1
|
Bektas CK, Luo J, Conley B, Le KPN, Lee KB. 3D bioprinting approaches for enhancing stem cell-based neural tissue regeneration. Acta Biomater 2025; 193:20-48. [PMID: 39793745 DOI: 10.1016/j.actbio.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/12/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Three-dimensional (3D) bioprinting holds immense promise for advancing stem cell research and developing novel therapeutic strategies in the field of neural tissue engineering and disease modeling. This paper critically analyzes recent breakthroughs in 3D bioprinting, specifically focusing on its application in these areas. We comprehensively explore the advantages and limitations of various 3D printing methods, the selection and formulation of bioink materials tailored for neural stem cells, and the incorporation of nanomaterials with dual functionality, enhancing the bioprinting process and promoting neurogenesis pathways. Furthermore, the paper reviews the diverse range of stem cells employed in neural bioprinting research, discussing their potential applications and associated challenges. We also introduce the emerging field of 4D bioprinting, highlighting current efforts to develop time-responsive constructs that improve the integration and functionality of bioprinted neural tissues. In short, this manuscript aims to provide a comprehensive understanding of this rapidly evolving field. It underscores the transformative potential of 3D and 4D bioprinting technologies in revolutionizing stem cell research and paving the way for novel therapeutic solutions for neurological disorders and injuries, ultimately contributing significantly to the advancement of regenerative medicine. STATEMENT OF SIGNIFICANCE: This comprehensive review critically examines the current bioprinting research landscape, highlighting efforts to overcome key limitations in printing technologies-improving cell viability post-printing, enhancing resolution, and optimizing cross-linking efficiencies. The continuous refinement of material compositions aims to control the spatiotemporal delivery of therapeutic agents, ensuring better integration of transplanted cells with host tissues. Specifically, the review focuses on groundbreaking advancements in neural tissue engineering. The development of next-generation bioinks, hydrogels, and scaffolds specifically designed for neural regeneration complexities holds the potential to revolutionize treatments for debilitating neural conditions, especially when nanotechnologies are being incorporated. This review offers the readers both a comprehensive analysis of current breakthroughs and an insightful perspective on the future trajectory of neural tissue engineering.
Collapse
Affiliation(s)
- Cemile Kilic Bektas
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Jeffrey Luo
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Brian Conley
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Kim-Phuong N Le
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
2
|
Zhu Y, Guo S, Ravichandran D, Ramanathan A, Sobczak MT, Sacco AF, Patil D, Thummalapalli SV, Pulido TV, Lancaster JN, Yi J, Cornella JL, Lott DG, Chen X, Mei X, Zhang YS, Wang L, Wang X, Zhao Y, Hassan MK, Chambers LB, Theobald TG, Yang S, Liang L, Song K. 3D-Printed Polymeric Biomaterials for Health Applications. Adv Healthc Mater 2025; 14:e2402571. [PMID: 39498750 PMCID: PMC11694096 DOI: 10.1002/adhm.202402571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Indexed: 11/07/2024]
Abstract
3D printing, also known as additive manufacturing, holds immense potential for rapid prototyping and customized production of functional health-related devices. With advancements in polymer chemistry and biomedical engineering, polymeric biomaterials have become integral to 3D-printed biomedical applications. However, there still exists a bottleneck in the compatibility of polymeric biomaterials with different 3D printing methods, as well as intrinsic challenges such as limited printing resolution and rates. Therefore, this review aims to introduce the current state-of-the-art in 3D-printed functional polymeric health-related devices. It begins with an overview of the landscape of 3D printing techniques, followed by an examination of commonly used polymeric biomaterials. Subsequently, examples of 3D-printed biomedical devices are provided and classified into categories such as biosensors, bioactuators, soft robotics, energy storage systems, self-powered devices, and data science in bioplotting. The emphasis is on exploring the current capabilities of 3D printing in manufacturing polymeric biomaterials into desired geometries that facilitate device functionality and studying the reasons for material choice. Finally, an outlook with challenges and possible improvements in the near future is presented, projecting the contribution of general 3D printing and polymeric biomaterials in the field of healthcare.
Collapse
Affiliation(s)
- Yuxiang Zhu
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Shenghan Guo
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Arunachalam Ramanathan
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - M. Taylor Sobczak
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Alaina F. Sacco
- School of Chemical, Materials and Biomedical Engineering (CMBE), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Dhanush Patil
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Sri Vaishnavi Thummalapalli
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Tiffany V. Pulido
- Department of ImmunologyMayo Clinic Arizona13400 E Shea BlvdScottsdaleAZ85259USA
| | - Jessica N. Lancaster
- Department of ImmunologyMayo Clinic Arizona13400 E Shea BlvdScottsdaleAZ85259USA
| | - Johnny Yi
- Department of Medical and Surgical GynecologyMayo Clinic Arizona5777 E Mayo BlvdPhoenixAZ85054USA
| | - Jeffrey L. Cornella
- Department of Medical and Surgical GynecologyMayo Clinic Arizona5777 E Mayo BlvdPhoenixAZ85054USA
| | - David G. Lott
- Division of Laryngology, Department of OtolaryngologyMayo Clinic ArizonaPhoenixAZUSA
| | - Xiangfan Chen
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolCambridgeMA02139USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolCambridgeMA02139USA
| | - Linbing Wang
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Xianqiao Wang
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Yiping Zhao
- Physics, Franklin College of Arts and SciencesUniversity of GeorgiaAthensGA30602USA
| | | | - Lindsay B. Chambers
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Taylor G. Theobald
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of MatterTransport and Energy (SEMTE) at Arizona State UniversityTempeAZ85287USA
| | | | - Kenan Song
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| |
Collapse
|
3
|
Lai Y, Xiao X, Huang Z, Duan H, Yang L, Yang Y, Li C, Feng L. Photocrosslinkable Biomaterials for 3D Bioprinting: Mechanisms, Recent Advances, and Future Prospects. Int J Mol Sci 2024; 25:12567. [PMID: 39684279 DOI: 10.3390/ijms252312567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
Constructing scaffolds with the desired structures and functions is one of the main goals of tissue engineering. Three-dimensional (3D) bioprinting is a promising technology that enables the personalized fabrication of devices with regulated biological and mechanical characteristics similar to natural tissues/organs. To date, 3D bioprinting has been widely explored for biomedical applications like tissue engineering, drug delivery, drug screening, and in vitro disease model construction. Among different bioinks, photocrosslinkable bioinks have emerged as a powerful choice for the advanced fabrication of 3D devices, with fast crosslinking speed, high resolution, and great print fidelity. The photocrosslinkable biomaterials used for light-based 3D printing play a pivotal role in the fabrication of functional constructs. Herein, this review outlines the general 3D bioprinting approaches related to photocrosslinkable biomaterials, including extrusion-based printing, inkjet printing, stereolithography printing, and laser-assisted printing. Further, the mechanisms, advantages, and limitations of photopolymerization and photoinitiators are discussed. Next, recent advances in natural and synthetic photocrosslinkable biomaterials used for 3D bioprinting are highlighted. Finally, the challenges and future perspectives of photocrosslinkable bioinks and bioprinting approaches are envisaged.
Collapse
Affiliation(s)
- Yushang Lai
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiong Xiao
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziwei Huang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongying Duan
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liping Yang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuchu Yang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenxi Li
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Feng
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Lan X, Ma Z, Dimitrov A, Kunze M, Mulet-Sierra A, Ansari K, Osswald M, Seikaly H, Boluk Y, Adesida AB. Double crosslinked hyaluronic acid and collagen as a potential bioink for cartilage tissue engineering. Int J Biol Macromol 2024; 273:132819. [PMID: 38830498 DOI: 10.1016/j.ijbiomac.2024.132819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024]
Abstract
The avascular nature of hyaline cartilage results in limited spontaneous self-repair and regenerative capabilities when damaged. Recent advances in three-dimensional bioprinting have enabled the precise dispensing of cell-laden biomaterials, commonly referred to as 'bioinks', which are emerging as promising solutions for tissue regeneration. An effective bioink for cartilage tissue engineering needs to create a micro-environment that promotes cell differentiation and supports neocartilage tissue formation. In this study, we introduced an innovative bioink composed of photocurable acrylated type I collagen (COLMA), thiol-modified hyaluronic acid (THA), and poly(ethylene glycol) diacrylate (PEGDA) for 3D bioprinting cartilage grafts using human nasal chondrocytes. Both collagen and hyaluronic acid, being key components of the extracellular matrix (ECM) in the human body, provide essential biological cues for tissue regeneration. We evaluated three formulations - COLMA, COLMA+THA, and COLMA+THA+PEGDA - for their printability, cell viability, structural integrity, and capabilities in forming cartilage-like ECM. The addition of THA and PEGDA significantly enhanced these properties, showcasing the potential of this bioink in advancing applications in cartilage repair and reconstructive surgery.
