1
|
Algaidi SA. Chronic stress-induced neuroplasticity in the prefrontal cortex: Structural, functional, and molecular mechanisms from development to aging. Brain Res 2025; 1851:149461. [PMID: 39864644 DOI: 10.1016/j.brainres.2025.149461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
Chronic stress profoundly affects the structure and function of the prefrontal cortex (PFC), a brain region critical for executive functions and emotional regulation. This review synthesizes current knowledge on stress-induced PFC plasticity, encompassing structural, functional, and molecular changes. We examine how chronic stress leads to dendritic atrophy, spine loss, and alterations in neuronal connectivity within the PFC, particularly affecting the medial PFC. These structural changes are accompanied by disruptions in neurotransmitter systems, most notably glutamatergic and GABAergic signaling, and alterations in synaptic plasticity mechanisms. At the molecular level, we discuss the intricate interplay between stress hormones, neurotrophic factors, and epigenetic modifications that underlie these changes. The review highlights the significant behavioral and cognitive consequences of stress-induced PFC plasticity, including impairments in working memory, decision-making, and emotional regulation, which may contribute to the development of stress-related psychiatric disorders. We also explore individual differences in stress susceptibility, focusing on sex-specific effects and age-dependent variations in stress responses. The role of estrogens in conferring stress resilience in females and the unique vulnerabilities of the developing and aging PFC are discussed. Finally, we consider potential pharmacological and non-pharmacological interventions that may mitigate or reverse stress-induced changes in the PFC. The review concludes by identifying key areas for future research, including the need for more studies on the reversibility of stress effects and the potential of emerging technologies in unraveling the complexities of PFC plasticity. This comprehensive overview underscores the critical importance of understanding stress-induced PFC plasticity for developing more effective strategies to prevent and treat stress-related mental health disorders.
Collapse
Affiliation(s)
- Sami Awda Algaidi
- Department of Basic Medical Sciences Faculty of Medicine Taibah University Saudi Arabia.
| |
Collapse
|
2
|
Dwivedi Y, Roy B, Korla PK. Genome-wide methylome-based molecular pathologies associated with depression and suicide. Neuropsychopharmacology 2025; 50:705-716. [PMID: 39645539 PMCID: PMC11845511 DOI: 10.1038/s41386-024-02040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Major depressive disorder (MDD) is a debilitating disorder. Suicide attempts are 5-times higher in MDD patients than in the general population. Interestingly, not all MDD patients develop suicidal thoughts or complete suicide. Thus, it is important to study the risk factors that can distinguish suicidality among MDD patients. The present study examined if DNA methylation changes can distinguish suicidal behavior among depressed subjects. Genome-wide DNA methylation was examined in the dorsolateral prefrontal cortex of depressed suicide (MDD+S; n = 15), depressed non-suicide (MDD-S; n = 17), and nonpsychiatric control (C; n = 16) subjects using 850 K Infinium Methylation EPIC BeadChip. The significantly differentially methylated genes were used to determine the functional enrichment of genes for ontological clustering and pathway analysis. Based on the number of CpG content and their relative distribution from specific landmark regions of genes, 32,958 methylation sites were identified across 12,574 genes in C vs. MDD+/-S subjects, 30,852 methylation sites across 12,019 genes in C vs. MDD-S, 41,648 methylation sites across 13,941 genes in C vs. MDD+S, and 49,848 methylation sites across 15,015 genes in MDD-S vs. MDD+S groups. A comparison of methylation sites showed 33,129 unique methylation sites and 5451 genes in the MDD-S group compared to the MDD+S group. Functional analysis suggested oxytocin, GABA, VGFA, TNFA, and mTOR pathways associated with suicide in the MDD group. Altogether, our data show a distinct pattern of DNA methylation, the genomic distribution of differentially methylated sites, gene enrichment, and pathways in MDD suicide compared to non-suicide MDD subjects.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Praveen Kumar Korla
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
3
|
Duarte Y, Quintana-Donoso D, Moraga-Amaro R, Dinamarca I, Lemunao Y, Cárdenas K, Bahamonde T, Barrientos T, Olivares P, Navas C, Carvajal FJ, Santibánez Y, Castro-Lazo R, Paz Meza M, Jorquera R, Gómez GI, Henke M, Alarcón R, Gabriel LA, Schiffmann S, Cerpa W, Retamal MA, Simon F, Linsambarth S, Gonzalez-Nilo F, Stehberg J. The role of astrocytes in depression, its prevention, and treatment by targeting astroglial gliotransmitter release. Proc Natl Acad Sci U S A 2024; 121:e2307953121. [PMID: 39495924 PMCID: PMC11572930 DOI: 10.1073/pnas.2307953121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/19/2024] [Indexed: 11/06/2024] Open
