1
|
Invernizzi A, Renzetti S, van Thriel C, Rechtman E, Patrono A, Ambrosi C, Mascaro L, Corbo D, Cagna G, Gasparotti R, Reichenberg A, Tang CY, Lucchini RG, Wright RO, Placidi D, Horton MK. COVID-19 related cognitive, structural and functional brain changes among Italian adolescents and young adults: a multimodal longitudinal case-control study. Transl Psychiatry 2024; 14:402. [PMID: 39358346 PMCID: PMC11447249 DOI: 10.1038/s41398-024-03108-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been associated with brain functional, structural, and cognitive changes that persist months after infection. Most studies of the neurologic outcomes related to COVID-19 focus on severe infection and aging populations. Here, we investigated the neural activities underlying COVID-19 related outcomes in a case-control study of mildly infected youth enrolled in a longitudinal study in Lombardy, Italy, a global hotspot of COVID-19. All participants (13 cases, 27 controls, mean age 24 years) completed resting-state functional (fMRI), structural MRI, cognitive assessments (CANTAB spatial working memory) at baseline (pre-COVID) and follow-up (post-COVID). Using graph theory eigenvector centrality (EC) and data-driven statistical methods, we examined differences in ECdelta (i.e., the difference in EC values pre- and post-COVID-19) and Volumetricdelta (i.e., the difference in cortical volume of cortical and subcortical areas pre- and post-COVID) between COVID-19 cases and controls. We found that ECdelta significantly between COVID-19 and healthy participants in five brain regions; right intracalcarine cortex, right lingual gyrus, left hippocampus, left amygdala, left frontal orbital cortex. The left hippocampus showed a significant decrease in Volumetricdelta between groups (p = 0.041). The reduced ECdelta in the left amygdala associated with COVID-19 status mediated the association between COVID-19 and disrupted spatial working memory. Our results show persistent structural, functional and cognitive brain changes in key brain areas associated with olfaction and cognition. These results may guide treatment efforts to assess the longevity, reversibility and impact of the observed brain and cognitive changes following COVID-19.
Collapse
Affiliation(s)
- Azzurra Invernizzi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Stefano Renzetti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Christoph van Thriel
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Elza Rechtman
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessandra Patrono
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Claudia Ambrosi
- Department of Neuroscience, Neuroradiology Unit, ASST Cremona, Cremona, Italy
| | | | - Daniele Corbo
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Giuseppa Cagna
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Roberto Gasparotti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cheuk Y Tang
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roberto G Lucchini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Megan K Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Nasir SM, Yahya N, Manan HA. Functional brain alterations in COVID-19 patients using resting-state fMRI: a systematic review. Brain Imaging Behav 2024:10.1007/s11682-024-00935-1. [PMID: 39347937 DOI: 10.1007/s11682-024-00935-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2024] [Indexed: 10/01/2024]
Abstract
This study systematically reviews the available evidence on resting-state functional magnetic resonance imaging (rs-fMRI) related to neurological symptoms and cognitive declines in COVID-19 patients. We followed PRISMA guidelines and looked up the PubMed, and Scopus databases for articles search on COVID-19 patients with neurological impairments, and functional connectivity alteration using rs-fMRI technique. Articles published between January 1, 2020, and May 31, 2024, are included in this study. The Quality Assessment Tool for Observational Prospective and Cross-Sectional Studies from the National Heart, Lung, and Blood Institute (NHLBI) was used to assess the quality of papers. A total of 15 articles met the inclusion criteria. The result reveals that the most prevalent neurological impairment associated with COVID-19 was cognitive decline, encompassing issues in attention, memory, processing speed, executive functions, language, and visuospatial ability. The brain connectivity results reveal that two brain areas were functionally altered; the prefrontal cortex and parahippocampus. The functional connectivity mainly increased in the frontal, temporal, and anterior piriform cortex, and reduced in the cerebellum, superior orbitofrontal cortex, and middle temporal gyrus, which also correlated with cognitive decline. The findings of neurological symptoms indicate one study reported a Disorder of Consciousness (DoC), and four studies reported COVID-19 patients with olfactory dysfunction. The present study concludes that COVID-19 can alter brain functional connectivity and offers significant insight into how COVID-19 affects the neuronal foundation of cognitive decline and other neurological impairments.
Collapse
Affiliation(s)
- Siti Maisarah Nasir
- Makmal Pemprosesan Imej Kefungsian (Functional Image Processing Laboratory), Department of Radiology, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56 000, Cheras, Kuala Lumpur, Malaysia
| | - Noorazrul Yahya
- Diagnostic Imaging & Radiotherapy Program, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Hanani Abdul Manan
- Makmal Pemprosesan Imej Kefungsian (Functional Image Processing Laboratory), Department of Radiology, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56 000, Cheras, Kuala Lumpur, Malaysia.
