1
|
Galaj E, Barrera ED, Persaud K, Nisanov R, Vashisht A, Goldberg H, Patel N, Lenhard H, You ZB, Gardner EL, Ranaldi R. The Impact of Heroin Self-Administration and Environmental Enrichment on Ventral Tegmental CRF1 Receptor Expression. Int J Neuropsychopharmacol 2023; 26:828-839. [PMID: 37864842 PMCID: PMC10726410 DOI: 10.1093/ijnp/pyad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/20/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND There is a strong link between chronic stress and vulnerability to drug abuse and addiction. Corticotropin releasing factor (CRF) is central to the stress response that contributes to continuation and relapse to heroin abuse. Chronic heroin exposure can exacerbate CRF production, leading to dysregulation of the midbrain CRF-dopamine-glutamate interaction. METHODS Here we investigated the role of midbrain CRF1 receptors in heroin self-administration and assessed neuroplasticity in CRF1 receptor expression in key opioid addiction brain regions. RESULTS Infusions of antalarmin (a CRF1 receptor antagonist) into the ventral tegmental area (VTA) dose dependently reduced heroin self-administration in rats but had no impact on food reinforcement or locomotor activity in rats. Using RNAscope in situ hybridization, we found that heroin, but not saline, self-administration upregulated CRF1 receptor mRNA in the VTA, particularly on dopamine neurons. AMPA GluR1 and dopamine reuptake transporter mRNA in VTA neurons were not affected by heroin. The western-blot assay showed that CRF1 receptors were upregulated in the VTA and nucleus accumbens. No significant changes in CRF1 protein expression were detected in the prefrontal cortex, insula, dorsal hippocampus, and substantia nigra. In addition, we found that 15 days of environmental enrichment implemented after heroin self-administration does not reverse upregulation of VTA CRF1 receptor mRNA but it downregulates dopamine transporter mRNA. CONCLUSIONS Overall, these data suggest that heroin self-administration requires stimulation of VTA CRF1 receptors and upregulates their expression in brain regions involved in reinforcement. Such long-lasting neuroadaptations may contribute to continuation of drug use and relapse due to stress exposure and are not easily reversed by EE exposure.
Collapse
Affiliation(s)
- Ewa Galaj
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, New York, USA
| | - Eddy D Barrera
- The Graduate Center of the City University of New York, New York, NYUSA
| | - Kirk Persaud
- Department of Psychology, Queens College of the City University of New York, Flushing, New York, USA
| | - Rudolf Nisanov
- The Graduate Center of the City University of New York, New York, NYUSA
| | - Apoorva Vashisht
- The Graduate Center of the City University of New York, New York, NYUSA
| | - Hindy Goldberg
- Department of Psychology, Queens College of the City University of New York, Flushing, New York, USA
| | - Nima Patel
- Department of Psychology, Queens College of the City University of New York, Flushing, New York, USA
| | - Hayley Lenhard
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, New York, USA
| | - Zhi-Bing You
- Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland, USA
| | - Eliot L Gardner
- Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland, USA
| | - Robert Ranaldi
- The Graduate Center of the City University of New York, New York, NYUSA
- Department of Psychology, Queens College of the City University of New York, Flushing, New York, USA
| |
Collapse
|
2
|
Ataka K, Asakawa A, Iwai H, Kato I. Musclin prevents depression-like behavior in male mice by activating urocortin 2 signaling in the hypothalamus. Front Endocrinol (Lausanne) 2023; 14:1288282. [PMID: 38116320 PMCID: PMC10728487 DOI: 10.3389/fendo.2023.1288282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/09/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction Physical activity is recommended as an alternative treatment for depression. Myokines, which are secreted from skeletal muscles during physical activity, play an important role in the skeletal muscle-brain axis. Musclin, a newly discovered myokine, exerts physical endurance, however, the effects of musclin on emotional behaviors, such as depression, have not been evaluated. This study aimed to access the anti-depressive effect of musclin and clarify the connection between depression-like behavior and hypothalamic neuropeptides in mice. Methods We measured the immobility time in the forced swim (FS) test, the time spent in open arm in the elevated-plus maze (EPM) test, the mRNA levels of hypothalamic neuropeptides, and enumerated the c-Fos-positive cells in the paraventricular nucleus (PVN), arcuate nucleus (ARC), and nucleus tractus solitarii (NTS) in mice with the intraperitoneal (i.p.) administration of musclin. Next, we evaluated the effects of a selective corticotropin-releasing factor (CRF) type 1 receptor antagonist, selective CRF type 2 receptor antagonist, melanocortin receptor (MCR) agonist, and selective melanocortin 4 receptor (MC4R) agonist on changes in behaviors induced by musclin. Finally we evaluated the antidepressant effect of musclin using mice exposed to repeated water immersion (WI) stress. Results We found that the i.p. and i.c.v. administration of musclin decreased the immobility time and relative time in the open arms (open %) in mice and increased urocortin 2 (Ucn 2) levels but decreased proopiomelanocortin levels in the hypothalamus. The numbers of c-Fos-positive cells were increased in the PVN and NTS but decreased in the ARC of mice with i.p. administration of musclin. The c-Fos-positive cells in the PVN were also found to be Ucn 2-positive. The antidepressant and anxiogenic effects of musclin were blocked by central administration of a CRF type 2 receptor antagonist and a melanocortin 4 receptor agonist, respectively. Peripheral administration of musclin also prevented depression-like behavior and the decrease in levels of hypothalamic Ucn 2 induced by repeated WI stress. Discussion These data identify the antidepressant effects of musclin through the activation of central Ucn 2 signaling and suggest that musclin and Ucn 2 can be new therapeutic targets and endogenous peptides mediating the muscle-brain axis.
Collapse
Affiliation(s)
- Koji Ataka
- Laboratory of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Asakawa
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ikuo Kato
- Laboratory of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
3
|
Braine A, Georges F. Emotion in action: When emotions meet motor circuits. Neurosci Biobehav Rev 2023; 155:105475. [PMID: 37996047 DOI: 10.1016/j.neubiorev.2023.105475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
The brain is a remarkably complex organ responsible for a wide range of functions, including the modulation of emotional states and movement. Neuronal circuits are believed to play a crucial role in integrating sensory, cognitive, and emotional information to ultimately guide motor behavior. Over the years, numerous studies employing diverse techniques such as electrophysiology, imaging, and optogenetics have revealed a complex network of neural circuits involved in the regulation of emotional or motor processes. Emotions can exert a substantial influence on motor performance, encompassing both everyday activities and pathological conditions. The aim of this review is to explore how emotional states can shape movements by connecting the neural circuits for emotional processing to motor neural circuits. We first provide a comprehensive overview of the impact of different emotional states on motor control in humans and rodents. In line with behavioral studies, we set out to identify emotion-related structures capable of modulating motor output, behaviorally and anatomically. Neuronal circuits involved in emotional processing are extensively connected to the motor system. These circuits can drive emotional behavior, essential for survival, but can also continuously shape ongoing movement. In summary, the investigation of the intricate relationship between emotion and movement offers valuable insights into human behavior, including opportunities to enhance performance, and holds promise for improving mental and physical health. This review integrates findings from multiple scientific approaches, including anatomical tracing, circuit-based dissection, and behavioral studies, conducted in both animal and human subjects. By incorporating these different methodologies, we aim to present a comprehensive overview of the current understanding of the emotional modulation of movement in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Anaelle Braine
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | |
Collapse
|
4
|
Amado P, Zegers J, Yarur HE, Gysling K. Transcriptional Regulation, Signaling Pathways, and Subcellular Localization of Corticotropin-Releasing Factor Receptors in the Central Nervous System. Mol Pharmacol 2022; 102:280-287. [PMID: 36167424 DOI: 10.1124/molpharm.121.000476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/12/2022] [Indexed: 12/24/2022] Open
Abstract
Corticotropin-releasing factor (CRF) receptors CRF-R1 and CRF-R2 are differentially distributed in body tissues, and although they respond differentially to stimuli due to their association with different signaling pathways, both receptors have a fundamental role in the response and adaptation to stressful stimuli. Here, we summarize the reported data on different forms of CRF-R1 and CRF-R2 regulation as well as on their subcellular localization. Although the presence of R1 has been described at pre- and postsynaptic sites, R2 is mainly associated with postsynaptic densities. Different studies have provided valuable information on how these receptors regulate responses at a central level, elucidating different and sometimes synergistic roles in response to stress, but despite their high sequence identity, both receptors have been described to be differentially regulated both by their ligands and by transcriptional factors. To date, and from the point of view of their promoter sequences, it has not yet been reported how the different consensus sites identified in silico could be modulating the transcriptional regulation and expression of the receptors under different conditions, which strongly limits the full understanding of their differential functions, providing a wide field to increase and expand the study of the regulation and role of CRF receptors in the CRF system. SIGNIFICANCE STATEMENT: A large number of physiological functions related to the organization of the stress response in different body tissues are associated with the corticotropin-releasing factor system. This system also plays a relevant role in depression and anxiety disorders, as well as being a direct connection between stress and addiction. A better understanding of how the receptors of this system are regulated would help to expand the understanding of how these receptors respond differently to both drugs and stressful stimuli.
Collapse
Affiliation(s)
- Paula Amado
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Zegers
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hector E Yarur
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katia Gysling
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
Lichlyter DA, Krumm ZA, Golde TA, Doré S. Role of CRF and the hypothalamic-pituitary-adrenal axis in stroke: revisiting temporal considerations and targeting a new generation of therapeutics. FEBS J 2022; 290:1986-2010. [PMID: 35108458 DOI: 10.1111/febs.16380] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
Ischaemic neurovascular stroke represents a leading cause of death in the developed world. Preclinical and human epidemiological evidence implicates the corticotropin-releasing factor (CRF) family of neuropeptides as mediators of acute neurovascular injury pathology. Preclinical investigations of the role of CRF, CRF receptors and CRF-dependent activation of the hypothalamic-pituitary-adrenal (HPA) axis have pointed toward a tissue-specific and temporal relationship between activation of these pathways and physiological outcomes. Based on the literature, the major phases of ischaemic stroke aetiology may be separated into an acute phase in which CRF and anti-inflammatory stress signalling are beneficial and a chronic phase in which these contribute to neural degeneration, toxicity and apoptotic signalling. Significant gaps in knowledge remain regarding the pathway, temporality and systemic impact of CRF signalling and stress biology in neurovascular injury progression. Heterogeneity among experimental designs poses a challenge to defining the apparent reciprocal relationship between neurological injury and stress metabolism. Despite these challenges, it is our opinion that the elucidated temporality may be best matched with an antibody against CRF with a half-life of days to weeks as opposed to minutes to hours as with small-molecule CRF receptor antagonists. This state-of-the-art review will take a multipronged approach to explore the expected potential benefit of a CRF antibody by modulating CRF and corticotropin-releasing factor receptor 1 signalling, glucocorticoids and autonomic nervous system activity. Additionally, this review compares the modulation of CRF and HPA axis activity in neuropsychiatric diseases and their counterpart outcomes post-stroke and assess lessons learned from antibody therapies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniel A Lichlyter
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Zachary A Krumm
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Todd A Golde
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Departments of Neurology, Psychiatry, Pharmaceutics, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
6
|
Lerner S, Anderzhanova E, Verbitsky S, Eilam R, Kuperman Y, Tsoory M, Kuznetsov Y, Brandis A, Mehlman T, Mazkereth R, McCarter R, Segal M, Nagamani SCS, Chen A, Erez A. ASL Metabolically Regulates Tyrosine Hydroxylase in the Nucleus Locus Coeruleus. Cell Rep 2020; 29:2144-2153.e7. [PMID: 31747589 PMCID: PMC6902269 DOI: 10.1016/j.celrep.2019.10.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/18/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
Patients with germline mutations in the urea-cycle enzyme argininosuccinate lyase (ASL) are at risk for developing neurobehavioral and cognitive deficits. We find that ASL is prominently expressed in the nucleus locus coeruleus (LC), the central source of norepinephrine. Using natural history data, we show that individuals with ASL deficiency are at risk for developing attention deficits. By generating LC-ASL-conditional knockout (cKO) mice, we further demonstrate altered response to stressful stimuli with increased seizure reactivity in LC-ASL-cKO mice. Depletion of ASL in LC neurons leads to reduced amount and activity of tyrosine hydroxylase (TH) and to decreased catecholamines synthesis, due to decreased nitric oxide (NO) signaling. NO donors normalize catecholamine levels in the LC, seizure sensitivity, and the stress response in LC-ASL-cKO mice. Our data emphasize ASL importance for the metabolic regulation of LC function with translational relevance for ASL deficiency (ASLD) patients as well as for LC-related pathologies. ASL is expressed in the locus coeruleus (LC) and regulates catecholamine synthesis LC-ASL deficiency in mice promotes abnormal stress response and seizure sensitivity LC-ASL deficiency decreases nitric-oxide levels and tyrosine hydroxylase activity NO donors normalize catecholamine production and rescue LC-ASL deficiency phenotype
Collapse
Affiliation(s)
- Shaul Lerner
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Elmira Anderzhanova
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; Clinic for Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Sima Verbitsky
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel; Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Raya Eilam
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yuri Kuznetsov
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Tevie Mehlman
- Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Ram Mazkereth
- The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Robert McCarter
- Center for Translational Sciences, Children's National Health System, The George Washington University, Washington, DC, USA
| | - Menahem Segal
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
7
|
Simpson S, Shankar K, Kimbrough A, George O. Role of corticotropin-releasing factor in alcohol and nicotine addiction. Brain Res 2020; 1740:146850. [PMID: 32330519 DOI: 10.1016/j.brainres.2020.146850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/31/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
The two most prevalent substance use disorders involve alcohol and nicotine, which are often co-abused. Robust preclinical and translational evidence indicates that individuals initiate drug use for the acute rewarding effects of the substance. The development of negative emotional states is key for the transition from recreational use to substance use disorders as subjects seek the substance to obtain relief from the negative emotional states of acute withdrawal and protracted abstinence. The neuropeptide corticotropin-releasing factor (CRF) is a major regulator of the brain stress system and key in the development of negative affective states. The present review examines the role of CRF in preclinical models of alcohol and nicotine abuse and explores links between CRF and anxiety-like, dysphoria-like, and other negative affective states. Finally, the present review discusses preclinical models of nicotine and alcohol use with regard to the CRF system, advances in molecular and genetic manipulations of CRF, and the importance of examining both males and females in this field of research.