Abstract
The role of ventral hippocampus (vHipp) astroglial gliotransmission in depression was studied using chronic restraint stress (CRS) and chronic unpredictable mild stress (CUMS) rodent models. CRS increased Cx43 hemichannel activity and extracellular glutamate levels in the vHipp and blocking astroglial Cx43 hemichannel-dependent gliotransmission during CRS prevented the development of depression and glutamate buildup. Moreover, the acute blockade of Cx43 hemichannels induced antidepressant effects in rats previously subjected to CRS or CUMS. This antidepressant effect was prevented by coinjection of glutamate and D-serine. Furthermore, Cx43 hemichannel blockade decreased postsynaptic NMDAR currents in vHipp slices in a glutamate and D-serine-dependent manner. Notably, chronic microinfusion of glutamate and D-serine, L-serine, or the NMDAR agonist NMDA, into the vHipp induced depressive-like symptoms in nonstressed rats. We also identified a small molecule, cacotheline, which blocks Cx43 hemichannels and its systemic administration induced rapid antidepressant effects, preventing stress-induced increases in astroglial Cx43 hemichannel activity and extracellular glutamate in the vHipp, without sedative or locomotor side effects. In conclusion, chronic stress increases Cx43 hemichannel-dependent release of glutamate and D-/L-serine from astrocytes in the vHipp, overactivating postsynaptic NMDARs and triggering depressive-like symptoms. This study highlights the critical role of astroglial gliotransmitter release in chronic stress-induced depression and suggests it can be used as a target for the prevention and treatment of depression.
Collapse
Affiliation(s)
- Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago8370146, Chile
| | - Daisy Quintana-Donoso
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad Andres Bello, Santiago8370146, Chile
| | - Rodrigo Moraga-Amaro
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad Andres Bello, Santiago8370146, Chile
| | - Ivanka Dinamarca
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad Andres Bello, Santiago8370146, Chile
| | - Yordan Lemunao
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad Andres Bello, Santiago8370146, Chile
| | - Kevin Cárdenas
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad Andres Bello, Santiago8370146, Chile
| | - Tamara Bahamonde
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad Andres Bello, Santiago8370146, Chile
| | - Tabita Barrientos
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad Andres Bello, Santiago8370146, Chile
| | - Pedro Olivares
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago8370146, Chile
| | - Camila Navas
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago8370146, Chile
| | - Francisco J. Carvajal
- Laboratorio de Función y Patología Neuronal, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Yessenia Santibánez
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad Andres Bello, Santiago8370146, Chile
| | - Raimundo Castro-Lazo
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad Andres Bello, Santiago8370146, Chile
| | - María Paz Meza
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad Andres Bello, Santiago8370146, Chile
| | - Ramon Jorquera
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad Andres Bello, Santiago8370146, Chile
| | - Gonzalo I. Gómez
- Laboratorio de Fisiología Renal y Comunicación Celular, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago8910060, Chile
| | - Marina Henke
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main60596, Germany
| | - Rodrigo Alarcón
- Programa de Comunicación Celular en Cáncer, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago7610634, Chile
| | - Laureen A. Gabriel
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main60596, Germany
| | - Susanne Schiffmann
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main60596, Germany
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Mauricio A. Retamal
- Programa de Comunicación Celular en Cáncer, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago7610634, Chile
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago8331150, Chile
| | - Sergio Linsambarth
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad Andres Bello, Santiago8370146, Chile
| | - Fernando Gonzalez-Nilo
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago8370146, Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad Andres Bello, Santiago8370146, Chile
| |
Collapse
|
4
|
