1
|
Collignon A, Dion-Albert L, Ménard C, Coelho-Santos V. Sex, hormones and cerebrovascular function: from development to disorder. Fluids Barriers CNS 2024; 21:2. [PMID: 38178239 PMCID: PMC10768274 DOI: 10.1186/s12987-023-00496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Proper cerebrovascular development and neurogliovascular unit assembly are essential for brain growth and function throughout life, ensuring the continuous supply of nutrients and oxygen. This involves crucial events during pre- and postnatal stages through key pathways, including vascular endothelial growth factor (VEGF) and Wnt signaling. These pathways are pivotal for brain vascular growth, expansion, and blood-brain barrier (BBB) maturation. Interestingly, during fetal and neonatal life, cerebrovascular formation coincides with the early peak activity of the hypothalamic-pituitary-gonadal axis, supporting the idea of sex hormonal influence on cerebrovascular development and barriergenesis.Sex hormonal dysregulation in early development has been implicated in neurodevelopmental disorders with highly sexually dimorphic features, such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Both disorders show higher prevalence in men, with varying symptoms between sexes, with boys exhibiting more externalizing behaviors, such as aggressivity or hyperactivity, and girls displaying higher internalizing behaviors, including anxiety, depression, or attention disorders. Indeed, ASD and ADHD are linked to high prenatal testosterone exposure and reduced aromatase expression, potentially explaining sex differences in prevalence and symptomatology. In line with this, high estrogen levels seem to attenuate ADHD symptoms. At the cerebrovascular level, sex- and region-specific variations of cerebral blood flow perfusion have been reported in both conditions, indicating an impact of gonadal hormones on the brain vascular system, disrupting its ability to respond to neuronal demands.This review aims to provide an overview of the existing knowledge concerning the impact of sex hormones on cerebrovascular formation and maturation, as well as the onset of neurodevelopmental disorders. Here, we explore the concept of gonadal hormone interactions with brain vascular and BBB development to function, with a particular focus on the modulation of VEGF and Wnt signaling. We outline how these pathways may be involved in the underpinnings of ASD and ADHD. Outstanding questions and potential avenues for future research are highlighted, as uncovering sex-specific physiological and pathological aspects of brain vascular development might lead to innovative therapeutic approaches in the context of ASD, ADHD and beyond.
Collapse
Affiliation(s)
- Adeline Collignon
- Department of Psychiatry & Neuroscience and CERVO Brain Research Center, Universite Laval, Quebec City, Canada
| | - Laurence Dion-Albert
- Department of Psychiatry & Neuroscience and CERVO Brain Research Center, Universite Laval, Quebec City, Canada
| | - Caroline Ménard
- Department of Psychiatry & Neuroscience and CERVO Brain Research Center, Universite Laval, Quebec City, Canada
| | - Vanessa Coelho-Santos
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Institute of Physiology, Coimbra, Portugal.
| |
Collapse
|
2
|
Ertürk E, Işık Ü, Şirin FB. Analysis of Serum VEGF, IGF-1, and HIF-1α Levels in ADHD. J Atten Disord 2024; 28:58-65. [PMID: 37700676 DOI: 10.1177/10870547231197211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
OBJECTIVE In recent years, it has been emphasized that various growth factors that affect neurogenesis may lead to ADHD. In this study, we aimed to investigate the role of VEGF, IGF-1, and HIF-1α growth factors in the etiopathogenesis of ADHD. METHOD Levels of VEGF, IGF-1, and HIF-1α were compared between 40 ADHD children and 40 healthy children, aged 7 to 13 years. RESULT VEGF, IGF-1, and HIF-1α levels did not significantly differ between the groups. There was a negative correlation between serum VEGF levels and the parent-rated T-DSM-IV-S (AD) subscale. There was a positive correlation between serum IGF-1 levels and the parent-rated T-DSM-IV-S (AD) subscale, and SDQ (ES) subscale. CONCLUSION Given our limitations and the fact that some of our findings differ from those of other studies, it is evident that this area requires additional research with larger samples.
Collapse
Affiliation(s)
- Emre Ertürk
- Süleyman Demirel University, Isparta, Turkey
| | | | | |
Collapse
|
3
|
Carmichael ST, Llorente IL. The Ties That Bind: Glial Transplantation in White Matter Ischemia and Vascular Dementia. Neurotherapeutics 2023; 20:39-47. [PMID: 36357662 PMCID: PMC10119342 DOI: 10.1007/s13311-022-01322-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
White matter injury is a progressive vascular disease that leads to neurological deficits and vascular dementia. It comprises up to 30% of all diagnosed strokes, though up to ten times as many events go undiagnosed in early stages. There are several pathologies that can lead to white matter injury. While some studies suggest that white matter injury starts as small infarcts in deep penetrating blood vessels in the brain, others point to the breakdown of endothelial function or the blood-brain barrier as the primary cause of the disease. Whether due to local endothelial or BBB dysfunction, or to local small infarcts (or a combination), white matter injury progresses, accumulates, and expands from preexisting lesions into adjacent white matter to produce motor and cognitive deficits that present as vascular dementia in the elderly. Vascular dementia is the second leading cause of dementia, and white matter injury-attributed vascular dementia represents 40% of all diagnosed dementias and aggravates Alzheimer's pathology. Despite the advances in the last 15 years, there are few animal models of progressive subcortical white matter injury or vascular dementia. This review will discuss recent progress in animal modeling of white matter injury and the emerging principles to enhance glial function as a means of promoting repair and recovery.
