1
|
Brain–computer interface in an inter-individual approach using spatial coherence: Identification of better channels and tests repetition using auditory selective attention. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
2
|
Curtis MT, Sklar AL, Coffman BA, Salisbury DF. Functional connectivity and gray matter deficits within the auditory attention circuit in first-episode psychosis. Front Psychiatry 2023; 14:1114703. [PMID: 36860499 PMCID: PMC9968732 DOI: 10.3389/fpsyt.2023.1114703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
Background Selective attention deficits in first episode of psychosis (FEP) can be indexed by impaired attentional modulation of auditory M100. It is unknown if the pathophysiology underlying this deficit is restricted to auditory cortex or involves a distributed attention network. We examined the auditory attention network in FEP. Methods MEG was recorded from 27 FEP and 31 matched healthy controls (HC) while alternately ignoring or attending tones. A whole-brain analysis of MEG source activity during auditory M100 identified non-auditory areas with increased activity. Time-frequency activity and phase-amplitude coupling were examined in auditory cortex to identify the attentional executive carrier frequency. Attention networks were defined by phase-locking at the carrier frequency. Spectral and gray matter deficits in the identified circuits were examined in FEP. Results Attention-related activity was identified in prefrontal and parietal regions, markedly in precuneus. Theta power and phase coupling to gamma amplitude increased with attention in left primary auditory cortex. Two unilateral attention networks were identified with precuneus seeds in HC. Network synchrony was impaired in FEP. Gray matter thickness was reduced within the left hemisphere network in FEP but did not correlate with synchrony. Conclusion Several extra-auditory attention areas with attention-related activity were identified. Theta was the carrier frequency for attentional modulation in auditory cortex. Left and right hemisphere attention networks were identified, with bilateral functional deficits and left hemisphere structural deficits, though FEP showed intact auditory cortex theta phase-gamma amplitude coupling. These novel findings indicate attention-related circuitopathy early in psychosis potentially amenable to future non-invasive interventions.
Collapse
Affiliation(s)
| | | | | | - Dean F. Salisbury
- Clinical Neurophysiology Research Laboratory, Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Avivi-Reich M, Sran RK, Schneider BA. Do Age and Linguistic Status Alter the Effect of Sound Source Diffuseness on Speech Recognition in Noise? Front Psychol 2022; 13:838576. [PMID: 35369266 PMCID: PMC8965325 DOI: 10.3389/fpsyg.2022.838576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
One aspect of auditory scenes that has received very little attention is the level of diffuseness of sound sources. This aspect has increasing importance due to growing use of amplification systems. When an auditory stimulus is amplified and presented over multiple, spatially-separated loudspeakers, the signal's timbre is altered due to comb filtering. In a previous study we examined how increasing the diffuseness of the sound sources might affect listeners' ability to recognize speech presented in different types of background noise. Listeners performed similarly when both the target and the masker were presented via a similar number of loudspeakers. However, performance improved when the target was presented using a single speaker (compact) and the masker from three spatially separate speakers (diffuse) but worsened when the target was diffuse, and the masker was compact. In the current study, we extended our research to examine whether the effects of timbre changes with age and linguistic experience. Twenty-four older adults whose first language was English (Old-EFLs) and 24 younger adults whose second language was English (Young-ESLs) were asked to repeat non-sense sentences masked by either Noise, Babble, or Speech and their results were compared with those of the Young-EFLs previously tested. Participants were divided into two experimental groups: (1) A Compact-Target group where the target sentences were presented over a single loudspeaker, while the masker was either presented over three loudspeakers or over a single loudspeaker; (2) A Diffuse-Target group, where the target sentences were diffuse while the masker was either compact or diffuse. The results indicate that the Target Timbre has a negligible effect on thresholds when the timbre of the target matches the timbre of the masker in all three groups. When there is a timbre contrast between target and masker, thresholds are significantly lower when the target is compact than when it is diffuse for all three listening groups in a Noise background. However, while this difference is maintained for the Young and Old-EFLs when the masker is Babble or Speech, speech reception thresholds in the Young-ESL group tend to be equivalent for all four combinations of target and masker timbre.