Kim HD, Wei J, Call T, Ma X, Quintus NT, Summers AJ, Carotenuto S, Johnson R, Nguyen A, Cui Y, Park JG, Qiu S, Ferguson D. SIRT1 Coordinates Transcriptional Regulation of Neural Activity and Modulates Depression-Like Behaviors in the Nucleus Accumbens. Biol Psychiatry 2024; 96:495-505. [PMID: 38575105 PMCID: PMC11338727 DOI: 10.1016/j.biopsych.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Major depression and anxiety disorders are significant causes of disability and socioeconomic burden. Despite the prevalence and considerable impact of these affective disorders, their pathophysiology remains elusive. Thus, there is an urgent need to develop novel therapeutics for these conditions. We evaluated the role of SIRT1 in regulating dysfunctional processes of reward by using chronic social defeat stress to induce depression- and anxiety-like behaviors. Chronic social defeat stress induces physiological and behavioral changes that recapitulate depression-like symptomatology and alters gene expression programs in the nucleus accumbens, but cell type-specific changes in this critical structure remain largely unknown. METHODS We examined transcriptional profiles of D1-expressing medium spiny neurons (MSNs) lacking deacetylase activity of SIRT1 by RNA sequencing in a cell type-specific manner using the RiboTag line of mice. We analyzed differentially expressed genes using gene ontology tools including SynGO and EnrichR and further demonstrated functional changes in D1-MSN-specific SIRT1 knockout (KO) mice using electrophysiological and behavioral measurements. RESULTS RNA sequencing revealed altered transcriptional profiles of D1-MSNs lacking functional SIRT1 and showed specific changes in synaptic genes including glutamatergic and GABAergic (gamma-aminobutyric acidergic) receptors in D1-MSNs. These molecular changes may be associated with decreased excitatory and increased inhibitory neural activity in Sirt1 KO D1-MSNs, accompanied by morphological changes. Moreover, the D1-MSN-specific Sirt1 KO mice exhibited proresilient changes in anxiety- and depression-like behaviors. CONCLUSIONS SIRT1 coordinates excitatory and inhibitory synaptic genes to regulate the GABAergic output tone of D1-MSNs. These findings reveal a novel signaling pathway that has potential for the development of innovative treatments for affective disorders.
Collapse
Affiliation(s)
- Hee-Dae Kim
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Jing Wei
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Tanessa Call
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Xiaokuang Ma
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Nicole Teru Quintus
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Alexander J Summers
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Samantha Carotenuto
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Ross Johnson
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Angel Nguyen
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Yuehua Cui
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Jin G Park
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Shenfeng Qiu
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Deveroux Ferguson
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona.
| |
Collapse
|
5
|
Freudenberg F, Reif-Leonhard C, Reif A. Advancing past ketamine: emerging glutamatergic compounds for the treatment of depression. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01875-z. [PMID: 39207462 DOI: 10.1007/s00406-024-01875-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Changes in glutamatergic neuroplasticity has been proposed as one of the core mechanisms underlying the pathophysiology of depression. In consequence components of the glutamatergic synapse have been explored as potential targets for antidepressant treatment. The rapid antidepressant effect of the NMDA receptor antagonist ketamine and subsequent approval of its S-enantiomer (i.e. esketamine), have set the precedent for investigation into other glutamatergic rapid acting antidepressants (RAADs). In this review, we discuss the potential of the different glutamatergic targets for antidepressant treatment. We describe important clinical outcomes of several key molecules targeting components of the glutamatergic synapse and their applicability as RAADs. Specifically, here we focus on substances beyond (es)ketamine, for which meaningful data from clinical trials are available, including arketamine, esmethadone, nitrous oxide and other glutamate receptor modulators. Molecules only successful in preclinical settings and case reports/series are only marginally discussed. With this review, we aim underscore the critical role of glutamatergic modulation in advancing antidepressant therapy, thereby possibly enhancing clinical outcomes but also to reducing the burden of depression through faster therapeutic effects.
Collapse
Affiliation(s)
- Florian Freudenberg
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt am Main, Germany.
