1
|
The plastic neurotransmitter phenotype of the hippocampal granule cells and of the moss in their messy fibers. J Chem Neuroanat 2015; 73:9-20. [PMID: 26703784 DOI: 10.1016/j.jchemneu.2015.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 01/09/2023]
Abstract
The granule cells (GCs) and their axons, the mossy fibers (MFs), make synapses with interneurons in the hilus and CA3 area of the hippocampus and with pyramidal cells of CA3, each with distinct anatomical and functional characteristics. Many features of synaptic communication observed at the MF synapses are not usually observed in most cortical synapses, and thus have drawn the attention of many groups studying different aspects of the transmission of information. One particular aspect of the GCs, that makes their study unique, is that they express a dual glutamatergic-GABAergic phenotype and several groups have contributed to the understanding of how two neurotransmitters of opposing actions can act on a single target when simultaneously released. Indeed, the GCs somata and their mossy fibers express in a regulated manner glutamate and GABA, GAD, VGlut and VGAT, all markers of both phenotypes. Finally, their activation provokes both glutamate-R-mediated and GABA-R-mediated synaptic responses in the postsynaptic cell targets and even in the MFs themselves. The developmental and activity-dependent expression of these phenotypes seems to follow a "logical" way to maintain an excitation-inhibition balance of the dentate gyrus-to-CA3 communication.
Collapse
|
2
|
Münster-Wandowski A, Gómez-Lira G, Gutiérrez R. Mixed neurotransmission in the hippocampal mossy fibers. Front Cell Neurosci 2013; 7:210. [PMID: 24319410 PMCID: PMC3837298 DOI: 10.3389/fncel.2013.00210] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/23/2013] [Indexed: 01/14/2023] Open
Abstract
The hippocampal mossy fibers (MFs), the axons of the granule cells (GCs) of the dentate gyrus, innervate mossy cells and interneurons in the hilus on their way to CA3 where they innervate interneurons and pyramidal cells. Synapses on each target cell have distinct anatomical and functional characteristics. In recent years, the paradigmatic view of the MF synapses being only glutamatergic and, thus, excitatory has been questioned. Several laboratories have provided data supporting the hypothesis that the MFs can transiently release GABA during development and, in the adult, after periods of enhanced excitability. This transient glutamate-GABA co-transmission coincides with the transient up-regulation of the machinery for the synthesis and release of GABA in the glutamatergic GCs. Although some investigators have deemed this evidence controversial, new data has appeared with direct evidence of co-release of glutamate and GABA from single, identified MF boutons. However, this must still be confirmed by other groups and with other methodologies. A second, intriguing observation is that MF activation produced fast spikelets followed by excitatory postsynaptic potentials in a number of pyramidal cells, which, unlike the spikelets, underwent frequency potentiation and were strongly depressed by activation of metabotropic glutamate receptors. The spikelets persisted during blockade of chemical transmission and were suppressed by the gap junction blocker carbenoxolone. These data are consistent with the hypothesis of mixed electrical-chemical synapses between MFs and some pyramidal cells. Dye coupling between these types of principal cells and ultrastructural studies showing the co-existence of AMPA receptors and connexin 36 in this synapse corroborate their presence. A deeper consideration of mixed neurotransmission taking place in this synapse may expand our search and understanding of communication channels between different regions of the mammalian CNS.