Collapse
Affiliation(s)
- Sierra Simpson
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States; Department of Neuroscience, Scripps Research, La Jolla, CA 92037, United States
| | - Kokila Shankar
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States; Department of Neuroscience, Scripps Research, La Jolla, CA 92037, United States
| | - Adam Kimbrough
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States
| | - Olivier George
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States.
| |
Collapse
|
8
|
Neugebauer V, Mazzitelli M, Cragg B, Ji G, Navratilova E, Porreca F. Amygdala, neuropeptides, and chronic pain-related affective behaviors. Neuropharmacology 2020; 170:108052. [PMID: 32188569 DOI: 10.1016/j.neuropharm.2020.108052] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022]
Abstract
Neuropeptides play important modulatory roles throughout the nervous system, functioning as direct effectors or as interacting partners with other neuropeptide and neurotransmitter systems. Limbic brain areas involved in learning, memory and emotions are particularly rich in neuropeptides. This review will focus on the amygdala, a limbic region that plays a key role in emotional-affective behaviors and pain modulation. The amygdala is comprised of different nuclei; the basolateral (BLA) and central (CeA) nuclei and in between, the intercalated cells (ITC), have been linked to pain-related functions. A wide range of neuropeptides are found in the amygdala, particularly in the CeA, but this review will discuss those neuropeptides that have been explored for their role in pain modulation. Calcitonin gene-related peptide (CGRP) is a key peptide in the afferent nociceptive pathway from the parabrachial area and mediates excitatory drive of CeA neurons. CeA neurons containing corticotropin releasing factor (CRF) and/or somatostatin (SOM) are a source of long-range projections and serve major output functions, but CRF also acts locally to excite neurons in the CeA and BLA. Neuropeptide S (NPS) is associated with inhibitory ITC neurons that gate amygdala output. Oxytocin and vasopressin exert opposite (inhibitory and excitatory, respectively) effects on amygdala output. The opioid system of mu, delta and kappa receptors (MOR, DOR, KOR) and their peptide ligands (β-endorphin, enkephalin, dynorphin) have complex and partially opposing effects on amygdala function. Neuropeptides therefore serve as valuable targets to regulate amygdala function in pain conditions. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Bryce Cragg
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
9
|
Neasta J, Darcq E, Jeanblanc J, Carnicella S, Ben Hamida S. GPCR and Alcohol-Related Behaviors in Genetically Modified Mice. Neurotherapeutics 2020; 17:17-42. [PMID: 31919661 PMCID: PMC7007453 DOI: 10.1007/s13311-019-00828-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest class of cell surface signaling receptors and regulate major neurobiological processes. Accordingly, GPCRs represent primary targets for the treatment of brain disorders. Several human genetic polymorphisms affecting GPCRs have been associated to different components of alcohol use disorder (AUD). Moreover, GPCRs have been reported to contribute to several features of alcohol-related behaviors in animal models. Besides traditional pharmacological tools, genetic-based approaches mostly aimed at deleting GPCR genes provided substantial information on how key GPCRs drive alcohol-related behaviors. In this review, we summarize the alcohol phenotypes that ensue from genetic manipulation, in particular gene deletion, of key GPCRs in rodents. We focused on GPCRs that belong to fundamental neuronal systems that have been shown as potential targets for the development of AUD treatment. Data are reviewed with particular emphasis on alcohol reward, seeking, and consumption which are behaviors that capture essential aspects of AUD. Literature survey indicates that in most cases, there is still a gap in defining the intracellular transducers and the functional crosstalk of GPCRs as well as the neuronal populations in which their signaling regulates alcohol actions. Further, the implication of only a few orphan GPCRs has been so far investigated in animal models. Combining advanced pharmacological technologies with more specific genetically modified animals and behavioral preclinical models is likely necessary to deepen our understanding in how GPCR signaling contributes to AUD and for drug discovery.
Collapse
Affiliation(s)
- Jérémie Neasta
- Laboratoire de Pharmacologie, Faculté de Pharmacie, University of Montpellier, 34093, Montpellier, France
| | - Emmanuel Darcq
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 Boulevard LaSalle, Montreal, Quebec, H4H 1R3, Canada
| | - Jérôme Jeanblanc
- Research Group on Alcohol and Pharmacodependences-INSERM U1247, University of Picardie Jules Verne, 80025, Amiens, France
| | - Sebastien Carnicella
- INSERM U1216, Grenoble Institut des Neurosciences (GIN), University of Grenoble Alpes, 38000, Grenoble, France
| | - Sami Ben Hamida
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 Boulevard LaSalle, Montreal, Quebec, H4H 1R3, Canada.
| |
Collapse
|
10
|
Differential and temporal expression of corticotropin releasing hormone and its receptors in the nucleus of the hippocampal commissure and paraventricular nucleus during the stress response in chickens (Gallus gallus). Brain Res 2019; 1714:1-7. [DOI: 10.1016/j.brainres.2019.02.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/06/2019] [Accepted: 02/14/2019] [Indexed: 12/21/2022]
|
11
|
White MR, Graziano MJ, Sanderson TP. Toxicity of Pexacerfont, a Corticotropin-Releasing Factor Type 1 Receptor Antagonist, in Rats and Dogs. Int J Toxicol 2019; 38:110-120. [DOI: 10.1177/1091581819827501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pexacerfont is a corticotropin-releasing factor subtype 1 receptor antagonist that was developed for the treatment of anxiety- and stress-related disorders. This report describes the results of repeat-dose oral toxicity studies in rats (3 and 6 months) and dogs (3 months and 1 year). Pexacerfont was well tolerated in all of these studies at exposures equal to or greater than areas under the curve in humans (clinical dose of 100 mg). Microscopic changes in the liver (hepatocellular hypertrophy), thyroid glands (hypertrophy/hyperplasia and adenomas of follicular cells), and pituitary (hypertrophy/hyperplasia and vacuolation of thyrotrophs) were only observed in rats and were considered adaptive changes in response to hepatic enzyme induction and subsequent alterations in serum thyroid hormone levels. Evidence for hepatic enzyme induction in dogs was limited to increased liver weights and reduced thyroxine (T4) levels. Mammary gland hyperplasia and altered female estrous cycling were only observed in rats, whereas adverse testicular effects (consistent with minimal to moderate degeneration of the germinal epithelium) were only noted following chronic dosing in dogs. The testicular effects were reversible changes with exposure margins of 8× at the no observed adverse effect level. It is not clear whether the changes in mammary gland, estrous cycling, and testes represent secondary hormonal changes due to perturbation of the hypothalamic–pituitary–adrenal axis or are off-target effects. In conclusion, the results of chronic toxicity studies in rats and dogs show that pexacerfont has an acceptable safety profile to support further clinical testing.
Collapse
|
12
|
Larauche M, Moussaoui N, Biraud M, Bae W, Duboc H, Million M, Taché Y. Brain corticotropin-releasing factor signaling: Involvement in acute stress-induced visceral analgesia in male rats. Neurogastroenterol Motil 2019; 31:e13489. [PMID: 30298965 PMCID: PMC6347489 DOI: 10.1111/nmo.13489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Water avoidance stress (WAS) induces a naloxone-independent visceral analgesia in male rats under non-invasive conditions of monitoring. The objective of the study was to examine the role of brain CRF signaling in acute stress-induced visceral analgesia (SIVA). METHODS Adult male Sprague-Dawley rats were chronically implanted with an intracerebroventricular (ICV) cannula. The visceromotor response (VMR) to graded phasic colorectal distension (CRD: 10, 20, 40, 60 mm Hg, 20 seconds, 4 minutes intervals) was monitored using manometry. The VMR to a first CRD (baseline) was recorded 5 minutes after an ICV saline injection, followed 1 hour later by ICV injection of either CRF (30, 100, or 300 ng and 1, 3, or 5 μg/rat) or saline and a second CRD, 5 minutes later. Receptor antagonists against CRF1 /CRF2 (astressin-B, 30 μg/rat), CRF2 (astressin2 -B, 10 μg/rat), oxytocin (tocinoic acid, 20 μg/rat), or vehicle were injected ICV 5 minutes before CRF (300 ng/rat, ICV) or 15 minutes before WAS (1 hour). KEY RESULTS ICV CRF (100 and 300 ng) reduced the VMR to CRD at 60 mm Hg by -36.6% ± 6.8% and -48.7% ± 11.7%, respectively, vs baseline (P < 0.001), while other doses had no effect and IP CRF (10 µg/kg) induced visceral hyperalgesia. Astressin-B and tocinoic acid injected ICV induced hyperalgesia and prevented the analgesic effect of ICV CRF (300 ng/rat) and WAS, while astressin2 -B only blocked WAS-induced SIVA. CONCLUSIONS & INFERENCES These data support a role for brain CRF signaling via CRF2 in SIVA in a model of WAS and CRD likely mediated by the activation of brain oxytocin pathway.
