(s)
- Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, G. d’Annunzio Foundation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Ingrid Lang-Olip
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Asmita Banerjee
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mariangela Basile
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, G. d’Annunzio Foundation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Veronika Borutinskaite
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Günther Eissner
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Aleksandar Janev
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nadja Kupper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ana Clara Abadía-Molina
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Enrique G. Olivares
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
- Unidad de Gestión Clínica Laboratorios, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Assunta Pandolfi
- StemTeCh Group, G. d’Annunzio Foundation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Vascular and Stem Cell Biology, Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, CAST (Center for Advanced Studies and Technology, ex CeSI-MeT), Chieti, Italy
| | - Andrea Papait
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michela Pozzobon
- Stem Cells and Regenerative Medicine Lab, Department of Women’s and Children’s Health, University of Padova, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Carmen Ruiz-Ruiz
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Olga Soritau
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Sergiu Susman
- Department of Morphological Sciences-Histology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pathology, IMOGEN Research Center, Cluj-Napoca, Romania
| | - Dariusz Szukiewicz
- Department of General and Experimental Pathology with Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| |
Collapse
|
26
|
Al Madhoun A, Marafie SK, Haddad D, Melhem M, Abu-Farha M, Ali H, Sindhu S, Atari M, Al-Mulla F. Comparative Proteomic Analysis Identifies EphA2 as a Specific Cell Surface Marker for Wharton's Jelly-Derived Mesenchymal Stem Cells. Int J Mol Sci 2020; 21:6437. [PMID: 32899389 PMCID: PMC7503404 DOI: 10.3390/ijms21176437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are a valuable tool in stem cell research due to their high proliferation rate, multi-lineage differentiation potential, and immunotolerance properties. However, fibroblast impurity during WJ-MSCs isolation is unavoidable because of morphological similarities and shared surface markers. Here, a proteomic approach was employed to identify specific proteins differentially expressed by WJ-MSCs in comparison to those by neonatal foreskin and adult skin fibroblasts (NFFs and ASFs, respectively). Mass spectrometry analysis identified 454 proteins with a transmembrane domain. These proteins were then compared across the different cell-lines and categorized based on their cellular localizations, biological processes, and molecular functions. The expression patterns of a selected set of proteins were further confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blotting, and immunofluorescence assays. As anticipated, most of the studied proteins had common expression patterns. However, EphA2, SLC25A4, and SOD2 were predominantly expressed by WJ-MSCs, while CDH2 and Talin2 were specific to NFFs and ASFs, respectively. Here, EphA2 was established as a potential surface-specific marker to distinguish WJ-MSCs from fibroblasts and for prospective use to prepare pure primary cultures of WJ-MSCs. Additionally, CDH2 could be used for a negative-selection isolation/depletion method to remove neonatal fibroblasts contaminating preparations of WJ-MSCs.
Collapse
Affiliation(s)
- Ashraf Al Madhoun
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait;
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (M.M.); (H.A.); (F.A.-M.)
| | - Sulaiman K. Marafie
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.M.); (M.A.-F.)
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (M.M.); (H.A.); (F.A.-M.)
| | - Motasem Melhem
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (M.M.); (H.A.); (F.A.-M.)
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.M.); (M.A.-F.)
| | - Hamad Ali
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (M.M.); (H.A.); (F.A.-M.)
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center (HSC), Kuwait University, Jabriya 046302, Kuwait
| | - Sardar Sindhu
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Maher Atari
- Medical-Surgical Pathology Department, Regenerative Medicine Research Institute, Universitat Internacional de Catalunya, 08195 Barcelona, Spain;
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (M.M.); (H.A.); (F.A.-M.)
| |
Collapse
|
27
|
Human Wharton's Jelly Mesenchymal Stem Cell-Mediated Sciatic Nerve Recovery Is Associated with the Upregulation of Regulatory T Cells. Int J Mol Sci 2020; 21:ijms21176310. [PMID: 32878186 PMCID: PMC7504196 DOI: 10.3390/ijms21176310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022] Open
Abstract
The acceleration of peripheral nerve regeneration is crucial for functional nerve recovery. Our previous study demonstrated that human Wharton’s jelly-derived mesenchymal stem cells (hWJ-MSC) promote sciatic nerve recovery and regeneration via the direct upregulation and release of neurotrophic factors. However, the immunomodulatory role of hWJ-MSC in sciatic nerve recovery remains unclear. The effects of hWJ-MSC on innate immunity, represented by macrophages, natural killer cells, and dendritic cells, as well as on adaptive immunity, represented by CD4+ T, CD8+ T, B, and regulatory T cells (Tregs), were examined using flow cytometry. Interestingly, a significantly increased level of Tregs was detected in blood, lymph nodes (LNs), and nerve-infiltrating cells on POD7, 15, 21, and 35. Anti-inflammatory cytokines, such as IL-4 and IL-10, were significantly upregulated in the LNs and nerves of hWJ-MSC-treated mice. Treg depletion neutralized the improved effects of hWJ-MSC on sciatic nerve recovery. In contrast, Treg administration promoted the functional recovery of five-toe spread and gait stance. hWJ-MSC also expressed high levels of the anti-inflammatory cytokines TGF-β and IL-35. This study indicated that hWJ-MSC induce Treg development to modulate the balance between pro- and anti-inflammation at the injured sciatic nerve by secreting higher levels of anti-inflammatory cytokines.
Collapse
|
28
|
Wang L, Kang Y, Yan H, Zhu X, Zhu T, Jiang J, Zhao J. Tendon regeneration induced by umbilical cord graft in a rabbit tendon defect model. J Tissue Eng Regen Med 2020; 14:1009-1018. [PMID: 32336031 DOI: 10.1002/term.3052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 11/06/2022]
Abstract
Whether tendon regeneration can be induced using the umbilical cord as a whole-graft structure is unknown. In this study, we explored the potential for tendon regeneration induction using an umbilical cord graft in a rabbit model of patella tendon defects. In 52 of 54 New Zealand White rabbits, the central third of the patella tendons of both hind legs was removed to create tendon defects. The rabbits were randomly divided into four groups, nonfilling (empty defect), refilling (defect refilled with resected tendon portion), Wharton's jelly (WJ) outside (WJO; defect filled with umbilical cord graft, WJ side facing outward), and WJ inside (WJI; same as WJO with WJ side facing inward) groups. Four rabbits from WJO and WJI groups were sacrificed for human CD 105 evaluation 1 month after surgery. Further histological, biomechanical, and gene expression analyses were performed at 3 and 6 months after surgery. The untreated patella tendons in the remaining two rabbits were harvested as normal biomechanical controls. Histological evaluation showed that the formed tissue structure fibers in the tendon defect area were much denser and more mature in the WJI group than in all other groups. Biomechanical testing showed that the failure load of the final tissue structure was the highest in the WJI group. Real-time polymerase chain reaction indicated that the expression of most tendon-related genes was upregulated in the WJI group at 6 months after surgery. We concluded that umbilical cord grafting induces effective tendon regeneration, particularly when the WJ side faces inward.