Collapse
|
3
|
Li ZX, Yu HM, Jiang KW. Tonic GABA inhibition in hippocampal dentate granule cells: its regulation and function in temporal lobe epilepsies. Acta Physiol (Oxf) 2013; 209:199-211. [PMID: 23865761 DOI: 10.1111/apha.12148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/06/2013] [Accepted: 07/12/2013] [Indexed: 01/06/2023]
Abstract
Both human and experimental evidence strongly supports the view of brain region- and cell-specific changes in tonic GABA inhibition in temporal lobe epilepsies (TLE). This 'tonic' form of signalling is not time-locked to presynaptic action potentials, which depends upon detection of ambient GABA by extrasynaptic GABAA receptors (GABAA Rs). Extrasynaptic GABAA Rs have distinct physiological and pharmacological features, including high GABA-binding affinity and low desensitization and a variety of the specific subunit combinations (α4δ-,α6δ-,α5γ-,ε-containing receptors). These features closely contribute to the function of tonic GABA current, which is preserved properly or increased in dentate gyrus in models of TLE, even in the face of a loss of synaptic inhibition and inhibitory interneurones. Markedly reduced tonic GABA inhibition may facilitate an episode of epilepsy, while persistent elevated tonic inhibition may contribute to the onset of spontaneous recurrent seizures. In dentate granule cells, tonic GABA inhibition is positively modulated by endogenous neurosteroids and other factors, which undergo changes related to hormonal status after TLE. Tonic inhibition regulates neuronal excitability through its effects on membrane potential by both offsetting the threshold and reducing the frequency of action potentials and input resistance. Therefore, extrasynaptic GABAA Rs are expected to be the most important pharmacological targets in TLE. It is likely that both elevate the ambient GABA concentration and potentiate the tonic currents, contributing to the antiepileptic effects.
Collapse
Affiliation(s)
- Z.-X. Li
- Department of Neurology; The Children's Hospital Zhejiang University School of Medicine; Hangzhou; China
| | - H.-M. Yu
- Department of Neonatology; The Children's Hospital Zhejiang University School of Medicine; Hangzhou; China
| | | |
Collapse
|
4
|
Lara E, Beltrán JQ, Segovia J, Gutiérrez R. Granule cells born in the adult rat hippocampus can regulate the expression of GABAergic markers. Exp Neurol 2012; 237:134-41. [PMID: 22750325 PMCID: PMC11298776 DOI: 10.1016/j.expneurol.2012.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/07/2012] [Accepted: 06/20/2012] [Indexed: 11/30/2022]
Abstract
The granule cells (GCs) of the dentate gyrus transiently express markers of the GABAergic phenotype early during development. However, GCs are generated throughout life, posing the question of whether the newborn neurons in the adult rodent recapitulate the development of the neurotransmitter phenotype of GCs generated during embryonic and early postnatal development. In this work we asked whether newborn GCs transiently express a GABAergic phenotype during their development in the adult rat. Using retroviral infection, we labeled dividing cells in the dorsal hippocampus with GFP, identified them as granule cells, and determined their expression of GABAergic markers at different developmental stages. We found that GFP-positive cells express Prox-1 and calbindin, identifying them as GCs. GABA or GAD(67) was expressed in 13% of GFP-positive cells at 7 dpi, in 16% at 10 dpi and in 20% at 15 dpi. At 30 dpi, however, no GFP-positive cell somata containing GABAergic markers were detected, but their mossy fiber boutons did contain GAD(67). Interestingly, developing GCs detected with doublecortin and PSA-NCAM in non-injected adult rats, did not express GABAergic markers, suggesting that retroviral injection/infection stimulates their transient expression. However, in non-injected rats, a number of mossy fiber boutons of newborn granule cells detected with PSA-NCAM did express GAD(67). Our findings reveal that developing GCs born in the adult are able to transiently up-regulate the expression of GABAergic markers to be detected in their soma in response to insults, while they constitutively express GAD(67) in their mossy fibers.
