1
|
Kawauchi S, Yasuhara T, Kin K, Yabuno S, Sugahara C, Nagase T, Hosomoto K, Okazaki Y, Tomita Y, Umakoshi M, Sasaki T, Kameda M, Borlongan CV, Date I. Transplantation of modified human bone marrow-derived stromal cells affords therapeutic effects on cerebral ischemia in rats. CNS Neurosci Ther 2022; 28:1974-1985. [PMID: 36000240 PMCID: PMC9627357 DOI: 10.1111/cns.13947] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS SB623 cells are human bone marrow stromal cells transfected with Notch1 intracellular domain. In this study, we examined potential regenerative mechanisms underlying stereotaxic transplantation of SB623 cells in rats with experimental acute ischemic stroke. METHODS We prepared control group, empty capsule (EC) group, SB623 cell group (SB623), and encapsulated SB623 cell (eSB623) group. Transient middle cerebral artery occlusion (MCAO) was performed on day 0, and 24 h after MCAO, stroke rats received transplantation into the envisioned ischemic penumbra. Modified neurological severity score (mNSS) was evaluated, and histological evaluations were performed. RESULTS In the mNSS, SB623 and eSB623 groups showed significant improvement compared to the other groups. Histological analysis revealed that the infarction area in SB623 and eSB623 groups was reduced. In the eSB623 group, robust cell viability and neurogenesis were detected in the subventricular zone that increased significantly compared to all other groups. CONCLUSION SB623 cells with or without encapsulation showed therapeutic effects on ischemic stroke. Encapsulated SB623 cells showed enhanced neurogenesis and increased viability inside the capsules. This study reveals the mechanism of secretory function of transplanted SB623 cells, but not cell-cell interaction as primarily mediating the cells' functional benefits in ischemic stroke.
Collapse
Affiliation(s)
- Satoshi Kawauchi
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Takao Yasuhara
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kyohei Kin
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan,Department of Psychiatry and Behavioral NeurobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Satoru Yabuno
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Chiaki Sugahara
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Takayuki Nagase
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kakeru Hosomoto
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Yosuke Okazaki
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Yousuke Tomita
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Michiari Umakoshi
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Tatsuya Sasaki
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | | | - Cesario V. Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain RepairUniversity of South FloridaTampaFloridaUSA
| | - Isao Date
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| |
Collapse
|
2
|
Li H, Gan X, Pan L, Zhang Y, Hu X, Wang Z. EGF/bFGF promotes survival, migration and differentiation into neurons of GFP-labeled rhesus monkey neural stem cells xenografted into the rat brain. Biochem Biophys Res Commun 2022; 620:76-82. [DOI: 10.1016/j.bbrc.2022.06.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/13/2022] [Accepted: 06/23/2022] [Indexed: 11/02/2022]
|
3
|
Øverberg LT, Lugg EF, Gaarder M, Langhammer B, Thommessen B, Rønning OM, Morland C. Plasma levels of BDNF and EGF are reduced in acute stroke patients. Heliyon 2022; 8:e09661. [PMID: 35756121 PMCID: PMC9218156 DOI: 10.1016/j.heliyon.2022.e09661] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/22/2022] [Accepted: 05/31/2022] [Indexed: 12/22/2022] Open
Abstract
Stroke affects almost 14 million people worldwide each year. It is the second leading cause of death and a major cause of acquired disability. The degree of initial impairment in cognitive and motor functions greatly affects the recovery, but idiosyncratic factors also contribute. These are largely unidentified, which contributes to making accurate prediction of recovery challenging. Release of soluble regulators of neurotoxicity, neuroprotection and repair are presumably essential. Here we measured plasma levels of known regulators of neuroprotection and repair in patients with mild acute ischemic stroke and compared them to the plasma levels in healthy age and gender matched controls. We found that the levels of BDNF and EGF were substantially lower in stroke patients than in healthy controls, while the levels of bFGF and irisin did not differ between the groups. The lower levels of growth factors highlight that during the acute phase of stroke, there is a mismatch between the need for neuroprotection and repair, and the brain's ability to induce these processes. Large individual differences in growth factor levels were seen among the stroke patients, but whether these can be used as predictors of long-term prognosis remains to be investigated.
Collapse
Affiliation(s)
- Linda Thøring Øverberg
- Department of Behavioral Sciences, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway.,Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Elise Fritsch Lugg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Mona Gaarder
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Birgitta Langhammer
- Department of Physiotherapy, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway.,Research Department, Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway
| | - Bente Thommessen
- Department of Neurology, Division of Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Ole Morten Rønning
- Department of Neurology, Division of Medicine, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Cecilie Morland
- Department of Behavioral Sciences, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway.,Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Bai S, Lu X, Pan Q, Wang B, Pong U K, Yang Y, Wang H, Lin S, Feng L, Wang Y, Li Y, Lin W, Wang Y, Zhang X, Li Y, Li L, Yang Z, Wang M, Lee WYW, Jiang X, Li G. Cranial Bone Transport Promotes Angiogenesis, Neurogenesis, and Modulates Meningeal Lymphatic Function in Middle Cerebral Artery Occlusion Rats. Stroke 2022; 53:1373-1385. [PMID: 35135326 DOI: 10.1161/strokeaha.121.037912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ischemic stroke is a leading cause of death and disability worldwide. However, the time window for quickly dissolving clots and restoring cerebral blood flow, using tissue plasminogen activator treatment is rather limited, resulting in many patients experiencing long-term functional impairments if not death. This study aims to determine the roles of cranial bone transport (CBT), a novel, effective, and simple surgical technique, in the recovery of ischemic stroke using middle cerebral artery occlusion (MCAO) rat model. METHODS CBT was performed by slowly sliding a bone segment in skull with a special frame and a speed of 0.25 mm/12 hours for 10 days following MCAO. Morris water maze, rotarod test, and catwalk gait analysis were used to study the neurological behaviors, and infarct area and cerebral flow were evaluated during CBT process. Immunofluorescence staining of CD31 and Nestin/Sox2 (sex determining region Y box 2) was performed to study the angiogenesis and neurogenesis. OVA-A647 (ovalbumin-Alexa Fluor 647) was intracisterna magna injected to evaluate the meningeal lymphatic drainage function. RESULTS CBT treatment has significantly reduced the ischemic lesions areas and improved the neurological deficits in MCAO rats compared with the rats in the control groups. CBT treatment significantly promoted angiogenesis and neurogenesis in the brain of MCAO rats. The drainage function of meningeal lymphatic vessels in MCAO rats was significantly impaired compared with normal rats. Ablation of meningeal lymphatic drainage led to increased neuroinflammation and aggravated neurological deficits and ischemic injury in MCAO rats. CBT treatment significantly improved the meningeal lymphatic drainage function and alleviated T-cell infiltration in MCAO rats. CONCLUSIONS This study provided evidence for the possible mechanisms on how CBT attenuates ischemic stroke injury and facilitates rapid neuronal function recovery, suggesting that CBT may be an alternative treatment strategy for managing ischemic stroke.
Collapse
Affiliation(s)
- Shanshan Bai
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Xuan Lu
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Qi Pan
- Department of Pediatric Orthopaedics, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, PR China (Q.P.)
| | - Bin Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Kin Pong U
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, PR China (K.P.U., X.J.)
| | - Yongkang Yang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Haixing Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Lu Feng
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Yan Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Yucong Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Weiping Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Yujia Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Xiaoting Zhang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Yuan Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Linlong Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Zhengmeng Yang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Ming Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Wayne Yuk-Wai Lee
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| | - Xiaohua Jiang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, PR China (K.P.U., X.J.)
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China (S.B., X.L., B.W., Y.Y., H.W., S.L., L.F., Yan Wang, Yucong Li, W.L., Yujia Wang, X.Z., Yuan Li, L.L., Z.Y., M.W., W.Y.-W.L., G.L.)
| |
Collapse
|
5
|
Kin K, Yasuhara T, Kameda M, Tomita Y, Umakoshi M, Kuwahara K, Kin I, Kidani N, Morimoto J, Okazaki M, Sasaki T, Tajiri N, Borlongan CV, Date I. Cell encapsulation enhances antidepressant effect of the mesenchymal stem cells and counteracts depressive-like behavior of treatment-resistant depressed rats. Mol Psychiatry 2020; 25:1202-1214. [PMID: 30108315 DOI: 10.1038/s41380-018-0208-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/05/2018] [Accepted: 06/20/2018] [Indexed: 12/20/2022]
Abstract
Despite the advances in pharmacological therapies, only the half of depressed patients respond to currently available treatment. Thus, the need for further investigation and development of effective therapies, especially those designed for treatment-resistant depression, has been sorely needed. Although antidepressant effects of mesenchymal stem cells (MSCs) have been reported, the potential benefit of this cell therapy on treatment-resistant depression is unknown. Cell encapsulation may enhance the survival rate of grafted cells, but the therapeutic effects and mechanisms mediating encapsulation of MSCs remain unexplored. Here, we showed that encapsulation enhanced the antidepressant effects of MSCs by attenuating depressive-like behavior of Wistar Kyoto (WKY) rats, which are considered as a promising animal model of treatment-resistant depression. The implantation of encapsulated MSCs (eMSCs) into the lateral ventricle counteracted depressive-like behavior and enhanced the endogenous neurogenesis in the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus, whereas the implantation of MSCs without encapsulation or the implantation of eMSCs into the striatum did not show such ameliorative effects. eMSCs displayed robust and stable secretion of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor, fibroblast growth factor-2, and ciliary neurotrophic factor (CNTF), and the implantation of eMSCs into the lateral ventricle activated relevant pathways associated with these growth factors. Additionally, eMSCs upregulated intrinsic expression of VEGF and CNTF and their receptors. This study suggests that the implantation of eMSCs into the lateral ventricle exerted antidepressant effects likely acting via neurogenic pathways, supporting their utility for depression treatment.