Collapse
Affiliation(s)
- Liren Wang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuhao Kang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hexin Yan
- Department of Research and Development, Shanghai Cryowise Medical Technology Co. Ltd., Shanghai, China
| | - Xuejing Zhu
- Department of Research and Development, Shanghai Cryowise Medical Technology Co. Ltd., Shanghai, China
| | - Tonghe Zhu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
29
|
Adriana-Berenice PV, Alberto PB, del Pilar RGM, Rebeca LM, José AG, Gutiérrez-Iglesias G. Toxic effect of titanium dioxide nanoparticles on human mesenchymal stem cells. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-020-00084-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
30
|
Marinaro F, Gómez-Serrano M, Jorge I, Silla-Castro JC, Vázquez J, Sánchez-Margallo FM, Blázquez R, López E, Álvarez V, Casado JG. Unraveling the Molecular Signature of Extracellular Vesicles From Endometrial-Derived Mesenchymal Stem Cells: Potential Modulatory Effects and Therapeutic Applications. Front Bioeng Biotechnol 2019; 7:431. [PMID: 31921832 PMCID: PMC6932983 DOI: 10.3389/fbioe.2019.00431] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
Endometrial-derived Mesenchymal Stem Cells (endMSCs) are involved in the regeneration and remodeling of human endometrium, being considered one of the most promising candidates for stem cell-based therapies. Their therapeutic effects have been found to be mediated by extracellular vesicles (EV-endMSCs) with pro-angiogenic, anti-apoptotic, and immunomodulatory effects. Based on that, the main goal of this study was to characterize the proteome and microRNAome of these EV-endMSCs by proteomics and transcriptomics approaches. Additionally, we hypothesized that inflammatory priming of endMSCs may contribute to modify the therapeutic potential of these vesicles. High-throughput proteomics revealed that 617 proteins were functionally annotated as Extracellular exosome (GO:0070062), corresponding to the 70% of the EV-endMSC proteome. Bioinformatics analyses allowed us to identify that these proteins were involved in adaptive/innate immune response, complement activation, antigen processing/presentation, negative regulation of apoptosis, and different signaling pathways, among others. Of note, multiplexed quantitative proteomics and Systems Biology analyses showed that IFNγ priming significantly modulated the protein profile of these vesicles. As expected, proteins involved in antigen processing and presentation were significantly increased. Interestingly, immunomodulatory proteins, such as CSF1, ERAP1, or PYCARD were modified. Regarding miRNAs expression profile in EV-endMSCs, Next-Generation Sequencing (NGS) showed that the preferred site of microRNAome targeting was the nucleus (n = 371 microTargets), significantly affecting signal transduction (GO:0007165), cell proliferation (GO:0008283), and apoptotic processes (GO:0006915), among others. Interestingly, NGS analyses highlighted that several miRNAs, such as hsa-miR-150-5p or hsa-miR-196b-5p, were differentially expressed in IFNγ-primed EV-endMSCs. These miRNAs have a functional involvement in glucocorticoid receptor signaling, IL-6/8/12 signaling, and in the role of macrophages. In summary, these results allowed us to understand the complexity of the molecular networks in EV-endMSCs and their potential effects on target cells. To our knowledge, this is the first comprehensive study based on proteomic and genomic approaches to unravel the therapeutic potential of these extracellular vesicles, that may be used as immunomodulatory effectors in the treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Federica Marinaro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - María Gómez-Serrano
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,Center for Tumor Biology and Immunology, Institute of Molecular Biology and Tumor Research, Philipps University, Marburg, Germany
| | - Inmaculada Jorge
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Rebeca Blázquez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Esther López
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Verónica Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Javier G Casado
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|
31
|
Harrell CR, Gazdic M, Fellabaum C, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Therapeutic Potential of Amniotic Fluid Derived Mesenchymal Stem Cells Based on their Differentiation Capacity and Immunomodulatory Properties. Curr Stem Cell Res Ther 2019; 14:327-336. [PMID: 30806325 DOI: 10.2174/1574888x14666190222201749] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/30/2018] [Accepted: 01/23/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Amniotic Fluid Derived Mesenchymal Stem Cells (AF-MSCs) are adult, fibroblast- like, self-renewable, multipotent stem cells. During the last decade, the therapeutic potential of AF-MSCs, based on their huge differentiation capacity and immunomodulatory characteristics, has been extensively explored in animal models of degenerative and inflammatory diseases. OBJECTIVE In order to describe molecular mechanisms responsible for the therapeutic effects of AFMSCs, we summarized current knowledge about phenotype, differentiation potential and immunosuppressive properties of AF-MSCs. METHODS An extensive literature review was carried out in March 2018 across several databases (MEDLINE, EMBASE, Google Scholar), from 1990 to present. Keywords used in the selection were: "amniotic fluid derived mesenchymal stem cells", "cell-therapy", "degenerative diseases", "inflammatory diseases", "regeneration", "immunosuppression". Studies that emphasized molecular and cellular mechanisms responsible for AF-MSC-based therapy were analyzed in this review. RESULTS AF-MSCs have huge differentiation and immunosuppressive potential. AF-MSCs are capable of generating cells of mesodermal origin (chondrocytes, osteocytes and adipocytes), neural cells, hepatocytes, alveolar epithelial cells, insulin-producing cells, cardiomyocytes and germ cells. AF-MSCs, in juxtacrine or paracrine manner, regulate proliferation, activation and effector function of immune cells. Due to their huge differentiation capacity and immunosuppressive characteristic, transplantation of AFMSCs showed beneficent effects in animal models of degenerative and inflammatory diseases of nervous, respiratory, urogenital, cardiovascular and gastrointestinal system. CONCLUSION Considering the fact that amniotic fluid is obtained through routine prenatal diagnosis, with minimal invasive procedure and without ethical concerns, AF-MSCs represents a valuable source for cell-based therapy of organ-specific or systemic degenerative and inflammatory diseases.