Collapse
Affiliation(s)
- M. Larauche
- Department of Medicine, UCLA, G Oppenheimer Center for
Neurobiology of Stress and Resilience and CURE: Digestive Diseases Research Center,
Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of
Medicine, Los Angeles, CA, United States,VA Greater Los Angeles Healthcare System, Los Angeles, CA,
United States
| | - N. Moussaoui
- Department of Medicine, UCLA, G Oppenheimer Center for
Neurobiology of Stress and Resilience and CURE: Digestive Diseases Research Center,
Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of
Medicine, Los Angeles, CA, United States,VA Greater Los Angeles Healthcare System, Los Angeles, CA,
United States,Present address: Inserm U1048/I2MC Obesity Research
Laboratory, 1 avenue Jean Poulhès BP 84225 31432 Toulouse Cedex 4,
France
| | - M. Biraud
- Department of Medicine, UCLA, G Oppenheimer Center for
Neurobiology of Stress and Resilience and CURE: Digestive Diseases Research Center,
Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of
Medicine, Los Angeles, CA, United States,VA Greater Los Angeles Healthcare System, Los Angeles, CA,
United States,Present address: 1060 William Moore drive CVM Main
Building, RM C305, Raleigh, NC 27607, USA
| | - W.K. Bae
- Department of Medicine, UCLA, G Oppenheimer Center for
Neurobiology of Stress and Resilience and CURE: Digestive Diseases Research Center,
Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of
Medicine, Los Angeles, CA, United States,VA Greater Los Angeles Healthcare System, Los Angeles, CA,
United States,Present address: Department of Internal Medicine, Ilsan
Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - H. Duboc
- Department of Medicine, UCLA, G Oppenheimer Center for
Neurobiology of Stress and Resilience and CURE: Digestive Diseases Research Center,
Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of
Medicine, Los Angeles, CA, United States,VA Greater Los Angeles Healthcare System, Los Angeles, CA,
United States,Present address: CRI INSERM UMR 1149, University Paris
Diderot, Sorbonne Paris Cité and DHU Unity, APHP, F-75890 Paris, France
| | - M. Million
- Department of Medicine, UCLA, G Oppenheimer Center for
Neurobiology of Stress and Resilience and CURE: Digestive Diseases Research Center,
Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of
Medicine, Los Angeles, CA, United States,VA Greater Los Angeles Healthcare System, Los Angeles, CA,
United States
| | - Y. Taché
- Department of Medicine, UCLA, G Oppenheimer Center for
Neurobiology of Stress and Resilience and CURE: Digestive Diseases Research Center,
Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of
Medicine, Los Angeles, CA, United States,VA Greater Los Angeles Healthcare System, Los Angeles, CA,
United States
| |
Collapse
|
13
|
Pollano A, Trujillo V, Suárez MM. How does early maternal separation and chronic stress in adult rats affect the immunoreactivity of serotonergic neurons within the dorsal raphe nucleus? Stress 2018; 21:59-68. [PMID: 29157077 DOI: 10.1080/10253890.2017.1401062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Vulnerability to emotional disorders like depression derives from interactions between early and late environments, including stressful conditions. The serotonin (5HT) system is strongly affected by stress and chronic unpredictable stress can alter the 5HT system. We evaluated the distribution of active serotonergic neurons in the dorsal raphe nucleus (DR) through immunohistochemistry in maternally separated and chronically stressed rats treated with an antidepressant, tianeptine, whose mechanism of action is still under review. Male Wistar rats were subjected to daily maternal separation (MS) for 4.5 h between postnatal days (PND) 1-21, or to animal facility rearing (AFR). Between (PND) days 50-74, rats were exposed to chronic unpredictable stress and were treated daily with tianeptine (10 mg/kg) or vehicle. We found an interaction between the effects of MS and chronic unpredictable stress on Fos-5HT immunoreactive cells at mid-caudal level of the DR. MS-chronically stressed rats showed an increase of Fos-5HT immunoreactive cells compared with AFR-chronically stressed rats. The ventrolateral (DRL/VLPAG) and dorsal (DRD) subdivisions of the DR were significantly more active than the ventral part (DRV). At the rostral level of the DR, tianeptine decreased the number of Fos-5HT cells in DR in the AFR groups, both unstressed and stressed. Overall, our results support the idea of a match in phenotype exhibited when the early and the adult environment correspond.
Collapse
Affiliation(s)
- Antonella Pollano
- a Laboratorio de Fisiología Animal , Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba , Córdoba , Argentina
| | - Verónica Trujillo
- a Laboratorio de Fisiología Animal , Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba , Córdoba , Argentina
| | - Marta M Suárez
- a Laboratorio de Fisiología Animal , Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba , Córdoba , Argentina
| |
Collapse
|
14
|
Alcántara-Alonso V, Amaya MI, Matamoros-Trejo G, de Gortari P. Altered functionality of the corticotrophin-releasing hormone receptor-2 in the hypothalamic paraventricular nucleus of hyperphagic maternally separated rats. Neuropeptides 2017; 63:75-82. [PMID: 28162848 DOI: 10.1016/j.npep.2017.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 11/28/2022]
Abstract
Early-life stress induces endocrine and metabolic alterations that increase food intake and overweight in adulthood. The stress response activates the corticotropin-releasing hormone (CRH) and urocortins' (Ucns) system in the hypothalamic paraventricular nucleus (PVN). These peptides induce anorexic effects through CRH-R2 receptor activation; however, chronic stressed animals develop hyperphagia despite of high PVN CRH expression. We analyzed this paradoxical behavior in adult rats subjected to maternal separation (MS) for 180min/daily during post-natal days 2-14, evaluating their body weight gain, food intake, serum corticosterone and vasopressin concentrations, PVN mRNA expression of CRH-R1, CRH-R2, CRH, Ucn2, Ucn3, vasopressin and CRH-R2 protein levels. MS adults increased their feeding, weight gain as well as circulating corticosterone and vasopressin levels, evincing chronic hyperactivity of the stress system. MS induced higher PVN CRH, Ucn2 and CRH-R2 mRNA expression and protein levels of CRH-R2 showed a tendency to decrease in the cellular membrane fraction. An intra-PVN injection of the CRH-R2 antagonist antisauvagine-30 in control adults increased receptor's mRNA expression, mimicking the observed PVN receptor's up-regulation of early-life MS adults. An injection of Ucn-2 directly into the PVN reduced food intake and increased PVN pCREB/CREB ratio in control animals; in contrast, Ucn-2 was unable to reduce food intake and enhance phosphorylated-CREB levels in PVN of MS rats. In conclusion, the chronic hyperactivity of the stress axis and PVN CRH-R2 resistance to Ucn2 effects, supported impaired receptor functionality in MS animals, probably due to its chronic stimulation by CRH or Ucn2, induced by early-life stress.
Collapse
Affiliation(s)
- V Alcántara-Alonso
- Laboratory of Molecular Neurophysiology, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - M I Amaya
- Laboratory of Molecular Neurophysiology, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - G Matamoros-Trejo
- Laboratory of Molecular Neurophysiology, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - P de Gortari
- Laboratory of Molecular Neurophysiology, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico.
| |
Collapse
|
15
|
Xu WX. Central and Peripheral Modulation of Visceral Pain and Visceral Hypersensitivity by the CRF-CRFR System. ACTA ACUST UNITED AC 2017. [DOI: 10.15406/ghoa.2017.06.00207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Belmer A, Patkar OL, Pitman KM, Bartlett SE. Serotonergic Neuroplasticity in Alcohol Addiction. Brain Plast 2016; 1:177-206. [PMID: 29765841 PMCID: PMC5928559 DOI: 10.3233/bpl-150022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Alcohol addiction is a debilitating disorder producing maladaptive changes in the brain, leading drinkers to become more sensitive to stress and anxiety. These changes are key factors contributing to alcohol craving and maintaining a persistent vulnerability to relapse. Serotonin (5-Hydroxytryptamine, 5-HT) is a monoamine neurotransmitter widely expressed in the central nervous system where it plays an important role in the regulation of mood. The serotonin system has been extensively implicated in the regulation of stress and anxiety, as well as the reinforcing properties of all of the major classes of drugs of abuse, including alcohol. Dysregulation within the 5-HT system has been postulated to underlie the negative mood states associated with alcohol use disorders. This review will describe the serotonergic (5-HTergic) neuroplastic changes observed in animal models throughout the alcohol addiction cycle, from prenatal to adulthood exposure. The first section will focus on alcohol-induced 5-HTergic neuroadaptations in offspring prenatally exposed to alcohol and the consequences on the regulation of stress/anxiety. The second section will compare alterations in 5-HT signalling induced by acute or chronic alcohol exposure during adulthood and following alcohol withdrawal, highlighting the impact on the regulation of stress/anxiety signalling pathways. The third section will outline 5-HTergic neuroadaptations observed in various genetically-selected ethanol preferring rat lines. Finally, we will discuss the pharmacological manipulation of the 5-HTergic system on ethanol- and anxiety/stress-related behaviours demonstrated by clinical trials, with an emphasis on current and potential treatments.
Collapse
Affiliation(s)
- Arnauld Belmer
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - Omkar L Patkar
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - Kim M Pitman
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - Selena E Bartlett
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
17
|
Phillips TJ, Reed C, Pastor R. Preclinical evidence implicating corticotropin-releasing factor signaling in ethanol consumption and neuroadaptation. GENES BRAIN AND BEHAVIOR 2015; 14:98-135. [PMID: 25565358 DOI: 10.1111/gbb.12189] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/22/2014] [Accepted: 11/25/2014] [Indexed: 12/15/2022]
Abstract
The results of many studies support the influence of the corticotropin-releasing factor (CRF) system on ethanol (EtOH) consumption and EtOH-induced neuroadaptations that are critical in the addiction process. This review summarizes the preclinical data in this area after first providing an overview of the components of the CRF system. This complex system involves hypothalamic and extra-hypothalamic mechanisms that play a role in the central and peripheral consequences of stressors, including EtOH and other drugs of abuse. In addition, several endogenous ligands and targets make up this system and show differences in their involvement in EtOH drinking and in the effects of chronic or repeated EtOH treatment. In general, genetic and pharmacological approaches paint a consistent picture of the importance of CRF signaling via type 1 CRF receptors (CRF(1)) in EtOH-induced neuroadaptations that result in higher levels of intake, encourage alcohol seeking during abstinence and alter EtOH sensitivity. Furthermore, genetic findings in rodents, non-human primates and humans have provided some evidence of associations of genetic polymorphisms in CRF-related genes with EtOH drinking, although additional data are needed. These results suggest that CRF(1) antagonists have potential as pharmacotherapeutics for alcohol use disorders. However, given the broad and important role of these receptors in adaptation to environmental and other challenges, full antagonist effects may be too profound and consideration should be given to treatments with modulatory effects.
Collapse
Affiliation(s)
- T J Phillips
- VA Portland Health Care System, Portland Alcohol Research Center, Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA; Department of Behavioral Neuroscience, Portland Alcohol Research Center, Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | | | | |
Collapse
|
18
|
Expression of mRNA in the frontal cortex and hypothalamus in a rat model of acute carbon dioxide poisoning. Leg Med (Tokyo) 2015; 19:101-6. [PMID: 26257316 DOI: 10.1016/j.legalmed.2015.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/24/2015] [Accepted: 07/25/2015] [Indexed: 11/20/2022]
Abstract
Acute carbon dioxide (CO2) poisoning causes no specific features that are revealed upon autopsy, and the pathophysiological mechanism of this syndrome is unclear. To address this issue, in the present study, we exposed rats to CO2 concentrations ranging from 10% to 60% and determined the effects on mRNA expression. According to the results of Gene Ontology (GO) and cluster analyses of microarrays data, we selected the following genes for further analysis: alkylglycerone phosphate synthase (Agps), hypocretin (Hcrt), tyrosine hydroxylase (Th), heat shock protein beta 2 (Hspb2), and opioid receptor delta 1 (Oprd1) expressed in the frontal cortex and renin (Ren), pancreatic polypeptide (Ppy), corticotropin releasing hormone receptor 2 (Crhr2), carbonic anhydrase 1 (Car1), and hypocretin receptor 1 (Hcrtr1) expressed in the hypothalamus. We found significant differences between the expression levels of Agps and Hspb2 mRNAs in the frontal cortex and that of Ppy, Crhr2 mRNAs in the hypothalamus in the presence of high concentrations of CO2. Further investigation of these genes may clarify the pathophysiology of acute CO2 poisoning and facilitate the development of novel forensic tests that can diagnose the cause of death.