Collapse
Affiliation(s)
- Xiaoyi Lan
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada; Department of Surgery, Divisions of Orthopedic Surgery & Surgical Research, University of Alberta, Edmonton, Alberta, Canada
| | - Zhiyao Ma
- Department of Surgery, Divisions of Orthopedic Surgery & Surgical Research, University of Alberta, Edmonton, Alberta, Canada
| | - Andrea Dimitrov
- Department of Surgery, Divisions of Orthopedic Surgery & Surgical Research, University of Alberta, Edmonton, Alberta, Canada
| | - Melanie Kunze
- Department of Surgery, Divisions of Orthopedic Surgery & Surgical Research, University of Alberta, Edmonton, Alberta, Canada
| | - Aillette Mulet-Sierra
- Department of Surgery, Divisions of Orthopedic Surgery & Surgical Research, University of Alberta, Edmonton, Alberta, Canada
| | - Khalid Ansari
- Department of Surgery, Division of Otolaryngology, University of Alberta, Edmonton, Alberta, Canada
| | - Martin Osswald
- Institute for Reconstructive Sciences in Medicine (iRSM), Misericordia Community Hospital, Edmonton, Alberta, Canada
| | - Hadi Seikaly
- Department of Surgery, Division of Otolaryngology, University of Alberta, Edmonton, Alberta, Canada
| | - Yaman Boluk
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada.
| | - Adetola B Adesida
- Department of Surgery, Divisions of Orthopedic Surgery & Surgical Research, University of Alberta, Edmonton, Alberta, Canada; Department of Surgery, Division of Otolaryngology, University of Alberta, Edmonton, Alberta, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
5
|
Mittal S, Bhuiyan MHR, Ngadi MO. Challenges and Prospects of Plant-Protein-Based 3D Printing. Foods 2023; 12:4490. [PMID: 38137294 PMCID: PMC10743141 DOI: 10.3390/foods12244490] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Three-dimensional (3D) printing is a rapidly developing additive manufacturing technique consisting of the deposition of materials layer-by-layer to produce physical 3D structures. The technique offers unique opportunities to design and produce new products that cater to consumer experience and nutritional requirements. In the past two decades, a wide range of materials, especially plant-protein-based materials, have been documented for the development of personalized food owing to their nutritional and environmental benefits. Despite these benefits, 3D printing with plant-protein-based materials present significant challenges because there is a lack of a comprehensive study that takes into account the most relevant aspects of the processes involved in producing plant-protein-based printable items. This review takes into account the multi-dimensional aspects of processes that lead to the formulation of successful printable products which includes an understanding of rheological characteristics of plant proteins and 3D-printing parameters, as well as elucidating the appropriate concentration and structural hierarchy that are required to maintain stability of the substrate after printing. This review also highlighted the significant and most recent research on 3D food printing with a wide range of plant proteins. This review also suggests a future research direction of 3D printing with plant proteins.
Collapse
Affiliation(s)
| | | | - Michael O. Ngadi
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, QC H9X 3V9, Canada; (S.M.); (M.H.R.B.)
| |
Collapse
|
6
|
Ronca A, D'Amora U, Capuana E, Zihlmann C, Stiefel N, Pattappa G, Schewior R, Docheva D, Angele P, Ambrosio L. Development of a highly concentrated collagen ink for the creation of a 3D printed meniscus. Heliyon 2023; 9:e23107. [PMID: 38144315 PMCID: PMC10746456 DOI: 10.1016/j.heliyon.2023.e23107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
The most prevalent extracellular matrix (ECM) protein in the meniscus is collagen, which controls cell activity and aids in preserving the biological and structural integrity of the ECM. To create stable and high-precision 3D printed collagen scaffolds, ink formulations must possess good printability and cytocompatibility. This study aims to overlap the limitation in the 3D printing of pure collagen, and to develop a highly concentrated collagen ink for meniscus fabrication. The extrusion test revealed that 12.5 % collagen ink had the best combination of high collagen concentration and printability. The ink was specifically designed to have load-bearing capacity upon printing and characterized with respect to rheological and extrusion properties. Following printing of structures with different infill, a series of post-processing steps, including salt stabilization, pH shifting, washing, freeze-drying, crosslinking and sterilization were performed, and optimised to maintain the stability of the engineered construct. Mechanical testing highlighted a storage modulus of 70 kPa for the lower porous structure while swelling properties showed swelling ratio between 9 and 11 after 15 min of soaking. Moreover, human avascular and vascular meniscus cells cultured on the scaffolds deposited a meniscus-like matrix containing collagen I, II and glycosaminoglycans after 28 days of culture. Finally, as proof-of-concept, human size 3D printed meniscus scaffold were created.
Collapse
Affiliation(s)
- Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
| | - Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
| | - Elisa Capuana
- Institute of Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
| | - Carla Zihlmann
- Geistlich Pharma AG (Geistlich), Bahnhofstrasse 40, CH-6110 Wolhusen, Switzerland
| | - Niklaus Stiefel
- Geistlich Pharma AG (Geistlich), Bahnhofstrasse 40, CH-6110 Wolhusen, Switzerland
| | - Girish Pattappa
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Ruth Schewior
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Wurzburg, Germany
| | - Peter Angele
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Sporthopaedicum Regensburg, Hildegard von Bingen Strasse 1, 93053 Regensburg, Germany
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
| |
Collapse
|
7
|
Hogan KJ, Öztatlı H, Perez MR, Si S, Umurhan R, Jui E, Wang Z, Jiang EY, Han SR, Diba M, Jane Grande-Allen K, Garipcan B, Mikos AG. Development of photoreactive demineralized bone matrix 3D printing colloidal inks for bone tissue engineering. Regen Biomater 2023; 10:rbad090. [PMID: 37954896 PMCID: PMC10634525 DOI: 10.1093/rb/rbad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 11/14/2023] Open
Abstract
Demineralized bone matrix (DBM) has been widely used clinically for dental, craniofacial and skeletal bone repair, as an osteoinductive and osteoconductive material. 3D printing (3DP) enables the creation of bone tissue engineering scaffolds with complex geometries and porosity. Photoreactive methacryloylated gelatin nanoparticles (GNP-MAs) 3DP inks have been developed, which display gel-like behavior for high print fidelity and are capable of post-printing photocrosslinking for control of scaffold swelling and degradation. Here, novel DBM nanoparticles (DBM-NPs, ∼400 nm) were fabricated and characterized prior to incorporation in 3DP inks. The objectives of this study were to determine how these DBM-NPs would influence the printability of composite colloidal 3DP inks, assess the impact of ultraviolet (UV) crosslinking on 3DP scaffold swelling and degradation and evaluate the osteogenic potential of DBM-NP-containing composite colloidal scaffolds. The addition of methacryloylated DBM-NPs (DBM-NP-MAs) to composite colloidal inks (100:0, 95:5 and 75:25 GNP-MA:DBM-NP-MA) did not significantly impact the rheological properties associated with printability, such as viscosity and shear recovery or photocrosslinking. UV crosslinking with a UV dosage of 3 J/cm2 directly impacted the rate of 3DP scaffold swelling for all GNP-MA:DBM-NP-MA ratios with an ∼40% greater increase in scaffold area and pore area in uncrosslinked versus photocrosslinked scaffolds over 21 days in phosphate-buffered saline (PBS). Likewise, degradation (hydrolytic and enzymatic) over 21 days for all DBM-NP-MA content groups was significantly decreased, ∼45% less in PBS and collagenase-containing PBS, in UV-crosslinked versus uncrosslinked groups. The incorporation of DBM-NP-MAs into scaffolds decreased mass loss compared to GNP-MA-only scaffolds during collagenase degradation. An in vitro osteogenic study with bone marrow-derived mesenchymal stem cells demonstrated osteoconductive properties of 3DP scaffolds for the DBM-NP-MA contents examined. The creation of photoreactive DBM-NP-MAs and their application in 3DP provide a platform for the development of ECM-derived colloidal materials and tailored control of biochemical cue presentation with broad tissue engineering applications.