Collapse
Affiliation(s)
- Carl R Harrell
- Regenerative Processing Plant-RPP, LLC, 34176 US Highway 19 N Palm Harbor, Palm Harbor, FL, United States
| | - Marina Gazdic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Crissy Fellabaum
- Regenerative Processing Plant-RPP, LLC, 34176 US Highway 19 N Palm Harbor, Palm Harbor, FL, United States
| | - Nemanja Jovicic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Valentin Djonov
- Institute of Anatomy University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Vladislav Volarevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| |
Collapse
|
32
|
Wang AYL, Loh CYY, Shen HH, Hsieh SY, Wang IK, Chuang SH, Wei FC. Topical Application of Human Wharton's Jelly Mesenchymal Stem Cells Accelerates Mouse Sciatic Nerve Recovery and is Associated with Upregulated Neurotrophic Factor Expression. Cell Transplant 2019; 28:1560-1572. [PMID: 31565957 PMCID: PMC6923547 DOI: 10.1177/0963689719880543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve regeneration following injury is often slow and impaired, which results in weakened and denervated muscle with subsequent atrophy. Human Wharton's jelly mesenchymal stem cells (hWJ-MSC) have potential regenerative properties which, however, remain unknown in mouse nerve recovery. This study investigated the effect of the topical application of hWJ-MSC onto repairing transected sciatic nerves in a mouse model. Human adipocyte-derived stem cells (hADSC) were used as a positive control. The sciatic nerve of BALB/c mice was transected at a fixed point and repaired under the microscope using 10-0 sutures. hWJ-MSC and hADSC were applied to the site of repair and mice were followed up for 1 year. The hWJ-MSC group had significantly better functional recovery of five-toe spread and gait angles compared with the negative control and hADSC groups. hWJ-MSC improved sciatic nerve regeneration in a dose-dependent fashion. The hWJ-MSC group had a better quality of regenerated nerve with an increased number of myelinated axons throughout. hWJ-MSC appear to be safe in mice after 1 year of follow-up. hWJ-MSC also expressed higher levels of neurotrophic factor-3, brain-derived neurotrophic factor, and glial-derived neurotrophic factor than hADSC. hWJ-MSC may promote better nerve recovery than hADSC because of this upregulation of neurotrophic factors.
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | - Hsin-Hsin Shen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Sing-Ying Hsieh
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Ing-Kae Wang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Sheng-Hao Chuang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Fu-Chan Wei
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Plastic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
33
|
Lyons FG, Mattei TA. Sources, Identification, and Clinical Implications of Heterogeneity in Human Umbilical Cord Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:243-256. [PMID: 31487028 DOI: 10.1007/978-3-030-24108-7_13] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Heterogeneity among different subpopulations of human umbilical cord mesenchymal stem cell (hUCMSCs) lines is an ubiquitous phenomenon, with such variability being related to several factors including the identity of the individual donor, tissue source (Wharton's jelly vs. umbilical cord blood), culture conditions, as well as random variations in the cloning expansion process. In this chapter, we provide a general overview on the sources as well as available experimental techniques for proper identification of heterogeneity in hUCMSCs. Finally, we provide a brief discussion on the current scientific evidence regarding the potential superiority of subpopulations of hUCMSCs for specific clinical applications. Taking into account the exponential growth on the available experimental data on hUCMSCs in the past few years, this chapter is not intended to be comprehensive in nature, but rather is intended to provide a general overview about the central role which the topic of heterogeneity has in both basic science and clinical research in umbilical cord stem cells.
Collapse
Affiliation(s)
- Frank G Lyons
- Department of Orthopaedic Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Tobias A Mattei
- Department of Neurological Surgery, Saint Louis University, St. Louis, MO, USA. .,SSM Saint Louis University Hospital, St. Louis, MO, USA.
| |
Collapse
|
34
|
Mahdavi Gorabi A, Banach M, Reiner Ž, Pirro M, Hajighasemi S, Johnston TP, Sahebkar A. The Role of Mesenchymal Stem Cells in Atherosclerosis: Prospects for Therapy via the Modulation of Inflammatory Milieu. J Clin Med 2019; 8:E1413. [PMID: 31500373 PMCID: PMC6780166 DOI: 10.3390/jcm8091413] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a chronic, inflammatory disease that mainly affects the arterial intima. The disease is more prevalent in middle-age and older individuals with one or more cardiovascular risk factors, including dyslipidemia, hypertension, diabetes, smoking, obesity, and others. The beginning and development of atherosclerosis has been associated with several immune components, including infiltration of inflammatory cells, monocyte/macrophage-derived foam cells, and inflammatory cytokines and chemokines. Mesenchymal stem cells (MSCs) originate from several tissue sources of the body and have self-renewal and multipotent differentiation characteristics. They also have immunomodulatory and anti-inflammatory properties. Recently, it was shown that MSCs have a regulatory role in plasma lipid levels. In addition, MSCs have shown to have promising potential in terms of treatment strategies for several diseases, including those with an inflammatory component. In this regard, transplantation of MSCs to patients with atherosclerosis has been proposed as a novel strategy in the treatment of this disease. In this review, we summarize the current advancements regarding MSCs for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Department of Basic and Clinical Research, Tehran Heart Center, Tehran University of Medical Sciences, Tehran 1411713138, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), 93-338 Lodz, Poland
| | - Željko Reiner
- Department of Internal medicine, University Hospital Center Zagreb, Kišpatićeva 12, Zagreb 1000, Croatia
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, 06123 Perugia, Italy
| | - Saeideh Hajighasemi
- Department of Medical Biotechnology, Faculty of Paramedicine, Qazvin University of Medical Sciences, Qazvin 1531534199, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran.
