1
|
Chen M, Xu L, Wu Y, Soba P, Hu C. The organization and function of the Golgi apparatus in dendrite development and neurological disorders. Genes Dis 2023; 10:2425-2442. [PMID: 37554209 PMCID: PMC10404969 DOI: 10.1016/j.gendis.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/13/2022] [Accepted: 11/05/2022] [Indexed: 12/24/2022] Open
Abstract
Dendrites are specialized neuronal compartments that sense, integrate and transfer information in the neural network. Their development is tightly controlled and abnormal dendrite morphogenesis is strongly linked to neurological disorders. While dendritic morphology ranges from relatively simple to extremely complex for a specified neuron, either requires a functional secretory pathway to continually replenish proteins and lipids to meet dendritic growth demands. The Golgi apparatus occupies the center of the secretory pathway and is regulating posttranslational modifications, sorting, transport, and signal transduction, as well as acting as a non-centrosomal microtubule organization center. The neuronal Golgi apparatus shares common features with Golgi in other eukaryotic cell types but also forms distinct structures known as Golgi outposts that specifically localize in dendrites. However, the organization and function of Golgi in dendrite development and its impact on neurological disorders is just emerging and so far lacks a systematic summary. We describe the organization of the Golgi apparatus in neurons, review the current understanding of Golgi function in dendritic morphogenesis, and discuss the current challenges and future directions.
Collapse
Affiliation(s)
- Meilan Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education Institute for Brain, Science and Rehabilitation, South China Normal University, Guangzhou, Guangdong 510631, China
- Department of Ophthalmology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510320, China
| | - Lu Xu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education Institute for Brain, Science and Rehabilitation, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Yi Wu
- Department of Ophthalmology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510320, China
| | - Peter Soba
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Bonn 53115, Germany
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Chun Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education Institute for Brain, Science and Rehabilitation, South China Normal University, Guangzhou, Guangdong 510631, China
| |
Collapse
|
2
|
Takada Y, Kamimura D, Jiang JJ, Higuchi H, Iwami D, Hotta K, Tanaka Y, Ota M, Higuchi M, Nishio S, Atsumi T, Shinohara N, Matsuno Y, Tsuji T, Tanabe T, Sasaki H, Iwahara N, Murakami M. Increased urinary exosomal SYT17 levels in chronic active antibody-mediated rejection after kidney transplantation via the IL-6 amplifier. Int Immunol 2020; 32:653-662. [PMID: 32369831 DOI: 10.1093/intimm/dxaa032] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/28/2020] [Indexed: 12/18/2022] Open
Abstract
Chronic active antibody-mediated rejection (CAAMR) is a particular problem in kidney transplantation (KTx), and ~25% of grafts are lost by CAAMR. Further, the pathogenesis remains unclear, and there is no effective cure or marker. We previously found that a hyper NFκB-activating mechanism in non-immune cells, called the IL-6 amplifier, is induced by the co-activation of NFκB and STAT3, and that this activation can develop various chronic inflammatory diseases. Here, we show that synaptotagmin-17 (SYT17) is increased in an exosomal fraction of the urine from CAAMR patients, and that this increase is associated with activation of the IL-6 amplifier. Immunohistochemistry showed that SYT17 protein expression was increased in renal tubule cells of the CAAMR group. While SYT17 protein was not detectable in whole-urine samples by western blotting, urinary exosomal SYT17 levels were significantly elevated in the CAAMR group compared to three other histology groups (normal, interstitial fibrosis and tubular atrophy, and calcineurin inhibitors toxicity) after KTx. On the other hand, current clinical laboratory data could not differentiate the CAAMR group from these groups. These data suggest that urinary exosomal SYT17 is a potential diagnostic marker for CAAMR.