| | - Christine Reif-Leonhard
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt am Main, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt Am Main, Germany
| |
Collapse
|
6
|
de Paiva IHR, da Silva RS, Mendonça IP, de Souza JRB, Peixoto CA. Semaglutide Attenuates Anxious and Depressive-Like Behaviors and Reverses the Cognitive Impairment in a Type 2 Diabetes Mellitus Mouse Model Via the Microbiota-Gut-Brain Axis. J Neuroimmune Pharmacol 2024; 19:36. [PMID: 39042202 DOI: 10.1007/s11481-024-10142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Newly conducted research suggests that metabolic disorders, like diabetes and obesity, play a significant role as risk factors for psychiatric disorders. This connection presents a potential avenue for creating novel antidepressant medications by repurposing drugs originally developed to address antidiabetic conditions. Earlier investigations have shown that GLP-1 (Glucagon-like Peptide-1) analogs exhibit neuroprotective qualities in various models of neurological diseases, encompassing conditions such as Alzheimer's disease, Parkinson's disease, and stroke. Moreover, GLP-1 analogs have demonstrated the capability to enhance neurogenesis, a process recognized for its significance in memory formation and the cognitive and emotional aspects of information processing. Nonetheless, whether semaglutide holds efficacy as both an antidepressant and anxiolytic agent remains uncertain. To address this, our study focused on a mouse model of depression linked to type 2 diabetes induced by a High Fat Diet (HFD). In this model, we administered semaglutide (0.05 mg/Kg intraperitoneally) on a weekly basis to evaluate its potential as a therapeutic option for depression and anxiety. Diabetic mice had higher blood glucose, lipidic profile, and insulin resistance. Moreover, mice fed HFD showed higher serum interleukin (IL)-1β and lipopolysaccharide (LPS) associated with impaired humor and cognition. The analysis of behavioral responses revealed that the administration of semaglutide effectively mitigated depressive- and anxiety-like behaviors, concurrently demonstrating an enhancement in cognitive function. Additionally, semaglutide treatment protected synaptic plasticity and reversed the hippocampal neuroinflammation induced by HFD fed, improving activation of the insulin pathway, demonstrating the protective effects of semaglutide. We also found that semaglutide treatment decreased astrogliosis and microgliosis in the dentate gyrus region of the hippocampus. In addition, semaglutide prevented the DM2-induced impairments of pro-opiomelanocortin (POMC), and G-protein-coupled receptor 43 (GPR43) and simultaneously increased the NeuN + and Glucagon-like Peptide-1 receptor (GLP-1R+) neurons in the hippocampus. Our data also showed that semaglutide increased the serotonin (5-HT) and serotonin transporter (5-HTT) and glutamatergic receptors in the hippocampus. At last, semaglutide changed the gut microbiota profile (increasing Bacterioidetes, Bacteroides acidifaciens, and Blautia coccoides) and decreased leaky gut, improving the gut-brain axis. Taken together, semaglutide has the potential to act as a therapeutic tool for depression and anxiety.
Collapse
MESH Headings
- Animals
- Glucagon-Like Peptides/pharmacology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/psychology
- Diabetes Mellitus, Type 2/metabolism
- Mice
- Cognitive Dysfunction/drug therapy
- Cognitive Dysfunction/prevention & control
- Cognitive Dysfunction/etiology
- Cognitive Dysfunction/metabolism
- Depression/drug therapy
- Depression/psychology
- Depression/metabolism
- Male
- Anxiety/drug therapy
- Anxiety/psychology
- Anxiety/etiology
- Gastrointestinal Microbiome/drug effects
- Mice, Inbred C57BL
- Brain-Gut Axis/drug effects
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/psychology
- Diabetes Mellitus, Experimental/metabolism
- Disease Models, Animal
- Antidepressive Agents/pharmacology
- Antidepressive Agents/therapeutic use
Collapse
Affiliation(s)
- Igor Henrique Rodrigues de Paiva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Av. Moraes Rego s/n, Recife CEP, PE, 50670-420, Brazil.
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.
| | - Rodrigo Soares da Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Av. Moraes Rego s/n, Recife CEP, PE, 50670-420, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Ingrid Prata Mendonça
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Av. Moraes Rego s/n, Recife CEP, PE, 50670-420, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | | | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Av. Moraes Rego s/n, Recife CEP, PE, 50670-420, Brazil.
- Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Recife, Brazil.