Collapse
Affiliation(s)
- Meital Avivi-Reich
- Department of Communication Arts, Sciences and Disorders, Brooklyn College, City University of New York, Brooklyn, NY, United States
| | - Rupinder Kaur Sran
- Human Communication Lab, Department of Psychology, University of Toronto Mississauga, Toronto, ON, Canada
- Department of Speech-Language Pathology, University of Toronto, Toronto, ON, Canada
| | - Bruce A. Schneider
- Human Communication Lab, Department of Psychology, University of Toronto Mississauga, Toronto, ON, Canada
| |
Collapse
|
4
|
Wang L, Hu X, Liu H, Zhao S, Guo L, Han J, Liu T. Functional Brain Networks Underlying Auditory Saliency During Naturalistic Listening Experience. IEEE Trans Cogn Dev Syst 2022. [DOI: 10.1109/tcds.2020.3025947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Ylinen A, Wikman P, Leminen M, Alho K. Task-dependent cortical activations during selective attention to audiovisual speech. Brain Res 2022; 1775:147739. [PMID: 34843702 DOI: 10.1016/j.brainres.2021.147739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/21/2021] [Accepted: 11/21/2021] [Indexed: 11/28/2022]
Abstract
Selective listening to speech depends on widespread networks of the brain, but how the involvement of different neural systems in speech processing is affected by factors such as the task performed by a listener and speech intelligibility remains poorly understood. We used functional magnetic resonance imaging to systematically examine the effects that performing different tasks has on neural activations during selective attention to continuous audiovisual speech in the presence of task-irrelevant speech. Participants viewed audiovisual dialogues and attended either to the semantic or the phonological content of speech, or ignored speech altogether and performed a visual control task. The tasks were factorially combined with good and poor auditory and visual speech qualities. Selective attention to speech engaged superior temporal regions and the left inferior frontal gyrus regardless of the task. Frontoparietal regions implicated in selective auditory attention to simple sounds (e.g., tones, syllables) were not engaged by the semantic task, suggesting that this network may not be not as crucial when attending to continuous speech. The medial orbitofrontal cortex, implicated in social cognition, was most activated by the semantic task. Activity levels during the phonological task in the left prefrontal, premotor, and secondary somatosensory regions had a distinct temporal profile as well as the highest overall activity, possibly relating to the role of the dorsal speech processing stream in sub-lexical processing. Our results demonstrate that the task type influences neural activations during selective attention to speech, and emphasize the importance of ecologically valid experimental designs.
Collapse
Affiliation(s)
- Artturi Ylinen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland.
| | - Patrik Wikman
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland; Department of Neuroscience, Georgetown University, Washington D.C., USA
| | - Miika Leminen
- Analytics and Data Services, HUS Helsinki University Hospital, Helsinki, Finland
| | - Kimmo Alho
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland; Advanced Magnetic Imaging Centre, Aalto NeuroImaging, Aalto University, Espoo, Finland
| |
Collapse
|
6
|
Kiremitçi I, Yilmaz Ö, Çelik E, Shahdloo M, Huth AG, Çukur T. Attentional Modulation of Hierarchical Speech Representations in a Multitalker Environment. Cereb Cortex 2021; 31:4986-5005. [PMID: 34115102 PMCID: PMC8491717 DOI: 10.1093/cercor/bhab136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
Humans are remarkably adept in listening to a desired speaker in a crowded environment, while filtering out nontarget speakers in the background. Attention is key to solving this difficult cocktail-party task, yet a detailed characterization of attentional effects on speech representations is lacking. It remains unclear across what levels of speech features and how much attentional modulation occurs in each brain area during the cocktail-party task. To address these questions, we recorded whole-brain blood-oxygen-level-dependent (BOLD) responses while subjects either passively listened to single-speaker stories, or selectively attended to a male or a female speaker in temporally overlaid stories in separate experiments. Spectral, articulatory, and semantic models of the natural stories were constructed. Intrinsic selectivity profiles were identified via voxelwise models fit to passive listening responses. Attentional modulations were then quantified based on model predictions for attended and unattended stories in the cocktail-party task. We find that attention causes broad modulations at multiple levels of speech representations while growing stronger toward later stages of processing, and that unattended speech is represented up to the semantic level in parabelt auditory cortex. These results provide insights on attentional mechanisms that underlie the ability to selectively listen to a desired speaker in noisy multispeaker environments.
Collapse
Affiliation(s)
- Ibrahim Kiremitçi
- Neuroscience Program, Sabuncu Brain Research Center, Bilkent University, Ankara TR-06800, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara TR-06800, Turkey
| | - Özgür Yilmaz
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara TR-06800, Turkey
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara TR-06800, Turkey
| | - Emin Çelik
- Neuroscience Program, Sabuncu Brain Research Center, Bilkent University, Ankara TR-06800, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara TR-06800, Turkey
| | - Mo Shahdloo
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara TR-06800, Turkey
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9DU, UK
| | - Alexander G Huth
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Computer Science, The University of Texas at Austin, Austin, TX 78712, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94702, USA
| | - Tolga Çukur
- Neuroscience Program, Sabuncu Brain Research Center, Bilkent University, Ankara TR-06800, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara TR-06800, Turkey
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara TR-06800, Turkey
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94702, USA
| |
Collapse
|
7
|
