1
|
Mutz J, Wong WLE, Powell TR, Young AH, Dawe GS, Lewis CM. The duration of lithium use and biological ageing: telomere length, frailty, metabolomic age and all-cause mortality. GeroScience 2024; 46:5981-5994. [PMID: 38539016 PMCID: PMC11493902 DOI: 10.1007/s11357-024-01142-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/17/2024] [Indexed: 10/23/2024] Open
Abstract
Lithium is an established first-line treatment for bipolar disorder. Beyond its therapeutic effect as a mood stabiliser, lithium exhibits potential anti-ageing effects. This study aimed to examine the relationship between the duration of lithium use, biological ageing and mortality. The UK Biobank is an observational study of middle-aged and older adults. We tested associations between the duration of lithium use (number of prescriptions, total duration of use and duration of the first prescription period) and telomere length, frailty, metabolomic age (MileAge) delta, pulse rate and all-cause mortality. Five hundred ninety-one individuals (mean age = 57.49 years; 55% females) had been prescribed lithium. There was no evidence that the number of prescriptions (β = - 0.022, 95% CI - 0.081 to 0.037, p = 0.47), the total duration of use (β = - 0.005, 95% CI - 0.023 to 0.013, p = 0.57) or the duration of the first prescription period (β = - 0.018, 95% CI - 0.051 to 0.015, p = 0.29) correlated with telomere length. There was also no evidence that the duration of lithium use correlated with frailty or MileAge delta. However, a higher prescription count and a longer duration of use was associated with a lower pulse rate. The duration of lithium use did not predict all-cause mortality. We observed no evidence of associations between the duration of lithium use and biological ageing markers, including telomere length. Our findings suggest that the potential anti-ageing effects of lithium do not differ by the duration of use.
Collapse
Affiliation(s)
- Julian Mutz
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Memory Lane, London, UK.
| | - Win Lee Edwin Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Timothy R Powell
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Memory Lane, London, UK
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London & Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, London, UK
| | - Gavin S Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Memory Lane, London, UK
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
2
|
Mlakar V, Akkouh I, Halff EF, Srivastava DP, Birkenæs V, Ueland T, Quintana DS, Ormerod MBEG, Steen NE, Djurovic S, Andreassen OA, Aas M. Telomere biology and its maintenance in schizophrenia spectrum disorders: Exploring links to cognition. Schizophr Res 2024; 272:89-95. [PMID: 39208769 DOI: 10.1016/j.schres.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Contemporary research suggests reduced telomere length in schizophrenia spectrum disorders (SZ) compared to age-adjusted non-affected individuals. However, the role of telomere maintenance and telomere repair in SZ is poorly understood as well as the involvement of telomere biology in cognitive abnormalities in SZ. METHODS The study consisted of 758 participants (SZ [n = 357] and healthy controls, HC [n = 401]) collected as part of the Norwegian TOP study. Participants were assessed with standardized neuropsychological tests measuring five cognitive domains. Leucocyte telomere length (TL) was measured via blood and determined by quantitative real-time Polymerase Chain Reaction (qPCR) providing a telomere to single copy ratio (T/S ratio), used to estimate the mean telomere length. Telomerase activity was assessed by the expression levels of the Telomerase Reverse Transcriptase (TERT) and Telomerase RNA Component (TERC) genes. To assess telomere maintenance and telomere repair we calculated the telomerase expression to TL ratio (TERT/TL and TERC/TL respectively). RESULTS Patients had reduced TERT (F = 5.03, p = 0.03), but not TERC expression (F = 1.04, p = 0.31), and higher TERT/TL (F = 6.68, p = 0.01) and TERC/TL (F = 6.71, p = 0.01), adjusted for age, sex, and ethnicity. No statistically significant association was observed between any of the telomere biology markers and the cognitive domains (p > 0.05). CONCLUSION Our study shows changes in TERT expression and telomere maintenance and telomere repair in SZ compared HC. However, the role of telomere biology in the mechanism underlying cognitive impairment in psychosis seems limited.