| |
Collapse
|
35
|
Guan YT, Xie Y, Li DS, Zhu YY, Zhang XL, Feng YL, Chen YP, Xu LJ, Liao PF, Wang G. Comparison of biological characteristics of mesenchymal stem cells derived from the human umbilical cord and decidua parietalis. Mol Med Rep 2019; 20:633-639. [PMID: 31180542 PMCID: PMC6579987 DOI: 10.3892/mmr.2019.10286] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 04/05/2019] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are derived from the mesoderm and have the self‑renewal capacity and multi‑directional differentiation potential of adult stem cells. Stem cells from different sources have different molecular and growth characteristics; therefore, the mechanisms and effects of stem cell‑mediated repair and tissue regeneration may be different. The aim of the present study was to compare the biological characteristics of MSCs derived from the umbilical cord (UC‑MSCs) and MSCs derived from the decidua parietalis (DP‑MSCs), and to provide new evidence for the selection of seed cells in regenerative medicine. Growth curves, cell doubling times, colony formation rates, immunophenotypes, differentiation capacities and secretion‑factor levels of MSCs derived from the two sources were analysed. UC‑MSCs and DP‑MSCs exhibited similar properties with regards to morphology, spiral growth, immunophenotype, and potential to differentiate into osteoblasts and adipocytes. For each cell type, the positive rates of the cell surface markers CD73, CD90 and CD105 were >95%, whereas CD34 and CD45 positive rates were <1%. Analyses of in vitro growth kinetics revealed shorter cell‑doubling times, and higher proliferative rates and colony formation rates of UC‑MSCs compared with DP‑MSCs (P<0.05). The concentration of basic fibroblast growth factor in the supernatant from UC‑MSCs was higher compared with that from DP‑MSCs (P<0.05). However, UC‑MSC supernatants exhibited lower levels of of keratinocyte growth factor, vascular endothelial growth factor and stem cell factor compared with DP‑MSCs (P<0.05). In conclusion, in vitro characterization of MSCs from these tissue sources revealed a number of common biological properties. However, the results also demonstrated clear biological distinctions and suggested that UC‑MSCs may have more effective application prospects.
Collapse
Affiliation(s)
- Yu-Tao Guan
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Yong Xie
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Dong-Sheng Li
- Guangdong Vitalife Biotechnology Co., Ltd., Foshan, Guangdong 528000, P.R. China
| | - Yu-Yuan Zhu
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Xiao-Lu Zhang
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Ying-Lin Feng
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Yang-Ping Chen
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Li-Jiang Xu
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Pin-Fu Liao
- Guangdong Vitalife Biotechnology Co., Ltd., Foshan, Guangdong 528000, P.R. China
| | - Gang Wang
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| |
Collapse
|
36
|
Amniotic Fluid Cells, Stem Cells, and p53: Can We Stereotype p53 Functions? Int J Mol Sci 2019; 20:ijms20092236. [PMID: 31067653 PMCID: PMC6539965 DOI: 10.3390/ijms20092236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 12/30/2022] Open
Abstract
In recent years, great interest has been devoted to finding alternative sources for human stem cells which can be easily isolated, ideally without raising ethical objections. These stem cells should furthermore have a high proliferation rate and the ability to differentiate into all three germ layers. Amniotic fluid, ordinarily discarded as medical waste, is potentially such a novel source of stem cells, and these amniotic fluid derived stem cells are currently gaining a lot of attention. However, further information will be required about the properties of these cells before they can be used for therapeutic purposes. For example, the risk of tumor formation after cell transplantation needs to be explored. The tumor suppressor protein p53, well known for its activity in controlling Cell Prolif.eration and cell death in differentiated cells, has more recently been found to be also active in amniotic fluid stem cells. In this review, we summarize the major findings about human amniotic fluid stem cells since their discovery, followed by a brief overview of the important role played by p53 in embryonic and adult stem cells. In addition, we explore what is known about p53 in amniotic fluid stem cells to date, and emphasize the need to investigate its role, particularly in the context of cell tumorigenicity.
Collapse
|
37
|
Jamalpoor Z, Taromi N, Soleimani M, Koudehi MF, Asgari A. In vitro interaction of human Wharton's jelly mesenchymal stem cells with biomimetic 3D scaffold. J Biomed Mater Res A 2019; 107:1166-1175. [DOI: 10.1002/jbm.a.36608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Zahra Jamalpoor
- Trauma Research CenterAja University of Medical Sciences Tehran Iran
| | - Nafise Taromi
- Department of Medical Biotechnology, Faculty of Allied MedicineIran University of Medical Sciences Tehran Iran
- Cellular and Molecular Research CenterIran University of Medical Sciences Tehran Iran
| | - Mansooreh Soleimani
- Cellular and Molecular Research CenterIran University of Medical Sciences Tehran Iran
- Department of AnatomyIran University of Medical Sciences Tehran Iran
| | | | - Alireza Asgari
- Aerospace Medicine Research CenterAja University of Medical Sciences Tehran Iran
| |
Collapse
|
38
|
Crain SK, Robinson SR, Thane KE, Davis AM, Meola DM, Barton BA, Yang VK, Hoffman AM. Extracellular Vesicles from Wharton's Jelly Mesenchymal Stem Cells Suppress CD4 Expressing T Cells Through Transforming Growth Factor Beta and Adenosine Signaling in a Canine Model. Stem Cells Dev 2019; 28:212-226. [PMID: 30412034 DOI: 10.1089/scd.2018.0097] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are widely investigated as potential therapeutic agents due to their potent immunomodulatory capacity. Although specific mechanisms by which MSC acts on immune cells are emerging, many questions remain, including the potential of extracellular vesicles (EVs) to mediate biological activities. Canine MSCs are of interest for both veterinary and comparative models of disease and have been shown to suppress CD4pos T cell proliferation. The aim of this study was to determine whether EV isolated from canine Wharton's jelly-derived MSC (WJ-MSC EV) suppresses CD4pos T cell proliferation using biochemical mechanisms previously ascribed to soluble mediators [transforming growth factor beta (TGF-β) and adenosine]. WJ-MSC EV exhibited mode of 125 nm diameter, low buoyant density (1.1 g/mL), and expression of EV proteins Alix and TSG101. Functionally, EVs inhibited CD4pos T cell proliferation in a dose-dependent manner, which was absent in EV-depleted samples and EVs from non-MSC fibroblasts. EV suppression of CD4pos T cell proliferation was inhibited by a TGF-βRI antagonist, neutralizing antibodies to TGF-β, or A2A adenosine receptor blockade. TGF-β was present on EVs as latent complexes most likely tethered to EV membrane by betaglycan. These data demonstrate that canine WJ-MSC EV utilizes TGF-β and adenosine signaling to suppress proliferation of CD4pos T cell and will enable further investigation into mechanisms of immune cell modulation, as well as refinement of WJ-MSC and their EVs for therapeutic application.