Carrière M, Cassol H, Aubinet C, Panda R, Thibaut A, Larroque SK, Simon J, Martial C, Bahri MA, Chatelle C, Martens G, Chennu S, Laureys S, Gosseries O. Auditory localization should be considered as a sign of minimally conscious state based on multimodal findings. Brain Commun 2020; 2:fcaa195. [PMID: 33426527 PMCID: PMC7784043 DOI: 10.1093/braincomms/fcaa195] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Auditory localization (i.e. turning the head and/or the eyes towards an auditory stimulus) is often part of the clinical evaluation of patients recovering from coma. The objective of this study is to determine whether auditory localization could be considered as a new sign of minimally conscious state, using a multimodal approach. The presence of auditory localization and the clinical outcome at 2 years of follow-up were evaluated in 186 patients with severe brain injury, including 64 with unresponsive wakefulness syndrome, 28 in minimally conscious state minus, 71 in minimally conscious state plus and 23 who emerged from the minimally conscious state. Brain metabolism, functional connectivity and graph theory measures were investigated by means of 18F-fluorodeoxyglucose positron emission tomography, functional MRI and high-density electroencephalography in two subgroups of unresponsive patients, with and without auditory localization. These two subgroups were also compared to a subgroup of patients in minimally conscious state minus. Auditory localization was observed in 13% of unresponsive patients, 46% of patients in minimally conscious state minus, 62% of patients in minimally conscious state plus and 78% of patients who emerged from the minimally conscious state. The probability to observe an auditory localization increased along with the level of consciousness, and the presence of auditory localization could predict the level of consciousness. Patients with auditory localization had higher survival rates (at 2-year follow-up) than those without localization. Differences in brain function were found between unresponsive patients with and without auditory localization. Higher connectivity in unresponsive patients with auditory localization was measured between the fronto-parietal network and secondary visual areas, and in the alpha band electroencephalography network. Moreover, patients in minimally conscious state minus significantly differed from unresponsive patients without auditory localization in terms of brain metabolism and alpha network centrality, whereas no difference was found with unresponsive patients who presented auditory localization. Our multimodal findings suggest differences in brain function between unresponsive patients with and without auditory localization, which support our hypothesis that auditory localization should be considered as a new sign of minimally conscious state. Unresponsive patients showing auditory localization should therefore no longer be considered unresponsive but minimally conscious. This would have crucial consequences on these patients’ lives as it would directly impact the therapeutic orientation or end-of-life decisions usually taken based on the diagnosis.
Collapse
Affiliation(s)
- Manon Carrière
- Coma Science Group, GIGA-Consciousness, University of Liège, 4000 Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, 4000 Liège, Belgium
| | - Helena Cassol
- Coma Science Group, GIGA-Consciousness, University of Liège, 4000 Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, 4000 Liège, Belgium
| | - Charlène Aubinet
- Coma Science Group, GIGA-Consciousness, University of Liège, 4000 Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, 4000 Liège, Belgium
| | - Rajanikant Panda
- Coma Science Group, GIGA-Consciousness, University of Liège, 4000 Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, 4000 Liège, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, University of Liège, 4000 Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, 4000 Liège, Belgium
| | - Stephen K Larroque
- Coma Science Group, GIGA-Consciousness, University of Liège, 4000 Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, 4000 Liège, Belgium
| | - Jessica Simon
- Psychology and Neurosciences of Cognition PsyNCogn, University of Liège, 4000 Liège, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA-Consciousness, University of Liège, 4000 Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, 4000 Liège, Belgium
| | - Mohamed A Bahri
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000 Liège, Belgium
| | - Camille Chatelle
- Coma Science Group, GIGA-Consciousness, University of Liège, 4000 Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, 4000 Liège, Belgium
| | - Géraldine Martens
- Coma Science Group, GIGA-Consciousness, University of Liège, 4000 Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, 4000 Liège, Belgium
| | - Srivas Chennu
- School of Computing, University of Kent, Chatam Maritime ME4 4AG, UK.,Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 OQQ, UK
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, 4000 Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, 4000 Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, 4000 Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, 4000 Liège, Belgium
| |
Collapse
|
8
|
Wikman P, Sahari E, Salmela V, Leminen A, Leminen M, Laine M, Alho K. Breaking down the cocktail party: Attentional modulation of cerebral audiovisual speech processing. Neuroimage 2020; 224:117365. [PMID: 32941985 DOI: 10.1016/j.neuroimage.2020.117365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/19/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Recent studies utilizing electrophysiological speech envelope reconstruction have sparked renewed interest in the cocktail party effect by showing that auditory neurons entrain to selectively attended speech. Yet, the neural networks of attention to speech in naturalistic audiovisual settings with multiple sound sources remain poorly understood. We collected functional brain imaging data while participants viewed audiovisual video clips of lifelike dialogues with concurrent distracting speech in the background. Dialogues were presented in a full-factorial design, comprising task (listen to the dialogues vs. ignore them), audiovisual quality and semantic predictability. We used univariate analyses in combination with multivariate pattern analysis (MVPA) to study modulations of brain activity related to attentive processing of audiovisual speech. We found attentive speech processing to cause distinct spatiotemporal modulation profiles in distributed cortical areas including sensory and frontal-control networks. Semantic coherence modulated attention-related activation patterns in the earliest stages of auditory cortical processing, suggesting that the auditory cortex is involved in high-level speech processing. Our results corroborate views that emphasize the dynamic nature of attention, with task-specificity and context as cornerstones of the underlying neuro-cognitive mechanisms.