Collapse
Affiliation(s)
- Erika Lara
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Mexico 07000 D.F., Mexico
- Department of Pharmacobiology, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, Mexico D.F. 14330, Mexico
| | - Jesús Q. Beltrán
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Mexico 07000 D.F., Mexico
- Department of Pharmacobiology, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, Mexico D.F. 14330, Mexico
| | - José Segovia
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Mexico 07000 D.F., Mexico
| | - Rafael Gutiérrez
- Department of Pharmacobiology, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, Mexico D.F. 14330, Mexico
| |
Collapse
|
5
|
Devesa P, Reimunde P, Gallego R, Devesa J, Arce VM. Growth hormone (GH) treatment may cooperate with locally-produced GH in increasing the proliferative response of hippocampal progenitors to kainate-induced injury. Brain Inj 2011; 25:503-10. [PMID: 21456999 DOI: 10.3109/02699052.2011.559611] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PRIMARY OBJECTIVE This study was designed to investigate the effect of growth hormone treatment on the proliferation of endogenous neural progenitor cells in the dentate gyrus (DG) of the brain stimulated by kainic acid (KA)-induced neurotoxicity. RESEARCH DESIGN Neurotoxicity was induced by intraperitoneal injection of KA. GH treatment lasted 4 days, starting either immediately or after 10 days of administration of the neurotoxic insult. METHODS AND PROCEDURE Proliferating cells were immunodetected after labelling by in vivo administration of 5-bromodeoxyuridine (BrdU). GH expression was detected by in situ hybridization and immunofluorescence. MAIN OUTCOMES AND RESULTS KA administration stimulated the proliferation of hippocampal precursors and this effect was significantly enhanced by GH treatment. Hippocampal GH expression was also up-regulated in response to KA administration. CONCLUSIONS The findings support the possibility that the proliferative response observed in the hippocampus of rats treated with KA and GH is a consequence of cooperation between the exogenous and the locally-produced hormone and their synergism with other mitogenic factors generated in response to the neurotoxic damage. Therefore, GH treatment could be used to cooperate with other physiological or pathological stimuli in order to promote cell proliferation.
Collapse
Affiliation(s)
- Pablo Devesa
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
6
|
Takahashi T, Zhu Y, Hata T, Shimizu-Okabe C, Suzuki K, Nakahara D. Intracranial self-stimulation enhances neurogenesis in hippocampus of adult mice and rats. Neuroscience 2008; 158:402-11. [PMID: 19041373 DOI: 10.1016/j.neuroscience.2008.10.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 10/17/2008] [Accepted: 10/24/2008] [Indexed: 01/17/2023]
Abstract
Running is known to promote neurogenesis. Besides being exercise, it results in a reward, and both of these factors might contribute to running-induced neurogenesis. However, little attention has been paid to how reward and exercise relate to neurogenesis. The present study is an attempt to determine whether a reward, in the form of intracranial self-stimulation (ICSS), influences neurogenesis in the hippocampus of adult rodents. We used bromodeoxyuridine labeling to quantify newly generated cells in mice and rats that experienced ICSS for 1 h per day for 3 days. ICSS increased the number of 5-bromodeoxyuridine (Brdu)-labeled cells in the hippocampal dentate gyrus (DG) of both species. The effect, when examined at 1 day, 1 week, and 4 weeks post-ICSS, was predominantly present in the side ipsilateral to the stimulation, although it was distributed to the contralateral side. We also found in rats that, 4 weeks after Brdu injection, surviving newborn cells in the hippocampal DG of the ICSS animals co-localized with a mature neuron marker, neuronal nuclei (NeuN), and these surviving cells in rats were double-labeled with Fos, a marker of neuronal activation, after the rats had been trained to perform a spatial task. The results demonstrate that ICSS can increase newborn neurons in the hippocampal DG that endure into maturity.