Collapse
Affiliation(s)
- Vid Mlakar
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Ibrahim Akkouh
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo, Norway
| | - Els F Halff
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Viktoria Birkenæs
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo, Norway
| | - Torill Ueland
- Section for Clinical Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Daniel S Quintana
- Department of Psychology, University of Oslo, Oslo, Norway; NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway
| | - Monica B E G Ormerod
- Section for Clinical Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Norway
| | - Nils Eiel Steen
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo, Norway; Section for Clinical Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Norway; Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole A Andreassen
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo, Norway
| | - Monica Aas
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, England, UK
| |
Collapse
|
3
|
Tessema T, Diniz BS, Vieira EM, Mendes-Silva AP, Voineskos AN, Gildengers AG, Husain MI, Ortiz A, Blumberger DM, Rajji TK, Mulsant BH. Elevated senescence-associated secretory phenotype index in late-life bipolar disorder. J Affect Disord 2024; 360:163-168. [PMID: 38795779 PMCID: PMC11209851 DOI: 10.1016/j.jad.2024.05.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND The senescence-associated secretory phenotype (SASP) is a biomarker index based on the profile of 22 blood proteins associated with cellular senescence. The SASP index has not been assessed in older patients with bipolar disorder (BD). We hypothesized that older adults with BD will have elevated cellular senescence burden as measured by the SASP index. METHODS We measured the 22 SASP proteins to calculate the SASP index in 38 older patients with BD and 34 non-psychiatric comparison individuals (HC). RESULTS The SASP index scores were significantly higher in BD than HC after controlling for age, sex, psychopathology, and physical health (F(1,8) = 5.37, p = 0.024, η2 = 0.08). SASP index scores were also associated with higher age, more severe depressive symptoms, and physical illness burden (p < 0.05) in the whole sample. LIMITATION Cross-sectional study and small sample size. CONCLUSION This is the first report of increased SASP index scores in older adults with BD. Our results suggest that dysregulation of age-related biological processes may contribute to more severe depressive symptoms and worse physical health in older adults with BD.
Collapse
Affiliation(s)
- Tselot Tessema
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Breno S Diniz
- UConn Center on Aging & Department of Psychiatry, UConn School of Medicine, University of Connecticut Health Center, United States of America.
| | - Erica M Vieira
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Ana Paula Mendes-Silva
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Aristotle N Voineskos
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Ariel G Gildengers
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - M Ishrat Husain
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Abigail Ortiz
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Daniel M Blumberger
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Benoit H Mulsant
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Squassina A, Pisanu C, Menesello V, Meloni A, Congiu D, Manchia M, Paribello P, Abate M, Bortolomasi M, Baune BT, Gennarelli M, Minelli A. Leukocyte Telomere Length and Mitochondrial DNA Copy Number in Treatment-Resistant Depression and Response to Electroconvulsive Therapy: A Pilot Longitudinal Study. J ECT 2024:00124509-990000000-00206. [PMID: 39178054 DOI: 10.1097/yct.0000000000001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
OBJECTIVES In this study, we investigated if changes in leukocyte telomere length (LTL) and mitochondrial DNA copy number (mtDNA-cn), 2 markers of cellular aging, are associated with treatment-resistant depression (TRD) and with response to electroconvulsive therapy (ECT). METHODS LTL and mtDNA-cn were measured in 31 TRD patients before (T0), 1 week (T1), and 4 weeks (T2) after the ECT course, as well as in a sample of 65 healthy controls. RESULTS TRD patients had significantly shorter LTL and higher mtDNA-cn compared with healthy controls at baseline. In the TRD sample, LTL was inversely correlated with Montgomery-Åsberg Depression Rating Scale scores at baseline. Baseline levels of LTL or mtDNA-cn were not correlated with response to ECT. Similarly, changes in LTL or mtDNA-cn were not associated with response to ECT either when considered as a dichotomous trait (responders vs nonresponders) or as a percentage change in symptoms improvements. CONCLUSIONS Ours is the first longitudinal study exploring the role of LTL and mtDNA-cn in response to ECT. Findings of this pilot investigation suggest that LTL and mtDNA-cn may constitute disease biomarkers for TRD but are not involved in response to ECT.