Collapse
|
19
|
Sex differences between CRF1 receptor deficient mice following naloxone-precipitated morphine withdrawal in a conditioned place aversion paradigm: implication of HPA axis. PLoS One 2015; 10:e0121125. [PMID: 25830629 PMCID: PMC4382215 DOI: 10.1371/journal.pone.0121125] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/28/2015] [Indexed: 11/19/2022] Open
Abstract
Background Extinction period of positive affective memory of drug taking and negative affective memory of drug withdrawal, as well as the different response of men and women might be important for the clinical treatment of drug addiction. We investigate the role of corticotropin releasing factor receptor type one (CRF1R) and the different response of male and female mice in the expression and extinction of the aversive memory. Methodology/Principal Finding We used genetically engineered male and female mice lacking functional CRF1R. The animals were rendered dependent on morphine by intraperitoneally injection of increasing doses of morphine (10–60 mg/kg). Negative state associated with naloxone (1 mg/kg s.c.)-precipitated morphine withdrawal was examined by using conditioned place aversion (CPA) paradigm. No sex differences for CPA expression were found in wild-type (n = 29) or CRF1R knockout (KO) mice (n = 29). However, CRF1R KO mice presented less aversion score than wild-type mice, suggesting that CRF1R KO mice were less responsive than wild-type to continuous associations between drug administration and environmental stimuli. In addition, CPA extinction was delayed in wild-type and CRF1R KO male mice compared with females of both genotypes. The genetic disruption of the CRF1R pathway decreased the period of extinction in males and females suggesting that CRF/CRF1R is implicated in the duration of aversive memory. Our results also showed that the increase in adrenocorticotropic hormone (ACTH) levels observed in wild-type (n = 11) mice after CPA expression, were attenuated in CRF1R KO mice (n = 10). In addition, ACTH returned to the baseline levels in males and females once CPA extinction was finished. Conclusion/Significance These results suggest that, at least, CPA expression is partially due to an increase in plasma ACTH levels, through activation of CRF1R, which can return when CPA extinction is finished.
Collapse
|
20
|
Flandreau E, Risbrough V, Lu A, Ableitner M, Geyer MA, Holsboer F, Deussing JM. Cell type-specific modifications of corticotropin-releasing factor (CRF) and its type 1 receptor (CRF1) on startle behavior and sensorimotor gating. Psychoneuroendocrinology 2015; 53:16-28. [PMID: 25575243 PMCID: PMC4364548 DOI: 10.1016/j.psyneuen.2014.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/25/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Abstract
The corticotropin-releasing factor (CRF) family of peptides and receptors coordinates the mammalian endocrine, autonomic, and behavioral responses to stress. Excessive CRF production has been implicated in the etiology of stress-sensitive psychiatric disorders such as posttraumatic stress disorder (PTSD), which is associated with alterations in startle plasticity. The CRF family of peptides and receptors mediate acute startle response changes during stress, and chronic CRF activation can induce startle abnormalities. To determine what neural circuits modulate startle in response to chronic CRF activation, transgenic mice overexpressing CRF throughout the central nervous system (CNS; CRF-COE(CNS)) or restricted to inhibitory GABAergic neurons (CRF-COE(GABA)) were compared across multiple domains of startle plasticity. CRF overexpression throughout the CNS increased startle magnitude and reduced ability to inhibit startle (decreased habituation and decreased prepulse inhibition (PPI)), similar to previous reports of exogenous effects of CRF. Conversely, CRF overexpression confined to inhibitory neurons decreased startle magnitude but had no effect on inhibitory measures. Acute CRF receptor 1 (CRF1) antagonist treatment attenuated only the effects on startle induced by CNS-specific CRF overexpression. Specific deletion of CRF1 receptors from forebrain principal neurons failed to alter the effects of exogenous CRF or stress on startle, suggesting that these CRF1 expressing neurons are not required for CRF-induced changes in startle behaviors. These data indicate that the effects of CRF activation on startle behavior utilize an extensive neural circuit that includes both forebrain and non-forebrain regions. Furthermore, these findings suggest that the neural source of increased CRF release determines the startle phenotype elicited. It is conceivable that this may explain why disorders characterized by increased CRF in cerebrospinal fluid (e.g. PTSD and major depressive disorder) have distinct symptom profiles in terms of startle reactivity.
Collapse
Affiliation(s)
| | - Victoria Risbrough
- Veterans Administration Center of Excellence for Stress and Mental Health, 3350 La Jolla Village Drive San Diego, CA 92161, USA.
| | - Ailing Lu
- Unit of Innate Immunity, Key Laboratory of Molecular Virology and Immunology Institut Pasteur of Shanghai, Chinese Academy of Sciences. 320 Yue Yang Road, Shanghai, 200031; China. Phone/Fax: 86-21-54923102/54923101
| | - Martin Ableitner
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10 D-80804, Munich Phone: +49 (0)89 / 30622-645 Fax: +49 (0)89 / 30622-610
| | - Mark A Geyer
- Department of Psychiatry University of California San Diego 9500 Gilman Drive MC 0804 La Jolla, CA 92093-0804 ph (619)543-3582 fx (619)543-2493
| | - Florian Holsboer
- Max Planck Institute of Psychiatry Kraepelinstr. 2-10 80804 Munich, Germany Phone: +49-89-30622-220 Fax: +49-89-30622-483
| | - Jan M Deussing
- Department Stress Neurobiology and Neurogenetics Max Planck Institute of Psychiatry Kraepelinstrasse 2-10 D-80804, Munich Phone: +49 (0)89 / 30622-639 Fax: +49 (0)89 / 30622-610
| |
Collapse
|
21
|
Xu L. Leptin action in the midbrain: From reward to stress. J Chem Neuroanat 2014; 61-62:256-65. [DOI: 10.1016/j.jchemneu.2014.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/13/2014] [Accepted: 06/25/2014] [Indexed: 12/11/2022]
|
22
|
Martínez-Laorden E, García-Carmona JA, Baroja-Mazo A, Romecín P, Atucha NM, Milanés MV, Laorden ML. Corticotropin-releasing factor (CRF) receptor-1 is involved in cardiac noradrenergic activity observed during naloxone-precipitated morphine withdrawal. Br J Pharmacol 2014; 171:688-700. [PMID: 24490859 DOI: 10.1111/bph.12511] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/27/2013] [Accepted: 10/03/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE The negative affective states of withdrawal involve the recruitment of brain and peripheral stress circuitry [noradrenergic activity, induction of the hypothalamic-pituitary-adrenocortical (HPA) axis and activation of heat shock proteins (Hsps)]. Corticotropin-releasing factor (CRF) pathways are important mediators in the negative symptoms of opioid withdrawal. We performed a series of experiments to characterize the role of the CRF₁ receptor in the response of stress systems to morphine withdrawal and its effect in the heart using genetically engineered mice lacking functional CRF₁ receptors. EXPERIMENTAL APPROACH Wild-type and CRF₁ receptor-knockout mice were treated with increasing doses of morphine. Precipitated withdrawal was induced by naloxone. Plasma adrenocorticotropic hormone (ACTH) and corticosterone levels, the expression of myocardial Hsp27, Hsp27 phosphorylated at Ser⁸², membrane (MB)- COMT, soluble (S)-COMT protein and NA turnover were evaluated by RIA, immunoblotting and HPLC. KEY RESULTS During morphine withdrawal we observed an enhancement of NA turnover in parallel with an increase in mean arterial blood pressure (MAP) and heart rate (HR) in wild-type mice. In addition, naloxone-precipitated morphine withdrawal induced an activation of HPA axis and Hsp27. The principal finding of the present study was that plasma ACTH and corticosterone levels, MB-COMT, S-COMT, NA turnover, and Hsp27 expression and activation observed during morphine withdrawal were significantly inhibited in the CRF₁ receptor-knockout mice. CONCLUSION AND IMPLICATIONS Our results demonstrate that CRF/CRF₁ receptor activation may contribute to stress-induced cardiovascular dysfunction after naloxone-precipitated morphine withdrawal and suggest that CRF/CRF₁ receptor pathways could contribute to cardiovascular disease associated with opioid addiction.
Collapse
|
23
|
Toth M, Gresack JE, Bangasser DA, Plona Z, Valentino RJ, Flandreau EI, Mansuy IM, Merlo-Pich E, Geyer MA, Risbrough VB. Forebrain-specific CRF overproduction during development is sufficient to induce enduring anxiety and startle abnormalities in adult mice. Neuropsychopharmacology 2014; 39:1409-19. [PMID: 24326400 PMCID: PMC3988544 DOI: 10.1038/npp.2013.336] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/23/2013] [Accepted: 11/16/2013] [Indexed: 11/09/2022]
Abstract
Corticotropin releasing factor (CRF) regulates physiological and behavioral responses to stress. Trauma in early life or adulthood is associated with increased CRF in the cerebrospinal fluid and heightened anxiety. Genetic variance in CRF receptors is linked to altered risk for stress disorders. Thus, both heritable differences and environmentally induced changes in CRF neurotransmission across the lifespan may modulate anxiety traits. To test the hypothesis that CRF hypersignaling is sufficient to modify anxiety-related phenotypes (avoidance, startle, and conditioned fear), we induced transient forebrain-specific overexpression of CRF (CRFOE) in mice (1) during development to model early-life stress, (2) in adulthood to model adult-onset stress, or (3) across the entire postnatal lifespan to model heritable increases in CRF signaling. The consequences of these manipulations on CRF peptide levels and behavioral responses were examined in adulthood. We found that transient CRFOE during development decreased startle habituation and prepulse inhibition, and increased avoidance (particularly in females) recapitulating the behavioral effects of lifetime CRFOE despite lower CRF peptide levels at testing. In contrast, CRFOE limited to adulthood reduced contextual fear learning in females and increased startle reactivity in males but did not change avoidance or startle plasticity. These findings suggest that forebrain CRFOE limited to development is sufficient to induce enduring alterations in startle plasticity and anxiety, while forebrain CRFOE during adulthood results in a different phenotype profile. These findings suggest that startle circuits are particularly sensitive to forebrain CRFOE, and that the impact of CRFOE may be dependent on the time of exposure.
Collapse
Affiliation(s)
- Mate Toth
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA,Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla, CA, USA
| | - Jodi E Gresack
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA,Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Debra A Bangasser
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA,Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Zach Plona
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rita J Valentino
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Isabelle M Mansuy
- Brain Research Institute, University and ETH Zürich, Zürich, Switzerland
| | - Emilio Merlo-Pich
- Neuroscience Disease Therapeutic Area, Pharmaceutical Division, F. Hoffman—La Roche, Basel, Switzerland
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA,Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla, CA, USA
| | - Victoria B Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA,Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla, CA, USA,Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC0804, La Jolla CA 92093-0804, USA, Tel: +1 16195433582, Fax: +1 16195432475, E-mail:
| |
Collapse
|
24
|
Sustained AAV-mediated overexpression of CRF in the central amygdala diminishes the depressive-like state associated with nicotine withdrawal. Transl Psychiatry 2014; 4:e385. [PMID: 24755994 PMCID: PMC4012288 DOI: 10.1038/tp.2014.25] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/10/2014] [Accepted: 03/08/2014] [Indexed: 12/17/2022] Open
Abstract
Smoking cessation leads to a dysphoric state and this increases the risk for relapse. Animal studies indicate that the dysphoric state associated with nicotine withdrawal is at least partly mediated by an increase in corticotropin-releasing factor (CRF) release in the central nucleus of the amygdala (CeA). In the present study, we investigated whether a sustained overexpression of CRF in the CeA affects the dysphoric-like state associated with nicotine withdrawal. To study brain reward function, rats were prepared with intracranial self-stimulation (ICSS) electrodes in the medial forebrain bundle. An adeno-associated virus (AAV, pseudotype 2/5) was used to overexpress CRF or green fluorescent protein (GFP, control) in the CeA and minipumps were used to induce nicotine dependence. The AAV2/5-CRF vector induced a 40% increase in CRF protein and mRNA levels in the CeA. Administration of the nicotinic receptor antagonist mecamylamine (precipitated withdrawal) or nicotine pump removal (spontaneous withdrawal) led to elevations in ICSS thresholds. Elevations in ICSS thresholds are indicative of a dysphoric-like state. The overexpression of CRF did not affect baseline ICSS thresholds but diminished the elevations in ICSS thresholds associated with precipitated and spontaneous nicotine withdrawal. The real-time reverse transcriptase (RT)-PCR analysis showed that the overexpression of CRF led to a decrease in CRF1 mRNA levels and an increase in CRF2 mRNA levels in the CeA. In conclusion, the overexpression of CRF in the CeA diminishes the dysphoric-like state associated with nicotine withdrawal and this might be driven by neuroadaptive changes in CRF1 and CRF2 receptor gene expression.