Collapse
Affiliation(s)
- Kyohei Kin
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Masahiro Kameda
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Yousuke Tomita
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Michiari Umakoshi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Ken Kuwahara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Ittetsu Kin
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Naoya Kidani
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Jun Morimoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Mihoko Okazaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Naoki Tajiri
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.,Department of Psychology, Kibi International University Graduate School of Psychology, 8, iga-cho, takahashi-shi, Okayama, 716-8508, Japan
| | - Cesario V Borlongan
- Department of Neurosurgery, University of South Florida College Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| |
Collapse
|
6
|
Dong BC, Li MX, Wang XY, Cheng X, Wang Y, Xiao T, Jolkkonen J, Zhao CS, Zhao SS. Effects of CXCR7-neutralizing antibody on neurogenesis in the hippocampal dentate gyrus and cognitive function in the chronic phase of cerebral ischemia. Neural Regen Res 2020; 15:1079-1085. [PMID: 31823888 PMCID: PMC7034276 DOI: 10.4103/1673-5374.270416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Stromal cell-derived factor-1 and its receptor CXCR4 are essential regulators of the neurogenesis that occurs in the adult hippocampal dentate gyrus. However, the effects of CXCR7, a new atypical receptor of stromal cell-derived factor-1, on hippocampal neurogenesis after a stroke remain largely unknown. Our study is the first to investigate the effect of a CXCR7-neutralizing antibody on neurogenesis in the dentate gyrus and the associated recovery of cognitive function of rats in the chronic stage of cerebral ischemia. The rats were randomly divided into sham, sham + anti-CXCR7, ischemia and ischemia + anti-CXCR7 groups. Endothelin-1 was injected in the ipsilateral motor cortex and striatum to induce focal cerebral ischemia. Sham group rats were injected with saline instead of endothelin-1 via intracranial injection. Both sham and ischemic rats were treated with intraventricular infusions of CXCR7-neutralizing antibodies for 6 days 1 week after surgery. Immunofluorescence staining with doublecortin, a marker for neuronal precursors, was performed to assess the neurogenesis in the dentate gyrus. We found that anti-CXCR7 antibody infusion enhanced the proliferation and dendritic development of doublecortin-labeled cells in the dentate gyrus in both ischemic and sham-operated rats. Spatial learning and memory functions were assessed by Morris water maze tests 30–32 days after ischemia. CXCR7-neutralizing antibody treatment significantly reduced the escape latency of the spatial navigation trial and increased the time spent in the target quadrant of spatial probe trial in animals that received ischemic insult, but not in sham operated rats. These results suggest that CXCR7-neutralizing antibody enhances the neurogenesis in the dentate gyrus and improves the cognitive function after cerebral ischemia in rats. All animal experimental protocols and procedures were approved by the Institutional Animal Care and Use Committee of China Medical University (CMU16089R) on December 8, 2016.
Collapse
Affiliation(s)
- Bing-Chao Dong
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Mei-Xuan Li
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiao-Yin Wang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xi Cheng
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yu Wang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ting Xiao
- Key Laboratory of Immunodermatology, Ministry of Health, Ministry of Education, Shenyang, Liaoning Province, China
| | - Jukka Jolkkonen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Chuan-Sheng Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shan-Shan Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
7
|
Kin K, Yasuhara T, Kawauchi S, Kameda M, Hosomoto K, Tomita Y, Umakoshi M, Kuwahara K, Kin I, Kidani N, Morimoto J, Sasaki T, Date I. Lithium counteracts depressive behavior and augments the treatment effect of selective serotonin reuptake inhibitor in treatment-resistant depressed rats. Brain Res 2019; 1717:52-59. [DOI: 10.1016/j.brainres.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/24/2019] [Accepted: 04/02/2019] [Indexed: 12/28/2022]
|
8
|
Marques BL, Carvalho GA, Freitas EMM, Chiareli RA, Barbosa TG, Di Araújo AGP, Nogueira YL, Ribeiro RI, Parreira RC, Vieira MS, Resende RR, Gomez RS, Oliveira-Lima OC, Pinto MCX. The role of neurogenesis in neurorepair after ischemic stroke. Semin Cell Dev Biol 2019; 95:98-110. [PMID: 30550812 DOI: 10.1016/j.semcdb.2018.12.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022]
Abstract
Stroke consists of an abrupt reduction of cerebral blood flow resulting in hypoxia that triggers an excitotoxicity, oxidative stress, and neuroinflammation. After the ischemic process, neural precursor cells present in the subventricular zone of the lateral ventricle and subgranular zone of the dentate gyrus proliferate and migrate towards the lesion, contributing to the brain repair. The neurogenesis is induced by signal transduction pathways, growth factors, attractive factors for neuroblasts, transcription factors, pro and anti-inflammatory mediators and specific neurotransmissions. However, this endogenous neurogenesis occurs slowly and does not allow a complete restoration of brain function. Despite that, understanding the mechanisms of neurogenesis could improve the therapeutic strategies for brain repair. This review presents the current knowledge about brain repair process after stroke and the perspectives regarding the development of promising therapies that aim to improve neurogenesis and its potential to form new neural networks.
Collapse
Affiliation(s)
- Bruno L Marques
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Gustavo A Carvalho
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Elis M M Freitas
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Raphaela A Chiareli
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Thiago G Barbosa
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Armani G P Di Araújo
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Yanley L Nogueira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Raul I Ribeiro
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Ricardo C Parreira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Mariana S Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renato S Gomez
- Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Onésia C Oliveira-Lima
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Mauro C X Pinto
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil.
| |
Collapse
|
9
|
Zhao H, Zuo X, Ren L, Li Y, Tai H, Du J, Xie X, Zhang X, Han Y, Wu Y, Yang C, Xu Z, Hong H, Li S, Su B. Combined use of bFGF/EGF and all-trans-retinoic acid cooperatively promotes neuronal differentiation and neurite outgrowth in neural stem cells. Neurosci Lett 2018; 690:61-68. [PMID: 30300683 DOI: 10.1016/j.neulet.2018.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 01/09/2023]
Abstract
Neural stem cells (NSCs) as sources of new neurons in brain injuries or diseases are required to not only elicit neurons for neuronal repair, but also to enhance neurite outgrowth for neuronal network reestablishment. Various trophic or chemotropic factors have been shown to cooperatively improve NSC neurogenesis. However, effects of combined treatment of all-trans-retinoic acid (RA) with GF (Basic fibroblast growth factor and epidermal growth factor, bFGF/EGF) on neurogenesis of NSCs are poorly understood. To address this question, NSCs were isolated from the forebrains of embryonic mice, and treated with GF and RA either alone or in combination for differentiation in vitro. Neurons and astrocytes differentiated from NSCs were stained for MAP2 and GFAP separately by immunofluorescence. The results indicated that GF displayed superior efficacy in promoting neuronal differentiation, and RA showed better efficacy in advancing neurite outgrowth by increasing both neurite length and number. In addition, higher differentiation efficiency of neurons to astrocytes in RA or GF, or both acted at the early stage. However, more importantly, compared with RA alone, GF and RA in combination enhanced neuronal differentiation. Moreover, the combined use of GF and RA increased the length and number of neurites compared with GF, as well as the relative expression level of Smurf1. In addition, astrocytes induced by GF, RA, or both exhibited a radial glia-like morphology with long processes differing from serum effects, which might in part attribute to the total numbers of neurons. These findings for the first time unveil the roles of combined use of GF and RA on the neurogenesis of NSCs, suggesting that the use of this combination could be a comprehensive strategy for the functional repair of the nervous system through promoting neuronal differentiation, and advancing neurite outgrowth.
Collapse
Affiliation(s)
- Haixia Zhao
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Xuan Zuo
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Liyi Ren
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Yunzhu Li
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Haoran Tai
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Jipei Du
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Xuemin Xie
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Xiaoqing Zhang
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Yuping Han
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Yongmei Wu
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Chan Yang
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Zhen Xu
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Huarong Hong
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Shurong Li
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Chengdu Medical College, Chengdu 610500, Sichuan, China.
| | - Bingyin Su
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China; Chengdu Medical College Infertility Hospital, Chengdu 610000, Sichuan, China.
| |
Collapse
|
10
|
Wu KJ, Yu S, Lee JY, Hoffer B, Wang Y. Improving Neurorepair in Stroke Brain Through Endogenous Neurogenesis-Enhancing Drugs. Cell Transplant 2018; 26:1596-1600. [PMID: 29113469 PMCID: PMC5680955 DOI: 10.1177/0963689717721230] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stroke induces not only cell death but also neurorepair. De novo neurogenesis has been found in the subventricular zone of the adult mammalian brain days after stroke. Most of these newly generated cells die shortly after the insult. Recent studies have shown that pharmacological manipulation can improve the survival of endogenous neuroprogenitor cells and neural regeneration in stroke rats. As these drugs target the endogenous reparative processes that occur days after stroke, they may provide a prolonged window for stroke therapy. Here, we discuss endogenous neurogenesis-enhancing drugs and review the general status of stroke therapeutics in evaluating the field of pharmacotherapy for stroke.
Collapse
Affiliation(s)
- Kuo-Jen Wu
- 1 Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Seongjin Yu
- 1 Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Jea-Young Lee
- 2 University of South Florida Morsani College of Medicine, FL, USA
| | - Barry Hoffer
- 3 Case Western Reserve University, Cleveland, OH, USA
| | - Yun Wang
- 1 Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
11
|
Neural stem cell therapies and hypoxic-ischemic brain injury. Prog Neurobiol 2018; 173:1-17. [PMID: 29758244 DOI: 10.1016/j.pneurobio.2018.05.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 03/06/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Abstract
Hypoxic-ischemic brain injury is a significant cause of morbidity and mortality in the adult as well as in the neonate. Extensive pre-clinical studies have shown promising therapeutic effects of neural stem cell-based treatments for hypoxic-ischemic brain injury. There are two major strategies of neural stem cell-based therapies: transplanting exogenous neural stem cells and boosting self-repair of endogenous neural stem cells. Neural stem cell transplantation has been proved to improve functional recovery after brain injury through multiple by-stander mechanisms (e.g., neuroprotection, immunomodulation), rather than simple cell-replacement. Endogenous neural stem cells reside in certain neurogenic niches of the brain and response to brain injury. Many molecules (e.g., neurotrophic factors) can stimulate or enhance proliferation and differentiation of endogenous neural stem cells after injury. In this review, we first present an overview of neural stem cells during normal brain development and the effect of hypoxic-ischemic injury on the activation and function of endogenous neural stem cells in the brain. We then summarize and discuss the current knowledge of strategies and mechanisms for neural stem cell-based therapies on brain hypoxic-ischemic injury, including neonatal hypoxic-ischemic brain injury and adult ischemic stroke.