Collapse
Affiliation(s)
- Katie J Hogan
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
- Baylor College of Medicine Medical Scientist Training Program, Houston, TX 77030, USA
| | - Hayriye Öztatlı
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
- Institute of Biomedical Engineering, Boğaziçi University, İstanbul, 34684, Turkey
| | - Marissa R Perez
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| | - Sophia Si
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| | - Reyhan Umurhan
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| | - Elysa Jui
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| | - Ziwen Wang
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| | - Emily Y Jiang
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| | - Sa R Han
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| | - Mani Diba
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| | - K Jane Grande-Allen
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| | - Bora Garipcan
- Institute of Biomedical Engineering, Boğaziçi University, İstanbul, 34684, Turkey
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| |
Collapse
|
8
|
Dedhia PH, Sivakumar H, Rodriguez MA, Nairon KG, Zent JM, Zheng X, Jones K, Popova LV, Leight JL, Skardal A. A 3D adrenocortical carcinoma tumor platform for preclinical modeling of drug response and matrix metalloproteinase activity. Sci Rep 2023; 13:15508. [PMID: 37726363 PMCID: PMC10509170 DOI: 10.1038/s41598-023-42659-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Adrenocortical carcinoma (ACC) has a poor prognosis, and no new drugs have been identified in decades. The absence of drug development can partly be attributed to a lack of preclinical models. Both animal models and 2D cell cultures of ACC fail to accurately mimic the disease, as animal physiology is inherently different than humans, and 2D cultures fail to represent the crucial 3D architecture. Organoids and other small 3D in vitro models of tissues or tumors can model certain complexities of human in vivo biology; however, this technology has largely yet to be applied to ACC. In this study, we describe the generation of 3D tumor constructs from an established ACC cell line, NCI-H295R. NCI-H295R cells were encapsulated to generate 3D ACC constructs. Tumor constructs were assessed for biomarker expression, viability, proliferation, and cortisol production. In addition, matrix metalloproteinase (MMP) functionality was assessed directly using fluorogenic MMP-sensitive biosensors and through infusion of NCI-H295R cells into a metastasis-on-a-chip microfluidic device platform. ACC tumor constructs showed expression of biomarkers associated with ACC, including SF-1, Melan A, and inhibin α. Treatment of ACC tumor constructs with chemotherapeutics demonstrated decreased drug sensitivity compared to 2D cell culture. Since most tumor cells migrate through tissue using MMPs to break down extracellular matrix, we validated the utility of ACC tumor constructs by integrating fluorogenic MMP-sensitive peptide biosensors within the tumor constructs. Lastly, in our metastasis-on-a-chip device, NCI-H295R cells successfully engrafted in a downstream lung cell line-based construct, but invasion distance into the lung construct was decreased by MMP inhibition. These studies, which would not be possible using 2D cell cultures, demonstrated that NCI-H295R cells secreted active MMPs that are used for invasion in 3D. This work represents the first evidence of a 3D tumor constructs platform for ACC that can be deployed for future mechanistic studies as well as development of new targets for intervention and therapies.
Collapse
Affiliation(s)
- Priya H Dedhia
- Division of Surgical Oncology, The Ohio State University and Arthur G. James Comprehensive Cancer Center, 816 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA.
- Translational Therapeutics Program, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA.
- Center for Cancer Engineering, The Ohio State University, Columbus, OH, USA.
| | - Hemamylammal Sivakumar
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, 886 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Marco A Rodriguez
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, 886 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Kylie G Nairon
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, 886 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Joshua M Zent
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, 886 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Xuguang Zheng
- Division of Surgical Oncology, The Ohio State University and Arthur G. James Comprehensive Cancer Center, 816 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Katie Jones
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, 886 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Liudmila V Popova
- Division of Surgical Oncology, The Ohio State University and Arthur G. James Comprehensive Cancer Center, 816 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Jennifer L Leight
- Center for Cancer Engineering, The Ohio State University, Columbus, OH, USA.
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, 886 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA.
- Cancer Biology Program, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA.
| | - Aleksander Skardal
- Center for Cancer Engineering, The Ohio State University, Columbus, OH, USA.
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, 886 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA.
- Cancer Biology Program, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
9
|
Dedhia P, Sivakumar H, Rodriguez MA, Nairon KG, Zent JM, Zheng X, Jones K, Popova L, Leight JL, Skardal A. A 3D adrenocortical carcinoma tumor platform for preclinical modeling of drug response and matrix metalloproteinase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525287. [PMID: 36747748 PMCID: PMC9900758 DOI: 10.1101/2023.01.24.525287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Adrenocortical carcinoma (ACC) has a poor prognosis, and no new drugs have been identified in decades. The absence of drug development can partly be attributed to a lack of preclinical models. Both animal models and 2D cell cultures of ACC fail to accurately mimic the disease, as animal physiology is inherently different than humans, and 2D cultures fail to represent the crucial 3D architecture. Organoids and other small 3D in vitro models of tissues or tumors can model certain complexities of human in vivo biology; however, this technology has largely yet to be applied to ACC. In this study, we describe the generation of 3D tumor constructs from an established ACC cell line, NCI-H295R. NCI-H295R cells were encapsulated to generate 3D ACC constructs. Tumor constructs were assessed for biomarker expression, viability, proliferation, and cortisol production. In addition, matrix metalloproteinase (MMP) functionality was assessed directly using fluorogenic MMP-sensitive biosensors and through infusion of NCI-H295R cells into a metastasis-on-a-chip microfluidic device platform. ACC tumor constructs showed expression of biomarkers associated with ACC, including SF-1, Melan A, and inhibin alpha. Treatment of ACC tumor constructs with chemotherapeutics demonstrated decreased drug sensitivity compared to 2D cell culture. Since most tumor cells migrate through tissue using MMPs to break down extracellular matrix, we validated the utility of ACC tumor constructs by integrating fluorogenic MMP-sensitive peptide biosensors within the tumor constructs. Lastly, in our metastasis-on-a-chip device, NCI-H295R cells successfully engrafted in a downstream lung cell line-based construct, but invasion distance into the lung construct was decreased by MMP inhibition. These studies, which would not be possible using 2D cell cultures, demonstrated that NCI-H295R cells secreted active MMPs that are used for invasion in 3D. This work represents the first evidence of a 3D tumor constructs platform for ACC that can be deployed for future mechanistic studies as well as development of new targets for intervention and therapies.
Collapse
|
10
|
Abbadessa A, Nuñez Bernal P, Buttitta G, Ronca A, D'Amora U, Zihlmann C, Stiefel N, Ambrosio L, Malda J, Levato R, Crecente-Campo J, Alonso MJ. Biofunctionalization of 3D printed collagen with bevacizumab-loaded microparticles targeting pathological angiogenesis. J Control Release 2023; 360:747-758. [PMID: 37451546 DOI: 10.1016/j.jconrel.2023.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/05/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Pathological angiogenesis is a crucial attribute of several chronic diseases such as cancer, age-related macular degeneration, and osteoarthritis (OA). In the case of OA, pathological angiogenesis mediated by the vascular endothelial growth factor (VEGF), among other factors, contributes to cartilage degeneration and to implants rejection. In line with this, the use of the anti-VEGF bevacizumab (BVZ) has been shown to prevent OA progression and support cartilage regeneration. The aim of this work was to functionalize a medical grade collagen with poly (lactic-co-glycolic acid) (PLGA) microparticles containing BVZ via three-dimensional (3D) printing to target pathological angiogenesis. First, the effect of several formulation parameters on the encapsulation and release of BVZ from PLGA microparticles was studied. Then, the anti-angiogenic activity of released BVZ was tested in a 3D cell model. The 3D printability of the microparticle-loaded collagen ink was tested by evaluating the shape fidelity of 3D printed structures. Results showed that the release and the encapsulation efficiency of BVZ could be tuned as a function of several formulation parameters. In addition, the released BVZ was observed to reduce vascularization by human umbilical vein endothelial cells. Finally, the collagen ink with embedded BVZ microparticles was successfully printed, leading to shape-stable meniscus-, nose- and auricle-like structures. Taken altogether, we defined the conditions for the successful combination of BVZ-loaded microparticles with the 3D printing of a medical grade collagen to target pathological angiogenesis.
Collapse
Affiliation(s)
- Anna Abbadessa
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Paulina Nuñez Bernal
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Giorgio Buttitta
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples, Italy.
| | - Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples, Italy.
| | | | | | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples, Italy.