| |
Collapse
|
7
|
Wang J, Yu H, Li X, Li F, Chen H, Zhang X, Wang Y, Xu R, Gao F, Wang J, Liu P, Shi Y, Qin D, Li Y, Liu S, Ding S, Gao XY, Wang ZH. A TrkB cleavage fragment in hippocampus promotes Depressive-Like behavior in mice. Brain Behav Immun 2024; 119:56-83. [PMID: 38555992 DOI: 10.1016/j.bbi.2024.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/06/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Decreased hippocampal tropomyosin receptor kinase B (TrkB) level is implicated in the pathophysiology of stress-induced mood disorder and cognitive decline. However, how TrkB is modified and mediates behavioral responses to chronic stress remains largely unknown. Here the effects and mechanisms of TrkB cleavage by asparagine endopeptidase (AEP) were examined on a preclinical murine model of chronic restraint stress (CRS)-induced depression. CRS activated IL-1β-C/EBPβ-AEP pathway in mice hippocampus, accompanied by elevated TrkB 1-486 fragment generated by AEP. Specifi.c overexpression or suppression of AEP-TrkB axis in hippocampal CaMKIIα-positive cells aggravated or relieved depressive-like behaviors, respectively. Mechanistically, in addition to facilitating AMPARs internalization, TrkB 1-486 interacted with peroxisome proliferator-activated receptor-δ (PPAR-δ) and sequestered it in cytoplasm, repressing PPAR-δ-mediated transactivation and mitochondrial function. Moreover, co-administration of 7,8-dihydroxyflavone and a peptide disrupting the binding of TrkB 1-486 with PPAR-δ attenuated depression-like symptoms not only in CRS animals, but also in Alzheimer's disease and aged mice. These findings reveal a novel role for TrkB cleavage in promoting depressive-like phenotype.
Collapse
Affiliation(s)
- Jianhao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hang Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hongyu Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xi Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yamei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ruifeng Xu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China
| | - Feng Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiabei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Pai Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Yuke Shi
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dongdong Qin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yiyi Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Songyan Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shuai Ding
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xin-Ya Gao
- Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China; Laboratory of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Zhi-Hao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
8
|
Mando Z, Al Zarzour RH, Alshehade S, Afzan A, Shaari K, Hassan Z, Mahror N, Zakaria F. Terpenoids and Triterpenoid Saponins: Future Treatment for Depression. CURRENT TRADITIONAL MEDICINE 2024; 10. [DOI: 10.2174/2215083809666230223121504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/18/2022] [Accepted: 12/30/2022] [Indexed: 02/28/2025]
Abstract
Background:
Depression is a crippling mental disorder with high prevalence around the
world. The available clinical antidepressants have been effective to a certain degree, and different
side effects have limited their application. This leads to the necessity of finding new treatments.
Herbal plants are a substantial source of new drug leads. Terpenoid compounds are secondary metabolites
representing an enormous category of structures found commonly in plants either as aglycones
or attached to sugar moieties. These phytochemicals have been extensively studied for their
various biological effects, and several have been investigated for potential therapeutic effects in the
treatment of depression.
Aim:
This review aims to highlight the current knowledge on some terpenoids and triterpenoid
saponins as potential antidepressant agents and their mechanisms of action, which may provide a
better understanding of the potential antidepressant-like effects of these compounds and lead to the
development of auspicious molecules with high efficiency and low side effects for depressive disorders
treatment.
Methods:
A total of 16 plants containing antidepressant agents are reviewed in this article. 9 terpenoids
and 23 triterpenoid saponins compounds have been reported to becommonly found in plant
extracts, indicating potential use for depression. To enhance the datum of this review, the mechanism
of action for the candidate compounds has been predicted via functional enrichment analysis.
Results:
The behavioural and neurochemical effects, as well as the possible mechanisms of action,
have been evaluated in rodents by different predictive models of depression, mainly the acute
stress models of the forced swimming test (FST) and tail suspension test (TST). The involved
mechanisms include enhancing monoamine neurotransmitters, ameliorating brain-derived neurotrophic
factor (BDNF), and normalizing the hypothalamus-pituitary-adrenal (HPA) axis. Preclinical
studies support the potential antidepressant activities of some terpenoid compounds. Furthermore,
the functional enrichment analysis has confirmed the previous pre-clinical findings and predicted
further mechanisms of action, including cellular calcium ion homeostasis, cellular response
to dopamine, endocrine resistance, and regulating GABAergic, serotonergic, glutamatergic, and
dopaminergic synapse, bedsides neurotransmitter reuptake.
Conclusion:
Terpenoids and triterpenoid saponins provide a large number of natural compounds.
This review sheds light on terpenoids and triterpenoid saponins compounds with antidepressantlike
activity and their potential mechanisms of action. However, more evaluations are required to
confirm that these compounds are promising for discovering antidepressant drugs.