Collapse
Affiliation(s)
- Patrik Wikman
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland.
| | - Elisa Sahari
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Viljami Salmela
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland; Advanced Magnetic Imaging Centre, Aalto NeuroImaging, Aalto University, Espoo, Finland
| | - Alina Leminen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland; Department of Digital Humanities, University of Helsinki, Helsinki, Finland
| | - Miika Leminen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland; Department of Phoniatrics, Helsinki University Hospital, Helsinki, Finland
| | - Matti Laine
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Kimmo Alho
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland; Advanced Magnetic Imaging Centre, Aalto NeuroImaging, Aalto University, Espoo, Finland
| |
Collapse
|
9
|
Stewart HJ, Shen D, Sham N, Alain C. Involuntary Orienting and Conflict Resolution during Auditory Attention: The Role of Ventral and Dorsal Streams. J Cogn Neurosci 2020; 32:1851-1863. [PMID: 32573378 DOI: 10.1162/jocn_a_01594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Selective attention to sound object features such as pitch and location is associated with enhanced brain activity in ventral and dorsal streams, respectively. We examined the role of these pathways in involuntary orienting and conflict resolution using fMRI. Participants were presented with two tones that may, or may not, share the same nonspatial (frequency) or spatial (location) auditory features. In separate blocks of trials, participants were asked to attend to sound frequency or sound location and ignore the change in the task-irrelevant feature. In both attend-frequency and attend-location tasks, RTs were slower when the task-irrelevant feature changed than when it stayed the same (involuntary orienting). This behavioral cost coincided with enhanced activity in the pFC and superior temporal gyrus. Conflict resolution was examined by comparing situations where the change in stimulus features was congruent (both features changed) and incongruent (only one feature changed). Participants were slower and less accurate for incongruent than congruent sound features. This congruency effect was associated with enhanced activity in the pFC and was greater in the right superior temporal gyrus and medial frontal cortex during the attend-location task than during the attend-frequency task. Together, these findings do not support a strict division of "labor" into ventral and dorsal streams but rather suggest interactions between these pathways in situations involving changes in task-irrelevant sound feature and conflict resolution. These findings also validate the Test of Attention in Listening task by revealing distinct neural correlates for involuntary orienting and conflict resolution.
Collapse
Affiliation(s)
- Hannah J Stewart
- Baycrest Centre, Toronto, Ontario, Canada.,University College London.,Cincinnati Children's Hospital Medical Center
| | - Dawei Shen
- Baycrest Centre, Toronto, Ontario, Canada
| | - Nasim Sham
- Baycrest Centre, Toronto, Ontario, Canada
| | - Claude Alain
- Baycrest Centre, Toronto, Ontario, Canada.,University of Toronto
| |
Collapse
|
10
|
What and where in the auditory systems of sighted and early blind individuals: Evidence from representational similarity analysis. J Neurol Sci 2020; 413:116805. [PMID: 32259708 DOI: 10.1016/j.jns.2020.116805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 03/14/2020] [Accepted: 03/24/2020] [Indexed: 11/24/2022]
Abstract
Separated ventral and dorsal streams in auditory system have been proposed to process sound identification and localization respectively. Despite the popularity of the dual-pathway model, it remains controversial how much independence two neural pathways enjoy and whether visual experiences can influence the distinct cortical organizational scheme. In this study, representational similarity analysis (RSA) was used to explore the functional roles of distinct cortical regions that lay within either the ventral or dorsal auditory streams of sighted and early blind (EB) participants. We found functionally segregated auditory networks in both sighted and EB groups where anterior superior temporal gyrus (aSTG) and inferior frontal junction (IFJ) were more related to the sound identification, while posterior superior temporal gyrus (pSTG) and inferior parietal lobe (IPL) preferred the sound localization. The findings indicated visual experiences may not have an influence on this functional dissociation and the cortex of the human brain may be organized as task-specific and modality-independent strategies. Meanwhile, partial overlap of spatial and non-spatial auditory information processing was observed, illustrating the existence of interaction between the two auditory streams. Furthermore, we investigated the effect of visual experiences on the neural bases of auditory perception and observed the cortical reorganization in EB participants in whom middle occipital gyrus was recruited to process auditory information. Our findings examined the distinct cortical networks that abstractly encoded sound identification and localization, and confirmed the existence of interaction from the multivariate perspective. Furthermore, the results suggested visual experience might not impact the functional specialization of auditory regions.