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - José Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
11
|
The Influence of Pregelatinized Starch on the Rheology of a Gellan Gum-Collagen IPN Hydrogel for 3D bioprinting. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
12
|
Gwak MA, Lee SJ, Lee D, Park SA, Park WH. Highly gallol-substituted, rapidly self-crosslinkable, and robust chitosan hydrogel for 3D bioprinting. Int J Biol Macromol 2023; 227:493-504. [PMID: 36535357 DOI: 10.1016/j.ijbiomac.2022.12.124] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Although three-dimensional (3D) bioprinting is a promising technology for reconstructing artificial tissues and organs using bioink, there is a lack of a bioink that satisfies all requirements, including printability, gelation, mechanical properties, and cytocompatibility, Herein, a novel self-crosslinkable bioink derived from chitosan (CS) and gallic acid (GA) is presented. 3D printed scaffolds with excellent shape fidelity are realized by systematically analyzing the self-crosslinking mechanism of hydrogel formation from CS-GA conjugates and by optimizing various parameters of the printing process. The CS-GA hydrogel forms rapidly in a physiological pH without any chemical crosslinking agent. In addition, the CS-GA hydrogel exhibited various physical and chemical intermolecular interactions, fast gelation rates, and excellent mechanical properties (>337 kPa). Moreover, the CS-GA hydrogel singificantly improves the cell viability (>92 %) and proliferation of the bioink. Therefore, the self-crosslinkable CS-GA bioink has great potential to overcome the limitations of conventional bioinks.
Collapse
Affiliation(s)
- Min A Gwak
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Su Jin Lee
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dongjin Lee
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea
| | - Su A Park
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea
| | - Won Ho Park
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
13
|
Clark CC, Yoo KM, Sivakumar H, Strumpf K, Laxton AW, Tatter SB, Strowd RE, Skardal A. Immersion bioprinting of hyaluronan and collagen bioink-supported 3D patient-derived brain tumor organoids. Biomed Mater 2022; 18. [PMID: 36332268 DOI: 10.1088/1748-605x/aca05d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
Abstract
Organoids, and in particular patient-derived organoids, have emerged as crucial tools for cancer research. Our organoid platform, which has supported patient-derived tumor organoids (PTOs) from a variety of tumor types, has been based on the use of hyaluronic acid (HA) and collagen, or gelatin, hydrogel bioinks. One hurdle to high throughput PTO biofabrication is that as high-throughput multi-well plates, bioprinted volumes have increased risk of contacting the sides of wells. When this happens, surface tension causes bioinks to fall flat, resulting in 2D cultures. To address this problem, we developed an organoid immersion bioprinting method-inspired by the FRESH printing method-in which organoids are bioprinted into support baths in well plates. The bath-in this case an HA solution-shields organoids from the well walls, preventing deformation. Here we describe an improvement to our approach, based on rheological assessment of previous gelatin baths versus newer HA support baths, combined with morphological assessment of immersion bioprinted organoids. HA print baths enabled more consistent organoid volumes and geometries. We optimized the printing parameters of this approach using a cell line. Finally, we deployed our optimized immersion bioprinting approach into a drug screening application, using PTOs derived from glioma biospecimens, and a lung adenocarcinoma brain metastasis. In these studies, we showed a general dose dependent response to an experimental p53 activator compound and temozolomide (TMZ), the drug most commonly given to brain tumor patients. Responses to the p53 activator compound were effective across all PTO sets, while TMZ responses were observed, but less pronounced, potentially explained by genetic and epigenetic states of the originating tumors. The studies presented herein showcase a bioprinting methodology that we hope can be used in increased throughput settings to help automate biofabrication of PTOs for drug development-based screening studies and precision medicine applications.
Collapse
Affiliation(s)
- Casey C Clark
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27101, United States of America.,Department of Biomedical Engineering, Wake Forest School of Medicine, 575 Patterson Avenue, Winston-Salem, NC 27101, United States of America
| | - Kyung Min Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27101, United States of America
| | - Hemamylammal Sivakumar
- Department of Biomedical Engineering, The Ohio State University, 140 W. 19th Avenue, Columbus, OH 43210, United States of America
| | - Kristina Strumpf
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27101, United States of America
| | - Adrian W Laxton
- Department of Neurosurgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States of America.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, United States of America
| | - Stephen B Tatter
- Department of Neurosurgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States of America.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, United States of America
| | - Roy E Strowd
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, United States of America.,Department of Neurology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States of America
| | - Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, 140 W. 19th Avenue, Columbus, OH 43210, United States of America.,The Ohio State University and Arthur G James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
14
|
Hyaluronic Acid in Biomedical Fields: New Trends from Chemistry to Biomaterial Applications. Int J Mol Sci 2022; 23:ijms232214372. [PMID: 36430855 PMCID: PMC9695447 DOI: 10.3390/ijms232214372] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The aim of this review is to give an updated perspective about the methods for chemical modifications of hyaluronic acid (HA) toward the development of new applications in medical devices and material engineering. After a brief introduction on chemical, structural and biological features of this important natural polysaccharide, the most important methods for chemical and physical modifications are disclosed, discussing both on the formation of new covalent bonds and the interaction with other natural polysaccharides. These strategies are of paramount importance in the production of new medical devices and materials with improved properties. In particular, the use of HA in the development of new materials by means of additive manufacturing techniques as electro fluid dynamics, i.e., electrospinning for micro to nanofibres, and three-dimensional bioprinting is also discussed.
Collapse
|
15
|
Lv W, Zhou H, Aazmi A, Yu M, Xu X, Yang H, Huang YYS, Ma L. Constructing biomimetic liver models through biomaterials and vasculature engineering. Regen Biomater 2022; 9:rbac079. [PMID: 36338176 PMCID: PMC9629974 DOI: 10.1093/rb/rbac079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/19/2022] [Accepted: 10/08/2022] [Indexed: 04/04/2024] Open
Abstract
The occurrence of various liver diseases can lead to organ failure of the liver, which is one of the leading causes of mortality worldwide. Liver tissue engineering see the potential for replacing liver transplantation and drug toxicity studies facing donor shortages. The basic elements in liver tissue engineering are cells and biomaterials. Both mature hepatocytes and differentiated stem cells can be used as the main source of cells to construct spheroids and organoids, achieving improved cell function. To mimic the extracellular matrix (ECM) environment, biomaterials need to be biocompatible and bioactive, which also help support cell proliferation and differentiation and allow ECM deposition and vascularized structures formation. In addition, advanced manufacturing approaches are required to construct the extracellular microenvironment, and it has been proved that the structured three-dimensional culture system can help to improve the activity of hepatocytes and the characterization of specific proteins. In summary, we review biomaterials for liver tissue engineering, including natural hydrogels and synthetic polymers, and advanced processing techniques for building vascularized microenvironments, including bioassembly, bioprinting and microfluidic methods. We then summarize the application fields including transplant and regeneration, disease models and drug cytotoxicity analysis. In the end, we put the challenges and prospects of vascularized liver tissue engineering.
Collapse
Affiliation(s)
- Weikang Lv
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hongzhao Zhou
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Abdellah Aazmi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaobin Xu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | | | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Cai Y, Chang SY, Gan SW, Ma S, Lu WF, Yen CC. Nanocomposite bioinks for 3D bioprinting. Acta Biomater 2022; 151:45-69. [PMID: 35970479 DOI: 10.1016/j.actbio.2022.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/13/2022] [Accepted: 08/08/2022] [Indexed: 12/20/2022]
Abstract
Three-dimensional (3D) bioprinting is an advanced technology to fabricate artificial 3D tissue constructs containing cells and hydrogels for tissue engineering and regenerative medicine. Nanocomposite reinforcement endows hydrogels with superior properties and tailored functionalities. A broad range of nanomaterials, including silicon-based, ceramic-based, cellulose-based, metal-based, and carbon-based nanomaterials, have been incorporated into hydrogel networks with encapsulated cells for improved performances. This review emphasizes the recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, focusing on their reinforcement effects and mechanisms, including viscosity, shear-thinning property, printability, mechanical properties, structural integrity, and biocompatibility. The cell-material interactions are discussed to elaborate on the underlying mechanisms between the cells and the nanomaterials. The biomedical applications of cell-laden nanocomposite bioinks are summarized with a focus on bone and cartilage tissue engineering. Finally, the limitations and challenges of current cell-laden nanocomposite bioinks are identified. The prospects are concluded in designing multi-component bioinks with multi-functionality for various biomedical applications. STATEMENT OF SIGNIFICANCE: 3D bioprinting, an emerging technology of additive manufacturing, has been one of the most innovative tools for tissue engineering and regenerative medicine. Recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, and cell-materials interactions are the subject of this review paper. The reinforcement effects and mechanisms of nanocomposites on viscosity, printability and biocompatibility of bioinks and 3D printed scaffolds are addressed mainly for bone and cartilage tissue engineering. It provides detailed information for further designing and optimizing multi-component bioinks with multi-functionality for specialized biomedical applications.