Collapse
Affiliation(s)
- Sarah K Crain
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Sally R Robinson
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Kristen E Thane
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Airiel M Davis
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Dawn M Meola
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Bruce A Barton
- 2 Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Vicky K Yang
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Andrew M Hoffman
- 1 Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| |
Collapse
|
39
|
Zhuang Q, Ma R, Yin Y, Lan T, Yu M, Ming Y. Mesenchymal Stem Cells in Renal Fibrosis: The Flame of Cytotherapy. Stem Cells Int 2019; 2019:8387350. [PMID: 30766607 PMCID: PMC6350586 DOI: 10.1155/2019/8387350] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/27/2018] [Indexed: 12/24/2022] Open
Abstract
Renal fibrosis, as the fundamental pathological process of chronic kidney disease (CKD), is a pathologic extension of the normal wound healing process characterized by endothelium injury, myofibroblast activation, macrophage migration, inflammatory signaling stimulation, matrix deposition, and remodelling. Yet, the current method of treating renal fibrosis is fairly limited, including angiotensin-converting enzyme inhibition, angiotensin receptor blockade, optimal blood pressure control, and sodium bicarbonate for metabolic acidosis. MSCs are pluripotent adult stem cells that can differentiate into various types of tissue lineages, such as the cartilage (chondrocytes), bone (osteoblasts), fat (adipocytes), and muscle (myocytes). Because of their many advantages like ubiquitous sources, convenient procurement and collection, low immunogenicity, and low adverse effects, with their special identification markers, mesenchymal stem MSC-based therapy is getting more and more attention. Based on the mechanism of renal fibrosis, MSCs mostly participate throughout the renal fibrotic process. According to the latest and overall literature reviews, we aim to elucidate the antifibrotic mechanisms and effects of diverse sources of MSCs on renal fibrosis, assess their efficacy and safety in preliminarily clinical application, answer the controversial questions, and provide novel ideas into the MSC cellular therapy of renal fibrosis.
Collapse
Affiliation(s)
- Quan Zhuang
- Transplantation Center of The 3rd Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Research Center of National Health Ministry on Transplantation Medicine, Changsha, Hunan 410013, China
| | - Ruoyu Ma
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yanshuang Yin
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Tianhao Lan
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Meng Yu
- Transplantation Center of The 3rd Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Research Center of National Health Ministry on Transplantation Medicine, Changsha, Hunan 410013, China
| | - Yingzi Ming
- Transplantation Center of The 3rd Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Research Center of National Health Ministry on Transplantation Medicine, Changsha, Hunan 410013, China
| |
Collapse
|
40
|
Yousefi F, Lavi Arab F, Saeidi K, Amiri H, Mahmoudi M. Various strategies to improve efficacy of stem cell transplantation in multiple sclerosis: Focus on mesenchymal stem cells and neuroprotection. J Neuroimmunol 2018; 328:20-34. [PMID: 30557687 DOI: 10.1016/j.jneuroim.2018.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/30/2018] [Indexed: 02/09/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) which predominantly affect young adults and undergo heavy socioeconomic burdens. Conventional therapeutic modalities for MS mostly downregulate aggressive immune responses and are almost insufficient for management of progressive course of the disease. Mesenchymal stem cells (MSCs), due to both immunomodulatory and neuroprotective properties have been known as practical cells for treatment of neurodegenerative diseases like MS. However, clinical translation of MSCs is associated with some limitations such as short-life engraftment duration, little in vivo trans-differentiation and restricted accessibility into damaged sites. Therefore, laboratory manipulation of MSCs can improve efficacy of MSCs transplantation in MS patients. In this review, we discuss several novel approaches, which can potentially enhance MSCs capabilities for treating MS.
Collapse
Affiliation(s)
- Forouzan Yousefi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kolsoum Saeidi
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Houshang Amiri
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
41
|
Tettelbach W, Cazzell S, Sigal F, Caporusso JM, Agnew PS, Hanft J, Dove C. A multicentre prospective randomised controlled comparative parallel study of dehydrated human umbilical cord (EpiCord) allograft for the treatment of diabetic foot ulcers. Int Wound J 2018; 16:122-130. [PMID: 30246926 PMCID: PMC7380046 DOI: 10.1111/iwj.13001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/15/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to determine the safety and effectiveness of dehydrated human umbilical cord allograft (EpiCord) compared with alginate wound dressings for the treatment of chronic, non‐healing diabetic foot ulcers (DFU). A multicentre, randomised, controlled, clinical trial was conducted at 11 centres in the United States. Individuals with a confirmed diagnosis of Type 1 or Type 2 diabetes presenting with a 1 to 15 cm2 ulcer located below the ankle that had been persisting for at least 30 days were eligible for the 14‐day study run‐in phase. After 14 days of weekly debridement, moist wound therapy, and off‐loading, those with ≤30% wound area reduction post‐debridement (n = 155) were randomised in a 2:1 ratio to receive a weekly application of EpiCord (n = 101) or standardised therapy with alginate wound dressing, non‐adherent silicone dressing, absorbent non‐adhesive hydropolymer secondary dressing, and gauze bandage roll (n = 54). All wounds continued to have appropriate off‐loading during the treatment phase of the study. Study visits were conducted for 12 weeks. At each weekly visit, the DFU was cleaned and debrided as necessary, with the wound photographed pre‐ and post‐debridement and measured before the application of treatment group‐specific dressings. A follow‐up visit was performed at week 16. The primary study end point was the percentage of complete closure of the study ulcer within 12 weeks, as assessed by Silhouette camera. Data for randomised subjects meeting study inclusion criteria were included in an intent‐to‐treat (ITT) analysis. Additional analysis was conducted on a group of subjects (n = 134) who completed the study per protocol (PP) (EpiCord, n = 86, alginate, n = 48) and for those subjects receiving adequate debridement (EpiCord, n = 67, alginate, n = 40). ITT analysis showed that DFUs treated with EpiCord were more likely to heal within 12 weeks than those receiving alginate dressings, 71 of 101 (70%) vs 26 of 54 (48%) for EpiCord and alginate dressings, respectively, P = 0.0089. Healing rates at 12 weeks for subjects treated PP were 70 of 86 (81%) for EpiCord‐treated and 26 of 48 (54%) for alginate‐treated DFUs, P = 0.0013. For those DFUs that received adequate debridement (n = 107, ITT population), 64 of 67 (96%) of the EpiCord‐treated ulcers healed completely within 12 weeks, compared with 26 of 40 (65%) of adequately debrided alginate‐treated ulcers, P < 0.0001. Seventy‐five subjects experienced at least one adverse event, with a total of 160 adverse events recorded. There were no adverse events related to either EpiCord or alginate dressings. These results demonstrate the safety and efficacy of EpiCord as a treatment for non‐healing DFUs.