- Department of Radiology and Intervency, Hospital Pakar Kanak-Kanak (Children Specialist Hospital), Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Bandar Tun Razak, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Chang J, Song D, Yu R. The double-edged sword of the hippocampus-ventromedial prefrontal cortex resting-state connectivity in stress susceptibility and resilience: A prospective study. Neurobiol Stress 2023; 27:100584. [PMID: 37965440 PMCID: PMC10641247 DOI: 10.1016/j.ynstr.2023.100584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
The hippocampus has long been considered a pivotal region implicated in both stress susceptibility and resilience. A wealth of evidence from animal and human studies underscores the significance of hippocampal functional connectivity with the ventromedial prefrontal cortex (vmPFC) in these stress-related processes. However, there remains a scarcity of research that explores and contrasts the roles of hippocampus-vmPFC connectivity in stress susceptibility and resilience when facing a real-life traumatic event from a prospective standpoint. In the present study, we investigated the contributions of undirected and directed connectivity between the hippocampus and vmPFC to stress susceptibility and resilience within the context of the COVID-19 pandemic. Our findings revealed that the left hippocampus-left vmPFC connectivity prior to the pandemic exhibited a negative correlation with both stress susceptibility and resilience. Specifically, individuals with stronger left hippocampus-left vmPFC connectivity reported experiencing fewer stress-related feelings during the outbreak period of the epidemic but displayed lower levels of stress resilience five months later. Our application of spectral dynamic causal modeling unveiled an additional inhibitory connectivity pathway from the left hippocampus to the left vmPFC in the context of stress susceptibility, which was notably absent in stress resilience. Furthermore, we observed a noteworthy positive association between self-inhibition of the vmPFC and stress susceptibility, with this effect proving substantial enough to predict an individual's susceptibility to stress; conversely, these patterns did not manifest in the realm of stress resilience. These findings enrich our comprehension of stress susceptibility and stress resilience and might have implications for innovative approaches to managing stress-related disorders.
Collapse
Affiliation(s)
- Jingjing Chang
- Institute of Psychology, School of Public Policy, Xiamen University, Xiamen, China
| | - Di Song
- Department of Management, Hong Kong Baptist University, Hong Kong, China
| | - Rongjun Yu
- Department of Management, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
4
|
Nouraeinejad A. The functional and structural changes in the hippocampus of COVID-19 patients. Acta Neurol Belg 2023; 123:1247-1256. [PMID: 37226033 PMCID: PMC10208918 DOI: 10.1007/s13760-023-02291-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Since the hippocampus is predominantly susceptible to injuries caused by COVID-19, there are increasing data indicating the likelihood of post-infection memory loss and quickening neurodegenerative disorders, such as Alzheimer's disease. This is due to the fact that the hippocampus has imperative functions in spatial and episodic memory as well as learning. COVID-19 activates microglia in the hippocampus and induces a CNS cytokine storm, leading to loss of hippocampal neurogenesis. The functional and structural changes in the hippocampus of COVID-19 patients can explain neuronal degeneration and reduced neurogenesis in the human hippocampus. This will open a window to explain memory and cognitive dysfunctions in "long COVID" through the resultant loss of hippocampal neurogenesis.
Collapse
Affiliation(s)
- Ali Nouraeinejad
- Faculty of Brain Sciences, Institute of Ophthalmology, University College London (UCL), London, UK.
| |
Collapse
|
5
|
Machlin L, McLaughlin KA. Pre-pandemic brain structure and function and adolescent psychopathology during the COVID-19 pandemic. Curr Opin Psychol 2023; 52:101647. [PMID: 37429074 PMCID: PMC10414753 DOI: 10.1016/j.copsyc.2023.101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/12/2023]
Abstract
The COVID-19 pandemic has presented unprecedented challenges for youths and families, dramatically increasing exposure to stressors and stress-related psychopathology. Increasing work has leveraged pre-pandemic neuroimaging data to predict adolescent psychopathology and stress responses during the pandemic, with a particular focus on internalizing symptoms. We review this recent literature on pre-pandemic brain structure and function and adolescent internalizing psychopathology during the pandemic. At present, existing studies have not consistently identified specific alterations in brain structure and function that predict anxiety or depressive symptoms during the pandemic. In contrast, exposure to stress and adversity before and during the pandemic as well as access to peer and family support have emerged as consistent and reliable predictors of youth mental health during the pandemic.