Collapse
|
12
|
Neuroglobin boosts axon regeneration during ischemic reperfusion via p38 binding and activation depending on oxygen signal. Cell Death Dis 2018; 9:163. [PMID: 29416029 PMCID: PMC5833339 DOI: 10.1038/s41419-017-0260-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 11/08/2022]
Abstract
Cerebral ischemia causes severe cell death or injury including axon breakdown or retraction in the brain. Axon regeneration is crucial for the functional recovery of injured neurons or brains after ischemia/reperfusion (I/R); however, this process has been proved extremely difficult in adult brains and there is still no effective therapy for it. Here we reported that neuroglobin (Ngb), a novel oxygen-binding or sensor protein existing predominantly in neurons or brains, functions as a driving factor for axon regeneration during I/R. Ngb was upregulated and accumulated in growth cones of ischemic neurons in primary cultures, rat, and human brains, correlating positively to the elevation of axon-regeneration markers GAP43, neurofilament-200, and Tau-1. Ngb overexpression promoted while Ngb knockdown suppressed axon regeneration as well as GAP43 expression in neurons during oxygen-glucose deprivation/reoxygenation (OGD/Re). By using specific pharmacological inhibitors, we identified p38 MAPK as the major downstream player of Ngb-induced axon regeneration during OGD/Re. Mechanistically, Ngb directly bound to and activated p38 in neurons upon OGD/Re. Serial truncation and point mutation of Ngb revealed that the 7-105 aa fragment of Ngb was required and the oxygen-binding site (His64) of Ngb was the major regulatory site for its p38 interaction/activation. Finally, administration of exogenous TAT-Ngb peptides significantly enhanced axon regeneration in cultured neurons upon OGD/Re. Taken together, Ngb promotes axon regeneration via O2-Ngb-p38-GAP43 signaling during I/R. This novel mechanism suggests potential therapeutic applications of Ngb for ischemic stroke and other related axonopathy.
Collapse
|
13
|
Grade S, Götz M. Neuronal replacement therapy: previous achievements and challenges ahead. NPJ Regen Med 2017; 2:29. [PMID: 29302363 PMCID: PMC5677983 DOI: 10.1038/s41536-017-0033-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/26/2022] Open
Abstract
Lifelong neurogenesis and incorporation of newborn neurons into mature neuronal circuits operates in specialized niches of the mammalian brain and serves as role model for neuronal replacement strategies. However, to which extent can the remaining brain parenchyma, which never incorporates new neurons during the adulthood, be as plastic and readily accommodate neurons in networks that suffered neuronal loss due to injury or neurological disease? Which microenvironment is permissive for neuronal replacement and synaptic integration and which cells perform best? Can lost function be restored and how adequate is the participation in the pre-existing circuitry? Could aberrant connections cause malfunction especially in networks dominated by excitatory neurons, such as the cerebral cortex? These questions show how important connectivity and circuitry aspects are for regenerative medicine, which is the focus of this review. We will discuss the impressive advances in neuronal replacement strategies and success from exogenous as well as endogenous cell sources. Both have seen key novel technologies, like the groundbreaking discovery of induced pluripotent stem cells and direct neuronal reprogramming, offering alternatives to the transplantation of fetal neurons, and both herald great expectations. For these to become reality, neuronal circuitry analysis is key now. As our understanding of neuronal circuits increases, neuronal replacement therapy should fulfill those prerequisites in network structure and function, in brain-wide input and output. Now is the time to incorporate neural circuitry research into regenerative medicine if we ever want to truly repair brain injury.
Collapse
Affiliation(s)
- Sofia Grade
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
14
|
Anthony SS, Date I, Yasuhara T. Limiting exercise inhibits neuronal recovery from neurological disorders. Brain Circ 2017; 3:124-129. [PMID: 30276313 PMCID: PMC6057693 DOI: 10.4103/bc.bc_16_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
Patients who are bedridden often suffer from muscular atrophy due to reduced daily activities and can become depressed. However, patients who undergo physical therapy sometimes demonstrate positive benefits including a reduction of stressful and depressed behavior. Regenerative medicine has seen improvements in two stem cell-based therapies for central nervous system disorders. One therapy is through the transfer of exogenous stem cells. The other therapy is a more natural method and focuses on the increasing endogenous neurogenesis and restoring the neurological impairments. This study overviews how immobilization-induced disuse atrophy affects neurogenesis in rats, specifically hypothesizing that immobilization diminishes circulating trophic factor levels, like vascular endothelial growth factors or brain-derived neurotrophic factor, which in turn limits neurogenesis. This hypothesis requires the classification of the stem cell microenvironment by probing growth factors in addition to other stress-related proteins that correlate with exercise-induced neurogenesis. There is research examining the effects of increased exercise on neurogenesis while limiting exercise, which better demonstrates the pathological states of immobile stroke patients, remains relatively unexplored. To examine the effects of immobilization on neurogenesis quantitative measurements of movements, 5-bromo-2deoxyuridine labeling of proliferative cells, biochemical assays of serum, cerebrospinal fluid and neurological levels of trophic factors, growth factors, and stress-related proteins will indicate levels of neurogenesis. In further research, studies are needed to show how in vivo stimulation, or lack thereof, affects stem cell microenvironments to advance treatment procedures for strengthening neurogenesis in bedridden patients. This paper is a review article. Referred literature in this paper has been listed in the references section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors' experiences.
Collapse
Affiliation(s)
- Stefan S. Anthony
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| |
Collapse
|
15
|
Dewan SN, Wang Y, Yu S. Drug treatments that optimize endogenous neurogenesis as a therapeutic option for stroke. Brain Circ 2017; 3:152-155. [PMID: 30276317 PMCID: PMC6057687 DOI: 10.4103/bc.bc_20_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/03/2017] [Accepted: 09/05/2017] [Indexed: 01/28/2023] Open
Abstract
Cell death and neurogenesis have been examined after stroke in the subventricular zone of the adult mammalian brain. New research focuses on the use of drugs to improve the viability of neural progenitor cells in rats after stroke. The aim of the drugs is to lengthen the timeframe for stroke therapy by targeting the endogenous repair mechanism that follows injury. In this paper, we look at the broad state of stroke therapy to assess the effectiveness of endogenous neurogenesis-enhancing drugs on stroke. This paper is a review article. Referred literature in this paper has been listed in the reference section. The data sets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors’ experiences.
Collapse
Affiliation(s)
- Shyam N Dewan
- Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Taiwan
| | - Seongjin Yu
- Center for Neuropsychiatric Research, National Health Research Institutes, Taiwan
| |
Collapse
|
16
|
Endogenous regeneration: Engineering growth factors for stroke. Neurochem Int 2017; 107:57-65. [PMID: 28411103 DOI: 10.1016/j.neuint.2017.03.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 12/31/2022]
Abstract
Despite the efforts in developing therapeutics for stroke, recombinant tissue plasminogen activator (rtPA) remains the only FDA approved drug for ischemic stroke. Regenerative medicine targeting endogenous growth factors has drawn much interest in the clinical field as it provides potential restoration for the damaged brain tissue without being limited by a narrow therapeutic window. To date, most of the translational studies using regenerative medicines have encountered problems and failures. In this review, we discuss the effects of some trophic factors which include of erythropoietin (EPO), brain derived neurotrophic factor (BDNF), granulocyte-colony stimulating factor (G-CSF), vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), epidermal growth factor (EGF) and heparin binding epidermal growth factor (HB-EGF) in experimental ischemic stroke models and elaborate the lost in translation of the candidate growth factors from bench to bedside. Several new methodologies have been developed to overcome the caveats in translational studies. This review highlights the latest bioengineering approaches including the controlled release and delivery of growth factors by hydrogel-based scaffolds and the enhancement of half-life and selectivity of growth factors by a novel approach facilitated by glycosaminoglycans.
Collapse
|
17
|
Thompson ML, Chartier SR, Mitchell SA, Mantyh PW. Preventing painful age-related bone fractures: Anti-sclerostin therapy builds cortical bone and increases the proliferation of osteogenic cells in the periosteum of the geriatric mouse femur. Mol Pain 2016; 12:12/0/1744806916677147. [PMID: 27837171 PMCID: PMC5117249 DOI: 10.1177/1744806916677147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/03/2016] [Indexed: 11/18/2022] Open
Abstract
Age-related bone fractures are usually painful and have highly negative effects on a geriatric patient’s functional status, quality of life, and survival. Currently, there are few analgesic therapies that fully control bone fracture pain in the elderly without significant unwanted side effects. However, another way of controlling age-related fracture pain would be to preemptively administer an osteo-anabolic agent to geriatric patients with high risk of fracture, so as to build new cortical bone and prevent the fracture from occurring. A major question, however, is whether an osteo-anabolic agent can stimulate the proliferation of osteogenic cells and build significant amounts of new cortical bone in light of the decreased number and responsiveness of osteogenic cells in aging bone. To explore this question, geriatric and young mice, 20 and 4 months old, respectively, received either vehicle or a monoclonal antibody that sequesters sclerostin (anti-sclerostin) for 28 days. From days 21 to 28, animals also received sustained administration of the thymidine analog, bromodeoxyuridine (BrdU), which labels the DNA of dividing cells. Animals were then euthanized at day 28 and the femurs were examined for cortical bone formation, bone mineral density, and newly borne BrdU+ cells in the periosteum which is a tissue that is pivotally involved in the formation of new cortical bone. In both the geriatric and young mice, anti-sclerostin induced a significant increase in the thickness of the cortical bone, bone mineral density, and the proliferation of newly borne BrdU+ cells in the periosteum. These results suggest that even in geriatric animals, anti-sclerostin therapy can build new cortical bone and increase the proliferation of osteogenic cells and thus reduce the likelihood of painful age-related bone fractures.
Collapse
Affiliation(s)
| | | | | | - Patrick W Mantyh
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA .,Department of Pharmacology (Cancer Center), University of Arizona, Tucson, AZ, USA
| |
Collapse
|
18
|
Subirós N, Pérez-Saad H, Aldana L, Gibson CL, Borgnakke WS, Garcia-Del-Barco D. Neuroprotective effect of epidermal growth factor plus growth hormone-releasing peptide-6 resembles hypothermia in experimental stroke. Neurol Res 2016; 38:950-958. [PMID: 27665924 DOI: 10.1080/01616412.2016.1235249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Combined therapy with epidermal growth factor (EGF) and growth hormone-releasing peptide 6 (GHRP-6) in stroke models has accumulated evidence of neuroprotective effects from several studies, but needs further support before clinical translation. Comparing EGF + GHRP-6 to hypothermia, a gold neuroprotection standard, may contribute to this purpose. OBJECTIVES The aims of this study were to compare the neuroprotective effects of a combined therapy based on EGF + GHRP-6 with hypothermia in animal models of (a) global ischemia representing myocardial infarction and (b) focal brain ischemia representing ischemic stroke. METHODS (a) Global ischemia was induced in Mongolian gerbils by a 15-min occlusion of both carotid arteries, followed by reperfusion. (b) Focal brain ischemia was achieved by intracerebral injection of endothelin 1 in Wistar rats. In each experiment, three ischemic treatment groups - vehicle, EGF + GHRP-6, and hypothermia - were compared to each other and to a sham-operated control group. End points were survival, neurological scores, and infarct volume. RESULTS (a) In global ischemia, neurological score at 48-72 h, infarct volume, and neuronal density of hippocampal CA1 zone in gerbils treated with EGF + GHRP-6 were similar to the hypothermia-treated group. (b) In focal ischemia, the neurologic score and infarct volume of rats receiving EGF + GHRP-6 were also similar to animals in the hypothermia group. DISCUSSION With hypothermia being a good standard neuroprotectant reference, these results provide additional proof of principle for EGF and GHRP-6 co-administration as a potentially neuroprotective stroke therapy.