Collapse
Affiliation(s)
- S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles E Young Drive South, NRB 407, Los Angeles, CA, 90095, USA
| | - Irene L Llorente
- Department of Neurosurgery, Stanford University, 3801 Miranda Ave, 94304, Palo alto, USA.
| |
Collapse
|
4
|
Cerebral Blood Flow in Predator Stress-Resilient and -Susceptible Rats and Mechanisms of Resilience. Int J Mol Sci 2022; 23:ijms232314729. [PMID: 36499055 PMCID: PMC9738343 DOI: 10.3390/ijms232314729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Stress-induced conditions are associated with impaired cerebral blood flow (CBF) and increased risk of dementia and stroke. However, these conditions do not develop in resilient humans and animals. Here the effects of predator stress (PS, cat urine scent, ten days) on CBF and mechanisms of CBF regulation were compared in PS-susceptible (PSs) and PS-resilient (PSr) rats. Fourteen days post-stress, the rats were segregated into PSs and PSr groups based on a behavior-related anxiety index (AI). CBF and its endothelium-dependent changes were measured in the parietal cortex by laser Doppler flowmetry. The major findings are: (1) PS susceptibility was associated with reduced basal CBF and endothelial dysfunction. In PSr rats, the basal CBF was higher, and endothelial dysfunction was attenuated. (2) CBF was inversely correlated with the AI of PS-exposed rats. (3) Endothelial dysfunction was associated with a decrease in eNOS mRNA in PSs rats compared to the PSr and control rats. (4) Brain dopamine was reduced in PSs rats and increased in PSr rats. (5) Plasma corticosterone of PSs was reduced compared to PSr and control rats. (6) A hypercoagulation state was present in PSs rats but not in PSr rats. Thus, potential stress resilience mechanisms that are protective for CBF were identified.
Collapse
|
5
|
Lansdell TA, Chambers LC, Dorrance AM. Endothelial Cells and the Cerebral Circulation. Compr Physiol 2022; 12:3449-3508. [PMID: 35766836 DOI: 10.1002/cphy.c210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cells form the innermost layer of all blood vessels and are the only vascular component that remains throughout all vascular segments. The cerebral vasculature has several unique properties not found in the peripheral circulation; this requires that the cerebral endothelium be considered as a unique entity. Cerebral endothelial cells perform several functions vital for brain health. The cerebral vasculature is responsible for protecting the brain from external threats carried in the blood. The endothelial cells are central to this requirement as they form the basis of the blood-brain barrier. The endothelium also regulates fibrinolysis, thrombosis, platelet activation, vascular permeability, metabolism, catabolism, inflammation, and white cell trafficking. Endothelial cells regulate the changes in vascular structure caused by angiogenesis and artery remodeling. Further, the endothelium contributes to vascular tone, allowing proper perfusion of the brain which has high energy demands and no energy stores. In this article, we discuss the basic anatomy and physiology of the cerebral endothelium. Where appropriate, we discuss the detrimental effects of high blood pressure on the cerebral endothelium and the contribution of cerebrovascular disease endothelial dysfunction and dementia. © 2022 American Physiological Society. Compr Physiol 12:3449-3508, 2022.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Laura C Chambers
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
6
|
Bairwa SC, Shaw CA, Kuo M, Yoo J, Tomljenovic L, Eidi H. Cytokines profile in neonatal and adult wild-type mice post-injection of U. S. pediatric vaccination schedule. Brain Behav Immun Health 2021; 15:100267. [PMID: 34589773 PMCID: PMC8474652 DOI: 10.1016/j.bbih.2021.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 11/09/2022] Open
Abstract
Introduction A recent study from our laboratory demonstrated a number of neurobehavioral abnormalities in mice colony injected with a mouse-weight equivalent dose of all vaccines that are administered to infants in their first 18 months of life according to the U. S. pediatric vaccination schedule. Cytokines have been studied extensively as blood immune and inflammatory biomarkers, and their association with neurodevelopmental disorders. Given the importance of cytokines in early neurodevelopment, we aimed to investigate the potential post-administration effects of the U. S. pediatric vaccines on circulatory cytokines in a mouse model. In the current study, cytokines have been assayed at early and late time points in mice vaccinated early in postnatal life and compared with placebo controls. Materials and methods Newborn mouse pups were divided into three groups: i) vaccine (V1), ii) vaccine × 3 (V3) and iii) placebo control. V1 group was injected with mouse weight-equivalent of the current U. S. pediatric vaccine schedule. V3 group was injected with same vaccines but at triple the dose and the placebo control was