Collapse
|
11
|
Leminen A, Verwoert M, Moisala M, Salmela V, Wikman P, Alho K. Modulation of Brain Activity by Selective Attention to Audiovisual Dialogues. Front Neurosci 2020; 14:436. [PMID: 32477054 PMCID: PMC7235384 DOI: 10.3389/fnins.2020.00436] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/09/2020] [Indexed: 01/08/2023] Open
Abstract
In real-life noisy situations, we can selectively attend to conversations in the presence of irrelevant voices, but neurocognitive mechanisms in such natural listening situations remain largely unexplored. Previous research has shown distributed activity in the mid superior temporal gyrus (STG) and sulcus (STS) while listening to speech and human voices, in the posterior STS and fusiform gyrus when combining auditory, visual and linguistic information, as well as in left-hemisphere temporal and frontal cortical areas during comprehension. In the present functional magnetic resonance imaging (fMRI) study, we investigated how selective attention modulates neural responses to naturalistic audiovisual dialogues. Our healthy adult participants (N = 15) selectively attended to video-taped dialogues between a man and woman in the presence of irrelevant continuous speech in the background. We modulated the auditory quality of dialogues with noise vocoding and their visual quality by masking speech-related facial movements. Both increased auditory quality and increased visual quality were associated with bilateral activity enhancements in the STG/STS. In addition, decreased audiovisual stimulus quality elicited enhanced fronto-parietal activity, presumably reflecting increased attentional demands. Finally, attention to the dialogues, in relation to a control task where a fixation cross was attended and the dialogue ignored, yielded enhanced activity in the left planum polare, angular gyrus, the right temporal pole, as well as in the orbitofrontal/ventromedial prefrontal cortex and posterior cingulate gyrus. Our findings suggest that naturalistic conversations effectively engage participants and reveal brain networks related to social perception in addition to speech and semantic processing networks.
Collapse
Affiliation(s)
- Alina Leminen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Cognitive Science, Department of Digital Humanities, Helsinki Centre for Digital Humanities (Heldig), University of Helsinki, Helsinki, Finland
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Center for Cognition and Decision Making, Institute of Cognitive Neuroscience, National Research University – Higher School of Economics, Moscow, Russia
| | - Maxime Verwoert
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mona Moisala
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljami Salmela
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Patrik Wikman
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kimmo Alho
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Advanced Magnetic Imaging Centre, Aalto NeuroImaging, Aalto University, Espoo, Finland
| |
Collapse
|
12
|
Cortical Correlates of Attention to Auditory Features. J Neurosci 2019; 39:3292-3300. [PMID: 30804086 DOI: 10.1523/jneurosci.0588-18.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 11/21/2022] Open
Abstract
Pitch and timbre are two primary features of auditory perception that are generally considered independent. However, an increase in pitch (produced by a change in fundamental frequency) can be confused with an increase in brightness (an attribute of timbre related to spectral centroid) and vice versa. Previous work indicates that pitch and timbre are processed in overlapping regions of the auditory cortex, but are separable to some extent via multivoxel pattern analysis. Here, we tested whether attention to one or other feature increases the spatial separation of their cortical representations and if attention can enhance the cortical representation of these features in the absence of any physical change in the stimulus. Ten human subjects (four female, six male) listened to pairs of tone triplets varying in pitch, timbre, or both and judged which tone triplet had the higher pitch or brighter timbre. Variations in each feature engaged common auditory regions with no clear distinctions at a univariate level. Attending to one did not improve the separability of the neural representations of pitch and timbre at the univariate level. At the multivariate level, the classifier performed above chance in distinguishing between conditions in which pitch or timbre was discriminated. The results confirm that the computations underlying pitch and timbre perception are subserved by strongly overlapping cortical regions, but reveal that attention to one or other feature leads to distinguishable activation patterns even in the absence of physical differences in the stimuli.SIGNIFICANCE STATEMENT Although pitch and timbre are generally thought of as independent auditory features of a sound, pitch height and timbral brightness can be confused for one another. This study shows that pitch and timbre variations are represented in overlapping regions of auditory cortex, but that they produce distinguishable patterns of activation. Most importantly, the patterns of activation can be distinguished based on whether subjects attended to pitch or timbre even when the stimuli remained physically identical. The results therefore show that variations in pitch and timbre are represented by overlapping neural networks, but that attention to different features of the same sound can lead to distinguishable patterns of activation.
Collapse
|
13
|
Hjortkjær J, Kassuba T, Madsen KH, Skov M, Siebner HR. Task-Modulated Cortical Representations of Natural Sound Source Categories. Cereb Cortex 2018; 28:295-306. [PMID: 29069292 DOI: 10.1093/cercor/bhx263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In everyday sound environments, we recognize sound sources and events by attending to relevant aspects of an acoustic input. Evidence about the cortical mechanisms involved in extracting relevant category information from natural sounds is, however, limited to speech. Here, we used functional MRI to measure cortical response patterns while human listeners categorized real-world sounds created by objects of different solid materials (glass, metal, wood) manipulated by different sound-producing actions (striking, rattling, dropping). In different sessions, subjects had to identify either material or action categories in the same sound stimuli. The sound-producing action and the material of the sound source could be decoded from multivoxel activity patterns in auditory cortex, including Heschl's gyrus and planum temporale. Importantly, decoding success depended on task relevance and category discriminability. Action categories were more accurately decoded in auditory cortex when subjects identified action information. Conversely, the material of the same sound sources was decoded with higher accuracy in the inferior frontal cortex during material identification. Representational similarity analyses indicated that both early and higher-order auditory cortex selectively enhanced spectrotemporal features relevant to the target category. Together, the results indicate a cortical selection mechanism that favors task-relevant information in the processing of nonvocal sound categories.