Collapse
Affiliation(s)
- Yusuke Takada
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daisuke Kamimura
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Jing-Jing Jiang
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, China
| | - Haruka Higuchi
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daiki Iwami
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kiyohiko Hotta
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Tanaka
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mitsutoshi Ota
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Madoka Higuchi
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Saori Nishio
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Takahiro Tsuji
- Department of Pathology, Sapporo City General Hospital, Sapporo, Japan
| | - Tatsu Tanabe
- Department of Kidney Transplant Surgery, Sapporo City General Hospital, Sapporo, Japan
| | - Hajime Sasaki
- Department of Kidney Transplant Surgery, Sapporo City General Hospital, Sapporo, Japan
| | - Naoya Iwahara
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Ruhl DA, Bomba-Warczak E, Watson ET, Bradberry MM, Peterson TA, Basu T, Frelka A, Evans CS, Briguglio JS, Basta T, Stowell MHB, Savas JN, Roopra A, Pearce RA, Piper RC, Chapman ER. Synaptotagmin 17 controls neurite outgrowth and synaptic physiology via distinct cellular pathways. Nat Commun 2019; 10:3532. [PMID: 31387992 PMCID: PMC6684635 DOI: 10.1038/s41467-019-11459-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/13/2019] [Indexed: 12/28/2022] Open
Abstract
The synaptotagmin (syt) proteins have been widely studied for their role in regulating fusion of intracellular vesicles with the plasma membrane. Here we report that syt-17, an unusual isoform of unknown function, plays no role in exocytosis, and instead plays multiple roles in intracellular membrane trafficking. Syt-17 is localized to the Golgi complex in hippocampal neurons, where it coordinates import of vesicles from the endoplasmic reticulum to support neurite outgrowth and facilitate axon regrowth after injury. Further, we discovered a second pool of syt-17 on early endosomes in neurites. Loss of syt-17 disrupts endocytic trafficking, resulting in the accumulation of excess postsynaptic AMPA receptors and defective synaptic plasticity. Two distinct pools of syt-17 thus control two crucial, independent membrane trafficking pathways in neurons. Function of syt-17 appears to be one mechanism by which neurons have specialized their secretory and endosomal systems to support the demands of synaptic communication over sprawling neurite arbors. The functional role of synaptotagmin-17 (syt-17) has remained unanswered. In this study, authors demonstrate that syt-17 exists in two distinct pools in hippocampal neurons (Golgi complex and early endosomes), where it served two completely independent functions: controlling neurite outgrowth and synaptic physiology
Collapse
Affiliation(s)
- David A Ruhl
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Ewa Bomba-Warczak
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Emma T Watson
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Mazdak M Bradberry
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Tabitha A Peterson
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
| | - Trina Basu
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Alyssa Frelka
- Department of Anesthesiology, University of Wisconsin, Madison, WI, 53706, USA
| | - Chantell S Evans
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joseph S Briguglio
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Tamara Basta
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Michael H B Stowell
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Avtar Roopra
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Robert A Pearce
- Department of Anesthesiology, University of Wisconsin, Madison, WI, 53706, USA
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
| | - Edwin R Chapman
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
4
|
Zhu X, Dong J, Han B, Huang R, Zhang A, Xia Z, Chang H, Chao J, Yao H. Neuronal Nitric Oxide Synthase Contributes to PTZ Kindling Epilepsy-Induced Hippocampal Endoplasmic Reticulum Stress and Oxidative Damage. Front Cell Neurosci 2017; 11:377. [PMID: 29234274 PMCID: PMC5712337 DOI: 10.3389/fncel.2017.00377] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is one of the most common chronic neurological disorders which provoke progressive neuronal degeneration. Endoplasmic reticulum (ER) stress has recently been recognized as pivotal etiological factors contributing to epilepsy-induced neuronal damage. However, the specific contribution of epilepsy made to ER stress remains largely elusive. Here we use pentylenetetrazole (PTZ) kindling, a chronic epilepsy model, to identify neuronal nitric oxide synthase (nNOS) as a signaling molecule triggering PTZ kindling epilepsy-induced ER stress and oxidative damage. By genetic deletion of nNOS gene, we further demonstrated that nNOS acts through peroxynitrite, an important member of reactive nitrogen species, to trigger hippocampal ER stress and oxidative damage in the PTZ-kindled mice. Our findings thus define a specific mechanism for chronic epilepsy-induced ER stress and oxidative damage, and identify a potential therapeutic target for neuroprotection in chronic epilepsy patients.