injected with saline. Pups were also divided according to the sampling age into two main groups: acute- and chronic-phase group. Blood samples were collected at postnatal day (PND) 23, two days following vaccine schedule for the acute-phase group or at 67 weeks post-vaccination for the chronic-phase groups. Fifteen cytokines were analyzed: GM-CSF, IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12p70, IL-13, IL-17A, MCP-1, TNF-α, and VEGF-A. Wilcoxon Rank Sum test or unpaired Student's t-test was performed where applicable. Results IL-5 levels in plasma were significantly elevated in the V1 and V3 group compared with the control only in the acute-phase group. The elevation of IL-5 levels in the two vaccine groups were significant irrespective of whether the sexes were combined or analyzed separately. Other cytokines (VEGF-A, TNF-α, IL-10, MCP-1, GM-CSF, IL-6, and IL-13) were also impacted, although to a lesser extent and in a sex-dependent manner. In the acute-phase group, females showed a significant increase in IL-10 and MCP-1 levels and a decrease in VEGF-A levels in both V1 and V3 group compared to controls. In the acute-phase, a significant increase in MCP-1 levels in V3 group and CM-CSF levels in V1 and V3 group and decrease in TNF-α levels in V1 group were observed in treated males as compared with controls. In chronic-phase females, levels of VEGF-A in V1 and V3 group, TNF-α in V3 group, and IL-13 in V1 group were significantly decreased in contrast with controls. In chronic-phase males, TNF-α levels were significantly increased in V1 group and IL-6 levels decreased in V3 group in comparison to controls. The changes in levels of most tested cytokines were altered between the early and the late postnatal assays. Conclusions IL-5 levels significantly increased in the acute-phase of the treatment in the plasma of both sexes that were subjected to V1 and V3 injections. These increases had diminished by the second test assayed at week 67. These results suggest that a profound, albeit transient, effect on cytokine levels may be induced by the whole vaccine administration supporting our recently published observations regarding the behavioral abnormalities in the same mice. These observations support the view that the administration of whole pediatric vaccines in a neonatal period may impact at least short-term CNS functions in mice.
Collapse
Affiliation(s)
- S C Bairwa
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - C A Shaw
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada.,Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada.,Program in Experimental Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - M Kuo
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - J Yoo
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - L Tomljenovic
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - H Eidi
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,French Agency for Veterinary Medicinal Products (ANMV) - French Agency for Food, Environmental and Occupational Health Safety (ANSES), Fougères, France
| |
Collapse
|
7
|
Torun YT, Güney E, Aral A, Büyüktaşkin D, Tunca H, Taner YI, İşeri E. Determination of Serum Vascular Endothelial Growth Factor Levels in Attention Deficit Hyperactivity Disorder: A Case Control Study. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2019; 17:517-522. [PMID: 31671489 PMCID: PMC6852686 DOI: 10.9758/cpn.2019.17.4.517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/15/2019] [Accepted: 06/19/2019] [Indexed: 01/06/2023]
Abstract
Objective The effect of vascular endothelial growth factor (VEGF) on neuronal development is known, but its relationship with attention deficit hyperactivity disorder (ADHD), a neurodevelopmental disorder, has not yet been fully elucidated. To our knowledge, this is the first human study investigating serum VEGF levels in ADHD patients. In this study, it has been aimed to compare serum VEGF levels between a healthy control group and in ADHD patients to help determine the association between serum VEGF levels and ADHD. Methods This study sample included forty-four patients diagnosed with ADHD and 43 healthy volunteer controls between 7 to 14 years old. Blood samples were taken from patients and the healthy control group to assess their serum VEGF levels. VEGF levels were calculated by subjecting the optical densities of the samples to concentrations of known standards as provided in the ELISA kit and then performing a regression correlation analysis. Results The mean VEGF level of the children was 333.6 ± 209.8 in the ADHD group and 341.3 ± 201.8 in the control group. There were no statistically significant differences in serum VEGF levels between the ADHD and control groups (U = 926.000, z = -0.170, p = 0.865). Conclusion There was no significant difference in serum VEGF levels for untreated ADHD cases and a healthy control group. This is the first human study investigating serum VEGF levels in ADHD patients, so there is a need to replicate these findings.