Collapse
Affiliation(s)
- Jens Hjortkjær
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark.,Hearing Systems Group, Department of Electrical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Tanja Kassuba
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Kristoffer H Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark.,Cognitive Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Martin Skov
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark.,Decision Neuroscience Research Group, Copenhagen Business School, 2000 Frederiksberg, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, 2400 København NV, Denmark
| |
Collapse
|
14
|
Riecke L, Peters JC, Valente G, Kemper VG, Formisano E, Sorger B. Frequency-Selective Attention in Auditory Scenes Recruits Frequency Representations Throughout Human Superior Temporal Cortex. Cereb Cortex 2018; 27:3002-3014. [PMID: 27230215 DOI: 10.1093/cercor/bhw160] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A sound of interest may be tracked amid other salient sounds by focusing attention on its characteristic features including its frequency. Functional magnetic resonance imaging findings have indicated that frequency representations in human primary auditory cortex (AC) contribute to this feat. However, attentional modulations were examined at relatively low spatial and spectral resolutions, and frequency-selective contributions outside the primary AC could not be established. To address these issues, we compared blood oxygenation level-dependent (BOLD) responses in the superior temporal cortex of human listeners while they identified single frequencies versus listened selectively for various frequencies within a multifrequency scene. Using best-frequency mapping, we observed that the detailed spatial layout of attention-induced BOLD response enhancements in primary AC follows the tonotopy of stimulus-driven frequency representations-analogous to the "spotlight" of attention enhancing visuospatial representations in retinotopic visual cortex. Moreover, using an algorithm trained to discriminate stimulus-driven frequency representations, we could successfully decode the focus of frequency-selective attention from listeners' BOLD response patterns in nonprimary AC. Our results indicate that the human brain facilitates selective listening to a frequency of interest in a scene by reinforcing the fine-grained activity pattern throughout the entire superior temporal cortex that would be evoked if that frequency was present alone.
Collapse
Affiliation(s)
- Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, The Netherlands
| | - Judith C Peters
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, The Netherlands.,Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
| | - Giancarlo Valente
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, The Netherlands
| | - Valentin G Kemper
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, The Netherlands
| | - Elia Formisano
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, The Netherlands
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, The Netherlands
| |
Collapse
|
15
|
Méndez JC, Rocchi L, Jahanshahi M, Rothwell J, Merchant H. Probing the timing network: A continuous theta burst stimulation study of temporal categorization. Neuroscience 2017; 356:167-175. [PMID: 28528965 DOI: 10.1016/j.neuroscience.2017.05.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/24/2017] [Accepted: 05/10/2017] [Indexed: 02/02/2023]
Abstract
Time perception in the millisecond and second ranges is thought to be processed by different neural mechanisms. However, whether there is a sharp boundary between these ranges and whether they are implemented in the same, overlapped or separate brain areas is still not certain. To probe the role of the right dorsolateral prefrontal cortex (dlPFC), the right supplementary motor area (SMA), and the cerebellum on time perception, we temporarily altered their activity on healthy volunteers on separate sessions using transcranial magnetic stimulation with the continuous Theta Burst Stimulation (cTBS) protocol. A control session was reserved for the stimulation of the primary somatosensory cortex (S1). Before and after stimulation, participants were tested on a temporal categorization task using intervals in the hundreds and thousands of milliseconds ranges, as well as on a pitch categorization task which was used as a further control. We then looked for changes in the Relative Threshold and the Constant Error, which, respectively, reflect participants' sensitivity to interval duration and their accuracy at setting an interval that acts as a boundary between categories. We found that after cTBS in all of the studied regions, the Relative Threshold, but not the Constant Error, was affected and only when hundreds of milliseconds intervals were being categorized. Categorization of thousands of milliseconds intervals and of pitch was not affected. These results suggest that the fronto-cerebellar circuit is particularly involved in the estimation of intervals in the hundreds of milliseconds range.
Collapse
Affiliation(s)
- Juan Carlos Méndez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Mexico; Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom.
| | - Lorenzo Rocchi
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom; Dipartimento di Neurologia e Psichiatria, Università di Roma "Sapienza", Rome, Italy
| | - Marjan Jahanshahi
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom
| | - John Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom
| | - Hugo Merchant
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Mexico.
| |
Collapse
|
16
|
Salo E, Salmela V, Salmi J, Numminen J, Alho K. Brain activity associated with selective attention, divided attention and distraction. Brain Res 2017; 1664:25-36. [PMID: 28363436 DOI: 10.1016/j.brainres.2017.03.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/21/2017] [Accepted: 03/22/2017] [Indexed: 11/16/2022]
Abstract
Top-down controlled selective or divided attention to sounds and visual objects, as well as bottom-up triggered attention to auditory and visual distractors, has been widely investigated. However, no study has systematically compared brain activations related to all these types of attention. To this end, we used functional magnetic resonance imaging (fMRI) to measure brain activity in participants performing a tone pitch or a foveal grating orientation discrimination task, or both, distracted by novel sounds not sharing frequencies with the tones or by extrafoveal visual textures. To force focusing of attention to tones or gratings, or both, task difficulty was kept constantly high with an adaptive staircase method. A whole brain analysis of variance (ANOVA) revealed fronto-parietal attention networks for both selective auditory and visual attention. A subsequent conjunction analysis indicated partial overlaps of these networks. However, like some previous studies, the present results also suggest segregation of prefrontal areas involved in the control of auditory and visual attention. The ANOVA also suggested, and another conjunction analysis confirmed, an additional activity enhancement in the left middle frontal gyrus related to divided attention supporting the role of this area in top-down integration of dual task performance. Distractors expectedly disrupted task performance. However, contrary to our expectations, activations specifically related to the distractors were found only in the auditory and visual cortices. This suggests gating of the distractors from further processing perhaps due to strictly focused attention in the current demanding discrimination tasks.