Collapse
Affiliation(s)
- Xinjian Zhu
- Department of Pharmacology, Medical School, Southeast University, Nanjing, China
| | - Jingde Dong
- Department of Geriatric Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Bing Han
- Department of Pharmacology, Medical School, Southeast University, Nanjing, China
| | - Rongrong Huang
- Department of Pharmacology, Medical School, Southeast University, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Medical School, Southeast University, Nanjing, China
| | - Zhengrong Xia
- Analysis and Test Center, Nanjing Medical University, Nanjing, China
| | - Huanhuan Chang
- Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Jie Chao
- Department of Physiology, Medical School, Southeast University, Nanjing, China
| | - Honghong Yao
- Department of Pharmacology, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
5
|
Oida Y, Shimazawa M, Imaizumi K, Hara H. Involvement of endoplasmic reticulum stress in the neuronal death induced by transient forebrain ischemia in gerbil. Neuroscience 2008; 151:111-9. [DOI: 10.1016/j.neuroscience.2007.10.047] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 10/11/2007] [Accepted: 10/16/2007] [Indexed: 11/26/2022]
|
6
|
Abstract
Synaptic vesicles are key organelles in neurotransmission. Vesicle integral or membrane-associated proteins mediate the various functions the organelle fulfills during its life cycle. These include organelle transport, interaction with the nerve terminal cytoskeleton, uptake and storage of low molecular weight constituents, and the regulated interaction with the pre-synaptic plasma membrane during exo- and endocytosis. Within the past two decades, converging work from several laboratories resulted in the molecular and functional characterization of the proteinaceous inventory of the synaptic vesicle compartment. However, up until recently and due to technical difficulties, it was impossible to screen the entire organelle thoroughly. Recent advances in membrane protein identification and mass spectrometry (MS) have dramatically promoted this field. A comparison of different techniques for elucidating the proteinaceous composition of synaptic vesicles revealed numerous overlaps but also remarkable differences in the protein constituents of the synaptic vesicle compartment, indicating that several protein separation techniques in combination with differing MS approaches are required to identify and characterize the synaptic vesicle proteome. This review highlights the power of various gel separation techniques and MS analyses for the characterization of the proteome of highly purified synaptic vesicles. Furthermore, the newly detected protein assignments to synaptic vesicles, especially those proteins which are new to the inventory of the synaptic vesicle proteome, are critically discussed.
Collapse
Affiliation(s)
- Jacqueline Burré
- Institute of Cell Biology and Neuroscience, Neurochemistry, JW Goethe University, Frankfurt, Germany.
| | | |
Collapse
|
7
|
Han KH, Lee UY, Jang YS, Cho YM, Jang YM, Hwang IA, Ghee JY, Lim SW, Kim WY, Yang CW, Kim J, Kwon OJ. Differential regulation of B/K protein expression in proximal and distal tubules of rat kidneys with ischemia-reperfusion injury. Am J Physiol Renal Physiol 2006; 292:F100-6. [PMID: 16896191 DOI: 10.1152/ajprenal.00009.2006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Brain/kidney (B/K) protein is a novel double C2-like-domain protein that is highly expressed in rat brain and kidney, but its cellular localization and functional role in the kidney are still undetermined. We examined the cellular localization of B/K protein in the rat kidney under normal and ischemic conditions. Ischemia-reperfusion (I/R) injury was induced by clamping both renal arteries for 45 min, and animals were killed at 1 and 6 h and 1, 2, 3, 5, 7, 14, and 28 days after the reperfusion. Kidney tissues were processed for immunohistochemistry and immunoblot analyses using rabbit anti-B/K polyclonal antibodies. In control kidneys, B/K protein was expressed primarily in distal tubules including the thick ascending limb, distal convoluted and connecting tubules, and collecting duct. Notably, B/K protein was also expressed in the straight portion (S3 segment), but not in the S1 or S2, of proximal tubules, and podocytes of the glomerulus. In rat kidneys with I/R injury, expression of B/K protein was differentially regulated according to the anatomic location. In distal tubules, overall expression of B/K protein was markedly decreased. On the other hand, I/R injury significantly increased B/K protein expression in the S3 segment of the outer medulla as well as in the rat proximal tubular epithelial cell line NRK-52E in vitro. Furthermore, B/K protein was strongly expressed in many exfoliated cells in the lumen and urine. These findings suggest that B/K protein is closely associated with cell death in proximal tubules, which are vulnerable to I/R injury in the kidney.
Collapse
Affiliation(s)
- Ki-Hwan Han
- Department of Anatomy, College of Medicine, Ewha Womans University, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Epilepsy is a common, chronic neurologic disorder characterized by recurrent unprovoked seizures. Experimental modeling and clinical neuroimaging of patients has shown that certain seizures are capable of causing neuronal death. Such brain injury may contribute to epileptogenesis, impairments in cognitive function or the epilepsy phenotype. Research into cell death after seizures has identified the induction of the molecular machinery of apoptosis. Here, the authors review the clinical and experimental evidence for apoptotic cell death pathway function in the wake of seizure activity. We summarize work showing intrinsic (mitochondrial) and extrinsic (death receptor) apoptotic pathway function after seizures, activation of the caspase and Bcl-2 families of cell death modulators and the acute and chronic neuropathologic impact of intervening in these molecular cascades. Finally, we describe evolving data on nonlethal roles for these proteins in neuronal restructuring and cell excitability that have implications for shaping the epilepsy phenotype. This review highlights the work to date on apoptosis pathway signaling during seizure-induced neuronal death and epileptogenesis, and speculates on how emerging roles in brain remodeling and excitability have enriched the number of therapeutic strategies for protection against seizure-damage and epileptogenesis.
Collapse
Affiliation(s)
- David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | | |
Collapse
|