Collapse
Affiliation(s)
- Yasemin Taş Torun
- Child and Adolescent Psychiatry Department, Gulhane Education and Training Hospital, Turkey
| | - Esra Güney
- Child and Adolescent Psychiatry Department, Turkey
| | - Arzu Aral
- Department of Immunology, Gazi University Medical Faculty, Ankara, Turkey
| | | | - Hüseyin Tunca
- Child and Adolescent Psychiatry Department, Diyarbakır Education and Training Hospital, Diyarbakır, Turkey
| | | | - Elvan İşeri
- Child and Adolescent Psychiatry Department, Turkey
| |
Collapse
|
8
|
Yurteri N, Şahin İE, Tufan AE. Altered serum levels of vascular endothelial growth factor and glial-derived neurotrophic factor but not fibroblast growth factor-2 in treatment-naive children with attention deficit/hyperactivity disorder. Nord J Psychiatry 2019; 73:302-307. [PMID: 31170860 DOI: 10.1080/08039488.2019.1625437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background and aim: Recent evidence suggests that growth factors might be involved in the pathophysiology of attention deficit hyperactivity disorder (ADHD). The aim of this study was to determine whether serum levels of brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), neurotrophin-3 (NT-3), nerve growth factor (NGF), fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor (VEGF) were altered in children with ADHD. Methods: Serum levels of BDNF, GDNF, NT-3, NGF, VEGF and FGF-2 were analyzed in 49 treatment- naive children with ADHD and age, gender matched 36 healthy controls using enzyme-linked immunosorbent assay. ADHD symptoms were scored by Du Paul ADHD Rating Scale and Strengths and Difficulties Questionnaire. Results: We found that serum VEGF levels were significantly lower (p < 0.001) and GDNF levels were significantly higher in ADHD group compared to control group (p = 0.003). However, we found no correlations between ADHD symptoms and serum VEGF or GDNF levels. Furthermore, we observed no significant alterations in serum BDNF, NT-3, NGF, FGF-2 levels in children with ADHD. Conclusion: To our knowledge, the present study is the first to examine serum VEGF and FGF-2 levels in children with ADHD. Our results indicate that VEGF and GDNF might be involved in the etiology of ADHD. Further studies are required to determine the role of growth factors in the etiology and consequently in the treatment of ADHD.
Collapse
Affiliation(s)
- Nihal Yurteri
- a Department of Child and Adolescent Psychiatry , Düzce University Medical Faculty , Düzce , Turkey
| | - İbrahim Ethem Şahin
- b Department of Clinical Biochemistry , Düzce University Medical Faculty , Düzce , Turkey
| | - Ali Evren Tufan
- c Department of Child and Adolescent Psychiatry , Acıbadem Mehmet Ali Aydinlar University Medical Faculty , İstanbul , Turkey
| |
Collapse
|
9
|
Galvez-Contreras AY, Campos-Ordonez T, Gonzalez-Castaneda RE, Gonzalez-Perez O. Alterations of Growth Factors in Autism and Attention-Deficit/Hyperactivity Disorder. Front Psychiatry 2017; 8:126. [PMID: 28751869 PMCID: PMC5507945 DOI: 10.3389/fpsyt.2017.00126] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/29/2017] [Indexed: 12/27/2022] Open
Abstract
Growth factors (GFs) are cytokines that regulate the neural development. Recent evidence indicates that alterations in the expression level of GFs during embryogenesis are linked to the pathophysiology and clinical manifestations of attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). In this concise review, we summarize the current evidence that supports the role of brain-derived neurotrophic factor, insulin-like growth factor 2, hepatocyte growth factor (HGF), glial-derived neurotrophic factor, nerve growth factor, neurotrophins 3 and 4, and epidermal growth factor in the pathogenesis of ADHD and ASD. We also highlight the potential use of these GFs as clinical markers for diagnosis and prognosis of these neurodevelopmental disorders.
Collapse
Affiliation(s)
- Alma Y Galvez-Contreras
- Department of Neuroscience, Institute of Translational Neuroscience, Centro Universitario de Ciencias de la Salud, University of Guadalajara, Guadalajara, Mexico.,Unidad de Atencion en Neurosciencias, Department of Neuroscience, Centro Universitario de Ciencias de la Salud, University of Guadalajara, Guadalajara, Mexico
| | - Tania Campos-Ordonez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Mexico.,Medical Science PhD Program, School of Medicine, University of Colima, Colima, Mexico
| | - Rocio E Gonzalez-Castaneda
- Department of Neuroscience, Institute of Translational Neuroscience, Centro Universitario de Ciencias de la Salud, University of Guadalajara, Guadalajara, Mexico
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Mexico.,El Colegio de Colima, Colima, Mexico
| |
Collapse
|
10
|
Pre- and Perinatal Ischemia-Hypoxia, the Ischemia-Hypoxia Response Pathway, and ADHD Risk. Behav Genet 2016; 46:467-77. [DOI: 10.1007/s10519-016-9784-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 02/10/2016] [Indexed: 02/06/2023]
|
11
|
Ma CL, Sun X, Luo F, Li BM. Prefrontal cortical α2A-adrenoceptors and a possible primate model of attention deficit and hyperactivity disorder. Neurosci Bull 2015; 31:227-34. [PMID: 25822217 DOI: 10.1007/s12264-014-1514-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 02/11/2015] [Indexed: 10/23/2022] Open
Abstract
Attention deficit and hyperactivity disorder (ADHD), a prevalent syndrome in children worldwide, is characterized by impulsivity, inappropriate inattention, and/or hyperactivity. It seriously afflicts cognitive development in childhood, and may lead to chronic under-achievement, academic failure, problematic peer relationships, and low self-esteem. There are at least three challenges for the treatment of ADHD. First, the neurobiological bases of its symptoms are still not clear. Second, the commonly prescribed medications, most showing short-term therapeutic efficacy but with a high risk of serious side-effects, are mainly based on a dopamine mechanism. Third, more novel and efficient animal models, especially in nonhuman primates, are required to accelerate the development of new medications. In this article, we review research progress in the related fields, focusing on our previous studies showing that blockade of prefrontal cortical α2A-adrenoceptors in monkeys produces almost all the typical behavioral symptoms of ADHD.