Collapse
Affiliation(s)
- Yanli Cai
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
| | - Soon Yee Chang
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
| | - Soo Wah Gan
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
| | - Sha Ma
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
| | - Wen Feng Lu
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore; Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Ching-Chiuan Yen
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore; Division of Industrial Design, National University of Singapore, Singapore 117356, Singapore.
| |
Collapse
|
17
|
Forsythe SD, Sivakumar H, Erali RA, Wajih N, Li W, Shen P, Levine EA, Miller KE, Skardal A, Votanopoulos KI. Patient-Specific Sarcoma Organoids for Personalized Translational Research: Unification of the Operating Room with Rare Cancer Research and Clinical Implications. Ann Surg Oncol 2022; 29:7354-7367. [PMID: 35780216 DOI: 10.1245/s10434-022-12086-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/10/2022] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Sarcoma clinical outcomes have been stagnant for decades due to heterogeneity of primaries, lack of comprehensive preclinical models, and rarity of disease. We hypothesized that engineering hydrogel-based sarcoma organoids directly from the patient without xenogeneic extracellular matrices (ECMs) or growth factors is routinely feasible and allows rare tumors to remain viable as avatars for personalized research. METHODS Surgically resected sarcomas (angiosarcomas, leiomyosarcoma, gastrointestinal stromal tumor, liposarcoma, myxofibrosarcoma, dermatofibrosarcoma protuberans [DFSP], and pleiomorphic abdominal sarcoma) were dissociated and incorporated into a hyaluronic acid and collagen-based ECM hydrogel and screened for chemotherapy efficacy. A subset of organoids was enriched with a patient-matched immune system for screening of immunotherapy efficacy (iPTOs). Response to treatment was assessed using LIVE/DEAD staining and metabolic assays. RESULTS Sixteen sarcomas were biofabricated into three-dimensional (3D) patient-specific sarcoma organoids with a 100% success rate. Average time from organoid development to initiation of drug testing was 7 days. Enrichment of organoids with immune system components derived from either peripheral blood mononuclear cells or lymph node cells was performed in 10/16 (62.5%) patients; 4/12 (33%) organoids did not respond to chemotherapy, while response to immunotherapy was observed in 2/10 (20%) iPTOs. CONCLUSIONS A large subset of sarcoma organoids does not exhibit response to chemotherapy or immunotherapy, as currently seen in clinical practice. Routine development of sarcoma hydrogel-based organoids directly from the operating room is a feasible platform, allowing for such rare tumors to remain viable for personalized translational research.
Collapse
Affiliation(s)
- Steven D Forsythe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Wake Forest Organoid Research Center (WFORCE), Winston-Salem, NC, USA
| | - Hemamylammal Sivakumar
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Richard A Erali
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Wake Forest Organoid Research Center (WFORCE), Winston-Salem, NC, USA.,Department of Surgery, Division of Surgical Oncology, Wake Forest Baptist Health, Wake Forest University, Winston-Salem, NC, USA.,Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Nadeem Wajih
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Wake Forest Organoid Research Center (WFORCE), Winston-Salem, NC, USA
| | - Wencheng Li
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Perry Shen
- Department of Surgery, Division of Surgical Oncology, Wake Forest Baptist Health, Wake Forest University, Winston-Salem, NC, USA.,Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Edward A Levine
- Department of Surgery, Division of Surgical Oncology, Wake Forest Baptist Health, Wake Forest University, Winston-Salem, NC, USA.,Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Katherine E Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA. .,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA. .,Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA. .,The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA.
| | - Konstantinos I Votanopoulos
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA. .,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA. .,Wake Forest Organoid Research Center (WFORCE), Winston-Salem, NC, USA. .,Department of Surgery, Division of Surgical Oncology, Wake Forest Baptist Health, Wake Forest University, Winston-Salem, NC, USA. .,Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
18
|
Parimala Chelvi Ratnamani M, Zhang X, Wang H. A Comprehensive Assessment on the Pivotal Role of Hydrogels in Scaffold-Based Bioprinting. Gels 2022; 8:gels8040239. [PMID: 35448140 PMCID: PMC9028353 DOI: 10.3390/gels8040239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023] Open
Abstract
The past a few decades have seen exponential growth in the field of regenerative medicine. What began as extirpative (complete tissue or organ removal), with little regard to the effects of tissue loss and/or disfigurement, has evolved towards fabricating engineered tissues using personalized living cells (e.g., stem cells), and customizing a matrix or structural organization to support and guide tissue development. Biofabrication, largely accomplished through three-dimensional (3D) printing technology, provides precise, controlled, and layered assemblies of cells and biomaterials, emulating the heterogenous microenvironment of the in vivo tissue architecture. This review provides a concise framework for the bio-manufacturing process and addresses the contributions of hydrogels to biological modeling. The versatility of hydrogels in bioprinting is detailed along with an extensive elaboration of their physical, mechanical, and biological properties, as well as their assets and limitations in bioprinting. The scope of various hydrogels in tissue formation has been discussed through the case studies of biofabricated 3D constructs in order to provide the readers with a glimpse into the barrier-breaking accomplishments of biomedical sciences. In the end, the restraints of bioprinting itself are discussed, accompanied with the identification of available engineering strategies to overcome them.
Collapse
Affiliation(s)
| | - Xinping Zhang
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA;
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA
- Correspondence:
| |
Collapse
|
19
|
Hossain Rakin R, Kumar H, Rajeev A, Natale G, Menard F, Li ITS, Kim K. Tunable metacrylated hyaluronic acid-based hybrid bioinks for stereolithography 3D bioprinting. Biofabrication 2021; 13. [PMID: 34507314 DOI: 10.1088/1758-5090/ac25cb] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/10/2021] [Indexed: 12/23/2022]
Abstract
Hyaluronic acid is a native extra-cellular matrix derivative that promises unique properties, such as anti-inflammatory response and cell-signaling with tissue-specific applications under its bioactive properties. Here, we investigate the importance of the duration of synthesis to obtain photocrosslinkable methacrylated hyaluronic acid (MeHA) with high degree of substitution. MeHA with high degree of substitution can result in rapid photocrosslinking and can be used as a bioink for stereolithographic (SLA) three dimensional 3D bioprinting. Increased degree of substitution results Our findings show that a ten-day synthesis results in an 88% degree of methacrylation (DM), whereas three-day and five-day syntheses result in 32% and 42% DM, respectively. The rheological characterization revealed an increased rate of photopolymerization with increasing DM. Further, we developed a hybrid bioink to overcome the non-cell-adhesive nature of MeHA by combining it with gelatin methacryloyl (GelMA) to fabricate 3D cell-laden hydrogel scaffolds. The hybrid bioink exhibited a 55% enhancement in stiffness compared to MeHA only and enabled cell-adhesion while maintaining high cell viability. Investigations also revealed that the hybrid bioink was a more suitable candidate for stereolithography (SLA) 3D bioprinting than MeHA because of its mechanical strength, printability, and cell-adhesive nature. This research lays out a firm foundation for the development of a stable hybrid bioink with MeHA and GelMA for first-ever use with SLA 3D bioprinting.