Collapse
Affiliation(s)
- Alessio Squassina
- From the Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Claudia Pisanu
- From the Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Valentina Menesello
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Anna Meloni
- From the Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Donatella Congiu
- From the Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari Italy
| | - Pasquale Paribello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari Italy
| | - Maria Abate
- Psychiatric Hospital "Villa Santa Chiara," Verona, Italy
| | | | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry, University of Melbourne, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, Melbourne, Australia and
| | | | | |
Collapse
|
5
|
Pisanu C, Congiu D, Meloni A, Paribello P, Patrinos GP, Severino G, Ardau R, Chillotti C, Manchia M, Squassina A. Dissecting the genetic overlap between severe mental disorders and markers of cellular aging: Identification of pleiotropic genes and druggable targets. Neuropsychopharmacology 2024; 49:1033-1041. [PMID: 38402365 PMCID: PMC11039620 DOI: 10.1038/s41386-024-01822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/17/2024] [Accepted: 02/04/2024] [Indexed: 02/26/2024]
Abstract
Patients with severe mental disorders such as bipolar disorder (BD), schizophrenia (SCZ) and major depressive disorder (MDD) show a substantial reduction in life expectancy, increased incidence of comorbid medical conditions commonly observed with advanced age and alterations of aging hallmarks. While severe mental disorders are heritable, the extent to which genetic predisposition might contribute to accelerated cellular aging is not known. We used bivariate causal mixture models to quantify the trait-specific and shared architecture of mental disorders and 2 aging hallmarks (leukocyte telomere length [LTL] and mitochondrial DNA copy number), and the conjunctional false discovery rate method to detect shared genetic loci. We integrated gene expression data from brain regions from GTEx and used different tools to functionally annotate identified loci and investigate their druggability. Aging hallmarks showed low polygenicity compared with severe mental disorders. We observed a significant negative global genetic correlation between MDD and LTL (rg = -0.14, p = 6.5E-10), and no significant results for other severe mental disorders or for mtDNA-cn. However, conditional QQ plots and bivariate causal mixture models pointed to significant pleiotropy among all severe mental disorders and aging hallmarks. We identified genetic variants significantly shared between LTL and BD (n = 17), SCZ (n = 55) or MDD (n = 19), or mtDNA-cn and BD (n = 4), SCZ (n = 12) or MDD (n = 1), with mixed direction of effects. The exonic rs7909129 variant in the SORCS3 gene, encoding a member of the retromer complex involved in protein trafficking and intracellular/intercellular signaling, was associated with shorter LTL and increased predisposition to all severe mental disorders. Genetic variants underlying risk of SCZ or MDD and shorter LTL modulate expression of several druggable genes in different brain regions. Genistein, a phytoestrogen with anti-inflammatory and antioxidant effects, was an upstream regulator of 2 genes modulated by variants associated with risk of MDD and shorter LTL. While our results suggest that shared heritability might play a limited role in contributing to accelerated cellular aging in severe mental disorders, we identified shared genetic determinants and prioritized different druggable targets and compounds.
Collapse
Affiliation(s)
- Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| | - Donatella Congiu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Anna Meloni
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Pasquale Paribello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, School of Health Sciences, Department of Pharmacy, University of Patras, Patras, Greece
- College of Medicine and Health Sciences, Department of Genetics and Genomics, United Arab Emirates University, Al‑Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al‑Ain, Abu Dhabi, UAE
| | - Giovanni Severino
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Raffaella Ardau
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
6
|
Abstract
AIMS Bipolar disorders are clinically complex, chronic and recurrent disorders. Few treatment options are effective across hypomanic, manic, depressive and mixed states and as continuation or maintenance treatment after initial symptom remission. The aim of this review was to provide an up-to-date overview of research on the efficacy, tolerability and cognitive effects of electroconvulsive therapy (ECT), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), magnetic seizure therapy (MST), deep brain stimulation (DBS) and vagus nerve stimulation (VNS). METHODS References included in this review were identified through multiple searches of the Embase, PubMed/MEDLINE and APA PsycINFO electronic databases for articles published from inception until February 2022. Published reviews, meta-analyses, randomised controlled trials and recent studies were prioritised to provide a comprehensive and up-to-date overview of research on brain stimulation in patients with bipolar disorders. RESULTS The evidence base for brain stimulation as an add-on or alternative to pharmacological and psychological treatments in patients with bipolar disorders is limited but rapidly expanding. Brain stimulation treatments represent an opportunity to treat all bipolar disorder states, including cognitive dysfunction during euthymic periods. CONCLUSION Whilst findings to date have been encouraging, larger randomised controlled trials with long-term follow-up are needed to clarify important questions regarding treatment efficacy and tolerability, the frequency of treatment-emergent affective switches and effects on cognitive function.
Collapse
Affiliation(s)
- Julian Mutz
- Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUK
| |
Collapse
|