Collapse
Affiliation(s)
- N Subirós
- a Biomedical Research Division , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - H Pérez-Saad
- a Biomedical Research Division , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - L Aldana
- a Biomedical Research Division , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - C L Gibson
- b Department of Neuroscience, Psychology and Behaviour , University of Leicester , Leicester , UK
| | - W S Borgnakke
- c Department of Periodontics and Oral Medicine , University of Michigan School of Dentistry , Ann Arbor , MI , USA
| | - D Garcia-Del-Barco
- a Biomedical Research Division , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| |
Collapse
|
19
|
Lippert T, Watson N, Ji X, Yasuhara T, Date I, Kaneko Y, Tajiri N, Borlongan CV. Detrimental effects of physical inactivity on neurogenesis. Brain Circ 2016; 2:80-85. [PMID: 30276277 PMCID: PMC6126252 DOI: 10.4103/2394-8108.186278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 01/01/2023] Open
Abstract
Patients diagnosed with neurological disorders exhibit a variety of physical and psychiatric symptoms, including muscle atrophy, general immobility, and depression. Patients who participate in physical rehabilitation at times show unexpected clinical improvement, which includes diminished depression and other stress-related behaviors. Regenerative medicine has advanced two major stem cell-based therapies for central nervous system (CNS) disorders, transplantation of exogenous stem cells, and enhancing the endogenous neurogenesis. The latter therapy utilizes a natural method of re-innervating the injured brain, which may mend neurological impairments. In this study, we examine how inactivity-induced atrophy, using the hindlimb suspension model, alters neurogenesis in rats. The hypothesis is that inactivity inhibits neurogenesis by decreasing circulation growth or trophic factors, such as vascular endothelial growth or neurotrophic factors. The restriction modifies neurogenesis and stem cell differentiation in the CNS, the stem cell microenvironment is examined by the trophic and growth factors, including stress-related proteins. Despite growing evidence revealing the benefits of “increased” exercise on neurogenesis, the opposing theory involving “physical inactivity,” which simulates pathological states, continues to be neglected. This novel theory will allow us to explore the effects on neurogenesis by an intransigent stem cell microenvironment likely generated by inactivity. 5-bromo-2-deoxyuridine labeling of proliferative cells, biochemical assays of serum, cerebrospinal fluid, and brain levels of trophic factors, growth factors, and stress-related proteins are suggested identifiers of neurogenesis, while evaluation of spontaneous movements will give insight into the psychomotor effects of inactivity. Investigations devised to show how in vivo stimulation, or lack thereof, affects the stem cell microenvironment are necessary to establish treatment methods to boost neurogenesis in bedridden patients.
Collapse
Affiliation(s)
- Trenton Lippert
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Nate Watson
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Naoki Tajiri
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| |
Collapse
|
20
|
Subirós N, Pérez-Saad HM, Berlanga JA, Aldana L, García-Illera G, Gibson CL, García-del-Barco D. Assessment of dose–effect and therapeutic time window in preclinical studies of rhEGF and GHRP-6 coadministration for stroke therapy. Neurol Res 2016; 38:187-95. [DOI: 10.1179/1743132815y.0000000089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
21
|
Koh SH, Park HH. Neurogenesis in Stroke Recovery. Transl Stroke Res 2016; 8:3-13. [PMID: 26987852 DOI: 10.1007/s12975-016-0460-z] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/01/2016] [Accepted: 03/09/2016] [Indexed: 12/19/2022]
Abstract
Stroke, resulting from limited blood flow to the brain, is one of the most important causes of morbidity and mortality worldwide. Stroke is classified as ischemic, due to lack of blood flow, or hemorrhagic, due to bleeding. Because 87 % of strokes are classified as ischemic, this type will be the predominant focus of this review. Except for thrombolytic therapy, there is no established treatment to reduce the neurological deficits caused by ischemic stroke. Therefore, it is necessary to develop new therapeutic strategies designed to improve neurological functions after ischemic stroke. Recently, therapies to enhance neurogenesis after ischemic stroke have been investigated. However, these approaches have not led to successful clinical outcomes. This review addresses the pathophysiology of stroke, neurogenesis after stroke, and how to stimulate these processes based on the current literature. Finally, ongoing clinical trials to improve neurological functions after stroke by enhancing neurogenesis are discussed in this review.
Collapse
Affiliation(s)
- Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, 249-1 Guri Hospital, Gyomun-dong, Guri-si, Gyeonggi-do, 471-701, Republic of Korea. .,Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Republic of Korea.
| | - Hyun-Hee Park
- Department of Neurology, Hanyang University College of Medicine, 249-1 Guri Hospital, Gyomun-dong, Guri-si, Gyeonggi-do, 471-701, Republic of Korea
| |
Collapse
|
22
|
Lv Y, Qian Y, Fu L, Chen X, Zhong H, Wei X. Hydroxysafflor yellow A exerts neuroprotective effects in cerebral ischemia reperfusion-injured mice by suppressing the innate immune TLR4-inducing pathway. Eur J Pharmacol 2015; 769:324-32. [DOI: 10.1016/j.ejphar.2015.11.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 11/14/2015] [Accepted: 11/18/2015] [Indexed: 12/23/2022]
|
23
|
Watson N, Ji X, Yasuhara T, Date I, Kaneko Y, Tajiri N, Borlongan CV. No pain, no gain: lack of exercise obstructs neurogenesis. Cell Transplant 2015; 24:591-7. [PMID: 25806858 DOI: 10.3727/096368915x687723] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bedridden patients develop atrophied muscles, their daily activities greatly reduced, and some display a depressive mood. Patients who are able to receive physical rehabilitation sometimes show surprising clinical improvements, including reduced depression and attenuation of other stress-related behaviors. Regenerative medicine has advanced two major stem cell-based therapies for CNS disorders, namely, transplantation of exogenous stem cells and amplification of endogenous neurogenesis. The latter strategy embraces a natural way of reinnervating the damaged brain and correcting the neurological impairments. In this study, we discussed how immobilization-induced disuse atrophy, using the hindlimb suspension model, affects neurogenesis in rats. The overarching hypothesis is that immobilization suppresses neurogenesis by reducing the circulating growth or trophic factors, such as vascular endothelial growth factor or brain-derived neurotrophic factor. That immobilization alters neurogenesis and stem cell differentiation in the CNS requires characterization of the stem cell microenvironment by examining the trophic and growth factors, as well as stress-related proteins that have been implicated in exercise-induced neurogenesis. Although accumulating evidence has revealed the contribution of "increased" exercise on neurogenesis, the reverse paradigm involving "lack of exercise," which mimics pathological states (e.g., stroke patients are often immobile), remains underexplored. This novel paradigm will enable us to examine the effects on neurogenesis by a nonpermissive stem cell microenvironment likely produced by lack of exercise. BrdU labeling of proliferative cells, biochemical assays of serum, cerebrospinal fluid and brain levels of trophic factors, growth factors, and stress-related proteins are proposed as indices of neurogenesis, while quantitative measurements of spontaneous movements will reveal psychomotor components of immobilization. Studies designed to reveal how in vivo stimulation, or lack thereof, alters the stem cell microenvironment are needed to begin to develop treatment strategies for enhancing neurogenesis in bedridden patients.
Collapse
Affiliation(s)
- Nate Watson
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Traumatic brain injury precipitates cognitive impairment and extracellular Aβ aggregation in Alzheimer's disease transgenic mice. PLoS One 2013; 8:e78851. [PMID: 24223856 PMCID: PMC3817089 DOI: 10.1371/journal.pone.0078851] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/24/2013] [Indexed: 02/03/2023] Open
Abstract
Traumatic brain injury (TBI) has become a signature wound of the wars in Iraq and Afghanistan. Many American soldiers, even those undiagnosed but likely suffering from mild TBI, display Alzheimer's disease (AD)-like cognitive impairments, suggesting a pathological overlap between TBI and AD. This study examined the cognitive and neurohistological effects of TBI in presymptomatic APP/PS1 AD-transgenic mice. AD mice and non-transgenic (NT) mice received an experimental TBI on the right parietal cortex using the controlled cortical impact model. Animals were trained in a water maze task for spatial memory before TBI, and then reevaluated in the same task at two and six weeks post-TBI. The results showed that AD mice with TBI made significantly more errors in the task than AD mice without TBI and NT mice regardless of TBI. A separate group of AD mice and NT mice were evaluated neurohistologically at six weeks after TBI. The number of extracellular beta-amyloid (Aβ)-deposits significantly increased by at least one fold in the cortex of AD mice that received TBI compared to the NT mice that received TBI or the AD and NT mice that underwent sham surgery. A significant decrease in MAP2 positive cells, indicating neuronal loss, was observed in the cortex of both the AD and NT mice that received TBI compared to the AD and NT mice subjected to sham surgery. Similar changes in extracellular Aβ deposits and MAP2 positive cells were also seen in the hippocampus. These results demonstrate for the first time that TBI precipitates cognitive impairment in presymptomatic AD mice, while also confirming extracellular Aβ deposits following TBI. The recognition of this pathological link between TBI and AD should aid in developing novel treatments directed at abrogating cellular injury and extracellular Aβ deposition in the brain.