Collapse
|
25
|
Yong W, Spence JP, Eskay R, Fitz SD, Damadzic R, Lai D, Foroud T, Carr LG, Shekhar A, Chester JA, Heilig M, Liang T. Alcohol-preferring rats show decreased corticotropin-releasing hormone-2 receptor expression and differences in HPA activation compared to alcohol-nonpreferring rats. Alcohol Clin Exp Res 2014; 38:1275-83. [PMID: 24611993 DOI: 10.1111/acer.12379] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 01/07/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Corticotropin-releasing hormone (CRH) and urocortins (UCNs) bind to corticotropin-releasing hormone type 2 receptor (CRF2 receptor ), a Gs protein-coupled receptor that plays an important role in modulation of anxiety and stress responses. The Crhr2 gene maps to a quantitative trait locus (QTL) for alcohol preference on chromosome 4 previously identified in inbred alcohol-preferring (iP) and-nonpreferring (iNP) F2 rats. METHODS Real-time polymerase chain reaction was utilized to screen for differences in Crhr2 mRNA expression in the central nervous system (CNS) of male iP and iNP rats. DNA sequence analysis was then performed to screen for polymorphism in Crhr2 in order to identify genetic variation, and luciferase reporter assays were then applied to test their functional significance. Next, binding assays were used to determine whether this polymorphism affected CRF2 receptor binding affinity as well as CRF2 receptor density in the CNS. Finally, social interaction and corticosterone levels were measured in the P and NP rats before and after 30-minute restraint stress. RESULTS Crhr2 mRNA expression studies found lower levels of Crhr2 mRNA in iP rats compared to iNP rats. In addition, DNA sequencing identified polymorphisms in the promoter region, coding region, and 3'-untranslated region between the iP and iNP rats. A 7 bp insertion in the Crhr2 promoter of iP rats altered expression in vitro as measured by reporter assays, and we found that CRF2 receptor density was lower in the amygdala of iP as compared to iNP rats. Male P rats displayed decreased social interaction and significantly higher corticosterone levels directly following 30-minute restraint when compared to male NP rats. CONCLUSIONS This study identified Crhr2 as a candidate gene of interest underlying the chromosome 4 QTL for alcohol consumption that was previously identified in the P and NP model. Crhr2 promoter polymorphism is associated with reduced mRNA expression in certain brain regions, particularly the amygdala, and lowered the density of CRF2 receptor in the amygdala of iP compared to iNP rats. Together, these differences between the animals may contribute to the drinking disparity as well as the anxiety differences of the P and NP rats.
Collapse
Affiliation(s)
- Weidong Yong
- Institute of Laboratory Animal Science , Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China; Department of Pediatrics , Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Issler O, Carter RN, Paul ED, Kelly PA, Olverman HJ, Neufeld-Cohen A, Kuperman Y, Lowry CA, Seckl JR, Chen A, Jamieson PM. Increased anxiety in corticotropin-releasing factor type 2 receptor-null mice requires recent acute stress exposure and is associated with dysregulated serotonergic activity in limbic brain areas. BIOLOGY OF MOOD & ANXIETY DISORDERS 2014; 4:1. [PMID: 24447313 PMCID: PMC4029322 DOI: 10.1186/2045-5380-4-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/11/2013] [Indexed: 11/28/2022]
Abstract
Background Corticotropin-releasing factor type 2 receptors (CRFR2) are suggested to facilitate successful recovery from stress to maintain mental health. They are abundant in the midbrain raphe nuclei, where they regulate serotonergic neuronal activity and have been demonstrated to mediate behavioural consequences of stress. Here, we describe behavioural and serotonergic responses consistent with maladaptive recovery from stressful challenge in CRFR2-null mice. Results CRFR2-null mice showed similar anxiety levels to control mice before and immediately after acute restraint stress, and also after cessation of chronic stress. However, they showed increased anxiety by 24 hours after restraint, whether or not they had been chronically stressed. Serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) contents were quantified and the level of 5-HIAA in the caudal dorsal raphe nucleus (DRN) was increased under basal conditions in CRFR2-null mice, indicating increased 5-HT turnover. Twenty-four hours following restraint, 5-HIAA was decreased only in CRFR2-null mice, suggesting that they had not fully recovered from the challenge. In efferent limbic structures, CRFR2-null mice showed lower levels of basal 5-HT in the lateral septum and subiculum, and again showed a differential response to restraint stress from controls. Local cerebral glucose utilization (LCMRglu) revealed decreased neuronal activity in the DRN of CRFR2-null mice under basal conditions. Following 5-HT receptor agonist challenge, LCMRglu responses indicated that 5-HT1A receptor responses in the DRN were attenuated in CRFR2-null mice. However, postsynaptic 5-HT receptor responses in forebrain regions were intact. Conclusions These results suggest that CRFR2 are required for proper functionality of 5-HT1A receptors in the raphe nuclei, and are key to successful recovery from stress. This disrupted serotonergic function in CRFR2-null mice likely contributes to their stress-sensitive phenotype. The 5-HT content in lateral septum and subiculum was notably altered. These areas are important for anxiety, and are also implicated in reward and the pathophysiology of addiction. The role of CRFR2 in stress-related psychopathologies deserves further consideration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Pauline M Jamieson
- Centre for Cardiovascular Science, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
27
|
Fox JH, Lowry CA. Corticotropin-releasing factor-related peptides, serotonergic systems, and emotional behavior. Front Neurosci 2013; 7:169. [PMID: 24065880 PMCID: PMC3778254 DOI: 10.3389/fnins.2013.00169] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/30/2013] [Indexed: 12/01/2022] Open
Abstract
Corticotropin-releasing factor (CRF) is a 41-amino acid neuropeptide that is involved in stress-related physiology and behavior, including control of the hypothalamic-pituitary-adrenal (HPA) axis. Members of the CRF family of neuropeptides, including urocortin 1 (UCN 1), UCN 2, and UCN 3, bind to the G protein-coupled receptors, CRF type 1 (CRF1) and CRF2 receptors. In addition, CRF binding protein (CRFBP) binds both CRF and UCN 1 and can modulate their activities. There are multiple mechanisms through which CRF-related peptides may influence emotional behavior, one of which is through altering the activity of brainstem neuromodulatory systems, including serotonergic systems. CRF and CRF-related peptides act within the dorsal raphe nucleus (DR), the major source for serotonin (5-HT) in the brain, to alter the neuronal activity of specific subsets of serotonergic neurons and to influence stress-related behavior. CRF-containing axonal fibers innervate the DR in a topographically organized manner, which may contribute to the ability of CRF to alter the activity of specific subsets of serotonergic neurons. CRF and CRF-related peptides can either increase or decrease serotonergic neuronal firing rates and serotonin release, depending on their concentrations and on the specific CRF receptor subtype(s) involved. This review aims to describe the interactions between CRF-related peptides and serotonergic systems, the consequences for stress-related behavior, and implications for vulnerability to anxiety and affective disorders.
Collapse
Affiliation(s)
- James H Fox
- Behavioral Neuroendocrinology Laboratory, Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder Boulder, CO, USA
| | | |
Collapse
|
28
|
Janssen D, Kozicz T. Is it really a matter of simple dualism? Corticotropin-releasing factor receptors in body and mental health. Front Endocrinol (Lausanne) 2013; 4:28. [PMID: 23487366 PMCID: PMC3594922 DOI: 10.3389/fendo.2013.00028] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 02/22/2013] [Indexed: 11/13/2022] Open
Abstract
Physiological responses to stress coordinated by the hypothalamo-pituitary-adrenal axis are concerned with maintaining homeostasis in the presence of real or perceived challenges. Regulators of this axis are corticotrophin releasing factor (CRF) and CRF related neuropeptides, including urocortins 1, 2, and 3. They mediate their actions by binding to CRF receptors (CRFR) 1 and 2, which are located in several stress-related brain regions. The prevailing theory has been that the initiation of and the recovery from an elicited stress response is coordinated by two elements, viz. the (mainly) opposing, but well balanced actions of CRFR1 and CRFR2. Such a dualistic view suggests that CRF/CRFR1 controls the initiation of, and urocortins/CRFR2 mediate the recovery from stress to maintain body and mental health. Consequently, failed adaptation to stress can lead to neuropathology, including anxiety and depression. Recent literature, however, challenges such dualistic and complementary actions of CRFR1 and CRFR2, and suggests that stress recruits CRF system components in a brain area and neuron specific manner to promote adaptation as conditions dictate.
Collapse
Affiliation(s)
- Donny Janssen
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and BehaviorNijmegen, Netherlands
| | - Tamás Kozicz
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and BehaviorNijmegen, Netherlands
- Department of Anatomy, Donders Institute for Brain, Cognition and BehaviorNijmegen, Netherlands
- Human Genetics Center, Tulane UniversityNew Orleans, LA, USA
| |
Collapse
|
29
|
Effects of fluoxetine on CRF and CRF1 expression in rats exposed to the learned helplessness paradigm. Psychopharmacology (Berl) 2013; 225:647-59. [PMID: 22960774 DOI: 10.1007/s00213-012-2859-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 08/16/2012] [Indexed: 12/25/2022]
Abstract
RATIONALE Stress is a common antecedent reported by people suffering major depression. In these patients, extrahypothalamic brain areas, like the hippocampus and basolateral amygdala (BLA), have been found to be affected. The BLA synthesizes CRF, a mediator of the stress response, and projects to hippocampus. The main hippocampal target for this peptide is the CRF subtype 1 receptor (CRF1). Evidence points to a relationship between dysregulation of CRF/CRF1 extrahypothalamic signaling and depression. OBJECTIVE Because selective serotonin reuptake inhibitors (SSRIs) are the first-line pharmacological treatment for depression, we investigated the effect of chronic treatment with the SSRI fluoxetine on long-term changes in CRF/CRF1 signaling in animals showing a depressive-like behavior. METHODS Male Wistar rats were exposed to the learned helplessness paradigm (LH). After evaluation of behavioral impairment, the animals were treated with fluoxetine (10 mg/kg i.p.) or saline for 21 days. We measured BLA CRF expression with RT-PCR and CRF1 expression in CA3 and the dentate gyrus of the hippocampus with in situ hybridization. We also studied the activation of one of CRF1's major intracellular signaling targets, the extracellular signal-related kinases 1 and 2 (ERK1/2) in CA3. RESULTS In saline-treated LH animals, CRF expression in the BLA increased, while hippocampal CRF1 expression and ERK1/2 activation decreased. Treatment with fluoxetine reversed the changes in CRF and CRF1 expressions, but not in ERK1/2 activation. CONCLUSION In animals exposed to the learned helplessness paradigm, there are long-term changes in CRF and CRF1 expression that are restored with a behaviorally effective antidepressant treatment.