Collapse
Affiliation(s)
- Chao-Lin Ma
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang, 330031, China,
| | | | | | | |
Collapse
|
12
|
Smith TF, Anastopoulos AD, Garrett ME, Arias-Vasquez A, Franke B, Oades RD, Sonuga-Barke E, Asherson P, Gill M, Buitelaar JK, Sergeant JA, Kollins SH, Faraone SV, Ashley-Koch A. Angiogenic, neurotrophic, and inflammatory system SNPs moderate the association between birth weight and ADHD symptom severity. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:691-704. [PMID: 25346392 DOI: 10.1002/ajmg.b.32275] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 09/25/2014] [Indexed: 12/31/2022]
Abstract
Low birth weight is associated with increased risk for Attention-Deficit/Hyperactivity Disorder (ADHD); however, the etiological underpinnings of this relationship remain unclear. This study investigated if genetic variants in angiogenic, dopaminergic, neurotrophic, kynurenine, and cytokine-related biological pathways moderate the relationship between birth weight and ADHD symptom severity. A total of 398 youth from two multi-site, family-based studies of ADHD were included in the analysis. The sample consisted of 360 ADHD probands, 21 affected siblings, and 17 unaffected siblings. A set of 164 SNPs from 31 candidate genes, representing five biological pathways, were included in our analyses. Birth weight and gestational age data were collected from a state birth registry, medical records, and parent report. Generalized Estimating Equations tested for main effects and interactions between individual SNPs and birth weight centile in predicting ADHD symptom severity. SNPs within neurotrophic (NTRK3) and cytokine genes (CNTFR) were associated with ADHD inattentive symptom severity. There was no main effect of birth weight centile on ADHD symptom severity. SNPs within angiogenic (NRP1 & NRP2), neurotrophic (NTRK1 & NTRK3), cytokine (IL16 & S100B), and kynurenine (CCBL1 & CCBL2) genes moderate the association between birth weight centile and ADHD symptom severity. The SNP main effects and SNP × birth weight centile interactions remained significant after adjusting for multiple testing. Genetic variability in angiogenic, neurotrophic, and inflammatory systems may moderate the association between restricted prenatal growth, a proxy for an adverse prenatal environment, and risk to develop ADHD.
Collapse
Affiliation(s)
- Taylor F Smith
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, California; Department of Psychology, University of North Carolina at Greensboro, Greensboro, North Carolina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Exercise training could improve age-related changes in cerebral blood flow and capillary vascularity through the upregulation of VEGF and eNOS. BIOMED RESEARCH INTERNATIONAL 2014; 2014:230791. [PMID: 24822184 PMCID: PMC4005099 DOI: 10.1155/2014/230791] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/24/2014] [Indexed: 11/30/2022]
Abstract
This study aimed to investigate the effect of exercise training on age-induced microvascular alterations in the brain. Additionally, the association with the protein levels of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) was also assessed. Male Wistar rats were divided into four groups: sedentary-young (SE-Young, n = 5), sedentary aged (SE-Aged, n = 8), immersed-aged (IM-Aged, n = 5), and exercise trained-aged (ET-Aged, 60 minutes/day and 5 days/week for 8 weeks, n = 8) rats. The MAPs of all aged groups, SE-Aged, IM-Aged, and ET-Aged, were significantly higher than that of the SE-Young group. The regional cerebral blood flow (rCBF) in the SE-Aged and IM-Aged was significantly decreased as compared to SE-Young groups. However, rCBF of ET-Aged group was significantly higher than that in the IM-Aged group (P < 0.05). Moreover, the percentage of capillary vascularity (%CV) and the levels of VEGF and eNOS in the ET-Aged group were significantly increased compared to the IM-Aged group (P < 0.05). These results imply that exercise training could improve age-induced microvascular changes and hypoperfusion closely associated with the upregulation of VEGF and eNOS.