Collapse
Affiliation(s)
- T Takahashi
- Department of Psychology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka 431-3192, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Hou SW, Wang YQ, Xu M, Shen DH, Wang JJ, Huang F, Yu Z, Sun FY. Functional integration of newly generated neurons into striatum after cerebral ischemia in the adult rat brain. Stroke 2008; 39:2837-44. [PMID: 18635857 DOI: 10.1161/strokeaha.107.510982] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Ischemic injury can induce neurogenesis in the striatum. Those newborn neurons can express glutamic acid decarboxylase and choline acetyltransferase, markers of GABAergic and cholinergic neurons, respectively. The present study investigated whether these GABAergic and cholinergic new neurons could differentiate into functional cells. METHODS Retrovirus containing the EGFP gene was used to label dividing cells in striatal slices prepared from adult rat brains after middle cerebral artery occlusion. EGFP-targeted immunostaining and immunoelectron microscopy were performed to detect whether newborn neurons could anatomically form neuronal polarity and synapses with pre-existent neurons. Patch clamp recording on acute striatal slices of brains at 6 to 8 weeks after middle cerebral artery occlusion was used to determine whether the newborn neurons could display functional electrophysiological properties. RESULTS EGFP-expressing (EGFP(+)) signals could be detected mainly in the cell body in the first 2 weeks. From the fourth to thirteenth weeks after their birth, EGFP(+) neurons gradually formed neuronal polarity and showed a time-dependent increase in dendrite length and branch formation. EGFP(+) cells were copositive for NeuN and glutamic acid decarboxylase (EGFP(+)-NeuN(+)-GAD(67)(+)), MAP-2, and choline acetyltransferase (EGFP(+)-MAP-2(+)-ChAT(+)). They also expressed phosphorylated synapsin I (EGFP(+)-p-SYN(+)) and showed typical synaptic structures comprising dendrites and spines. Both GABAergic and cholinergic newborn neurons could fire action potentials and received excitatory and inhibitory synaptic inputs because they displayed spontaneous postsynaptic currents in picrotoxin- and CNQX-inhibited manners. CONCLUSIONS Ischemia-induced newly formed striatal GABAergic and cholinergic neurons could become functionally integrated into neural networks in the brain of adult rats after stroke.
Collapse
Affiliation(s)
- Shang-Wei Hou
- Department of Neurobiology, State Key Laboratory of Medical Neurobiology, Shanghai Medical College of Fudan University, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Isgor C, Watson SJ. Estrogen receptor alpha and beta mRNA expressions by proliferating and differentiating cells in the adult rat dentate gyrus and subventricular zone. Neuroscience 2005; 134:847-56. [PMID: 15994024 DOI: 10.1016/j.neuroscience.2005.05.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 04/19/2005] [Accepted: 05/11/2005] [Indexed: 11/18/2022]
Abstract
Numerous factors modulate neurogenesis in the adult dentate gyrus and subventricular zone, but it is often not clear if the modulation is mediated by direct effects on the proliferating and differentiating cells or secondary to effects on other cells. Also, while some factors selectively affect neurogenesis in one of the neurogenetic zones, it is not clear how selectivity is achieved. Estrogen is a hormonal modulator of neurogenesis. To address the issues of direct versus indirect control and regional specificity we investigated the colocalization of immunoreactivity for a proliferating cell marker, Ki-67, and a marker for migrating and differentiating cells with a neuronal phenotype, doublecortin, with the expressions of mRNA for estrogen receptors alpha and beta. We found an extensive colocalization of estrogen receptor alpha with both markers in the dentate gyrus and only with Ki-67 in the subventricular zone. An extensive colocalization of estrogen receptor beta with both markers was found in the dentate gyrus, but only a few Ki-67-immunoreactive and no doublecortin-immunoreactive cells of the subventricular zone expressed estrogen receptor beta mRNA. Estrogen receptor alpha and beta mRNAs were not expressed in other telencephalic Ki-67-immunoreactive cells or in constitutively doublecortin-immunoreactive cells of the piriform cortex. The extensive colocalization of immunoreactive markers for cell proliferation and differentiation with mRNAs for estrogen receptor alpha and estrogen receptor beta points to the direct modulation of dentate cell proliferation, differentiation and survival by estrogen, while direct effects of estrogen in the subventricular zone appear restricted to estrogen receptor alpha-mediated effects operating at the time of cell proliferation.