Collapse
Affiliation(s)
- William Tettelbach
- Wound Care & Hyperbaric Medicine Clinical Services, Intermountain Healthcare, Salt Lake City, Utah
| | - Shawn Cazzell
- Limb Preservation Platform, Inc., Fresno, California
| | - Felix Sigal
- Foot and Ankle Clinic, Los Angeles, California
| | | | | | | | | |
Collapse
|
42
|
Kabataş S, Civelek E, İnci Ç, Yalçınkaya EY, Günel G, Kır G, Albayrak E, Öztürk E, Adaş G, Karaöz E. Wharton's Jelly-Derived Mesenchymal Stem Cell Transplantation in a Patient with Hypoxic-Ischemic Encephalopathy: A Pilot Study. Cell Transplant 2018; 27:1425-1433. [PMID: 30203688 PMCID: PMC6180731 DOI: 10.1177/0963689718786692] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) have been introduced as a possible therapy in hypoxic-ischemic encephalopathy (HIE). We report a 16-year-old boy who was treated with WJ-MSCs in the course of HIE due to post-cardiopulmonary resuscitation. He received a long period of mechanical ventilation and tracheostomy with spastic quadriparesis. He underwent the intrathecal (1×106/kg in 3 mL), intramuscular (1×106/kg in 20 mL) and intravenous (1×106/kg in 30 mL) administrations of WJ-MSCs for each application route (twice a month for 2 months). After stem cell infusions, progressive improvements were shown in his neurological examination, neuroradiological, and neurophysiological findings. To our best knowledge, this is a pioneer project to clinically study the neural repair effect of WJ-MSCs in a patient with HIE.
Collapse
Affiliation(s)
- Serdar Kabataş
- Department of Neurosurgery, Gaziosmanpaşa Taksim Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
- Serdar Kabataş, University of Health Sciences, Gaziosmanpaşa Taksim Training and Research Hospital, Department of Neurosurgery, Karayolları Mahallesi, Osmanbey Caddesi 616. Sokak No:10, 34255 Gaziosmanpaşa, Istanbul, Turkey. Emails: ,
| | - Erdinç Civelek
- Department of Neurosurgery, Gaziosmanpaşa Taksim Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Çiğdem İnci
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell), Istanbul, Turkey
| | - Ebru Yılmaz Yalçınkaya
- Department of Physical Medicine and Rehabilitation, Gaziosmanpaşa Taksim Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Gülşen Günel
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell), Istanbul, Turkey
| | - Gülay Kır
- Department of Anestesiology and Reanimation, Gaziosmanpaşa Taksim Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Esra Albayrak
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell), Istanbul, Turkey
| | - Erek Öztürk
- Department of Neurosurgery, Gaziosmanpaşa Taksim Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Gökhan Adaş
- Department of General Surgery, Gaziosmanpaşa Taksim Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Erdal Karaöz
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell), Istanbul, Turkey
- Istinye University, Vice President, Istanbul, Turkey
| |
Collapse
|
43
|
Fiori A, Terlizzi V, Kremer H, Gebauer J, Hammes HP, Harmsen MC, Bieback K. Mesenchymal stromal/stem cells as potential therapy in diabetic retinopathy. Immunobiology 2018; 223:729-743. [PMID: 29402461 DOI: 10.1016/j.imbio.2018.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/13/2017] [Accepted: 01/15/2018] [Indexed: 02/06/2023]
Abstract
Diabetic retinopathy (DR) is a multifactorial microvascular disease induced by hyperglycemia and subsequent metabolic abnormalities. The resulting cell stress causes a sequela of events that ultimately can lead to severe vision impairment and blindness. The early stages are characterized by activation of glia and loss of pericytes, endothelial cells (EC) and neuronal cells. The integrity of the retinal microvasculature becomes affected, and, as a possible late response, macular edema may develop as a common reason for vision loss in patients with non-proliferative DR. Moreover, the local ischemia can trigger vasoproliferation leading to vision-threating proliferative DR (PDR) in humans. Available treatment options include control of metabolic and hemodynamic factors. Timely intervention of advanced DR stages with laser photocoagulation, intraocular anti-vascular endothelial growth factor (VEGF) or glucocorticoid drugs can reduce vision loss. As the pathology involves cell loss of both the vascular and neuroglial compartments, cell replacement strategies by stem and progenitor cells have gained considerable interest in the past years. Compared to other disease entities, so far little is known about the efficacy and potential mode of action of cell therapy in treatment of DR. In preclinical models of DR different cell types have been applied ranging from embryonic or induced pluripotent stem cells, hematopoietic stem cells, and endothelial progenitor cells to mesenchymal stromal cells (MSC). The latter cell population can combine various modes of action (MoA), thus they are among the most intensely tested cell types in cell therapy. The aim of this review is to discuss the rationale for using MSC as potential cell therapy to treat DR. Accordingly, we will revise identified MoA of MSCs and speculate how these may support the repair of the damaged retina.