Collapse
|
25
|
Deng L, Shi B, Zhuang Y, Chu J, Shi X, Zhang S, Guo M. Performance and mechanism of neuroleukin in the growth and survival of sertoli cell-induced neurons in a coculture system. Cell Transplant 2013; 23:381-94. [PMID: 23394468 DOI: 10.3727/096368913x663578] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sertoli cells (SCs), which are recognized as the "nurse cells" of the testis due to their important biofunctions, have been used in cotransplantation with neurons in cell therapy. However, it is not clear whether SCs influence neuronal communication and survival. In this study, we showed that approximately 60% of cortical neural stem cells (NSCs) cocultured with SCs differentiated into mature neurons. In addition, the neurite outgrowth and neuronal survival rates were significantly enhanced in the coculture system compared with differentiated neurons induced by a differentiation medium. The neuroleukin (NLK) secretion of SCs was also identified at the RNA and protein level, and the roles of NLK in neuromorphology and physiological regulation were systematically investigated for the first time. These results not only highlight the significance of paracrine regulation of NSCs by SCs but also confirm the role NLK plays in the differentiation and survival of NSCs. Finally, we proposed a possible hypothesis for the mechanism of NLK in the growth and survival of SC-induced neurons based on Western blotting results, which is that NLK secreted by SCs activates the Ras/Raf/MEK/Erk, Jak/Stat, and PI3K/Akt pathways, but not the NF-κB pathway, in neurons resulting in their growth and survival.
Collapse
Affiliation(s)
- Lei Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P.R. China
| | | | | | | | | | | | | |
Collapse
|
26
|
Christie KJ, Turnley AM. Regulation of endogenous neural stem/progenitor cells for neural repair-factors that promote neurogenesis and gliogenesis in the normal and damaged brain. Front Cell Neurosci 2013; 6:70. [PMID: 23346046 PMCID: PMC3548228 DOI: 10.3389/fncel.2012.00070] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/30/2012] [Indexed: 01/17/2023] Open
Abstract
Neural stem/precursor cells in the adult brain reside in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. These cells primarily generate neuroblasts that normally migrate to the olfactory bulb (OB) and the dentate granule cell layer respectively. Following brain damage, such as traumatic brain injury, ischemic stroke or in degenerative disease models, neural precursor cells from the SVZ in particular, can migrate from their normal route along the rostral migratory stream (RMS) to the site of neural damage. This neural precursor cell response to neural damage is mediated by release of endogenous factors, including cytokines and chemokines produced by the inflammatory response at the injury site, and by the production of growth and neurotrophic factors. Endogenous hippocampal neurogenesis is frequently also directly or indirectly affected by neural damage. Administration of a variety of factors that regulate different aspects of neural stem/precursor biology often leads to improved functional motor and/or behavioral outcomes. Such factors can target neural stem/precursor proliferation, survival, migration and differentiation into appropriate neuronal or glial lineages. Newborn cells also need to subsequently survive and functionally integrate into extant neural circuitry, which may be the major bottleneck to the current therapeutic potential of neural stem/precursor cells. This review will cover the effects of a range of intrinsic and extrinsic factors that regulate neural stem/precursor cell functions. In particular it focuses on factors that may be harnessed to enhance the endogenous neural stem/precursor cell response to neural damage, highlighting those that have already shown evidence of preclinical effectiveness and discussing others that warrant further preclinical investigation.
Collapse
Affiliation(s)
- Kimberly J Christie
- Neural Regeneration Laboratory, Department of Anatomy and Neuroscience, Centre for Neuroscience Research, The University of Melbourne Parkville, VIC, Australia
| | | |
Collapse
|
27
|
Saha B, Jaber M, Gaillard A. Potentials of endogenous neural stem cells in cortical repair. Front Cell Neurosci 2012; 6:14. [PMID: 22509153 PMCID: PMC3321408 DOI: 10.3389/fncel.2012.00014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 03/19/2012] [Indexed: 01/16/2023] Open
Abstract
In the last few decades great thrust has been put in the area of regenerative neurobiology research to combat brain injuries and neurodegenerative diseases. The recent discovery of neurogenic niches in the adult brain has led researchers to study how to mobilize these cells to orchestrate an endogenous repair mechanism. The brain can minimize injury-induced damage by means of an immediate glial response and by initiating repair mechanisms that involve the generation and mobilization of new neurons to the site of injury where they can integrate into the existing circuit. This review highlights the current status of research in this field. Here, we discuss the changes that take place in the neurogenic milieu following injury. We will focus, in particular, on the cellular and molecular controls that lead to increased proliferation in the Sub ventricular Zone (SVZ) as well as neurogenesis. We will also concentrate on how these cellular and molecular mechanisms influence the migration of new cells to the affected area and their differentiation into neuronal/glial lineage that initiate the repair mechanism. Next, we will discuss some of the different factors that limit/retard the repair process and highlight future lines of research that can help to overcome these limitations. A clear understanding of the underlying molecular mechanisms and physiological changes following brain damage and the subsequent endogenous repair should help us develop better strategies to repair damaged brains.
Collapse
Affiliation(s)
- Bhaskar Saha
- Experimental and Clinical Neurosciences Laboratory, Cellular Therapies in Brain Diseases group, INSERM U1084, University of Poitiers Poitiers, France
| | | | | |
Collapse
|
28
|
Bye N, Turnley AM, Morganti-Kossmann MC. Inflammatory regulators of redirected neural migration in the injured brain. Neurosignals 2012; 20:132-46. [PMID: 22456466 DOI: 10.1159/000336542] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 01/16/2012] [Indexed: 01/19/2023] Open
Abstract
Brain injury following stroke or trauma induces the migration of neuroblasts derived from subventricular zone neural precursor cells (NPCs) towards the damaged tissue, where they then have the potential to contribute to repair. Enhancing the recruitment of new cells thus presents an enticing prospect for the development of new therapeutic approaches to treat brain injury; to this end, an understanding of the factors regulating this process is required. During the neuroinflammatory response to ischemic and traumatic brain injuries, a plethora of pro- and anti-inflammatory cytokines, chemokines and growth factors are released in the damaged tissue, and recent work indicates that a variety of these are able to influence injury-induced migration. In this review, we will discuss the contribution of specific chemokines and growth factors towards stimulating NPC migration in the injured brain.
Collapse
Affiliation(s)
- Nicole Bye
- National Trauma Research Institute, Alfred Hospital, Department of Surgery, Monash University, Melbourne, Vic, Australia.
| | | | | |
Collapse
|
29
|
FGF2 gene transfer restores hippocampal functions in mouse models of Alzheimer's disease and has therapeutic implications for neurocognitive disorders. Proc Natl Acad Sci U S A 2011; 108:E1339-48. [PMID: 22042871 DOI: 10.1073/pnas.1102349108] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The adult hippocampus plays a central role in memory formation, synaptic plasticity, and neurogenesis. The subgranular zone of the dentate gyrus contains neural progenitor cells with self-renewal and multilineage potency. Transgene expression of familial Alzheimer's disease-linked mutants of β-amyloid precursor protein (APP) and presenilin-1 leads to a significant inhibition of neurogenesis, which is potentially linked to age-dependent memory loss. To investigate the effect of neurogenesis on cognitive function in a relevant disease model, FGF2 gene is delivered bilaterally to the hippocampi of APP+presenilin-1 bigenic mice via an adenoassociated virus serotype 2/1 hybrid (AAV2/1-FGF2). Animals injected with AAV2/1-FGF2 at a pre- or postsymptomatic stage show significantly improved spatial learning in the radial arm water maze test. A neuropathological investigation demonstrates that AAV2/1-FGF2 injection enhances the number of doublecortin, BrdU/NeuN, and c-fos-positive cells in the dentate gyrus, and the clearance of fibrillar amyloid-β peptide (Aβ) in the hippocampus. AAV2/1-FGF2 injection also enhances long-term potentiation in another APP mouse model (J20) compared with control AAV2/1-GFP-injected littermates. An in vitro study confirmed the enhanced neurogenesis of mouse neural stem cells by direct AAV2/1-FGF2 infection in an Aβ oligomer-sensitive manner. Further, FGF2 enhances Aβ phagocytosis in primary cultured microglia, and reduces Aβ production from primary cultured neurons after AAV2/1-FGF2 infection. Thus, our data indicate that virus-mediated FGF2 gene delivery has potential as an alternative therapy of Alzheimer's disease and possibly other neurocognitive disorders.
Collapse
|
30
|
Yang Q, Wang EY, Huang XJ, Qu WS, Zhang L, Xu JZ, Wang W, Tian DS. Blocking epidermal growth factor receptor attenuates reactive astrogliosis through inhibiting cell cycle progression and protects against ischemic brain injury in rats. J Neurochem 2011; 119:644-53. [DOI: 10.1111/j.1471-4159.2011.07446.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Regulation of adult neural precursor cell migration. Neurochem Int 2011; 59:382-93. [DOI: 10.1016/j.neuint.2010.12.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 12/02/2010] [Accepted: 12/22/2010] [Indexed: 01/18/2023]
|
32
|
Gonzalez-Castaneda RE, Galvez-Contreras AY, Luquín S, Gonzalez-Perez O. Neurogenesis in Alzheimer´s disease: a realistic alternative to neuronal degeneration? CURRENT SIGNAL TRANSDUCTION THERAPY 2011; 6:314-319. [PMID: 22125505 PMCID: PMC3223938 DOI: 10.2174/157436211797483949] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neural stem cells (NSC) are cells that have the capacity to generate multiple types of differentiated brain cells. In conditions in which there is a loss of key functional cell groups, such as neurons, inducing or introducing neural stem cells to replace the function of those cells that were lost during the disease has the greatest potential therapeutic applications. Indeed, the achievement of one of the main objectives of various investigations is already on the horizon for some conditions, such as Alzheimer's disease. It is not known whether impaired neurogenesis contributes to neuronal depletion and cognitive dysfunction in Alzheimer's disease (AD). The results of the different investigations are controversial; some studies have found that neurogenesis is increased in AD brains, but others have not.
Collapse
Affiliation(s)
- Rocío E Gonzalez-Castaneda
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México 44340
| | | | | | | |
Collapse
|
33
|
Lanfranconi S, Locatelli F, Corti S, Candelise L, Comi GP, Baron PL, Strazzer S, Bresolin N, Bersano A. Growth factors in ischemic stroke. J Cell Mol Med 2011; 15:1645-87. [PMID: 20015202 PMCID: PMC4373358 DOI: 10.1111/j.1582-4934.2009.00987.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 11/26/2009] [Indexed: 12/31/2022] Open
Abstract
Data from pre-clinical and clinical studies provide evidence that colony-stimulating factors (CSFs) and other growth factors (GFs) can improve stroke outcome by reducing stroke damage through their anti-apoptotic and anti-inflammatory effects, and by promoting angiogenesis and neurogenesis. This review provides a critical and up-to-date literature review on CSF use in stroke. We searched for experimental and clinical studies on haemopoietic GFs such as granulocyte CSF, erythropoietin, granulocyte-macrophage colony-stimulating factor, stem cell factor (SCF), vascular endothelial GF, stromal cell-derived factor-1α and SCF in ischemic stroke. We also considered studies on insulin-like growth factor-1 and neurotrophins. Despite promising results from animal models, the lack of data in human beings hampers efficacy assessments of GFs on stroke outcome. We provide a comprehensive and critical view of the present knowledge about GFs and stroke, and an overview of ongoing and future prospects.