Collapse
|
30
|
Almela P, Navarro-Zaragoza J, García-Carmona JA, Mora L, Hidalgo J, Milanés MV, Laorden ML. Role of corticotropin-releasing factor (CRF) receptor-1 on the catecholaminergic response to morphine withdrawal in the nucleus accumbens (NAc). PLoS One 2012; 7:e47089. [PMID: 23071721 PMCID: PMC3468529 DOI: 10.1371/journal.pone.0047089] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 09/10/2012] [Indexed: 11/19/2022] Open
Abstract
Stress induces the release of the peptide corticotropin-releasing factor (CRF) into the ventral tegmental area (VTA), and also increases dopamine (DA) levels in brain regions receiving dense VTA input. Since the role of stress in drug addiction is well established, the present study examined the possible involvement of CRF1 receptor in the interaction between morphine withdrawal and catecholaminergic pathways in the reward system. The effects of naloxone-precipitated morphine withdrawal on signs of withdrawal, hypothalamo-pituitary-adrenocortical (HPA) axis activity, dopamine (DA) and noradrenaline (NA) turnover in the nucleus accumbens (NAc) and activation of VTA dopaminergic neurons, were investigated in rats pretreated with vehicle or CP-154,526 (selective CRF1R antagonist). CP-154,526 attenuated the increases in body weight loss and suppressed some of withdrawal signs. Pretreatment with CRF1 receptor antagonist resulted in no significant modification of the increased NA turnover at NAc or plasma corticosterone levels that were seen during morphine withdrawal. However, blockade of CRF1 receptor significantly reduced morphine withdrawal-induced increases in plasma adrenocorticotropin (ACTH) levels, DA turnover and TH phosphorylation at Ser40 in the NAc. In addition, CP-154,526 reduced the number of TH containing neurons expressing c-Fos in the VTA after naloxone-precipitated morphine withdrawal. Altogether, these results support the idea that VTA dopaminergic neurons are activated in response to naloxone-precipitated morphine withdrawal and suggest that CRF1 receptors are involved in the activation of dopaminergic pathways which project to NAc.
Collapse
Affiliation(s)
- Pilar Almela
- Departamento de Farmacología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | | | | | - Lucía Mora
- Departamento de Farmacología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Juana Hidalgo
- Departamento de Farmacología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - María-Victoria Milanés
- Departamento de Farmacología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - María-Luisa Laorden
- Departamento de Farmacología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
31
|
Chronic activation of corticotropin-releasing factor type 2 receptors reveals a key role for 5-HT1A receptor responsiveness in mediating behavioral and serotonergic responses to stressful challenge. Biol Psychiatry 2012; 72:437-47. [PMID: 22704666 PMCID: PMC3430862 DOI: 10.1016/j.biopsych.2012.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/20/2012] [Accepted: 05/04/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND The corticotropin-releasing factor type 2 receptor (CRFR2) is suggested to play an important role in aiding recovery from acute stress, but any chronic effects of CRFR2 activation are unknown. CRFR2 in the midbrain raphé nuclei modulate serotonergic activity of this key source of serotonin (5-HT) forebrain innervation. METHODS Transgenic mice overexpressing the highly specific CRFR2 ligand urocortin 3 (UCN3OE) were analyzed for stress-related behaviors and hypothalamic-pituitary-adrenal axis responses. Responses to 5-HT receptor agonist challenge were assessed by local cerebral glucose utilization, while 5-HT and 5-hydroxyindoleacetic acid content were quantified in limbic brain regions. RESULTS Mice overexpressing urocortin 3 exhibited increased stress-related behaviors under basal conditions and impaired retention of spatial memory compared with control mice. Following acute stress, unlike control mice, they exhibited no further increase in these stress-related behaviors and showed an attenuated adrenocorticotropic hormone response. 5-HT and 5-hydroxyindoleacetic acid content of limbic nuclei were differentially regulated by stress in UCN3OE mice as compared with control mice. Responses to 5-HT type 1A receptor challenge were significantly and specifically reduced in UCN3OE mice. The distribution pattern of local cerebral glucose utilization and 5-HT type 1A receptor messenger RNA expression levels suggested this effect was mediated in the raphé nuclei. CONCLUSIONS Chronic activation of CRFR2 promotes an anxiety-like state, yet with attenuated behavioral and hypothalamic-pituitary-adrenal axis responses to stress. This is reminiscent of stress-related atypical psychiatric syndromes such as posttraumatic stress disorder, chronic fatigue, and chronic pain states. This new understanding indicates CRFR2 antagonism as a potential novel therapeutic target for such disorders.
Collapse
|
32
|
Ventura-Silva AP, Pêgo JM, Sousa JC, Marques AR, Rodrigues AJ, Marques F, Cerqueira JJ, Almeida OFX, Sousa N. Stress shifts the response of the bed nucleus of the stria terminalis to an anxiogenic mode. Eur J Neurosci 2012; 36:3396-406. [DOI: 10.1111/j.1460-9568.2012.08262.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Xu L, Scheenen WJJM, Roubos EW, Kozicz T. Peptidergic Edinger-Westphal neurons and the energy-dependent stress response. Gen Comp Endocrinol 2012; 177:296-304. [PMID: 22166814 DOI: 10.1016/j.ygcen.2011.11.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 11/18/2022]
Abstract
The continuously changing environment demands for adequate stress responses to maintain the internal dynamic equilibrium of body and mind. A successful stress response requires energy, in an amount matching the severity of the stressor and the type of response ('fight, flight or freeze'). The stress response is generated by the central nervous system, which needs to be informed about both the threatening stressor and the availability of energy. In this review, evidence is considered for a role of the midbrain Edinger-Westphal centrally projecting neuron population (EWcp; synonym: non-preganglionic Edinger-Westphal nucleus) in the energy-dependent stress adaptation response. It deals with studies on the neurochemical organization of the EWcp with particular reference to the neuropeptides urocortin-1 and cocaine- and amphetamine-regulated transcript peptide, on the EWcp responses to different types of stressor (e.g., acute and chronic) and a changed energy state (e.g., fasting and leptin change), and on the sex-specificity of these responses. Finally, a model is presented for the way the EWcp might contribute to the coordination of the energy-dependent stress adaptation response.
Collapse
Affiliation(s)
- Lu Xu
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
34
|
Abstract
Corticotropin-releasing factor receptor type 1 (CRFR1) plays a major role in the regulation of neuroendocrine and behavioral responses to stress and is considered a key mediator of anxiety behavior. The globus pallidus external (GPe), a main relay center within the basal ganglia that is primarily associated with motor and associative functions, is one of the brain nuclei with the highest levels of CRFR1 expression in the rodent brain. However, the role of CRFR1 in the GPe is yet unknown. In the present study, we used a lentiviral-based system of RNA interference to show that knockdown of CRFR1 mRNA expression in the GPe of adult mice induces a significant increase in anxiety-like behavior, as revealed by the light-dark transfer, open-field, and elevated plus-maze tests. This effect was further confirmed by pharmacological administration of the selective CRFR1 antagonist NBI 30775 (1.75 μg/side) directly into the GPe. In the marble-burying test, blockade of CRFR1 in the GPe increased the percentage of marbles buried and the duration of burying behavior. Additionally, we present evidence suggesting that the enkephalin system is involved in the effect of GPe-CRFR1 on anxiety-like behavior. In contrast to the well established anxiogenic role of CRFR1 in the extended amygdala, our data reveal a novel anxiolytic role for CRFR1 in the GPe.
Collapse
|
35
|
Vinkers CH, Hendriksen H, van Oorschot R, Cook JM, Rallipalli S, Huang S, Millan MJ, Olivier B, Groenink L. Lifelong CRF overproduction is associated with altered gene expression and sensitivity of discrete GABA(A) and mGlu receptor subtypes. Psychopharmacology (Berl) 2012; 219:897-908. [PMID: 21833506 PMCID: PMC3259347 DOI: 10.1007/s00213-011-2423-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 07/15/2011] [Indexed: 12/22/2022]
Abstract
RATIONALE Repeated activation of corticotropin-releasing factor (CRF) receptors is associated with increased anxiety and enhanced stress responsivity, which may be mediated via limbic GABAergic and glutamatergic transmission. OBJECTIVE The present study investigated molecular and functional alterations in GABA(A) receptor (GABA(A)R) and metabotropic glutamate receptor (mGluR) responsivity in transgenic mice that chronically overexpress CRF. METHODS CRF(1) receptor, GABA(A)R, and mGluR sensitivity were determined in CRF-overexpressing mice using the stress-induced hyperthermia (SIH) test. In addition, we measured mRNA expression levels of GABA(A)R α subunits and mGluRs in the amygdala and hypothalamus. RESULTS CRF-overexpressing mice were less sensitive to the anxiolytic effects of the CRF(1) receptor antagonists CP154,526 and DMP695, the GABA(A)R α(3)-selective agonist TP003 (0-3 mg/kg) and the mGluR(2/3) agonist LY379268 (0-10 mg/kg) in the SIH test. The hypothermic effect of the non-selective GABA(A)R agonist diazepam (0-4 mg/kg) and the α(1)-subunit-selective GABA(A)R agonist zolpidem (0-10 mg/kg) was reduced in CRF-overexpressing mice. No genotype differences were found using the GABA(A)R α(5)-subunit preferential compound SH-053-2'F-R-CH(3) and mGluR(5) antagonists MPEP and MTEP. CRF-overexpressing mice showed decreased expression levels of GABA(A)R α(2) subunit and mGluR(3) mRNA levels in the amygdala, whereas these expression levels were increased in the hypothalamus. CRF-overexpressing mice also showed increased hypothalamic mRNA levels of α(1) and α(5) GABA(A)R subunits. CONCLUSIONS We found that lifelong CRF overproduction is associated with altered gene expression and reduced functional sensitivity of discrete GABA(A) and mGluR receptor subtypes. These findings suggest that sustained over-activation of cerebral CRF receptors may contribute to the development of altered stress-related behavior via modulation of GABAergic and glutamatergic transmission.
Collapse
Affiliation(s)
- Christiaan H Vinkers
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences and Rudolf Magnus Institute of Neuroscience, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rouwette T, Vanelderen P, Roubos E, Kozicz T, Vissers K. The amygdala, a relay station for switching on and off pain. Eur J Pain 2011; 16:782-92. [DOI: 10.1002/j.1532-2149.2011.00071.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2011] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - E.W. Roubos
- Department of Cellular Animal Physiology; Donders Institute for Brain, Cognition and Behaviour; Centre for Neuroscience; Radboud University Nijmegen; Nijmegen; The Netherlands
| | - T. Kozicz
- Department of Cellular Animal Physiology; Donders Institute for Brain, Cognition and Behaviour; Centre for Neuroscience; Radboud University Nijmegen; Nijmegen; The Netherlands
| | - K. Vissers
- Department of Anesthesiology; Pain and Palliative Medicine; Radboud University Nijmegen Medical Centre; Nijmegen; The Netherlands
| |
Collapse
|
37
|
Prolonged and site-specific over-expression of corticotropin-releasing factor reveals differential roles for extended amygdala nuclei in emotional regulation. Mol Psychiatry 2011; 16:714-28. [PMID: 20548294 DOI: 10.1038/mp.2010.64] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Corticotropin-releasing factor (CRF) has a key role in the central stress response, and altered levels of this neuropeptide are linked to stress-related psychopathologies such as anxiety and depression. These disorders are associated with the inability to properly regulate stress response, specifically following exposure to prolonged stressful stimuli. Therefore, the current study assessed the effects of prolonged and site-specific over-expression of CRF, which mimics the state of chronic production, in extended amygdala nuclei that are known to be involved in mediating anxiety-like states. We first constructed and generated lentiviruses that overexpress (OE) CRF in a robust and stable manner, and then generated two male mouse models continuously over-expressing CRF, either at the central nucleus of the amygdala (CeA), or at the dorsolateral subdivision of the bed nucleus of the stria terminalis (BNSTdl). After 4 months, behavioral assessments were conducted for anxiety and depressive indices on these mice. Surprisingly, prolonged CRF OE at the CeA attenuated stress-induced anxiety-like behaviors, whereas prolonged CRF OE in the BNSTdl increased depressive-like behaviors, without affecting anxiety levels. These results show possible differential roles for CRF expressed by distinct loci of the extended amygdala, in mediating stress-induced emotional behaviors.