Collapse
|
14
|
Yabuki Y, Shioda N, Maeda T, Hiraide S, Togashi H, Fukunaga K. Aberrant CaMKII activity in the medial prefrontal cortex is associated with cognitive dysfunction in ADHD model rats. Brain Res 2014; 1557:90-100. [DOI: 10.1016/j.brainres.2014.02.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/21/2014] [Accepted: 02/12/2014] [Indexed: 01/11/2023]
|
15
|
Atochin DN, Huang PL. Role of endothelial nitric oxide in cerebrovascular regulation. Curr Pharm Biotechnol 2012; 12:1334-42. [PMID: 21235451 DOI: 10.2174/138920111798280974] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 07/01/2010] [Accepted: 08/08/2010] [Indexed: 11/22/2022]
Abstract
Endothelial nitric oxide (NO) plays important roles in the vascular system. Animal models that show vascular dysfunction demonstrate the protective role of endothelial NO dependent pathways. This review focuses on the role of endothelial NO in the regulation of cerebral blood flow and vascular tone. We will discuss the importance of NO in cerebrovascular function using animal models with altered endothelial NO production under normal, ischemic and reperfusion conditions, as well as in hyperoxia. Pharmacological and genetic manipulations of the endothelial NO system demonstrate the essential roles of endothelial NO synthase in maintenance of vascular tone and cerebral perfusion under normal and pathological conditions.
Collapse
Affiliation(s)
- Dmitriy N Atochin
- Cardiovascular Research Center and Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
| | | |
Collapse
|
16
|
Bailey EL, Smith C, Sudlow CLM, Wardlaw JM. Is the spontaneously hypertensive stroke prone rat a pertinent model of sub cortical ischemic stroke? A systematic review. Int J Stroke 2012; 6:434-44. [PMID: 21951409 DOI: 10.1111/j.1747-4949.2011.00659.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The spontaneously hypertensive stroke prone rat is best known as an inducible model of large artery stroke. Spontaneous strokes and stroke propensity in the spontaneously hypertensive stroke prone rat are less well characterized; however, could be relevant to human lacunar stroke. We systematically reviewed the literature to assess the brain tissue and small vessel pathology underlying the spontaneous strokes of the spontaneously hypertensive stroke prone rat. We searched systematically three online databases from 1970 to May 2010; excluded duplicates, reviews, and articles describing the consequences of induced middle cerebral artery occlusion or noncerebral pathology; and recorded data describing brain region and the vessels examined, number of animals, age, dietary salt intake, vascular and tissue abnormalities. Among 102 relevant studies, animals sacrificed after developing stroke-like symptoms displayed arteriolar wall thickening, subcortical lesions, enlarged perivascular spaces and cortical infarcts and hemorrhages. Histopathology, proteomics and imaging studies suggested that the changes not due simply to hypertension. There may be susceptibility to endothelial permeability increase that precedes arteriolar wall thickening, degeneration and perivascular tissue changes; systemic inflammation may also precede cerebrovascular changes. There were very few data on venules or tissue changes before hypertension. The spontaneously hypertensive stroke prone rat shows similar features to human lacunar stroke and may be a good spontaneous model of this complex human disorder. Further studies should focus on structural changes at early ages and genetics to identify factors that predispose to vascular and brain damage.
Collapse
Affiliation(s)
- Emma L Bailey
- Division of Clinical Neurosciences, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | | | | | | |
Collapse
|
17
|
Abstract
The eicosanoids 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs), which are generated from the metabolism of arachidonic acid by cytochrome P450 (CYP) enzymes, possess a wide array of biological actions, including the regulation of blood flow to organs. 20-HETE and EETs are generated in various cell types in the brain and cerebral blood vessels, and contribute significantly to cerebral blood flow autoregulation and the coupling of regional brain blood flow to neuronal activity (neurovascular coupling). Investigations are beginning to unravel the molecular and cellular mechanisms by which these CYP eicosanoids regulate cerebral vascular function and the changes that occur in pathological states. Intriguingly, 20-HETE and the soluble epoxide hydrolase (sEH) enzyme that regulates EET levels have been explored as molecular therapeutic targets for cerebral vascular diseases. Inhibition of 20-HETE, or increasing EET levels by inhibiting the sEH enzyme, decreases cerebral damage following stroke. The improved outcome following cerebral ischaemia is a consequence of improving cerebral vascular structure or function and protecting neurons from cell death. Thus, the CYP eicosanoids are key regulators of cerebral vascular function and novel therapeutic targets for cardiovascular diseases and neurological disorders.