Collapse
Affiliation(s)
- Zaynab Mando
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang, 11800, Malaysia
| | | | - Salah Alshehade
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang, 11800, Malaysia
| | - Adlin Afzan
- Phytochemistry
Unit, Herbal Medicine Research Institute, Institute for Medical Research, National Institutes of Health, Shah Alam,
40170, Malaysia
| | - Khozirah Shaari
- Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra
Malaysia, Serdang, 43400, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Penang,
Malaysia
| | - Norlia Mahror
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, USM, Penang,
11800, Malaysia
| | - Fauziahanim Zakaria
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang, 11800, Malaysia
| |
Collapse
|
9
|
Chrobak AA, Pańczyszyn-Trzewik P, Król P, Pawelec-Bąk M, Dudek D, Siwek M. New Light on Prions: Putative Role of PrP c in Pathophysiology of Mood Disorders. Int J Mol Sci 2024; 25:2967. [PMID: 38474214 PMCID: PMC10932175 DOI: 10.3390/ijms25052967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Mood disorders are highly prevalent and heterogenous mental illnesses with devastating rates of mortality and treatment resistance. The molecular basis of those conditions involves complex interplay between genetic and environmental factors. Currently, there are no objective procedures for diagnosis, prognosis and personalization of patients' treatment. There is an urgent need to search for novel molecular targets for biomarkers in mood disorders. Cellular prion protein (PrPc) is infamous for its potential to convert its insoluble form, leading to neurodegeneration in Creutzfeldt-Jacob disease. Meanwhile, in its physiological state, PrPc presents neuroprotective features and regulates neurotransmission and synaptic plasticity. The aim of this study is to integrate the available knowledge about molecular mechanisms underlying the impact of PrPc on the pathophysiology of mood disorders. Our review indicates an important role of this protein in regulation of cognitive functions, emotions, sleep and biological rhythms, and its deficiency results in depressive-like behavior and cognitive impairment. PrPc plays a neuroprotective role against excitotoxicity, oxidative stress and inflammation, the main pathophysiological events in the course of mood disorders. Research indicates that PrPc may be a promising biomarker of cognitive decline. There is an urgent need of human studies to elucidate its potential utility in clinical practice.
Collapse
Affiliation(s)
- Adrian Andrzej Chrobak
- Department of Adult Psychiatry, Jagiellonian University Medical College, Kopernika 21A, 31-501 Kraków, Poland; (A.A.C.); (P.K.); (D.D.)
| | - Patrycja Pańczyszyn-Trzewik
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland;
| | - Patrycja Król
- Department of Adult Psychiatry, Jagiellonian University Medical College, Kopernika 21A, 31-501 Kraków, Poland; (A.A.C.); (P.K.); (D.D.)
| | - Magdalena Pawelec-Bąk
- Department of Affective Disorders, Jagiellonian University Medical College, Kopernika 21A, 31-501 Kraków, Poland;
| | - Dominika Dudek
- Department of Adult Psychiatry, Jagiellonian University Medical College, Kopernika 21A, 31-501 Kraków, Poland; (A.A.C.); (P.K.); (D.D.)
| | - Marcin Siwek
- Department of Affective Disorders, Jagiellonian University Medical College, Kopernika 21A, 31-501 Kraków, Poland;
| |
Collapse
|
10
|
Olivero G, Roggeri A, Pittaluga A. Anti-NMDA and Anti-AMPA Receptor Antibodies in Central Disorders: Preclinical Approaches to Assess Their Pathological Role and Translatability to Clinic. Int J Mol Sci 2023; 24:14905. [PMID: 37834353 PMCID: PMC10573896 DOI: 10.3390/ijms241914905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Autoantibodies against NMDA and AMPA receptors have been identified in the central nervous system of patients suffering from brain disorders characterized by neurological and psychiatric symptoms. It has been demonstrated that these autoantibodies can affect the functions and/or the expression of the targeted receptors, altering synaptic communication. The importance to clarify, in preclinical models, the molecular mechanisms involved in the autoantibody-mediated effects has emerged in order to understand their pathogenic role in central disorders, but also to propose new therapeutic approaches for preventing the deleterious central consequences. In this review, we describe some of the available preclinical literature concerning the impact of antibodies recognizing NMDA and AMPA receptors in neurons. This review discusses the cellular events that would support the detrimental roles of the autoantibodies, also illustrating some contrasting findings that in our opinion deserve attention and further investigations before translating the preclinical observations to clinic.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy (DiFar), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (G.O.); (A.R.)
| | - Alessandra Roggeri
- Department of Pharmacy (DiFar), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (G.O.); (A.R.)