Collapse
Affiliation(s)
- Emma Salo
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Advanced Magnetic Imaging Centre, Aalto Neuroimaging, Aalto University School of Science and Technology, Espoo, Finland.
| | - Viljami Salmela
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Advanced Magnetic Imaging Centre, Aalto Neuroimaging, Aalto University School of Science and Technology, Espoo, Finland
| | - Juha Salmi
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Advanced Magnetic Imaging Centre, Aalto Neuroimaging, Aalto University School of Science and Technology, Espoo, Finland; Faculty of Arts, Psychology and Theology, Åbo Akademi University, Turku, Finland
| | - Jussi Numminen
- Helsinki Medical Imaging Centre, Helsinki University Hospital, Helsinki, Finland
| | - Kimmo Alho
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Advanced Magnetic Imaging Centre, Aalto Neuroimaging, Aalto University School of Science and Technology, Espoo, Finland
| |
Collapse
|
17
|
Uhlig CH, Gutschalk A. Transient human auditory cortex activation during volitional attention shifting. PLoS One 2017; 12:e0172907. [PMID: 28273110 PMCID: PMC5342206 DOI: 10.1371/journal.pone.0172907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/02/2017] [Indexed: 11/29/2022] Open
Abstract
While strong activation of auditory cortex is generally found for exogenous orienting of attention, endogenous, intra-modal shifting of auditory attention has not yet been demonstrated to evoke transient activation of the auditory cortex. Here, we used fMRI to test if endogenous shifting of attention is also associated with transient activation of the auditory cortex. In contrast to previous studies, attention shifts were completely self-initiated and not cued by transient auditory or visual stimuli. Stimuli were two dichotic, continuous streams of tones, whose perceptual grouping was not ambiguous. Participants were instructed to continuously focus on one of the streams and switch between the two after a while, indicating the time and direction of each attentional shift by pressing one of two response buttons. The BOLD response around the time of the button presses revealed robust activation of the auditory cortex, along with activation of a distributed task network. To test if the transient auditory cortex activation was specifically related to auditory orienting, a self-paced motor task was added, where participants were instructed to ignore the auditory stimulation while they pressed the response buttons in alternation and at a similar pace. Results showed that attentional orienting produced stronger activity in auditory cortex, but auditory cortex activation was also observed for button presses without focused attention to the auditory stimulus. The response related to attention shifting was stronger contralateral to the side where attention was shifted to. Contralateral-dominant activation was also observed in dorsal parietal cortex areas, confirming previous observations for auditory attention shifting in studies that used auditory cues.
Collapse
Affiliation(s)
- Christian Harm Uhlig
- Department of Neurology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Alexander Gutschalk
- Department of Neurology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
18
|
Pre-encoding gamma-band activity during auditory working memory. Sci Rep 2017; 7:42599. [PMID: 28198413 PMCID: PMC5309745 DOI: 10.1038/srep42599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/10/2017] [Indexed: 11/22/2022] Open
Abstract
Previous magnetoencephalography (MEG) studies have revealed gamma-band activity at sensors over parietal and fronto-temporal cortex during the delay phase of auditory spatial and non-spatial match-to-sample tasks, respectively. While this activity was interpreted as reflecting the memory maintenance of sound features, we noted that task-related activation differences might have been present already prior to the onset of the sample stimulus. The present study focused on the interval between a visual cue indicating which sound feature was to be memorized (lateralization or pitch) and sample sound presentation to test for task-related activation differences preceding stimulus encoding. MEG spectral activity was analyzed with cluster randomization tests (N = 15). Whereas there were no differences in frequencies below 40 Hz, gamma-band spectral amplitude (about 50–65 and 90–100 Hz) was higher for the lateralization than the pitch task. This activity was localized at right posterior and central sensors and present for several hundred ms after task cue offset. Activity at 50–65 Hz was also increased throughout the delay phase for the lateralization compared with the pitch task. Apparently cortical networks related to auditory spatial processing were activated after participants had been informed about the task.