Collapse
Affiliation(s)
- S Lanfranconi
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - F Locatelli
- Istituto E. Medea, Fondazione La Nostra FamigliaBosisio Parini, Lecco, Italy
| | - S Corti
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - L Candelise
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - G P Comi
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - P L Baron
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - S Strazzer
- Istituto E. Medea, Fondazione La Nostra FamigliaBosisio Parini, Lecco, Italy
| | - N Bresolin
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
- Istituto E. Medea, Fondazione La Nostra FamigliaBosisio Parini, Lecco, Italy
| | - A Bersano
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| |
Collapse
|
34
|
Induction of striatal neurogenesis enhances functional recovery in an adult animal model of neonatal hypoxic-ischemic brain injury. Neuroscience 2011; 169:259-68. [PMID: 20610036 DOI: 10.1016/j.neuroscience.2010.04.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 04/03/2010] [Accepted: 04/19/2010] [Indexed: 11/24/2022]
Abstract
While intraventricular administration of epidermal growth factor (EGF) expands the proliferation of neural stem/progenitor cells in the subventricular zone (SVZ), overexpression of brain-derived neurotrophic factor (BDNF) is particularly effective in enhancing striatal neurogenesis. We assessed the induction of striatal neurogenesis and consequent functional recovery after chronic infusion of BDNF and EGF in an adult animal model of neonatal hypoxic-ischemic (HI) brain injury. Permanent brain damage was induced in CD-1 (ICR) mice (P7) by applying the ligation of unilateral carotid artery and hypoxic condition. At 6 weeks of age, the mice were randomly assigned to groups receiving a continuous 2-week infusion of one of the following treatments into the ventricle: BDNF, EGF, BDNF/EGF, or phosphate buffered saline (PBS). Two weeks after treatment, immunohistochemical analysis revealed an increase in the number of BrdU(+) cells in the SVZ and striata of BDNF/EGF-treated mice. The number of new neurons co-stained with BrdU and betaIII-tubulin was also significantly increased in the neostriata of BDNF/EGF-treated mice, compared with PBS group. In addition, the newly generated cells were expressed as migrating neuroblasts labeled with PSA-NCAM or doublecortin in the SVZ and the ventricular side of neostriata. The new striatal neurons were also differentiated as mature neurons co-labeled with BrdU(+)/NeuN(+). When evaluated post-surgical 8 weeks, BDNF/EGF-treated mice exhibited significantly longer rotarod latencies at constant speed (48 rpm) and under accelerating condition (4-80 rpm), relative to PBS and untreated controls. In the forelimb-use asymmetry test, BDNF/EGF-treated mice showed significant improvement in the use of the contralateral forelimb. In contrast, this BDNF/EGF-associated functional recovery was abolished in mice receiving a co-infusion of 2% cytosine-b-d-arabinofuranoside (Ara-C), a mitotic inhibitor. Induction of striatal neurogenesis by the intraventricular administration of BDNF and EGF promoted functional recovery in an adult animal model of neonatal HI brain injury. The effect of Ara-C to completely block functional recovery indicates that the effect may be the result of newly generated neurons. Therefore, this treatment may offer a promising strategy for the restoration of motor function for adults with cerebral palsy (CP).
Collapse
|
35
|
Leong SY, Faux CH, Turbic A, Dixon KJ, Turnley AM. The Rho Kinase Pathway Regulates Mouse Adult Neural Precursor Cell Migration. Stem Cells 2011; 29:332-43. [DOI: 10.1002/stem.577] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Ceruti S, Viganò F, Boda E, Ferrario S, Magni G, Boccazzi M, Rosa P, Buffo A, Abbracchio MP. Expression of the new P2Y-like receptor GPR17 during oligodendrocyte precursor cell maturation regulates sensitivity to ATP-induced death. Glia 2010; 59:363-78. [PMID: 21264945 DOI: 10.1002/glia.21107] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 10/12/2010] [Indexed: 12/13/2022]
Abstract
The P2Y-like receptor GPR17 is expressed by adult neural progenitor cells, suggesting a role in lineage determination. Here, we characterized GPR17 expression and function in mouse cortical primary astrocytes/precursor cell cultures. GPR17 is expressed by a subpopulation of oligodendrocyte precursor cells (OPCs), but not by astrocytes. This expression pattern was also confirmed in vivo. In vitro, GPR17 expression was markedly influenced by culturing conditions. In the presence of growth factors (GFs), no significant GPR17 expression was found. When cultures were shifted to a differentiating medium, a dramatic, time-dependent increase in the number of highly branched GPR17-positive cells was observed. Under these conditions, GPR17 was induced in the totality of O4-positive immature oligodendrocytes. Instead, in cultures originally grown in the absence of GFs, GPR17 was already expressed in morphologically more mature OPCs. Shifting of these cultures to differentiating conditions induced GPR17 only in a subpopulation of O4-positive cells. Under both culture protocols, appearance of more mature CNPase- and MBP-positive cells was associated to a progressive loss of GPR17. GPR17 expression also sensitized cells to adenine nucleotide-induced cytotoxicity, whereas activation with uracil nucleotides promoted differentiation towards a more mature phenotype. We suggest that GFs may keep OPCs in a less differentiated stage by restraining GPR17 expression, and that, under permissive conditions, GPR17 contributes to OPCs differentiation. However, upon high extracellular adenine nucleotide concentrations, as during trauma and ischemia, GPR17 sensitizes cells to cytotoxicity. This double-edged sword role may be exploited to unveil new therapeutic approaches to acute and chronic brain disorders.
Collapse
Affiliation(s)
- Stefania Ceruti
- Department of Pharmacological Sciences, Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Jimenez-Andrade JM, Mantyh WG, Bloom AP, Freeman KT, Ghilardi JR, Kuskowski MA, Mantyh PW. The effect of aging on the density of the sensory nerve fiber innervation of bone and acute skeletal pain. Neurobiol Aging 2010; 33:921-32. [PMID: 20947214 DOI: 10.1016/j.neurobiolaging.2010.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 08/10/2010] [Accepted: 08/18/2010] [Indexed: 02/05/2023]
Abstract
As humans age there is a decline in most sensory systems including vision, hearing, taste, smell, and tactile acuity. In contrast, the frequency and severity of musculoskeletal pain generally increases with age. To determine whether the density of sensory nerve fibers that transduce skeletal pain changes with age, calcitonin gene related peptide (CGRP) and neurofilament 200 kDa (NF200) sensory nerve fibers that innervate the femur were examined in the femurs of young (4-month-old), middle-aged (13-month-old) and old (36-month-old) male F344/BNF1 rats. Whereas the bone quality showed a significant age-related decline, the density of CGRP(+) and NF200(+) nerve fibers that innervate the bone remained remarkably unchanged as did the severity of acute skeletal fracture pain. Thus, while bone mass, quality, and strength undergo a significant decline with age, the density of sensory nerve fibers that transduce noxious stimuli remain largely intact. These data may in part explain why musculoskeletal pain increases with age.
Collapse
Affiliation(s)
- Juan M Jimenez-Andrade
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Yoshikawa G, Momiyama T, Oya S, Takai K, Tanaka JI, Higashiyama S, Saito N, Kirino T, Kawahara N. Induction of striatal neurogenesis and generation of region-specific functional mature neurons after ischemia by growth factors. J Neurosurg 2010; 113:835-50. [DOI: 10.3171/2010.2.jns09989] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The capacity to replace lost neurons after insults is retained by several regions of adult mammalian brains. However, it is unknown how many neurons actually replace and mature into region-specific functional neurons to restore lost brain function. In this paper, the authors asked whether neuronal regeneration could be achieved efficaciously by growth factor treatment using a global ischemia model in rats, and they analyzed neuronal long-term maturation processes.
Methods
Rat global ischemia using a modified 4-vessel occlusion model was used to induce consistent ischemic neuronal injury in the dorsolateral striatum. To potentiate the proliferative response of neural progenitors, epidermal growth factor and fibroblast growth factor–2 were infused intraventricularly for 7 days from Day 2 after ischemia. Six weeks after ischemia, the number of neurons was counted in the defined dorsolateral striatum. To label the proliferating neural progenitors for tracing studies, 5-bromo-2′-deoxyuridine (BrdU; 150 mg/kg, twice a day) was injected intraperitoneally from Days 5 to 7, and immunohistochemical studies were conducted to explore the maturation of these progenitors. Migration of the progenitors was further studied by enhanced green fluorescent protein retrovirus injection. The effect of an antimitotic drug (cytosine arabinoside) on the neuronal count was also evaluated for contribution to regeneration. To see electrophysiological changes, treated rats were subjected to slice studies by whole-cell recordings. Finally, the effect of neural regeneration was assessed by motor performance by using the staircase test.
Results
Following epidermal growth factor and fibroblast growth factor–2 infusion into the lateral ventricles for 7 days beginning on Day 2, when severe neuronal loss in the adult striatum was confirmed (2.3% of normal controls), a significant increase of striatal neurons was observed at 6 weeks (~ 15% of normal controls) compared with vehicle controls (~ 5% of normal controls). Immunohistochemical studies by BrdU and enhanced green fluorescent protein retrovirus injection disclosed proliferation of neural progenitors in the subventricular zone and their migration to the ischemic striatum. By BrdU tracing study, NeuN- and BrdU-positive new neurons significantly increased at 6 and 12 weeks following the treatment. These accounted for 4.6 and 11.0% of the total neurons present, respectively. Antimitotic treatment demonstrated an approximately 66% reduction in neurons at 6 weeks. Further long-term studies showed dynamic changes of site-specific maturation among various neuronal subtypes even after 6 weeks. Electrophysiological properties of these newly appeared neurons underwent changes that conform to neonatal development. These regenerative changes were accompanied by a functional improvement of overall behavioral performance.
Conclusions
Treatment by growth factors significantly contributed to regeneration of mature striatal neurons after ischemia by endogenous neural progenitors, which was accompanied by electrophysiological maturation and improved motor performance. Recognition and improved understanding of these underlying dynamic processes will contribute to the development of novel and efficient regenerative therapies for brain injuries.