| | - Anna Pittaluga
- Center of Excellence for Biomedical Research, 3Rs Center, Department of Pharmacy (DiFar), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16145 Genoa, Italy
| |
Collapse
|
11
|
Holvoet H, Long DM, Yang L, Choi J, Marney L, Poeck B, Maier CS, Soumyanath A, Kretzschmar D, Strauss R. Chlorogenic Acids, Acting via Calcineurin, Are the Main Compounds in Centella asiatica Extracts That Mediate Resilience to Chronic Stress in Drosophila melanogaster. Nutrients 2023; 15:4016. [PMID: 37764799 PMCID: PMC10537055 DOI: 10.3390/nu15184016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Common symptoms of depressive disorders include anhedonia, sleep problems, and reduced physical activity. Drugs used to treat depression mostly aim to increase serotonin signaling but these can have unwanted side effects. Depression has also been treated by traditional medicine using plants like Centella asiatica (CA) and this has been found to be well tolerated. However, very few controlled studies have addressed CA's protective role in depression, nor have the active compounds or mechanisms that mediate this function been identified. To address this issue, we used Drosophila melanogaster to investigate whether CA can improve depression-associated symptoms like anhedonia and decreased climbing activity. We found that a water extract of CA provides resilience to stress induced phenotypes and that this effect is primarily due to mono-caffeoylquinic acids found in CA. Furthermore, we describe that the protective function of CA is due to a synergy between chlorogenic acid and one of its isomers also present in CA. However, increasing the concentration of chlorogenic acid can overcome the requirement for the second isomer. Lastly, we found that chlorogenic acid acts via calcineurin, a multifunctional phosphatase that can regulate synaptic transmission and plasticity and is also involved in neuronal maintenance.
Collapse
Affiliation(s)
- Helen Holvoet
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany; (H.H.)
| | - Dani M. Long
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| | - Liping Yang
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Jaewoo Choi
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Luke Marney
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Burkhard Poeck
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany; (H.H.)
| | - Claudia S. Maier
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Amala Soumyanath
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Doris Kretzschmar
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| | - Roland Strauss
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany; (H.H.)
| |
Collapse
|
12
|
Lee CW, Chu MC, Wu HF, Chung YJ, Hsieh TH, Chang CY, Lin YC, Lu TY, Chang CH, Chi H, Chang HS, Chen YF, Li CT, Lin HC. Different synaptic mechanisms of intermittent and continuous theta-burst stimulations in a severe foot-shock induced and treatment-resistant depression in a rat model. Exp Neurol 2023; 362:114338. [PMID: 36717014 DOI: 10.1016/j.expneurol.2023.114338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/04/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Treatment-resistant depression (TRD) is a condition wherein patients with depression fail to respond to antidepressant trials. A new form of repetitive transcranial magnetic stimulation (rTMS), called theta-burst stimulation (TBS), which includes intermittent theta-burst stimulation (iTBS) and continuous theta-burst stimulation (cTBS), is non-inferior to rTMS in TRD treatment. However, the mechanism of iTBS and cTBS underlying the treatment of TRD in the prefrontal cortex (PFC) remains unclear. Hence, we applied foot-shock stress as a traumatic event to develop a TRD rat model and investigated the different mechanisms of iTBS and cTBS. The iTBS and cTBS treatment were effective in depressive-like behavior and active coping behavior. The iTBS treatments improved impaired long-term potentiation and long-term depression (LTD), whereas the cTBS treatment only improved aberrant LTD. Moreover, the decrease in mature brain-derived neurotrophic factor (BDNF)-related protein levels were reversed by iTBS treatment. The decrease in proBDNF-related protein expression was improved by iTBS and cTBS treatment. Both iTBS and cTBS improved the decreased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and downregulation of mammalian target of the rapamycin (mTOR) signaling pathway. The iTBS produces both excitatory and inhibitory synaptic effects, and the cTBS only produces inhibitory synaptic effects in the PFC.
Collapse
Affiliation(s)
- Chi-Wei Lee
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Chia Chu
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Han-Fang Wu
- Department of Optometry, Hsin-Sheng College of Medical Care and Management, Taoyuan, Taiwan
| | - Yueh-Jung Chung
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsung-Han Hsieh
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chieh-Yu Chang
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Cheng Lin
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Yi Lu
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Hsiang Chang
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiang Chi
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsun-Shuo Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung
| | - Yih-Fung Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Hui-Ching Lin
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institute, Taipei, Taiwan.
| |
Collapse
|