Collapse
Affiliation(s)
- Laura Machlin
- Department of Psychology, Harvard University, United States.
| | | |
Collapse
|
6
|
Pan N, Qin K, Yu Y, Long Y, Zhang X, He M, Suo X, Zhang S, Sweeney JA, Wang S, Gong Q. Pre-COVID brain functional connectome features prospectively predict emergence of distress symptoms after onset of the COVID-19 pandemic. Psychol Med 2023; 53:5155-5166. [PMID: 36046918 PMCID: PMC9433719 DOI: 10.1017/s0033291722002173] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/16/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Persistent psychological distress associated with the coronavirus disease 2019 (COVID-19) pandemic has been well documented. This study aimed to identify pre-COVID brain functional connectome that predicts pandemic-related distress symptoms among young adults. METHODS Baseline neuroimaging studies and assessment of general distress using the Depression, Anxiety and Stress Scale were performed with 100 healthy individuals prior to wide recognition of the health risks associated with the emergence of COVID-19. They were recontacted for the Impact of Event Scale-Revised and the Posttraumatic Stress Disorder Checklist in the period of community-level outbreaks, and for follow-up distress evaluation again 1 year later. We employed the network-based statistic approach to identify connectome that predicted the increase of distress based on 136-region-parcellation with assigned network membership. Predictive performance of connectome features and causal relations were examined by cross-validation and mediation analyses. RESULTS The connectome features that predicted emergence of distress after COVID contained 70 neural connections. Most within-network connections were located in the default mode network (DMN), and affective network-DMN and dorsal attention network-DMN links largely constituted between-network pairs. The hippocampus emerged as the most critical hub region. Predictive models of the connectome remained robust in cross-validation. Mediation analyses demonstrated that COVID-related posttraumatic stress partially explained the correlation of connectome to the development of general distress. CONCLUSIONS Brain functional connectome may fingerprint individuals with vulnerability to psychological distress associated with the COVID pandemic. Individuals with brain neuromarkers may benefit from the corresponding interventions to reduce the risk or severity of distress related to fear of COVID-related challenges.
Collapse
Affiliation(s)
- Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Kun Qin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Yifan Yu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Yajing Long
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Xun Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Min He
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Shufang Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - John A. Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361000, China
| |
Collapse
|
7
|
Invernizzi A, Renzetti S, van Thriel C, Rechtman E, Patrono A, Ambrosi C, Mascaro L, Cagna G, Gasparotti R, Reichenberg A, Tang CY, Lucchini RG, Wright RO, Placidi D, Horton MK. Covid-19 related cognitive, structural and functional brain changes among Italian adolescents and young adults: a multimodal longitudinal case-control study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.19.23292909. [PMID: 37503251 PMCID: PMC10371098 DOI: 10.1101/2023.07.19.23292909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has been associated with brain functional, structural, and cognitive changes that persist months after infection. Most studies of the neurologic outcomes related to COVID-19 focus on severe infection and aging populations. Here, we investigated the neural activities underlying COVID-19 related outcomes in a case-control study of mildly infected youth enrolled in a longitudinal study in Lombardy, Italy, a global hotspot of COVID-19. All participants (13 cases, 27 controls, mean age 24 years) completed resting state functional (fMRI), structural MRI, cognitive assessments (CANTAB spatial working memory) at baseline (pre-COVID) and follow-up (post-COVID). Using graph theory eigenvector centrality (EC) and data-driven statistical methods, we examined differences in ECdelta (i.e., the difference in EC values pre- and post-COVID-19) and volumetricdelta (i.e., the difference in cortical volume of cortical and subcortical areas pre- and post-COVID) between COVID-19 cases and controls. We found that ECdeltasignificantly between COVID-19 and healthy participants in five brain regions; right intracalcarine cortex, right lingual gyrus, left hippocampus, left amygdala, left frontal orbital cortex. The left hippocampus showed a significant decrease in volumetricdelta between groups (p=0.041). The reduced ECdelta in the right amygdala associated with COVID-19 status mediated the association between COVID-19 and disrupted spatial working memory. Our results show persistent structural, functional and cognitive brain changes in key brain areas associated with olfaction and cognition. These results may guide treatment efforts to assess the longevity, reversibility and impact of the observed brain and cognitive changes following COVID-19.