Collapse
Affiliation(s)
- Agnese Fiori
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Germany
| | - Vincenzo Terlizzi
- Dept. Endocrinology, 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Germany; University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Lab for Cardiovascular Regenerative Medicine (CAVAREM), Groningen, The Netherlands
| | - Heiner Kremer
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Germany
| | - Julian Gebauer
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Germany
| | - Hans-Peter Hammes
- Dept. Endocrinology, 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Martin C Harmsen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Lab for Cardiovascular Regenerative Medicine (CAVAREM), Groningen, The Netherlands
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Germany.
| |
Collapse
|
44
|
Molecular Mechanisms Responsible for Anti-inflammatory and Immunosuppressive Effects of Mesenchymal Stem Cell-Derived Factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1084:187-206. [PMID: 31175638 DOI: 10.1007/5584_2018_306] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) are self-renewable cells capable for multilineage differentiation and immunomodulation. MSCs are able to differentiate into all cell types of mesodermal origin and, due to their plasticity, may generate cells of neuroectodermal or endodermal origin in vitro. In addition to the enormous differentiation potential, MSCs efficiently modulate innate and adaptive immune response and, accordingly, were used in large number of experimental and clinical trials as new therapeutic agents in regenerative medicine. Although MSC-based therapy was efficient in the treatment of many inflammatory and degenerative diseases, unwanted differentiation of engrafted MSCs represents important safety concern. MSC-based beneficial effects are mostly relied on the effects of MSC-derived immunomodulatory, pro-angiogenic, and trophic factors which attenuate detrimental immune response and inflammation, reduce ischemic injuries, and promote tissue repair and regeneration. Accordingly, MSC-conditioned medium (MSC-CM), which contains MSC-derived factors, has the potential to serve as a cell-free, safe therapeutic agent for the treatment of inflammatory diseases. Herein, we summarized current knowledge regarding identification, isolation, ontogeny, and functional characteristics of MSCs and described molecular mechanisms responsible for MSC-CM-mediated anti-inflammatory and immunosuppressive effects in the therapy of inflammatory lung, liver, and kidney diseases and ischemic brain injury.
Collapse
|
45
|
Bustos F, Sepúlveda H, Prieto CP, Carrasco M, Díaz L, Palma J, Lattus J, Montecino M, Palma V. Runt-Related Transcription Factor 2 Induction During Differentiation of Wharton's Jelly Mesenchymal Stem Cells to Osteoblasts Is Regulated by Jumonji AT-Rich Interactive Domain 1B Histone Demethylase. Stem Cells 2017; 35:2430-2441. [DOI: 10.1002/stem.2704] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/26/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Francisco Bustos
- Laboratory of Stem Cells and Development; Faculty of Sciences, Universidad de Chile, Ñuñoa; Santiago Chile
- FONDAP Center for Genome Regulation.; Santiago Chile
- Sir James Black Centre, School of Life Sciences; University of Dundee; Dundee United Kingdom
| | - Hugo Sepúlveda
- FONDAP Center for Genome Regulation.; Santiago Chile
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello.; Santiago Chile
| | - Catalina P. Prieto
- Laboratory of Stem Cells and Development; Faculty of Sciences, Universidad de Chile, Ñuñoa; Santiago Chile
- FONDAP Center for Genome Regulation.; Santiago Chile
| | - Margarita Carrasco
- FONDAP Center for Genome Regulation.; Santiago Chile
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello.; Santiago Chile
| | - Lorena Díaz
- Laboratory of Stem Cells and Development; Faculty of Sciences, Universidad de Chile, Ñuñoa; Santiago Chile
| | - José Palma
- Laboratory of Stem Cells and Development; Faculty of Sciences, Universidad de Chile, Ñuñoa; Santiago Chile
| | - José Lattus
- Department of Obstetrics and Gynecology; Dr. Luis Tisné Brousse Hospital, Universidad de Chile, Campus Oriente.; Peñalolén Santiago Chile
| | - Martín Montecino
- FONDAP Center for Genome Regulation.; Santiago Chile
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello.; Santiago Chile
| | - Verónica Palma
- Laboratory of Stem Cells and Development; Faculty of Sciences, Universidad de Chile, Ñuñoa; Santiago Chile
- FONDAP Center for Genome Regulation.; Santiago Chile
| |
Collapse
|
46
|
Davies JE, Walker JT, Keating A. Concise Review: Wharton's Jelly: The Rich, but Enigmatic, Source of Mesenchymal Stromal Cells. Stem Cells Transl Med 2017; 6:1620-1630. [PMID: 28488282 PMCID: PMC5689772 DOI: 10.1002/sctm.16-0492] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/03/2017] [Accepted: 02/24/2017] [Indexed: 12/21/2022] Open
Abstract
The umbilical cord has become an increasingly used source of mesenchymal stromal cells for preclinical and, more recently, clinical studies. Despite the increased activity, several aspects of this cell population have been under‐appreciated. Key issues are that consensus on the anatomical structures within the cord is lacking, and potentially different populations are identified as arising from a single source. To help address these points, we propose a histologically based nomenclature for cord structures and provide an analysis of their developmental origins and composition. Methods of cell isolation from Wharton's jelly are discussed and the immunophenotypic and clonal characteristics of the cells are evaluated. The perivascular origin of the cells is also addressed. Finally, clinical trials with umbilical cord cells are briefly reviewed. Interpreting the outcomes of the many clinical studies that have been undertaken with mesenchymal stromal cells from different tissue sources has been challenging, for many reasons. It is, therefore, particularly important that as umbilical cord cells are increasingly deployed therapeutically, we strive to better understand the derivation and functional characteristics of the cells from this important tissue source. Stem Cells Translational Medicine2017;6:1620–1630
Collapse
Affiliation(s)
- John E Davies
- Institute of Biomaterials and Biomedical Engineering, Toronto, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - John T Walker
- Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Armand Keating
- Institute of Biomaterials and Biomedical Engineering, Toronto, Ontario, Canada.,Cell Therapy Program, Arthritis Program, Krembil Research Institute, and Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| |
Collapse
|
47
|
Oppliger B, Joerger-Messerli MS, Simillion C, Mueller M, Surbek DV, Schoeberlein A. Mesenchymal stromal cells from umbilical cord Wharton's jelly trigger oligodendroglial differentiation in neural progenitor cells through cell-to-cell contact. Cytotherapy 2017; 19:829-838. [PMID: 28457739 DOI: 10.1016/j.jcyt.2017.03.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/15/2017] [Accepted: 03/22/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND AIMS Wharton's jelly mesenchymal stromal cells (WJ-MSCs) might be ideal candidates to treat perinatal brain damage. Their secretome has been shown to have beneficial effects on neuroregeneration, in part through interaction with neural progenitor cells (NPCs). However, it remains unclear whether cell-to-cell contact decisively contributes to this positive effect. The objective of this study was to elucidate the mechanism through which differentiation in NPCs is triggered after exposure to WJ-MSCs. Furthermore, given that WJ-MSCs can be derived from term (tWJ-MSCs) or preterm (ptWJ-MSCs) deliveries and that WJ-MSCs might be used for transplantations independent of gestational age, the influence of tWJ-MSCs versus ptWJ-MSCs on the differentiation capacities of NPCs was studied. METHODS The effect of tWJ-MSCs and ptWJ-MSCs on the expression of neuroglial markers in NPCs was assessed in co-culture (CC), conditioned medium (CM) or transwell CC experiments by immunocytochemistry, real-time polymerase chain reaction and Western blot. Additionally, mass spectrometry was used to study their secretomes. RESULTS NPCs showed an increased expression of glial markers after CC with WJ-MSCs or exposure to WJ-MSC-CMs. CC had a more prominent effect on the expression of glial markers compared with CM or transwell CCs. tWJ-MSCs more strongly induced the expression of mature oligodendroglial markers compared with ptWJ-MSCs. A possible role in enhancing this maturation could be attributed to the laminin α2-subunit. CONCLUSIONS Cell-to-cell contact between WJ-MSCs and NPCs induces oligodendrogenesis on NPCs, whereas trophic factor secretion is sufficient to promote astrogenesis. Thus, transplanting WJ-MSCs may promote endogenous neuroregeneration in perinatal brain damage.