Collapse
Affiliation(s)
- C Isgor
- Department of Biomedical Science, Charles E. Schmidt Biomedical Center, Florida Atlantic University, Boca Raton, FL 33431-0991, USA.
| | | |
Collapse
|
9
|
Jiang W, Zhang Y, Xiao L, Van Cleemput J, Ji SP, Bai G, Zhang X. Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects. J Clin Invest 2005; 115:3104-16. [PMID: 16224541 PMCID: PMC1253627 DOI: 10.1172/jci25509] [Citation(s) in RCA: 376] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 08/09/2005] [Indexed: 11/17/2022] Open
Abstract
The hippocampal dentate gyrus in the adult mammalian brain contains neural stem/progenitor cells (NS/PCs) capable of generating new neurons, i.e., neurogenesis. Most drugs of abuse examined to date decrease adult hippocampal neurogenesis, but the effects of cannabis (marijuana or cannabinoids) on hippocampal neurogenesis remain unknown. This study aimed at investigating the potential regulatory capacity of the potent synthetic cannabinoid HU210 on hippocampal neurogenesis and its possible correlation with behavioral change. We show that both embryonic and adult rat hippocampal NS/PCs are immunoreactive for CB1 cannabinoid receptors, indicating that cannabinoids could act on CB1 receptors to regulate neurogenesis. This hypothesis is supported by further findings that HU210 promotes proliferation, but not differentiation, of cultured embryonic hippocampal NS/PCs likely via a sequential activation of CB1 receptors, G(i/o) proteins, and ERK signaling. Chronic, but not acute, HU210 treatment promoted neurogenesis in the hippocampal dentate gyrus of adult rats and exerted anxiolytic- and antidepressant-like effects. X-irradiation of the hippocampus blocked both the neurogenic and behavioral effects of chronic HU210 treatment, suggesting that chronic HU210 treatment produces anxiolytic- and antidepressant-like effects likely via promotion of hippocampal neurogenesis.
Collapse
Affiliation(s)
- Wen Jiang
- Neuropsychiatry Research Unit, Department of Psychiatry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The discovery that the adult mammalian brain creates new neurons from pools of stemlike cells was a breakthrough in neuroscience. Interestingly, this particular new form of structural brain plasticity seems specific to discrete brain regions, and most investigations concern the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampal formation (HF). Overall, two main lines of research have emerged over the last two decades: the first aims to understand the fundamental biological properties of neural stemlike cells (and their progeny) and the integration of the newly born neurons into preexisting networks, while the second focuses on understanding its relevance in brain functioning, which has been more extensively approached in the DG. Here, we propose an overview of the current knowledge on adult neurogenesis and its functional relevance for the adult brain. We first present an analysis of the methodological issues that have hampered progress in this field and describe the main neurogenic sites with their specificities. We will see that despite considerable progress, the levels of anatomic and functional integration of the newly born neurons within the host circuitry have yet to be elucidated. Then the intracellular mechanisms controlling neuronal fate are presented briefly, along with the extrinsic factors that regulate adult neurogenesis. We will see that a growing list of epigenetic factors that display a specificity of action depending on the neurogenic site under consideration has been identified. Finally, we review the progress accomplished in implicating neurogenesis in hippocampal functioning under physiological conditions and in the development of hippocampal-related pathologies such as epilepsy, mood disorders, and addiction. This constitutes a necessary step in promoting the development of therapeutic strategies.