Collapse
|
18
|
Jesmin S, Gando S, Zaedi S, Sawamura A, Yamaguchi N. The expression of 4 protease-activated receptors is associated with increased levels of TNF-α, tissue factor, and fibrin in the frontal cortex of endotoxemic rats. Thromb Res 2009; 124:498-501. [DOI: 10.1016/j.thromres.2009.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 02/10/2009] [Accepted: 02/19/2009] [Indexed: 11/29/2022]
|
19
|
Simpkins AN, Rudic RD, Schreihofer DA, Roy S, Manhiani M, Tsai HJ, Hammock BD, Imig JD. Soluble epoxide inhibition is protective against cerebral ischemia via vascular and neural protection. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:2086-95. [PMID: 19435785 DOI: 10.2353/ajpath.2009.080544] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inhibition of soluble epoxide hydrolase (SEH), the enzyme responsible for degradation of vasoactive epoxides, protects against cerebral ischemia in rats. However, the molecular and biological mechanisms that confer protection in normotension and hypertension remain unclear. Here we show that 6 weeks of SEH inhibition via 2 mg/day of 12-(3-adamantan-1-yl-ureido) dodecanoic acid (AUDA) in spontaneously hypertensive stroke-prone (SHRSP) rats protects against cerebral ischemia induced by middle cerebral artery occlusion, reducing percent hemispheric infarct and neurodeficit score without decreasing blood pressure. This level of cerebral protection was similar to that of the angiotensin-converting enzyme inhibitor, enalapril, which significantly lowered blood pressure. SEH inhibition is also protective in normotensive Wistar-Kyoto (WKY) rats, reducing both hemispheric infarct and neurodeficit score. In SHRSP rats, SEH inhibition reduced wall-to-lumen ratio and collagen deposition and increased cerebral microvessel density, although AUDA did not alter middle cerebral artery structure or microvessel density in WKY rats. An apoptosis mRNA expression microarray of brain tissues from AUDA-treated rats revealed that AUDA modulates gene expression of mediators involved in the regulation of apoptosis in neural tissues of both WKY and SHRSP rats. Hence, we conclude that chronic SEH inhibition protects against cerebral ischemia via vascular protection in SHRSP rats and neural protection in both the SHRSP and WKY rats, indicating that SEH inhibition has broad pharmacological potential for treating ischemic stroke.
Collapse
Affiliation(s)
- Alexis N Simpkins
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Toda N, Ayajiki K, Okamura T. Cerebral Blood Flow Regulation by Nitric Oxide: Recent Advances. Pharmacol Rev 2009; 61:62-97. [DOI: 10.1124/pr.108.000547] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
21
|
Carmichael ST. Themes and strategies for studying the biology of stroke recovery in the poststroke epoch. Stroke 2008; 39:1380-8. [PMID: 18309162 DOI: 10.1161/strokeaha.107.499962] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE This review will focus on the emerging principles of neural repair after stroke, and on the overlap between cellular mechanisms of neural repair in stroke and clinical principles of recovery and rehabilitation. SUMMARY OF REVIEW Stroke induces axonal sprouting and neurogenesis. Axonal sprouting occurs in tissue adjacent to the stroke and its connected cortical areas, and from sites that are contralateral to the infarct. Neurogenesis produces newly born immature neurons in peri-infarct striatum and cortex. Stimulation of both axonal sprouting and neurogenesis is associated with improved recovery in animal models of stroke. A unique cellular environment in the poststroke brain supports neural repair: an association of angiogenic and remodeling blood vessels with newly born immature neurons in a neurovasclar niche. Controversies in the field of neural repair after stroke persist, and relate to the locations of axonal sprouting in animal models of stroke and how these correlate to patterns of human remapping and recovery, and to the different models of stroke used in studies of neurogenesis. CONCLUSIONS On a cellular level, the phenomenology of neural repair after stroke has been defined and unique regenerative environments in the poststroke brain identified. As the field moves toward specific studies of causal mechanisms in poststroke repair, it will need to maintain a perspective of the animal models suited to the study of neural repair after stroke as they relate to the patterns of recovery in humans in this disease.
Collapse
Affiliation(s)
- S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, Neuroscience Research Building, 710 Westwood Plaza, Los Angeles, CA 90095, USA.
| |
Collapse
|
22
|
Ohab JJ, Carmichael ST. Poststroke neurogenesis: emerging principles of migration and localization of immature neurons. Neuroscientist 2007; 14:369-80. [PMID: 18024854 DOI: 10.1177/1073858407309545] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stroke induces proliferation of newly born neurons in the subventricular zone, migration of these immature neurons away from the SVZ, and localization within peri-infarct tissues. These 3 processes of proliferation, migration, and localization constitute distinct spatial and temporal zones within poststroke neurogenesis with distinct molecular and cell-cell signaling environments. Immature neurons migrate after stroke in close association with blood vessels and astrocytic processes, in a process that involves matrix metalloproteinases. This poststroke migration shares similar features with normal neuroblast migration in the rostral migratory stream. Immature neurons localize in the peri-infarct cortex in a neurovascular niche where neurogenesis is causally linked to angiogenesis through the vascular factors SDF-1 and angiopoietin-1. Other vascular and neuronal growth factors have also been linked to poststroke neuroblast localization in peri-infarct tissue, including erythropoietin. Most data on poststroke neurogenesis derive from laboratory rodents, which may have an abnormal or blunted degree of neurogenesis and neuroplasticity compared to normal, wild rodents. This will likely affect translational application of the principles of poststroke neurogenesis from mouse to man.