Collapse
|
38
|
Vallès A, Boender AJ, Gijsbers S, Haast RAM, Martens GJM, de Weerd P. Genomewide analysis of rat barrel cortex reveals time- and layer-specific mRNA expression changes related to experience-dependent plasticity. J Neurosci 2011; 31:6140-58. [PMID: 21508239 PMCID: PMC6632955 DOI: 10.1523/jneurosci.6514-10.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/26/2011] [Accepted: 02/26/2011] [Indexed: 12/12/2022] Open
Abstract
Because of its anatomical organization, the rodent whisker-to-barrel system is an ideal model to study experience-dependent plasticity. Manipulation of sensory input causes changes in the properties of the barrels at the physiological, structural, and functional levels. However, much less is known about the molecular events underlying these changes. To explore such molecular events, we have used a genomewide approach to identify key genes and molecular pathways involved in experience-induced plasticity in the barrel cortex of adult rats. Given the natural tendency of rats to explore novel objects, exposure to an enriched environment (EE) was used to stimulate the activity of the whisker-to-barrel cortex in vivo. Microarray analysis at two different time points after EE revealed differential expression of genes encoding transcription factors, including nuclear receptors, as well as of genes involved in the regulation of synaptic plasticity, cell differentiation, metabolism, and, surprisingly, blood vessel morphogenesis. These expression differences reflect changes in somatosensory information processing because unilateral whisker clipping showed EE-induced differential expression patterns in the spared versus deprived barrel cortex. Finally, in situ hybridization revealed cortical layer patterns specific for each selected gene. Together, the present study offers the first genomewide exploration of the key genes regulated by somatosensory stimulation in the barrel cortex and thus provides a solid experimental framework for future in-depth analysis of the mechanisms underlying experience-dependent plasticity.
Collapse
Affiliation(s)
- Astrid Vallès
- Department of Neurocognition, Faculty of Psychology and Neurosciences, Maastricht University, 6200 MD Maastricht, The Netherlands, and
- Department of Molecular Animal Physiology, Radboud University Nijmegen, Donders Institute for Brain, Cognition, and Behaviour (Centre for Neuroscience), Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Arjen J. Boender
- Department of Molecular Animal Physiology, Radboud University Nijmegen, Donders Institute for Brain, Cognition, and Behaviour (Centre for Neuroscience), Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Steef Gijsbers
- Department of Molecular Animal Physiology, Radboud University Nijmegen, Donders Institute for Brain, Cognition, and Behaviour (Centre for Neuroscience), Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Roy A. M. Haast
- Department of Molecular Animal Physiology, Radboud University Nijmegen, Donders Institute for Brain, Cognition, and Behaviour (Centre for Neuroscience), Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Gerard J. M. Martens
- Department of Molecular Animal Physiology, Radboud University Nijmegen, Donders Institute for Brain, Cognition, and Behaviour (Centre for Neuroscience), Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Peter de Weerd
- Department of Neurocognition, Faculty of Psychology and Neurosciences, Maastricht University, 6200 MD Maastricht, The Netherlands, and
| |
Collapse
|
39
|
Ushikai M, Asakawa A, Sakoguchi T, Tanaka C, Inui A. Centrally administered urocortin 3 inhibits food intake and gastric emptying in mice. Endocrine 2011; 39:113-7. [PMID: 21061090 DOI: 10.1007/s12020-010-9420-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 10/24/2010] [Indexed: 10/18/2022]
Abstract
Urocortin 3 (Ucn3) is recognized as a member of the corticotropin-releasing factor (CRF) family, which plays an important role in regulating food intake. We investigated the effects of centrally administered Ucn3 on food intake and gastric emptying in mice. Intracerebroventricular (ICV)administration of Ucn3 (0.1–1 nmol per mouse) decreased food intake in a dose-dependent manner. The inhibitory effect of Ucn3 on food intake was less potent than that of centrally administered CRF and Urocortin 1. ICV administration of Ucn3 (0.1–1 nmol per mouse) decreased the gastric emptying rate in a dose-dependent manner. Ucn3 decreased food intake in high-fat diet-fed obese mice as well as in lean mice. These results indicated that Ucn3 influences feeding behavior and gut motility, and may be a promising therapeutic target in the treatment of eating and functional gastrointestinal disorders.
Collapse
Affiliation(s)
- Miharu Ushikai
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences,8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | | | | | | | | |
Collapse
|
40
|
Zohar I, Weinstock M. Differential effect of prenatal stress on the expression of corticotrophin-releasing hormone and its receptors in the hypothalamus and amygdala in male and female rats. J Neuroendocrinol 2011; 23:320-8. [PMID: 21306450 DOI: 10.1111/j.1365-2826.2011.02117.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study examined the effect of prenatal stress in rats from days 13-20 of gestation on anxiogenic behaviour in the elevated plus maze (EPM) together with changes in the gene expression of corticotrophin-releasing hormone (CRH), its receptors, CRHR1 and CRHR2, as well as CRH binding protein (CRH-BP) in the paraventricular nucleus (PVN) and amygdala of their male and female offspring. Both prenatally-stressed (PS) males and females showed heightened anxiety in the EPM. Prenatal stress did not alter the gene expression of CRH or its receptors in the male PVN, although it decreased CRH-BP mRNA, which could augment the activity of free CRH. In the PVN of PS females, there was an increase in the expression of CRH, coupled with a decrease in that of CRHR2 and CRH-BP. These changes are compatible with the greater activation of the hypothalamic pituitary adrenal axis to stress in females. Anxiogenic behaviour of PS rats was associated with a reduction of CRHR2 mRNA and of CRH-BP mRNA in the amygdala of males and an increase in CRH mRNA and decrease in CRHR2 mRNA in females. Two hours after acute stress of exposure to the elevated plus maze in which heightened anxiety was manifested, increases were seen only in the amygdala of females in CRH and CRHR1 signalling, whereas CRHR2 mRNA was reduced in both sexes. The data show that both prenatal stress and acute stress in adulthood have a differential sex-dependent effect on the expression of CRH its receptors and binding protein in the PVN and amygdala of rats.
Collapse
Affiliation(s)
- I Zohar
- Department of Pharmacology, Institute of Drug Research, Hebrew University Medical Centre, Ein Kerem, Jerusalem, Israel
| | | |
Collapse
|
41
|
Lukkes JL, Staub DR, Dietrich A, Truitt W, Neufeld-Cohen A, Chen A, Johnson PL, Shekhar A, Lowry CA. Topographical distribution of corticotropin-releasing factor type 2 receptor-like immunoreactivity in the rat dorsal raphe nucleus: co-localization with tryptophan hydroxylase. Neuroscience 2011; 183:47-63. [PMID: 21453754 DOI: 10.1016/j.neuroscience.2011.03.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/04/2011] [Accepted: 03/22/2011] [Indexed: 01/07/2023]
Abstract
Corticotropin-releasing factor (CRF) and CRF-related neuropeptides are involved in the regulation of stress-related physiology and behavior. Members of the CRF family of neuropeptides bind to two known receptors, the CRF type 1 (CRF₁) receptor, and the CRF type 2 (CRF₂) receptor. Although the distribution of CRF₂ receptor mRNA expression has been extensively studied, the distribution of CRF₂ receptor protein has not been characterized. An area of the brain known to contain high levels of CRF₂ receptor mRNA expression and CRF₂ receptor binding is the dorsal raphe nucleus (DR). In the present study we investigated in detail the distribution of CRF₂ receptor immunoreactivity throughout the rostrocaudal extent of the DR. CRF₂ receptor-immunoreactive perikarya were observed throughout the DR, with the highest number and density in the mid-rostrocaudal DR. Dual immunofluorescence revealed that CRF₂ receptor immunoreactivity was frequently co-localized with tryptophan hydroxylase, a marker of serotonergic neurons. This study provides evidence that CRF₂ receptor protein is expressed in the DR, and that CRF₂ receptors are expressed in topographically organized subpopulations of cells in the DR, including serotonergic neurons. Furthermore, these data are consistent with the hypothesis that CRF₂ receptors play an important role in the regulation of stress-related physiology and behavior through actions on serotonergic and non-serotonergic neurons within the DR.
Collapse
Affiliation(s)
- J L Lukkes
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ronan PJ, Summers CH. Molecular Signaling and Translational Significance of the Corticotropin Releasing Factor System. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:235-92. [DOI: 10.1016/b978-0-12-385506-0.00006-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
43
|
Roubos EW, Jenks BG, Xu L, Kuribara M, Scheenen WJJM, Kozicz T. About a snail, a toad, and rodents: animal models for adaptation research. Front Endocrinol (Lausanne) 2010; 1:4. [PMID: 22649351 PMCID: PMC3355873 DOI: 10.3389/fendo.2010.00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 09/29/2010] [Indexed: 12/28/2022] Open
Abstract
Neural adaptation mechanisms have many similarities throughout the animal kingdom, enabling to study fundamentals of human adaptation in selected animal models with experimental approaches that are impossible to apply in man. This will be illustrated by reviewing research on three of such animal models, viz. (1) the egg-laying behavior of a snail, Lymnaea stagnalis: how one neuron type controls behavior, (2) adaptation to the ambient light condition by a toad, Xenopus laevis: how a neuroendocrine cell integrates complex external and neural inputs, and (3) stress, feeding, and depression in rodents: how a neuronal network co-ordinates different but related complex behaviors. Special attention is being paid to the actions of neurochemical messengers, such as neuropeptide Y, urocortin 1, and brain-derived neurotrophic factor. While awaiting new technological developments to study the living human brain at the cellular and molecular levels, continuing progress in the insight in the functioning of human adaptation mechanisms may be expected from neuroendocrine research using invertebrate and vertebrate animal models.
Collapse
Affiliation(s)
- Eric W. Roubos
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Bruce G. Jenks
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Lu Xu
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Miyuki Kuribara
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Wim J. J. M. Scheenen
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Tamás Kozicz
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| |
Collapse
|
44
|
Fu W, Le Maître E, Fabre V, Bernard JF, David Xu ZQ, Hökfelt T. Chemical neuroanatomy of the dorsal raphe nucleus and adjacent structures of the mouse brain. J Comp Neurol 2010; 518:3464-94. [PMID: 20589909 DOI: 10.1002/cne.22407] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Serotonin neurons play a major role in many normal and pathological brain functions. In the rat these neurons have a varying number of cotransmitters, including neuropeptides. Here we studied, with histochemical techniques, the relation between serotonin, some other small-molecule transmitters, and a number of neuropeptides in the dorsal raphe nucleus (DRN) and the adjacent ventral periaqueductal gray (vPAG) of mouse, an important question being to establish possible differences from rat. Even if similarly distributed, the serotonin neurons in mouse lacked the extensive coexpression of nitric oxide synthase and galanin seen in rat. Although partly overlapping in the vPAG, no evidence was obtained for the coexistence of serotonin with dopamine, substance P, cholecystokinin, enkephalin, somatostatin, neurotensin, dynorphin, thyrotropin-releasing hormone, or corticotropin-releasing hormone. However, some serotonin neurons expressed the gamma-aminobutyric acid (GABA)-synthesizing enzyme glutamic acid decarboxylase (GAD). Work in other laboratories suggests that, as in rat, serotonin neurons in the mouse midline DRN express the vesicular glutamate transporter 3, presumably releasing glutamate. Our study also shows that many of the neuropeptides studied (substance P, galanin, neurotensin, dynorphin, and corticotropin-releasing factor) are present in nerve terminal networks of varying densities close to the serotonin neurons, and therefore may directly or indirectly influence these cells. The apparently low numbers of coexisting messengers in mouse serotonin neurons, compared to rat, indicate considerable species differences with regard to the chemical neuronatomy of the DRN. Thus, extrapolation of DRN physiology, and possibly pathology, from rat to mouse, and even human, should be made with caution.