Collapse
Affiliation(s)
- Rafaeal Hossain Rakin
- School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Hitendra Kumar
- School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada.,Department of Mechanical and Manufacturing Engineering and Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ashna Rajeev
- Department of Chemical & Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Giovanniantonio Natale
- Department of Chemical & Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Frederic Menard
- Department of Chemistry, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Isaac T S Li
- Department of Chemistry, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Keekyoung Kim
- Department of Mechanical and Manufacturing Engineering and Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
20
|
Khramtsov P, Burdina O, Lazarev S, Novokshonova A, Bochkova M, Timganova V, Kiselkov D, Minin A, Zamorina S, Rayev M. Modified Desolvation Method Enables Simple One-Step Synthesis of Gelatin Nanoparticles from Different Gelatin Types with Any Bloom Values. Pharmaceutics 2021; 13:1537. [PMID: 34683829 PMCID: PMC8541285 DOI: 10.3390/pharmaceutics13101537] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 11/17/2022] Open
Abstract
Gelatin nanoparticles found numerous applications in drug delivery, bioimaging, immunotherapy, and vaccine development as well as in biotechnology and food science. Synthesis of gelatin nanoparticles is usually made by a two-step desolvation method, which, despite providing stable and homogeneous nanoparticles, has many limitations, namely complex procedure, low yields, and poor reproducibility of the first desolvation step. Herein, we present a modified one-step desolvation method, which enables the quick, simple, and reproducible synthesis of gelatin nanoparticles. Using the proposed method one can prepare gelatin nanoparticles from any type of gelatin with any bloom number, even with the lowest ones, which remains unattainable for the traditional two-step technique. The method relies on quick one-time addition of poor solvent (preferably isopropyl alcohol) to gelatin solution in the absence of stirring. We applied the modified desolvation method to synthesize nanoparticles from porcine, bovine, and fish gelatin with bloom values from 62 to 225 on the hundreds-of-milligram scale. Synthesized nanoparticles had average diameters between 130 and 190 nm and narrow size distribution. Yields of synthesis were 62-82% and can be further increased. Gelatin nanoparticles have good colloidal stability and withstand autoclaving. Moreover, they were non-toxic to human immune cells.
Collapse
Affiliation(s)
- Pavel Khramtsov
- Perm Federal Research Center of the Ural Branch of The Russian Academy of Sciences, Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia; (M.B.); (V.T.); (S.Z.); (M.R.)
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Oksana Burdina
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
| | - Sergey Lazarev
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
| | - Anastasia Novokshonova
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
| | - Maria Bochkova
- Perm Federal Research Center of the Ural Branch of The Russian Academy of Sciences, Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia; (M.B.); (V.T.); (S.Z.); (M.R.)
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
| | - Valeria Timganova
- Perm Federal Research Center of the Ural Branch of The Russian Academy of Sciences, Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia; (M.B.); (V.T.); (S.Z.); (M.R.)
| | - Dmitriy Kiselkov
- Perm Federal Research Center of the Ural Branch of The Russian Academy of Sciences, Institute of Technical Chemistry, 614013 Perm, Russia;
| | - Artem Minin
- Lab of Applied Magnetism, M.N. Mikheev Institute of Metal Physics of the UB RAS, 620108 Yekaterinburg, Russia;
- Faculty of Biology and Fundamental Medicine, Ural Federal University Named after The First President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia
| | - Svetlana Zamorina
- Perm Federal Research Center of the Ural Branch of The Russian Academy of Sciences, Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia; (M.B.); (V.T.); (S.Z.); (M.R.)
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
| | - Mikhail Rayev
- Perm Federal Research Center of the Ural Branch of The Russian Academy of Sciences, Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia; (M.B.); (V.T.); (S.Z.); (M.R.)
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
| |
Collapse
|
21
|
Veiga A, Silva IV, Duarte MM, Oliveira AL. Current Trends on Protein Driven Bioinks for 3D Printing. Pharmaceutics 2021; 13:1444. [PMID: 34575521 PMCID: PMC8471984 DOI: 10.3390/pharmaceutics13091444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
In the last decade, three-dimensional (3D) extrusion bioprinting has been on the top trend for innovative technologies in the field of biomedical engineering. In particular, protein-based bioinks such as collagen, gelatin, silk fibroin, elastic, fibrin and protein complexes based on decellularized extracellular matrix (dECM) are receiving increasing attention. This current interest is the result of protein's tunable properties, biocompatibility, environmentally friendly nature and possibility to provide cells with the adequate cues, mimicking the extracellular matrix's function. In this review we describe the most relevant stages of the development of a protein-driven bioink. The most popular formulations, molecular weights and extraction methods are covered. The different crosslinking methods used in protein bioinks, the formulation with other polymeric systems or molecules of interest as well as the bioprinting settings are herein highlighted. The cell embedding procedures, the in vitro, in vivo, in situ studies and final applications are also discussed. Finally, we approach the development and optimization of bioinks from a sequential perspective, discussing the relevance of each parameter during the pre-processing, processing, and post-processing stages of technological development. Through this approach the present review expects to provide, in a sequential manner, helpful methodological guidelines for the development of novel bioinks.
Collapse
Affiliation(s)
- Anabela Veiga
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal; (A.V.); (I.V.S.); (M.M.D.)
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4099-002 Porto, Portugal
| | - Inês V. Silva
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal; (A.V.); (I.V.S.); (M.M.D.)
| | - Marta M. Duarte
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal; (A.V.); (I.V.S.); (M.M.D.)
| | - Ana L. Oliveira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal; (A.V.); (I.V.S.); (M.M.D.)
| |
Collapse
|
22
|
Biofabrication of advanced in vitro and ex vivo cancer models for disease modeling and drug screening. FUTURE DRUG DISCOVERY 2021. [DOI: 10.4155/fdd-2020-0034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bioengineered in vitro models have advanced from 2D cultures and simple 3D cell aggregates to more complex organoids and organ-on-a-chip platforms. This shift has been substantial in cancer research; while simple systems remain in use, multi-tissue type tumor and tissue chips and patient-derived tumor organoids have grown rapidly. These more advanced models offer new tools to cancer researchers based on human tumor physiology and the potential for interactions with nontumor tissue physiology while avoiding critical differences between human and animal biology. In this focused review, the authors discuss the importance of organoid and organ-on-a-chip platforms, with a particular focus on modeling cancer, to highlight oncology-focused in vitro model platform technologies that improve upon the simple 2D cultures and 3D spheroid models of the past.
Collapse
|
23
|
Protein-Based 3D Biofabrication of Biomaterials. Bioengineering (Basel) 2021; 8:bioengineering8040048. [PMID: 33923425 PMCID: PMC8073780 DOI: 10.3390/bioengineering8040048] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 01/01/2023] Open
Abstract
Protein/peptide-based hydrogel biomaterial inks with the ability to incorporate various cells and mimic the extracellular matrix's function are promising candidates for 3D printing and biomaterials engineering. This is because proteins contain multiple functional groups as reactive sites for enzymatic, chemical modification or physical gelation or cross-linking, which is essential for the filament formation and printing processes in general. The primary mechanism in the protein gelation process is the unfolding of its native structure and its aggregation into a gel network. This network is then stabilized through both noncovalent and covalent cross-link. Diverse proteins and polypeptides can be obtained from humans, animals, or plants or can be synthetically engineered. In this review, we describe the major proteins that have been used for 3D printing, highlight their physicochemical properties in relation to 3D printing and their various tissue engineering application are discussed.
Collapse
|
24
|
Abstract
3D-Bioprinting has seen a rapid expansion in the last few years, with an increasing number of reported bioinks. Alginate is a natural biopolymer that forms hydrogels by ionic cross-linking with calcium ions. Due to its biocompatibility and ease of gelation, it is an ideal ingredient for bioinks. This review focuses on recent advances on bioink formulations based on the combination of alginate with other polysaccharides. In particular, the molecular weight of the alginate and its loading level have an impact on the material's performance, as well as the loading of the divalent metal salt and its solubility, which affects the cross-linking of the gel. Alginate is often combined with other polysaccharides that can sigificantly modify the properties of the gel, and can optimise alginate for use in different biological applications. It is also possible to combine alginate with sacrificial polymers, which can temporarily reinforce the 3D printed construct, but then be removed at a later stage. Other additives can be formulated into the gels to enhance performance, including nanomaterials that tune rheological properties, peptides to encourage cell adhesion, or growth factors to direct stem cell differentiation. The ease of formulating multiple components into alginate gels gives them considerable potential for further development. In summary, this review will facilitate the identification of different alginate-polysaccharide bioink formulations and their optimal applications, and help inform the design of second generation bioinks, allowing this relatively simple gel system to achieve more sophisticated control over biological processes.