Collapse
Affiliation(s)
- J J Ohab
- David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | |
Collapse
|
23
|
Jesmin S, Maeda S, Mowa CN, Zaedi S, Togashi H, Prodhan SH, Yamaguchi T, Yoshioka M, Sakuma I, Miyauchi T, Kato N. Antagonism of endothelin action normalizes altered levels of VEGF and its signaling in the brain of stroke-prone spontaneously hypertensive rat. Eur J Pharmacol 2007; 574:158-71. [PMID: 17689527 DOI: 10.1016/j.ejphar.2007.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 07/01/2007] [Accepted: 07/04/2007] [Indexed: 11/20/2022]
Abstract
Stroke-prone spontaneously hypertensive rats (SHRSP) often suffer from spontaneous stroke, in part, due to abnormalities in the cerebrovasculature. Here, we investigate the profile of key angiogenic factors and their basic signaling molecules in the brain of SHRSP during the age-dependent stages of hypertension. The profile of VEGF and its receptor, Flk-1, was dependent on age and stage of hypertension (i.e., down regulated at pre-hypertensive and malignant hypertensive stages, but up regulated at typical hypertensive stage), while that of its downstream components, pAkt and eNOS, were down regulated in a time-dependent manner in the frontal cortex of SHRSP compared to age-matched genetic control, normotensive WKY rats. On the other hand, the expression of endothelin-1 and its type A receptor (endothelin ETA receptor) were up regulated, depending on age and stage of hypertension. In contrast, levels of endothelin type B receptor were down regulated. The regional cerebral blood flow decreased during the development of malignant hypertension. Thus, subsequent experiments were designed to investigate whether endothelin-1 receptor antagonism, using endothelin-A/-B dual receptor antagonist SB209670, could normalize the molecular profile of these factors in SHRSP brain. Interestingly, blockage of endothelin-1 receptor restored to normal, levels of cerebral endothelin-1, endothelin ETA receptor and endothelin ETB receptor; VEGF and Flk-1; endothelial nitric oxide synthase (eNOS) and pAkt, in SHRSP, compared to age-matched WKY. Endothelin receptor blocker might be important to prevent the progression in the defect in VEGF and its angiogenic signaling cascade in the pathogenesis of hypertension-induced vascular remodeling in frontal cortex of SHRSP rats.
Collapse
Affiliation(s)
- Subrina Jesmin
- Department of Gene Diagnostics and Therapeutics, Research Institute, International Medical Center of Japan, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jesmin S, Zaedi S, Shimojo N, Iemitsu M, Masuzawa K, Yamaguchi N, Mowa CN, Maeda S, Hattori Y, Miyauchi T. Endothelin antagonism normalizes VEGF signaling and cardiac function in STZ-induced diabetic rat hearts. Am J Physiol Endocrinol Metab 2007; 292:E1030-40. [PMID: 17148754 DOI: 10.1152/ajpendo.00517.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abnormal alterations in cardiac expression of vascular endothelial growth factor (VEGF) as well as its receptors and impairment in the development of coronary collaterals have recently been reported in diabetic subjects. However, the presence of pharmacological intervention on these defects in diabetes remains unsettled. Here, we studied the effect of endothelin (ET) receptor blockade on cardiac VEGF signaling pathways and cardiac function in Sprague-Dawley rats 5 wk after induction of type I diabetes with streptozotocin (65 mg/kg ip) in comparison with age-matched control rats. After streptozotocin (1 wk), some diabetic rats were treated with the ET receptor antagonist SB-209670 (1 mg/day) for 4 wk. VEGF, its receptors, and its angiogenic signaling molecules [phosphorylated Akt and endothelial nitric-oxide synthase (eNOS)] were analyzed by Western blot, ELISA, real-time PCR, and immunohistochemistry, and cardiac function was evaluated by echocardiography. Coronary capillary morphology was assessed by lectin and enzymatic double staining. We found significant decreases in cardiac expression of VEGF, its receptors, phosphorylation of Akt and eNOS, and coronary capillary density in diabetic rats compared with controls. Treatment of diabetic rats with SB-209670 reversed these alterations to the control levels and ameliorated impairment of cardiac function. From a molecular point of view, the present study is the first to indicate the potential usefulness of an ET receptor antagonist in the treatment of cardiac dysfunction in type I diabetes.
Collapse
Affiliation(s)
- Subrina Jesmin
- Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|