Collapse
Affiliation(s)
- Byron Oppliger
- Department of Obstetrics and Gynecology, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of Clinical Research, University of Bern, Switzerland
| | - Marianne S Joerger-Messerli
- Department of Obstetrics and Gynecology, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of Clinical Research, University of Bern, Switzerland
| | - Cedric Simillion
- Department of Clinical Research, University of Bern, Switzerland
| | - Martin Mueller
- Department of Obstetrics and Gynecology, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of Clinical Research, University of Bern, Switzerland; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, Connecticut, USA
| | - Daniel V Surbek
- Department of Obstetrics and Gynecology, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of Clinical Research, University of Bern, Switzerland
| | - Andreina Schoeberlein
- Department of Obstetrics and Gynecology, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of Clinical Research, University of Bern, Switzerland.
| |
Collapse
|
48
|
Mueller M, Oppliger B, Joerger-Messerli M, Reinhart U, Barnea E, Paidas M, Kramer BW, Surbek DV, Schoeberlein A. Wharton's Jelly Mesenchymal Stem Cells Protect the Immature Brain in Rats and Modulate Cell Fate. Stem Cells Dev 2016; 26:239-248. [PMID: 27842457 DOI: 10.1089/scd.2016.0108] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The development of a mammalian brain is a complex and long-lasting process. Not surprisingly, preterm birth is the leading cause of death in newborns and children. Advances in perinatal care reduced mortality, but morbidity still represents a major burden. New therapeutic approaches are thus desperately needed. Given that mesenchymal stem/stromal cells (MSCs) emerged as a promising candidate for cell therapy, we transplanted MSCs derived from the Wharton's Jelly (WJ-MSCs) to reduce the burden of immature brain injury in a murine animal model. WJ-MSCs transplantation resulted in protective activity characterized by reduced myelin loss and astroglial activation. WJ-MSCs improved locomotor behavior as well. To address the underlying mechanisms, we tested the key regulators of responses to DNA-damaging agents, such as cyclic AMP-dependent protein kinase/calcium-dependent protein kinase (PKA/PKC), cyclin-dependent kinase (CDK), ataxia-telangiectasia-mutated/ATM- and Rad3-related (ATM/ATR) substrates, protein kinase B (Akt), and 14-3-3 binding protein partners. We characterized WJ-MSCs using a specific profiler polymerase chain reaction array. We provide evidence that WJ-MSCs target pivotal regulators of the cell fate such as CDK/14-3-3/Akt signaling. We identified leukemia inhibitory factor as a potential candidate of WJ-MSCs' induced modifications as well. We hypothesize that WJ-MSCs may exert adaptive responses depending on the type of injury they are facing, making them prominent candidates for cell therapy in perinatal injuries.
Collapse
Affiliation(s)
- Martin Mueller
- 1 Department of Clinical Research, University of Bern , Bern, Switzerland .,2 Department of Obstetrics and Gynecology, University of Bern , Bern, Switzerland .,3 Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine , New Haven, Connecticut
| | - Byron Oppliger
- 1 Department of Clinical Research, University of Bern , Bern, Switzerland .,2 Department of Obstetrics and Gynecology, University of Bern , Bern, Switzerland
| | - Marianne Joerger-Messerli
- 1 Department of Clinical Research, University of Bern , Bern, Switzerland .,2 Department of Obstetrics and Gynecology, University of Bern , Bern, Switzerland
| | - Ursula Reinhart
- 1 Department of Clinical Research, University of Bern , Bern, Switzerland .,2 Department of Obstetrics and Gynecology, University of Bern , Bern, Switzerland
| | - Eytan Barnea
- 4 Society for the Investigation of Early Pregnancy and BioIncept LLC , Cherry Hill, New Jersey
| | - Michael Paidas
- 3 Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine , New Haven, Connecticut
| | - Boris W Kramer
- 5 Department of Pediatrics, Maastricht University Medical Center (MUMC) , Maastricht, the Netherlands .,6 Division Neuroscience, Department of Neuropsychology, School of Mental Health and Neuroscience (MHeNS), Maastricht University , Maastricht, the Netherlands
| | - Daniel V Surbek
- 1 Department of Clinical Research, University of Bern , Bern, Switzerland .,2 Department of Obstetrics and Gynecology, University of Bern , Bern, Switzerland
| | - Andreina Schoeberlein
- 1 Department of Clinical Research, University of Bern , Bern, Switzerland .,2 Department of Obstetrics and Gynecology, University of Bern , Bern, Switzerland
| |
Collapse
|