Collapse
Affiliation(s)
- Azzurra Invernizzi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stefano Renzetti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Christoph van Thriel
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Elza Rechtman
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessandra Patrono
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Claudia Ambrosi
- Department of Neuroscience, Neuroradiology Unit, ASST Cremona
| | | | - Giuseppa Cagna
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Roberto Gasparotti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Cheuk Y Tang
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Roberto G Lucchini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Megan K Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Hafiz R, Gandhi TK, Mishra S, Prasad A, Mahajan V, Natelson BH, Di X, Biswal BB. Assessing functional connectivity differences and work-related fatigue in surviving COVID-negative patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.02.01.478677. [PMID: 35132408 PMCID: PMC8820653 DOI: 10.1101/2022.02.01.478677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Coronavirus Disease 2019 (COVID-19) has affected all aspects of life around the world. Neuroimaging evidence suggests the novel coronavirus can attack the central nervous system (CNS), causing cerebro-vascular abnormalities in the brain. This can lead to focal changes in cerebral blood flow and metabolic oxygen consumption rate in the brain. However, the extent and spatial locations of brain alterations in COVID-19 survivors are largely unknown. In this study, we have assessed brain functional connectivity (FC) using resting-state functional MRI (RS-fMRI) in 38 (25 males) COVID patients two weeks after hospital discharge, when PCR negative and 31 (24 males) healthy subjects. FC was estimated using independent component analysis (ICA) and dual regression. When compared to the healthy group, the COVID group demonstrated significantly enhanced FC in the basal ganglia and precuneus networks (family wise error (fwe) corrected, pfwe < 0.05), while, on the other hand, reduced FC in the language network (pfwe < 0.05). The COVID group also experienced higher fatigue levels during work, compared to the healthy group (p < 0.001). Moreover, within the precuneus network, we noticed a significant negative correlation between FC and fatigue scores across groups (Spearman's ρ = -0.47, p = 0.001, r2 = 0.22). Interestingly, this relationship was found to be significantly stronger among COVID survivors within the left parietal lobe, which is known to be structurally and functionally associated with fatigue in other neurological disorders.
Collapse
Affiliation(s)
- Rakibul Hafiz
- Department of Biomedical Engineering, New Jersey Institute of Technology (NJIT), 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA
| | - Tapan Kumar Gandhi
- Department of Electrical Engineering, Indian Institute of Technology (IIT), Block II, IIT Delhi Main Rd, IIT Campus, Hauz Khas, New Delhi, Delhi 110016, India
| | - Sapna Mishra
- Department of Electrical Engineering, Indian Institute of Technology (IIT), Block II, IIT Delhi Main Rd, IIT Campus, Hauz Khas, New Delhi, Delhi 110016, India
| | - Alok Prasad
- Internal Medicine, Irene Hospital & Senior Consultant Medicine, Metro Heart and Super-specialty Hospital, New Delhi, India
| | - Vidur Mahajan
- Centre for Advanced Research in Imaging, Neuroscience & Genomics, Mahajan Imaging, New Delhi, India
| | - Benjamin H. Natelson
- Pain and Fatigue Study Center, Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology (NJIT), 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA
| | - Bharat B. Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology (NJIT), 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA
| |
Collapse
|
9
|
Aizza A, Porter BM, Church JA. Youth pre-pandemic executive function relates to year one COVID-19 difficulties. Front Psychol 2023; 14:1033282. [PMID: 37151319 PMCID: PMC10156991 DOI: 10.3389/fpsyg.2023.1033282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction The first year of the COVID-19 pandemic presented a series of stressors that could relate to psychological difficulties in children and adolescents. Executive functioning (EF) supports goal achievement and is associated with life success, and better outcomes following early life adversity. EF is also strongly related to processing speed, another predictor of life outcomes. Methods This longitudinal study examined 149 youths' pre-pandemic EF and processing speed abilities as predictors of self-reported emotional, cognitive, and social experiences during the first year of the COVID-19 pandemic. EF and processing speed were measured with a total of 11 behavioral tasks. The COVID-era data was collected during two timepoints, during early (May-July 2020) and mid- (January-March of 2021) pandemic. Results Better pre-pandemic EF skills and processing speed abilities predicted more mid-COVID-19 pandemic emotional and cognitive difficulties. On the other hand, better switching (a subcomponent of EF) and processing speed abilities predicted more mid-pandemic social interactions. EF and processing speed abilities did not relate to the well-being reports from the initial months of the pandemic. Our EF - but not processing speed - results were largely maintained when controlling for pre-pandemic mental health burden, socioeconomic status (SES), and gender. Discussion Better cognitive abilities may have contributed to worse mid-pandemic functioning by supporting the meta-cognition needed for attending to the chaotic and ever-changing pandemic news and advice, leading to higher stress-induced worry and rumination. Our study highlights a potential downside of higher EF - often largely viewed as a protective factor - in youth.
Collapse
|
10
|
Barch DM. Introduction to Special Issue on COVID-19 and Mental Health. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:241-243. [PMID: 36325502 PMCID: PMC9616326 DOI: 10.1016/j.bpsgos.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Deanna M. Barch
- Departments of Psychological and Brain Sciences, Psychiatry, and Radiology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|