Collapse
Affiliation(s)
- Carmen C Piras
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| | - David K Smith
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| |
Collapse
|
25
|
Mu X, Agostinacchio F, Xiang N, Pei Y, Khan Y, Guo C, Cebe P, Motta A, Kaplan DL. Recent Advances in 3D Printing with Protein-Based Inks. Prog Polym Sci 2021; 115:101375. [PMID: 33776158 PMCID: PMC7996313 DOI: 10.1016/j.progpolymsci.2021.101375] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Three-dimensional (3D) printing is a transformative manufacturing strategy, allowing rapid prototyping, customization, and flexible manipulation of structure-property relationships. Proteins are particularly appealing to formulate inks for 3D printing as they serve as essential structural components of living systems, provide a support presence in and around cells and for tissue functions, and also provide the basis for many essential ex vivo secreted structures in nature. Protein-based inks are beneficial in vivo due to their mechanics, chemical and physical match to the specific tissue, and full degradability, while also to promoting implant-host integration and serving as an interface between technology and biology. Exploiting the biological, chemical, and physical features of protein-based inks can provide key opportunities to meet the needs of tissue engineering and regenerative medicine. Despite these benefits, protein-based inks impose nontrivial challenges to 3D printing such as concentration and rheological features and reconstitution of the structural hierarchy observed in nature that is a source of the robust mechanics and functions of these materials. This review introduces photo-crosslinking mechanisms and rheological principles that underpins a variety of 3D printing techniques. The review also highlights recent advances in the design, development, and biomedical utility of monolithic and composite inks from a range of proteins, including collagen, silk, fibrinogen, and others. One particular focus throughout the review is to introduce unique material characteristics of proteins, including amino acid sequences, molecular assembly, and secondary conformations, which are useful for designing printing inks and for controlling the printed structures. Future perspectives of 3D printing with protein-based inks are also provided to support the promising spectrum of biomedical research accessible to these materials.
Collapse
Affiliation(s)
- Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Francesca Agostinacchio
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Department of Industrial Engineering, University of Trento, via Sommarive 9, Trento 38123, Italy
| | - Ning Xiang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Ying Pei
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yousef Khan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Chengchen Guo
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Peggy Cebe
- Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, via Sommarive 9, Trento 38123, Italy
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
26
|
Investigation of Changes in Saliva in Radiotherapy-Induced Head Neck Cancer Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041629. [PMID: 33572065 PMCID: PMC7914760 DOI: 10.3390/ijerph18041629] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
The intact function of the salivary glands is of utmost importance for oral health. During radiotherapy in patients with head and neck tumors, the salivary glands can be damaged, causing the composition of saliva to change. This leads to xerostomia, which is a primary contributor to oral mucositis. Medications used for protective or palliative treatment often show poor efficacy as radiation-induced changes in the physico-chemical properties of saliva are not well understood. To improve treatment options, this study aimed to carefully examine unstimulated whole saliva of patients receiving radiation therapy and compare it with healthy unstimulated whole saliva. To this end, the pH, osmolality, electrical conductivity, buffer capacity, the whole protein and mucin concentrations, and the viscoelastic and adhesive properties were investigated. Moreover, hyaluronic acid was examined as a potential candidate for a saliva replacement fluid. The results showed that the pH of radiation-induced saliva shifted from neutral to acidic, the osmolality increased and the viscoelastic properties changed due to a disruption of the mucin network and a change in water secretion from the salivary glands. By adopting an aqueous 0.25% hyaluronic acid formulation regarding the lost properties, similar adhesion characteristics as in healthy, unstimulated saliva could be achieved.
Collapse
|
27
|
Yoo KM, Murphy SV, Skardal A. A Rapid Crosslinkable Maleimide-Modified Hyaluronic Acid and Gelatin Hydrogel Delivery System for Regenerative Applications. Gels 2021; 7:13. [PMID: 33535669 PMCID: PMC7931058 DOI: 10.3390/gels7010013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogels have played a significant role in many applications of regenerative medicine and tissue engineering due to their versatile properties in realizing design and functional requirements. However, as bioengineered solutions are translated towards clinical application, new hurdles and subsequent material requirements can arise. For example, in applications such as cell encapsulation, drug delivery, and biofabrication, in a clinical setting, hydrogels benefit from being comprised of natural extracellular matrix-based materials, but with defined, controllable, and modular properties. Advantages for these clinical applications include ultraviolet light-free and rapid polymerization crosslinking kinetics, and a cell-friendly crosslinking environment that supports cell encapsulation or in situ crosslinking in the presence of cells and tissue. Here we describe the synthesis and characterization of maleimide-modified hyaluronic acid (HA) and gelatin, which are crosslinked using a bifunctional thiolated polyethylene glycol (PEG) crosslinker. Synthesized products were evaluated by proton nuclear magnetic resonance (NMR), ultraviolet visibility spectrometry, size exclusion chromatography, and pH sensitivity, which confirmed successful HA and gelatin modification, molecular weights, and readiness for crosslinking. Gelation testing both by visual and NMR confirmed successful and rapid crosslinking, after which the hydrogels were characterized by rheology, swelling assays, protein release, and barrier function against dextran diffusion. Lastly, biocompatibility was assessed in the presence of human dermal fibroblasts and keratinocytes, showing continued proliferation with or without the hydrogel. These initial studies present a defined, and well-characterized extracellular matrix (ECM)-based hydrogel platform with versatile properties suitable for a variety of applications in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Kyung Min Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27101, USA;
| | - Sean V. Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27101, USA;
| | - Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, Fontana Labs., 140 W. 19th Ave, Columbus, OH 43210, USA
- Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
28
|
Amorim S, Reis CA, Reis RL, Pires RA. Extracellular Matrix Mimics Using Hyaluronan-Based Biomaterials. Trends Biotechnol 2020; 39:90-104. [PMID: 32654775 DOI: 10.1016/j.tibtech.2020.06.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022]
Abstract
Hyaluronan (HA) is a critical element of the extracellular matrix (ECM). The regulated synthesis and degradation of HA modulates the ECM chemical and physical properties that, in turn, influence cellular behavior. HA triggers signaling pathways associated with the adhesion, proliferation, migration, and differentiation of cells, mediated by its interaction with specific cellular receptors or by tuning the mechanical properties of the ECM. This review summarizes the recent advances on strategies used to mimic the HA present in the ECM to study healthy or pathological cellular behavior. This includes the development of HA-based 2D and 3D in vitro tissue models for the seeding and encapsulation of cells, respectively, and HA particles as carriers for the targeted delivery of therapeutic agents.
Collapse
Affiliation(s)
- Sara Amorim
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto, IPATIMUP, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal; Department of Pathology and Oncology, Faculty of Medicine, Porto University, Porto, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ricardo A Pires
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
29
|
Petta D, D'Amora U, Ambrosio L, Grijpma DW, Eglin D, D'Este M. Hyaluronic acid as a bioink for extrusion-based 3D printing. Biofabrication 2020; 12:032001. [PMID: 32259809 DOI: 10.1088/1758-5090/ab8752] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biofabrication is enriching the tissue engineering field with new ways of producing structurally organized complex tissues. Among the numerous bioinks under investigation, hyaluronic acid (HA) and its derivatives stand out for their biological relevance, cytocompatibility, shear-thinning properties, and potential to fine-tune the desired properties with chemical modification. In this paper, we review the recent advances on bioinks containing HA. The available literature is presented based on subjects including the rheological properties in connection with printability, the chemical strategies for endowing HA with the desired properties, the clinical application, the most advanced preclinical studies, the advantages and limitations in comparison with similar biopolymer-based bioinks, and future perspectives.
Collapse
Affiliation(s)
- D Petta
- AO Research Institute Davos, Davos Platz, Switzerland. Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands
| | | | | | | | | | | |
Collapse
|
30
|
Abdel Fattah AR, Ranga A. Nanoparticles as Versatile Tools for Mechanotransduction in Tissues and Organoids. Front Bioeng Biotechnol 2020; 8:240. [PMID: 32363177 PMCID: PMC7180186 DOI: 10.3389/fbioe.2020.00240] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/09/2020] [Indexed: 12/28/2022] Open
Abstract
Organoids are 3D multicellular constructs that rely on self-organized cell differentiation, patterning and morphogenesis to recapitulate key features of the form and function of tissues and organs of interest. Dynamic changes in these systems are orchestrated by biochemical and mechanical microenvironments, which can be engineered and manipulated to probe their role in developmental and disease mechanisms. In particular, the in vitro investigation of mechanical cues has been the focus of recent research, where mechanical manipulations imparting local as well as large-scale mechanical stresses aim to mimic in vivo tissue deformations which occur through proliferation, folding, invagination, and elongation. However, current in vitro approaches largely impose homogeneous mechanical changes via a host matrix and lack the required positional and directional specificity to mimic the diversity of in vivo scenarios. Thus, while organoids exhibit limited aspects of in vivo morphogenetic events, how local forces are coordinated to enable large-scale changes in tissue architecture remains a difficult question to address using current techniques. Nanoparticles, through their efficient internalization by cells and dispersion through extracellular matrices, have the ability to provide local or global, as well as passive or active modulation of mechanical stresses on organoids and tissues. In this review, we explore how nanoparticles can be used to manipulate matrix and tissue mechanics, and highlight their potential as tools for fate regulation through mechanotransduction in multicellular model systems.