Collapse
Affiliation(s)
- Djoher Nora Abrous
- Laboratoire de Physiopathologie des Comportements, Institut National de la Sané et de la Recherche Médicale, U588, Université de Bordeaux, France.
| | | | | |
Collapse
|
11
|
Amrein I, Slomianka L, Lipp HP. Granule cell number, cell death and cell proliferation in the dentate gyrus of wild-living rodents. Eur J Neurosci 2004; 20:3342-50. [PMID: 15610166 DOI: 10.1111/j.1460-9568.2004.03795.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adult neurogenesis in the dentate gyrus occurs at species-specific levels. Wood mice (Apodemus flavicollis) show higher proliferation rates than laboratory mice and voles (Clethrionomys glareolus, Microtus subterraneus). We compare rates of cell death and proliferation and investigate if cell proliferation leads to the long-term recruitment of granule cells. Granule and pyknotic cell numbers were estimated in wild-living rodents in different age classes and compared with laboratory mice of mixed genetic background. All species differ significantly in their number of granule cells, except for the comparison of laboratory mice with European pine voles. Granule cell number is significantly higher in old bank voles and wood mice as compared to adults (23 and 37%, respectively). The number of pyknotic cells is highest in wood mice and lowest in laboratory mice. Across all species, the numbers of proliferating and pyknotic cells correlate. Despite differences in cell proliferation and cell death, the ratio of proliferating to pyknotic cells does not differ between adults of the wild-living species, but in laboratory mice a significantly lower proportion of cells die compared with the other species. In addition, the ratio of proliferating to pyknotic cells was significantly higher in old wood mice than in adults. We conclude (i) that cell proliferation can lead to an increase in granule cell number in wild-living rodents and (ii) that species- and age-specific changes of the ratio between proliferating and pyknotic cells occur as deviations from a close correlation of these two numbers across all species and age groups.
Collapse
Affiliation(s)
- Irmgard Amrein
- Institute of Anatomy, University of Zürich-Irchel, Winterthurerstr. 190, 8057 Zürich, Switzerland
| | | | | |
Collapse
|
12
|
Jiang W, Wolfe K, Xiao L, Zhang ZJ, Huang YG, Zhang X. Ionotropic glutamate receptor antagonists inhibit the proliferation of granule cell precursors in the adult brain after seizures induced by pentylenetrazol. Brain Res 2004; 1020:154-60. [PMID: 15312797 DOI: 10.1016/j.brainres.2004.06.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2004] [Indexed: 11/27/2022]
Abstract
Seizures have been shown to promote the proliferation of granule cell precursors in the adult brain, but the underlying mechanisms remain largely unknown. Using systemic bromodeoxyuridine (BrdU) to label dividing cells, we examined the effects of selective ionotropic glutamate receptor antagonists on granule cell precursor proliferation in adult rats after pentylenetrazol (PTZ)-induced generalized clonic seizures. We found that the NMDA receptor antagonist MK-801 significantly inhibited behavioral and EEG seizures and completely blocked seizure-induced increase in the number of BrdU-labeled cells in the dentate gyrus. Although the AMPA/KA receptor antagonist DNQX was not observed to affect seizures, it significantly suppressed the number of BrdU-labeled cells in the dentate gyrus. Double immunohistochemical staining showed that both the mature granule cells and the majority of BrdU-labeled, mitotically active cells expressed the NMDA receptor subunit NR1 and the AMPA/KA receptor subunit GluR2. Because accumulated evidence showed that mild seizures are sufficient to promote precursor cell proliferation, the present findings that MK-801 inhibited seizures and completely blocked seizure-induced increase in precursor cell proliferation suggest that the direct blockade action of MK-801 on NMDA receptors on the granule cell precursors may play an important role in blocking seizure-induced precursor cell proliferation. The suppression of seizure-induced proliferation of granule cell precursors by DNQX may be achieved by the direct action of DNQX on AMPA/KA receptors on the granule cell precursors. Thus, our findings indicate that seizures may promote cell proliferation in the adult rat dentate gyrus through glutamatergic mechanisms acting on both NMDA and AMPA/KA receptors.
Collapse
Affiliation(s)
- Wen Jiang
- Neuropsychiatry Research Unit, Department of Psychiatry, A114 Medical Research Building, University of Saskatchewan, 103 Wiggins Road, Saskatoon, SK, Canada S7N5E4.
| | | | | | | | | | | |
Collapse
|