Collapse
Affiliation(s)
- Wenyu Fu
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
45
|
Guan X, Wang L, Chen CL, Guan Y, Li S. Roles of two subtypes of corticotrophin-releasing factor receptor in the corticostriatal long-term potentiation under cocaine withdrawal condition. J Neurochem 2010; 115:795-803. [PMID: 20807310 DOI: 10.1111/j.1471-4159.2010.06981.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The roles of two subtypes of corticotrophin-releasing factor (CRF) receptor in corticostriatal synaptic plasticity under cocaine withdrawal condition were examined in this study. Neither the resting membrane potential and input resistance of striatal neurons nor the long-term potentiation (LTP) of corticostriatal slices were affected by cocaine withdrawal. CRF dose-dependently enhanced in vitro corticostriatal LTP in rats from both cocaine-withdrawal and saline-control groups. Yet, the enhancement of corticostriatal LTP by CRF (20, 40, 80 nM) was significantly greater in the cocaine-withdrawal group than in the control group. CRF(1)-selective antagonist (NBI 27914, 100 nM) attenuated the CRF-induced enhancement of corticostriatal LTP in both groups, whereas the CRF(2)-selective antagonist (astression2B, 100 nM) attenuated the enhanced corticostriatal LTP only in the cocaine-withdrawal group. Importantly, urocortin2 (a CRF(2)-selective agonist, 40 nM) selectively increased corticostriatal LTP in the cocaine-withdrawal group, but not in the saline controls. The urocortin2-induced enhancement of LTP was totally blocked by astression2B (100 nM). These results suggest that the CRF system modulate neuroadaptive changes in the corticostriatal circuit during cocaine withdrawal, and the CRF(2) in this area mediate an important mechanism that contributes to the relapse of cocaine addiction.
Collapse
Affiliation(s)
- Xiaowei Guan
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | | | | | | | | |
Collapse
|
46
|
Urocortin-1 and -2 double-deficient mice show robust anxiolytic phenotype and modified serotonergic activity in anxiety circuits. Mol Psychiatry 2010; 15:426-41, 339. [PMID: 19884890 DOI: 10.1038/mp.2009.115] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The urocortin (Ucn) family of neuropeptides is suggested to be involved in homeostatic coping mechanisms of the central stress response through the activation of corticotropin-releasing factor receptor type 2 (CRFR2). The neuropeptides, Ucn1 and Ucn2, serve as endogenous ligands for the CRFR2, which is highly expressed by the dorsal raphe serotonergic neurons and is suggested to be involved in regulating major component of the central stress response. Here, we describe genetically modified mice in which both Ucn1 and Ucn2 are developmentally deleted. The double knockout mice showed a robust anxiolytic phenotype and altered hypothalamic-pituitary-adrenal axis activity compared with wild-type mice. The significant reduction in anxiety-like behavior observed in these mice was further enhanced after exposure to acute stress, and was correlated with the levels of serotonin and 5-hydroxyindoleacetic acid measured in brain regions associated with anxiety circuits. Thus, we propose that the Ucn/CRFR2 serotonergic system has an important role in regulating homeostatic equilibrium under challenge conditions.
Collapse
|
47
|
Nazzaro C, Barbieri M, Varani K, Beani L, Valentino RJ, Siniscalchi A. Swim stress enhances nociceptin/orphanin FQ-induced inhibition of rat dorsal raphe nucleus activity in vivo and in vitro: role of corticotropin releasing factor. Neuropharmacology 2010; 58:457-64. [PMID: 19747494 PMCID: PMC2889245 DOI: 10.1016/j.neuropharm.2009.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 09/03/2009] [Accepted: 09/03/2009] [Indexed: 11/23/2022]
Abstract
The effects of nociceptin/orphanin FQ on putative serotonin (5HT) neurons of the dorsal raphe nucleus (DRN), known to modulate the behavioral responses to stress, were investigated in vivo and in vitro. In DRN slices from unstressed rats, nociceptin/orphanin FQ concentration-dependently inhibited the firing rate of putative 5HT neurons (EC(50) = 21.6 +/- 1.21 nM) and the selective NOP receptor antagonist UFP-101 shifted the concentration-response curve to the right (estimated pA(2) 6.86). Nociceptin/orphanin FQ potency was enhanced in slices prepared from rats previously subjected to a 15 min swim stress (EC(50) = 1.98 +/- 0.11 nM). Swim stress did not change the number or affinity of NOP receptors in DRN. Stress-elicited potentiation involved corticotropin-releasing factor (CRF)(1) receptors, GABA signaling and protein synthesis, being attenuated by pre-treatment with antalarmin (20 mg/kg, i.p.), diazepam (2.4 mg/kg, i.p.) and cycloheximide (2.5 mg/kg, i.p.), respectively. In anesthetized unstressed rats, locally applied nociceptin/orphanin FQ (0.03 and 0.1 ng/30 nl) inhibited the firing rate of DRN neurons (to 80 +/- 7 and 54 +/- 10% of baseline, respectively). Nociceptin/orphanin FQ inhibition was potentiated both 24 h after swim stress and 1 h after CRF (30 ng/30 nl intra-DRN). Stress-induced potentiation was prevented by the selective CRF(1) receptor antagonist, NBI 30755 (20 mg/kg, i.p.). In contrast, the inhibitory response of DRN neurons to the 5HT(1A) agonist, 8OH-DPAT (1 microg/1 microl, intra-DRN) was not potentiated by swim stress, ruling out a non-specific enhanced permeability of GIRK channel. Together, these findings suggest that CRF and the nociceptin/orphanin FQ/NOP system interact in the DRN during stress to control 5HT transmission; this may play a role in stress-related neuropsychopathologies.
Collapse
Affiliation(s)
- Cristiano Nazzaro
- Department of Clinical and Experimental Medicine, Section Pharmacology, University of Ferrara, Italy
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, USA
| | - Mario Barbieri
- Department of Clinical and Experimental Medicine, Section Pharmacology, University of Ferrara, Italy
| | - Katia Varani
- Department of Clinical and Experimental Medicine, Section Pharmacology, University of Ferrara, Italy
| | - Lorenzo Beani
- Department of Clinical and Experimental Medicine, Section Pharmacology, University of Ferrara, Italy
| | - Rita J. Valentino
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, USA
| | - Anna Siniscalchi
- Department of Clinical and Experimental Medicine, Section Pharmacology, University of Ferrara, Italy
| |
Collapse
|
48
|
Silberstein S, Vogl AM, Refojo D, Senin SA, Wurst W, Holsboer F, Deussing JM, Arzt E. Amygdaloid pERK1/2 in corticotropin-releasing hormone overexpressing mice under basal and acute stress conditions. Neuroscience 2009; 159:610-7. [PMID: 19361479 DOI: 10.1016/j.neuroscience.2009.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/09/2009] [Accepted: 01/12/2009] [Indexed: 11/25/2022]
Abstract
Corticotropin-releasing hormone (CRH) coordinates neuroendocrine and behavioral adaptations to stress. Acute CRH administration in vivo activates extracellular signal-regulated kinase 1/2 (ERK1/2) in limbic brain areas, acting through the CRH receptor type 1 (CRH-R1). In the present study, we used CRH-COE-Cam mice that overexpress CRH in limbic-restricted areas, to analyze the effect of chronic CRH overexpression on ERK1/2 activation. By immunohistochemistry and confocal microscopy analysis we found that pERK1/2 levels in the basolateral amygdala (BLA) were similar in control and CRH overexpressing mice under basal conditions. Acute stress caused comparably increased levels of corticosterone in both control (CRH-COEcon-Cam) and CRH overexpressing (CRH-COEhom-Cam) animals. CRH-COEhom-Cam mice after stress showed reduced pERK1/2 immunoreactivity in the BLA compared to CRH-COEhom-Cam animals under basal conditions. Radioligand binding and in situ hybridization revealed higher density of CRH-R1 in the amygdala of CRH-COEhom mice under basal conditions compared to control littermates. A significant reduction of the receptor levels was observed in this area after acute stress, suggesting that stress may trigger CRH-R1 internalization/downregulation in these CRH overexpressing mice. Chronic CRH overexpression leads to reduced ERK1/2 activation in response to acute stress in the BLA.
Collapse
Affiliation(s)
- S Silberstein
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología y Biología y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBYNE-CONICET, Ciudad Universitaria, Buenos Aires, Argenita
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Greetfeld M, Schmidt MV, Ganea K, Sterlemann V, Liebl C, Müller MB. A single episode of restraint stress regulates central corticotrophin- releasing hormone receptor expression and binding in specific areas of the mouse brain. J Neuroendocrinol 2009; 21:473-80. [PMID: 19302188 DOI: 10.1111/j.1365-2826.2009.01865.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The importance of restraining stress-induced activation of the hypothalamic-pituitary-adrenocortical (HPA) system within tolerable limits requires efficient mechanisms for feedback inhibition. Recently, central corticotrophin-releasing hormone (CRH) receptor type 1 (CRHR1) has been shown to mediate HPA system feedback inhibition. To date, most of the data regarding stress-associated expression changes of CRHR1 and CRHR2 mRNA and their ligand CRH have been generated in rats. Taken considerable species differences into consideration, and with the growing importance of transgenic mice, a systematic analysis of the time course of expression changes of CRH and its two receptors in the mouse brain is needed to provide more insight into the regulation of the HPA system, both under physiological and pathophysiological conditions in this species. We analysed in detail the time course of expression changes of CRH, CRHR1 and CRHR2 mRNA after of restraint stress in mice in stress-relevant brain regions (paraventricular nucleus, hippocampus, neocortex). We could show a rapid, strong and long-lasting decrease in cortical and hippocampal CRHR1 mRNA expression after stress, whereas CRHR2 mRNA increased in the same neuroanatomical areas. In situ hybridisation analyses could be further confirmed at the protein level by CRH receptor autoradiography with changes in CRH binding that persisted even 7 days after a single episode of restraint stress. Our observation that stress has opposing effects on CRHR1 and CRHR2 neuronal systems supports the idea that regulation of the relative contribution of the two CRH receptors to brain CRH pathways may be essential in coordinating physiological responses to stress. We further hypothesise that the sustained alteration of CRH receptor expression and binding after a single episode of stress could mediate the long-term effects of stress on neuroendocrine function and emotional regulation.
Collapse
Affiliation(s)
- M Greetfeld
- Molecular Stress Physiology, Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Lu A, Steiner MA, Whittle N, Vogl AM, Walser SM, Ableitner M, Refojo D, Ekker M, Rubenstein JL, Stalla GK, Singewald N, Holsboer F, Wotjak CT, Wurst W, Deussing JM. Conditional mouse mutants highlight mechanisms of corticotropin-releasing hormone effects on stress-coping behavior. Mol Psychiatry 2008; 13:1028-42. [PMID: 18475271 DOI: 10.1038/mp.2008.51] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hypersecretion of central corticotropin-releasing hormone (CRH) has been implicated in the pathophysiology of affective disorders. Both, basic and clinical studies suggested that disrupting CRH signaling through CRH type 1 receptors (CRH-R1) can ameliorate stress-related clinical conditions. To study the effects of CRH-R1 blockade upon CRH-elicited behavioral and neurochemical changes we created different mouse lines overexpressing CRH in distinct spatially restricted patterns. CRH overexpression in the entire central nervous system, but not when overexpressed in specific forebrain regions, resulted in stress-induced hypersecretion of stress hormones and increased active stress-coping behavior reflected by reduced immobility in the forced swim test and tail suspension test. These changes were related to acute effects of overexpressed CRH as they were normalized by CRH-R1 antagonist treatment and recapitulated the effect of stress-induced activation of the endogenous CRH system. Moreover, we identified enhanced noradrenergic activity as potential molecular mechanism underlying increased active stress-coping behavior observed in these animals. Thus, these transgenic mouse lines may serve as animal models for stress-elicited pathologies and treatments that target the central CRH system.
Collapse
Affiliation(s)
- A Lu
- Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|