Collapse
Affiliation(s)
- Abdel Rahman Abdel Fattah
- Laboratory of Bioengineering and Morphogenesis, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Adrian Ranga
- Laboratory of Bioengineering and Morphogenesis, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Maloney E, Clark C, Sivakumar H, Yoo K, Aleman J, Rajan SAP, Forsythe S, Mazzocchi A, Laxton AW, Tatter SB, Strowd RE, Votanopoulos KI, Skardal A. Immersion Bioprinting of Tumor Organoids in Multi-Well Plates for Increasing Chemotherapy Screening Throughput. MICROMACHINES 2020; 11:E208. [PMID: 32085455 PMCID: PMC7074680 DOI: 10.3390/mi11020208] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/22/2022]
Abstract
The current drug development pipeline takes approximately fifteen years and $2.6 billion to get a new drug to market. Typically, drugs are tested on two-dimensional (2D) cell cultures and animal models to estimate their efficacy before reaching human trials. However, these models are often not representative of the human body. The 2D culture changes the morphology and physiology of cells, and animal models often have a vastly different anatomy and physiology than humans. The use of bioengineered human cell-based organoids may increase the probability of success during human trials by providing human-specific preclinical data. They could also be deployed for personalized medicine diagnostics to optimize therapies in diseases such as cancer. However, one limitation in employing organoids in drug screening has been the difficulty in creating large numbers of homogeneous organoids in form factors compatible with high-throughput screening (e.g., 96- and 384-well plates). Bioprinting can be used to scale up deposition of such organoids and tissue constructs. Unfortunately, it has been challenging to 3D print hydrogel bioinks into small-sized wells due to well-bioink interactions that can result in bioinks spreading out and wetting the well surface instead of maintaining a spherical form. Here, we demonstrate an immersion printing technique to bioprint tissue organoids in 96-well plates to increase the throughput of 3D drug screening. A hydrogel bioink comprised of hyaluronic acid and collagen is bioprinted into a viscous gelatin bath, which blocks the bioink from interacting with the well walls and provides support to maintain a spherical form. This method was validated using several cancerous cell lines, and then applied to patient-derived glioblastoma (GBM) and sarcoma biospecimens for drug screening.
Collapse
Affiliation(s)
- Erin Maloney
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC 27101, USA; (C.C.); (K.Y.); (J.A.); (S.A.P.R.); (S.F.); (A.M.)
| | - Casey Clark
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC 27101, USA; (C.C.); (K.Y.); (J.A.); (S.A.P.R.); (S.F.); (A.M.)
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC 27101, USA
| | - Hemamylammal Sivakumar
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA;
- The Ohio State University Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, OH 43420, USA
| | - KyungMin Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC 27101, USA; (C.C.); (K.Y.); (J.A.); (S.A.P.R.); (S.F.); (A.M.)
| | - Julio Aleman
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC 27101, USA; (C.C.); (K.Y.); (J.A.); (S.A.P.R.); (S.F.); (A.M.)
| | - Shiny A. P. Rajan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC 27101, USA; (C.C.); (K.Y.); (J.A.); (S.A.P.R.); (S.F.); (A.M.)
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC 27101, USA
| | - Steven Forsythe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC 27101, USA; (C.C.); (K.Y.); (J.A.); (S.A.P.R.); (S.F.); (A.M.)
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27101, USA
| | - Andrea Mazzocchi
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC 27101, USA; (C.C.); (K.Y.); (J.A.); (S.A.P.R.); (S.F.); (A.M.)
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC 27101, USA
| | - Adrian W. Laxton
- Comprehensive Cancer Center at Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (A.W.L.); (S.B.T.); (R.E.S.); (K.I.V.)
- Department of Neurosurgery, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | - Stephen B. Tatter
- Comprehensive Cancer Center at Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (A.W.L.); (S.B.T.); (R.E.S.); (K.I.V.)
- Department of Neurosurgery, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | - Roy E. Strowd
- Comprehensive Cancer Center at Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (A.W.L.); (S.B.T.); (R.E.S.); (K.I.V.)
- Department of Neuroscience, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | - Konstantinos I. Votanopoulos
- Comprehensive Cancer Center at Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (A.W.L.); (S.B.T.); (R.E.S.); (K.I.V.)
- Department of Surgery–Oncology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | - Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA;
- The Ohio State University Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, OH 43420, USA
| |
Collapse
|
32
|
Votanopoulos KI, Forsythe S, Sivakumar H, Mazzocchi A, Aleman J, Miller L, Levine E, Triozzi P, Skardal A. Model of Patient-Specific Immune-Enhanced Organoids for Immunotherapy Screening: Feasibility Study. Ann Surg Oncol 2019; 27:1956-1967. [PMID: 31858299 DOI: 10.1245/s10434-019-08143-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Indexed: 12/15/2022]
Abstract
INTRODUCTION We hypothesized that engineering a combined lymph node/melanoma organoid from the same patient would allow tumor, stroma, and immune system to remain viable for personalized immunotherapy screening. METHODS Surgically obtained matched melanoma and lymph node biospecimens from the same patient were transferred to the laboratory and washed with saline, antibiotic, and red blood cell lysis buffer. Biospecimens were dissociated, incorporated into an extracellular matrix (ECM)-based hydrogel system, and biofabricated into three dimensional (3D) mixed melanoma/node organoids. Cells were not sorted, so as to preserve tumor heterogeneity, including stroma and immune cell components, resulting in immune-enhanced patient tumor organoids (iPTOs). Organoid sets were screened in parallel with nivolumab, pembrolizumab, ipilimumab, and dabrafenib/trametinib for 72 h. LIVE/DEAD staining and quantitative metabolism assays recorded relative drug efficacy. Histology and immunohistochemistry were used to compare tumor melanoma cells with organoid melanoma cells. Lastly, node-enhanced iPTOs were employed to activate patient-matched peripheral blood T cells for killing of tumor cells in naïve PTOs. RESULTS Ten biospecimen sets obtained from eight stage III and IV melanoma patients were reconstructed as symbiotic immune/tumor organoids between September 2017 and June 2018. Successful establishment of viable organoid sets was 90% (9/10), although organoid yield varied with biospecimen size. Average time from organoid development to initiation of immunotherapy testing was 7 days. In three patients for whom a node was not available, it was substituted with peripheral blood mononuclear cells. iPTO response to immunotherapy was similar to specimen clinical response in 85% (6/7) patients. In an additional pilot study, peripheral T cells were circulated through iPTOs, and subsequently transferred to naïve PTOs from the same patient, resulting in tumor killing, suggesting a possible role of iPTOs in generating adaptive immunity. CONCLUSION Development of 3D mixed immune-enhanced tumor/node organoids is a feasible platform, allowing individual patient immune system and tumor cells to remain viable for studying of personalized immunotherapy response.
Collapse
Affiliation(s)
- Konstantinos I Votanopoulos
- Department of Surgery - Oncology, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, USA. .,Comprehensive Cancer Center at Wake Forest Baptist Medical, Medical Center Boulevard, Winston-Salem, NC, USA. .,Wake Forest Organoid Research Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA. .,Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - Steven Forsythe
- Wake Forest Organoid Research Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA.,Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Hemamylammal Sivakumar
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Andrea Mazzocchi
- Wake Forest Organoid Research Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA.,Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Julio Aleman
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lance Miller
- Comprehensive Cancer Center at Wake Forest Baptist Medical, Medical Center Boulevard, Winston-Salem, NC, USA.,Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Edward Levine
- Department of Surgery - Oncology, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, USA.,Comprehensive Cancer Center at Wake Forest Baptist Medical, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Pierre Triozzi
- Department of Surgery - Oncology, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, USA.,Comprehensive Cancer Center at Wake Forest Baptist Medical, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Aleksander Skardal
- Comprehensive Cancer Center at Wake Forest Baptist Medical, Medical Center Boulevard, Winston-Salem, NC, USA. .,Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA. .,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA. .,Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA. .,Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA. .,The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|