Collapse
Affiliation(s)
- Gakushi Yoshikawa
- 1Department of Neurosurgery, Graduate School of Medicine, University of Tokyo
- 5Solution Oriented Research for Science and Technology (SORST) and
| | - Toshihiko Momiyama
- 2Division of Cerebral Structure, National Institute for Physiological Sciences, Okazaki
- 6CREST, Japan Science and Technology Corporation (JST), Saitama; and
| | - Soichi Oya
- 1Department of Neurosurgery, Graduate School of Medicine, University of Tokyo
- 5Solution Oriented Research for Science and Technology (SORST) and
| | - Keisuke Takai
- 1Department of Neurosurgery, Graduate School of Medicine, University of Tokyo
- 5Solution Oriented Research for Science and Technology (SORST) and
| | - Jun-ichi Tanaka
- 1Department of Neurosurgery, Graduate School of Medicine, University of Tokyo
- 5Solution Oriented Research for Science and Technology (SORST) and
| | - Shigeki Higashiyama
- 3Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime
| | - Nobuhito Saito
- 1Department of Neurosurgery, Graduate School of Medicine, University of Tokyo
| | - Takaaki Kirino
- 4Research Institute, International Medical Center of Japan, Tokyo
- 5Solution Oriented Research for Science and Technology (SORST) and
| | - Nobutaka Kawahara
- 1Department of Neurosurgery, Graduate School of Medicine, University of Tokyo
- 5Solution Oriented Research for Science and Technology (SORST) and
- 7Department of Neurosurgery, Graduate School of Medical Sciences, Yokohama City University, Yokohama, Japan
| |
Collapse
|
39
|
Yu J, Zeng J, Cheung RT, Xiong L, He M, Liang Z, Hong H, Huang R. INTRACEREBROVENTRICULAR INJECTION OF EPIDERMAL GROWTH FACTOR REDUCES NEUROLOGICAL DEFICIT AND INFARCT VOLUME AND ENHANCES NESTIN EXPRESSION FOLLOWING FOCAL CEREBRAL INFARCTION IN ADULT HYPERTENSIVE RATS. Clin Exp Pharmacol Physiol 2009; 36:539-46. [DOI: 10.1111/j.1440-1681.2008.05105.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
The potential of neural stem cells to repair stroke-induced brain damage. Acta Neuropathol 2009; 117:469-80. [PMID: 19283395 DOI: 10.1007/s00401-009-0516-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 01/19/2023]
Abstract
Acute injuries to CNS such as stroke induce neural progenitor proliferation in adult brain which might be an endogenous attempt to self-repair. This process is known to be altered by several exogenous and endogenous modulators including growth factors that could help to reinforce the post-stroke neurogenesis. Increasing the neurogenesis may be a future therapeutic option to decrease the cognitive and behavioral deficits following stroke. In addition, transplantation of various types of stem cells into the injured brain is currently thought to be an exciting option to replace the neurons lost in the post-ischemic brain. These include immortalized stem cell lines, neural progenitors prepared from embryonic and adult animals and mesenchymal stem cells. Using exogenous stem cells in addition to modulating endogenous neurogenesis, we may be able to repair the injured brain after a devastating stroke. This article reviewed the current literature of these two issues.
Collapse
|
41
|
Sauerzweig S, Baldauf K, Braun H, Reymann KG. Time-dependent segmentation of BrdU-signal leads to late detection problems in studies using BrdU as cell label or proliferation marker. J Neurosci Methods 2008; 177:149-59. [PMID: 19007815 DOI: 10.1016/j.jneumeth.2008.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/22/2008] [Accepted: 10/06/2008] [Indexed: 01/05/2023]
Abstract
Bromodeoxyuridine incorporates into DNA during mitosis. A long-term stability of the incorporated BrdU is important for the recovery of BrdU-labeled cells. For testing the stability of BrdU incorporation into DNA we pulse-labeled mesenchymal stem cells with BrdU and observed these cells in vitro over 4 weeks. During this time the BrdU-signal was permanently decreasing. Starting with cells containing evenly stained BrdU-nuclei, so-called filled cells, already 3 days after BrdU removal we detected cells containing so-called segmented and punctated BrdU-signals. The number of those labeled cells continuously increased over time. Interestingly, the loss of BrdU in the nucleus was accompanied by an increasing labeling of the cytosol. Further, we injected BrdU intraperitoneally into rats after ischemia and detected BrdU-positive cells in the hippocampus 3 and 23 days after the last BrdU injection. While after 3 days most of the BrdU-positive cells in the hippocampus displayed a filled BrdU-signal, 23 days after BrdU removal an increased number of segmented and punctated BrdU-positive nuclei was detected. The gradual degradation of the BrdU-signal was not caused by cell death. The consequence of this BrdU degradation would be an underestimation of cell proliferation and an overestimation of cell death of newly generated cells.
Collapse
Affiliation(s)
- Steven Sauerzweig
- Leibniz Institute for Neurobiology (IfN), Brenneckestr. 6, 39118 Magdeburg, Germany.
| | | | | | | |
Collapse
|
42
|
Wang ZL, Cheng SM, Ma MM, Ma YP, Yang JP, Xu GL, Liu XF. Intranasally delivered bFGF enhances neurogenesis in adult rats following cerebral ischemia. Neurosci Lett 2008; 446:30-5. [PMID: 18822350 DOI: 10.1016/j.neulet.2008.09.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 08/19/2008] [Accepted: 09/10/2008] [Indexed: 11/25/2022]
Abstract
Basic fibroblast growth factor (bFGF) is a very important mitogenic factor with proved neurogenesis effects in the central nervous system. Intranasal administration can bypass blood-brain barrier and deliver drugs into the brain directly. We investigated whether intranasal administration of bFGF at later time points after ischemia could promote adult neurogenesis and improve neurologic functions. Rats received bFGF or saline intranasally once daily for 6 consecutive days, starting at 1 day after transient middle cerebral artery occlusion (MCAO). Bromodeoxyuridine (BrdU) was injected at 5 and 6 days after MCAO. Rats were killed at 7 or 28 days after MCAO. Neurogenesis was assessed by immunostaining for BrdU and cell type-specific markers. Neurological functions were evaluated by the modified Neurological Severity Scores. Compared with the control animals, intranasal administration of bFGF improved behavioral recovery without affecting infarct size, and enhanced proliferation of progenitor cells in the subventricular zone and the subgranular zone of the dentate gyrus (DG). Furthermore, the new proliferated cells could differentiate into neurons (BrdU+NeuN+ cells) in the striatum and DG at 28 days after MCAO. Intranasal administration of bFGF offers a non-invasive alternative for the treatment of stroke.
Collapse
Affiliation(s)
- Zhao-Lu Wang
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, 305# East Zhongshan Road, Nanjing 210002, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Abeta mediated diminution of MTT reduction--an artefact of single cell culture? PLoS One 2008; 3:e3236. [PMID: 18800168 PMCID: PMC2529401 DOI: 10.1371/journal.pone.0003236] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 08/26/2008] [Indexed: 11/19/2022] Open
Abstract
The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT) reduction assay is a frequently used and easily reproducible method to measure beta-amyloid (Abeta) toxicity in different types of single cell culture. To our knowledge, the influence of Abeta on MTT reduction has never been tested in more complex tissue. Initially, we reproduced the disturbed MTT reduction in neuron and astroglia primary cell cultures from rats as well as in the BV2 microglia cell line, utilizing four different Abeta species, namely freshly dissolved Abeta (25-35), fibrillar Abeta (1-40), oligomeric Abeta (1-42) and oligomeric Abeta (1-40). In contrast to the findings in single cell cultures, none of these Abeta species altered MTT reduction in rat organotypic hippocampal slice cultures (OHC). Moreover, application of Abeta to acutely isolated hippocampal slices from adult rats and in vivo intracerebroventricular injection of Abeta also did not influence the MTT reduction in the respective tissue. Failure of Abeta penetration into the tissue cannot explain the differences between single cells and the more complex brain tissue. Thus electrophysiological investigations disclosed an impairment of long-term potentiation (LTP) in the CA1 region of hippocampal slices from rat by application of oligomeric Abeta (1-40), but not by freshly dissolved Abeta (25-35) or fibrillar Abeta (1-40). In conclusion, the experiments revealed a glaring discrepancy between single cell cultures and complex brain tissue regarding the effect of different Abeta species on MTT reduction. Particularly, the differential effect of oligomeric versus other Abeta forms on LTP was not reflected in the MTT reduction assay. This may indicate that the Abeta oligomer effect on synaptic function reflected by LTP impairment precedes changes in formazane formation rate or that cells embedded in a more natural environment in the tissue are less susceptible to damage by Abeta, raising cautions against the consideration of single cell MTT reduction activity as a reliable assay in Alzheimer's drug discovery studies.
Collapse
|
44
|
Glendenning ML, Lovekamp-Swan T, Schreihofer DA. Protective effect of estrogen in endothelin-induced middle cerebral artery occlusion in female rats. Neurosci Lett 2008; 445:188-92. [PMID: 18790008 DOI: 10.1016/j.neulet.2008.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 10/21/2022]
Abstract
Estrogen is a powerful endogenous and exogenous neuroprotective agent in animal models of brain injury, including focal cerebral ischemia. Although this protection has been demonstrated in several different treatment and injury paradigms, it has not been demonstrated in focal cerebral ischemia induced by intraparenchymal endothelin-1 injection, a model with many advantages over other models of experimental focal ischemia. Reproductively mature female Sprague-Dawley rats were ovariectomized and divided into placebo and estradiol-treated groups. Two weeks later, halothane-anesthetized rats underwent middle cerebral artery (MCA) occlusion by interparenchymal stereotactic injection of the potent vasoconstrictor endothelin 1 (180pmoles/2microl) near the middle cerebral artery. Laser-Doppler flowmetry (LDF) revealed similar reductions in cerebral blood flow in both groups. Animals were behaviorally evaluated before, and 2 days after, stroke induction, and infarct size was evaluated. In agreement with other models, estrogen treatment significantly reduced infarct size evaluated by both TTC and Fluoro-Jade staining and behavioral deficits associated with stroke. Stroke size was significantly correlated with LDF in both groups, suggesting that cranial perfusion measures can enhance success in this model.
Collapse
Affiliation(s)
- Michele L Glendenning
- Department of Physiology, CA3145, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912-3000, United States
| | | | | |
Collapse
|
45
|
Microglia cells protect neurons by direct engulfment of invading neutrophil granulocytes: a new mechanism of CNS immune privilege. J Neurosci 2008; 28:5965-75. [PMID: 18524901 DOI: 10.1523/jneurosci.0060-08.2008] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microglial cells maintain the immunological integrity of the healthy brain and can exert protection from traumatic injury. During ischemic tissue damage such as stroke, peripheral immune cells acutely infiltrate the brain and may exacerbate neurodegeneration. Whether and how microglia can protect from this insult is unknown. Polymorphonuclear neutrophils (PMNs) are a prominent immunologic infiltrate of ischemic lesions in vivo. Here, we show in organotypic brain slices that externally applied invading PMNs massively enhance ischemic neurotoxicity. This, however, is counteracted by additional application of microglia. Time-lapse imaging shows that microglia exert protection by rapid engulfment of apoptotic, but, strikingly, also viable, motile PMNs in cell culture and within brain slices. PMN engulfment is mediated by integrin- and lectin-based recognition. Interference with this process using RGDS peptides and N-acetyl-glucosamine blocks engulfment of PMNs and completely abrogates the neuroprotective function of microglia. Thus, engulfment of invading PMNs by microglia may represent an entirely new mechanism of CNS immune privilege.
Collapse
|
46
|
Yasuhara T, Hara K, Maki M, Masuda T, Sanberg CD, Sanberg PR, Bickford PC, Borlongan CV. Dietary supplementation exerts neuroprotective effects in ischemic stroke model. Rejuvenation Res 2008; 11:201-14. [PMID: 18260778 DOI: 10.1089/rej.2007.0608] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study examined whether dietary supplementation can be used to protect against ischemic stroke. Two groups of adult male Sprague-Dawley rats initially received NT-020, a proprietary formulation of blueberry, green tea, Vitamin D3, and carnosine (n = 8), or vehicle (n = 7). Dosing for NT-020 and vehicle consisted of daily oral administration (using a gavage) over a 2-week period. On day 14 following the last drug treatment, all animals underwent the stroke surgery using the transient 1-hour suture occlusion of middle cerebral artery (MCAo). To reveal the functional effects of NT-020, animals were subjected to established behavioral tests just prior to stroke surgery and again on day 14 post-stroke. ANOVA revealed significant treatment effects (p < 0.05), characterized by reductions of 11.8% and 24.4% in motor asymmetry and neurologic dysfunction, respectively, in NT-020-treated stroke animals compared to vehicle-treated stroke animals. Evaluation of cerebral infarction revealed a significant 75% decrement in mean glial scar area in the ischemic striatum of NT-020-treated stroke animals compared to that of vehicle-treated stroke animals (p < 0.0005). Quantitative analysis of subventricular zone's cell proliferative activity revealed at least a one-fold increment in the number of BrdU-positive cells in the NT-020-treated stroke brains compared to vehicle-treated stroke brains (p < 0.0005). Similarly, quantitative analysis of BrdU labeling in the ischemic striatal penumbra revealed at least a three-fold increase in the number of BrdU-positive cells in the NT-020-treated stroke brains compared to vehicle-treated stroke brains (p < 0.0001). In addition, widespread double labeling of cells with BrdU and doublecortin was detected in NT-020-treated stroke brains (intact side 17% and ischemic side 75%), which was significantly higher than those seen in vehicle-treated stroke brains (intact side 5% and ischemic side 13%) (p < 0.05). In contrast, only a small number of cells in NT-020-treated stroke brains double labeled with BrdU and GFAP (intact side 1% and ischemic side 2%), which was significantly lower than those vehicle-treated stroke brains (intact side 18% and ischemic side 35%) (p < 0.0001). Endogenous neurogenic factors were also significantly upregulated in the ischemic brains of NT-020-treated stroke animals. These data demonstrate the remarkable neuroprotective effects of NT-020 when given prior to stroke, possibly acting via its neurogenic potential.
Collapse
Affiliation(s)
- Takao Yasuhara
- Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Obrenovitch TP. Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 2008; 88:211-47. [PMID: 18195087 DOI: 10.1152/physrev.00039.2006] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ischemic tolerance describes the adaptive biological response of cells and organs that is initiated by preconditioning (i.e., exposure to stressor of mild severity) and the associated period during which their resistance to ischemia is markedly increased. This topic is attracting much attention because preconditioning-induced ischemic tolerance is an effective experimental probe to understand how the brain protects itself. This review is focused on the molecular and related functional changes that are associated with, and may contribute to, brain ischemic tolerance. When the tolerant brain is subjected to ischemia, the resulting insult severity (i.e., residual blood flow, disruption of cellular transmembrane gradients) appears to be the same as in the naive brain, but the ensuing lesion is substantially reduced. This suggests that the adaptive changes in the tolerant brain may be primarily directed against postischemic and delayed processes that contribute to ischemic damage, but adaptive changes that are beneficial during the subsequent test insult cannot be ruled out. It has become clear that multiple effectors contribute to ischemic tolerance, including: 1) activation of fundamental cellular defense mechanisms such as antioxidant systems, heat shock proteins, and cell death/survival determinants; 2) responses at tissue level, especially reduced inflammatory responsiveness; and 3) a shift of the neuronal excitatory/inhibitory balance toward inhibition. Accordingly, an improved knowledge of preconditioning/ischemic tolerance should help us to identify neuroprotective strategies that are similar in nature to combination therapy, hence potentially capable of suppressing the multiple, parallel pathophysiological events that cause ischemic brain damage.
Collapse
Affiliation(s)
- Tihomir Paul Obrenovitch
- Division of Pharmacology, School of Life Sciences, University of Bradford, Bradford, United Kingdom.
| |
Collapse
|
48
|
Agasse F, Nicoleau C, Petit J, Jaber M, Roger M, Benzakour O, Coronas V. Evidence for a major role of endogenous fibroblast growth factor-2 in apoptotic cortex-induced subventricular zone cell proliferation. Eur J Neurosci 2007; 26:3036-42. [PMID: 18005068 DOI: 10.1111/j.1460-9568.2007.05915.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the adult mammalian brain, neural stem cells persist in the subventricular zone (SVZ) of lateral ventricles. It is well established that cortical damage leads to SVZ cell proliferation and neuronal differentiation. We have previously demonstrated in rat that, when treated with the apoptosis-inducing agent staurosporine, cortex explants release heat-labile factors that promote SVZ cell culture proliferation. In the present report, we investigated in vitro mechanisms involved in cortex injury-triggered neurogenesis in the rat. We demonstrated, using immunoblotting analysis and fibroblast growth factor (FGF)-2 enzyme-linked sandwich immunosorbent assay, that treatment of cortex explants with apoptosis-inducing agents increases the release of FGF-2. We next determined the effects of apoptotic cortex-released factors in regulating SVZ cell proliferation and neuronal differentiation by using bromodeoxyuridine incorporation and microtubule-associated protein 2 immunostaining assays, respectively. We found that conditioned media derived from staurosporine-treated cortex explants enhanced SVZ cell culture proliferation and differentiation by over 50 and 80%, respectively. Finally, we showed that immunodepletion of FGF-2 or pharmacological blockade of FGF-2 receptor by SU5402 completely abolished staurosporine-treated cortex mitogenic activity on SVZ cultures but did not alter its activity on neuronal cell differentiation. Altogether, the present report establishes that the release of endogenous FGF-2 by apoptotic cortex explants plays a major role in the induction of SVZ cell proliferation but not neuronal differentiation, which probably depends on the release of other as yet unidentified cortical factors.
Collapse
Affiliation(s)
- F Agasse
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS, 40 avenue du Recteur Pineau, Poitiers, F-86022, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Yasuhara T, Hara K, Maki M, Matsukawa N, Fujino H, Date I, Borlongan CV. Lack of exercise, via hindlimb suspension, impedes endogenous neurogenesis. Neuroscience 2007; 149:182-91. [PMID: 17869433 DOI: 10.1016/j.neuroscience.2007.07.045] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 06/30/2007] [Accepted: 07/28/2007] [Indexed: 01/17/2023]
Abstract
Bedridden patients who receive good physical rehabilitation are able to exhibit clinical improvement. Accumulating evidence demonstrates that exercise increases endogenous neurogenesis and may even protect against central nervous system (CNS) disorders. Here, we explored the effects of lack of exercise on neurogenesis in rats by employing a routine hindlimb suspension (HS) model over a 2-week period, which consists of elevating their tails, thereby raising their hindlimbs above the ground and unloading the weights in these extremities. In addition, the effects of exercise and recovery time with normal caging after HS were also explored. BrdU (50 mg/kg, i.p.) was injected every 8 h over the last 4 days of each paradigm to label proliferative cells. Immunohistochemical results revealed that HS significantly reduced the number of BrdU/Doublecortin double-positive cells in the subventricular zone and dentate gyrus. Exercise and recovery time significantly improved atrophy of the soleus muscle, but did not attenuate the HS-induced decrement in BrdU/Dcx-positive cells. A separate cohort of animals was exposed to the same HS paradigm and enzyme-linked immunosorbent assay (ELISA) of neurotrophic factors was performed on brain tissue samples harvested at the end of the HS period, as well as plasma samples from all animals. ELISA results revealed that HS reduced the levels of brain-derived neurotrophic factor in the hippocampus and vascular endothelial growth factor plasma levels. This study revealed that lack of exercise reduced neurogenesis with downregulation of neurotrophic factors. The use of the HS model in conjunction with CNS disease models should further elucidate the role of exercise in neurogenesis and neurotrophic factors in neurologic disorders.
Collapse
Affiliation(s)
- T Yasuhara
- Department of Neurology, Medical College of Georgia, Augusta, GA USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Wang Y, Jin K, Greenberg DA. Neurogenesis associated with endothelin-induced cortical infarction in the mouse. Brain Res 2007; 1167:118-22. [PMID: 17669376 PMCID: PMC2098871 DOI: 10.1016/j.brainres.2007.06.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 06/05/2007] [Accepted: 06/07/2007] [Indexed: 11/21/2022]
Abstract
We investigated the effect of small cortical ischemic lesions, produced by intracerebral injection of the vasoconstrictor endothelin-1, on neurogenesis in the adult mouse subventricular zone. Endothelin-1 (0.5-1 microg) produced infarcts restricted to the cortex, and associated neurobehavioral deficits that largely resolved by 3 days. Bromodeoxyuridine labeling of proliferating cells in the subventricular zone was elevated by about 50% in endothelin-1-treated mice, and cells reactive for doublecortin, a marker for immature neurons, were similarly increased in number. These findings indicate that small ischemic lesions restricted to adult cerebral cortex can stimulate neuroproliferation at a distance.
Collapse
Affiliation(s)
| | | | - David A. Greenberg
- *Correspondence 8001 Redwood Boulevard, Novato, CA 94945 USA; 415-209-2087; fax 415-209-2230;
| |
Collapse
|