Collapse
|
19
|
Allen EJ, Burton PC, Olman CA, Oxenham AJ. Representations of Pitch and Timbre Variation in Human Auditory Cortex. J Neurosci 2017; 37:1284-1293. [PMID: 28025255 PMCID: PMC5296797 DOI: 10.1523/jneurosci.2336-16.2016] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/30/2016] [Accepted: 12/10/2016] [Indexed: 11/21/2022] Open
Abstract
Pitch and timbre are two primary dimensions of auditory perception, but how they are represented in the human brain remains a matter of contention. Some animal studies of auditory cortical processing have suggested modular processing, with different brain regions preferentially coding for pitch or timbre, whereas other studies have suggested a distributed code for different attributes across the same population of neurons. This study tested whether variations in pitch and timbre elicit activity in distinct regions of the human temporal lobes. Listeners were presented with sequences of sounds that varied in either fundamental frequency (eliciting changes in pitch) or spectral centroid (eliciting changes in brightness, an important attribute of timbre), with the degree of pitch or timbre variation in each sequence parametrically manipulated. The BOLD responses from auditory cortex increased with increasing sequence variance along each perceptual dimension. The spatial extent, region, and laterality of the cortical regions most responsive to variations in pitch or timbre at the univariate level of analysis were largely overlapping. However, patterns of activation in response to pitch or timbre variations were discriminable in most subjects at an individual level using multivoxel pattern analysis, suggesting a distributed coding of the two dimensions bilaterally in human auditory cortex. SIGNIFICANCE STATEMENT Pitch and timbre are two crucial aspects of auditory perception. Pitch governs our perception of musical melodies and harmonies, and conveys both prosodic and (in tone languages) lexical information in speech. Brightness-an aspect of timbre or sound quality-allows us to distinguish different musical instruments and speech sounds. Frequency-mapping studies have revealed tonotopic organization in primary auditory cortex, but the use of pure tones or noise bands has precluded the possibility of dissociating pitch from brightness. Our results suggest a distributed code, with no clear anatomical distinctions between auditory cortical regions responsive to changes in either pitch or timbre, but also reveal a population code that can differentiate between changes in either dimension within the same cortical regions.
Collapse
Affiliation(s)
- Emily J Allen
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Philip C Burton
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Cheryl A Olman
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Andrew J Oxenham
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
20
|
Isbell E, Stevens C, Hampton Wray A, Bell T, Neville HJ. 5-HTTLPR polymorphism is linked to neural mechanisms of selective attention in preschoolers from lower socioeconomic status backgrounds. Dev Cogn Neurosci 2016; 22:36-47. [PMID: 27837677 PMCID: PMC6987652 DOI: 10.1016/j.dcn.2016.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 12/25/2022] Open
Abstract
While a growing body of research has identified experiential factors associated with differences in selective attention, relatively little is known about the contribution of genetic factors to the skill of sustained selective attention, especially in early childhood. Here, we assessed the association between the serotonin transporter linked polymorphic region (5-HTTLPR) genotypes and the neural mechanisms of selective attention in young children from lower socioeconomic status (SES) backgrounds. Event-related potentials (ERPs) were recorded during a dichotic listening task from 121 children (76 females, aged 40-67 months), who were also genotyped for the short and long allele of 5-HTTLPR. The effect of selective attention was measured as the difference in ERP mean amplitudes elicited by identical probe stimuli embedded in stories when they were attended versus unattended. Compared to children homozygous for the long allele, children who carried at least one copy of the short allele showed larger effects of selective attention on neural processing. These findings link the short allele of the 5-HTTLPR to enhanced neural mechanisms of selective attention and lay the groundwork for future studies of gene-by-environment interactions in the context of key cognitive skills.
Collapse
Affiliation(s)
- Elif Isbell
- University of North Carolina at Greensboro, Department of Human Development and Family Studies, Greensboro, NC, 27412, United States.
| | - Courtney Stevens
- Willamette University, Department of Psychology, 900 State Street, Salem, OR 97301, United States
| | - Amanda Hampton Wray
- Michigan State University, Department of Communicative Sciences and Disorders, 1026 Red Cedar Rd., East Lansing, MI 48824, United States
| | - Theodore Bell
- University of Oregon, Department of Psychology, 1227 University of Oregon, Eugene, OR 97403, United States
| | - Helen J Neville
- University of Oregon, Department of Psychology, 1227 University of Oregon, Eugene, OR 97403, United States
| |
Collapse
|
21
|
Braga RM, Hellyer PJ, Wise RJS, Leech R. Auditory and visual connectivity gradients in frontoparietal cortex. Hum Brain Mapp 2016; 38:255-270. [PMID: 27571304 PMCID: PMC5215394 DOI: 10.1002/hbm.23358] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 11/06/2022] Open
Abstract
A frontoparietal network of brain regions is often implicated in both auditory and visual information processing. Although it is possible that the same set of multimodal regions subserves both modalities, there is increasing evidence that there is a differentiation of sensory function within frontoparietal cortex. Magnetic resonance imaging (MRI) in humans was used to investigate whether different frontoparietal regions showed intrinsic biases in connectivity with visual or auditory modalities. Structural connectivity was assessed with diffusion tractography and functional connectivity was tested using functional MRI. A dorsal-ventral gradient of function was observed, where connectivity with visual cortex dominates dorsal frontal and parietal connections, while connectivity with auditory cortex dominates ventral frontal and parietal regions. A gradient was also observed along the posterior-anterior axis, although in opposite directions in prefrontal and parietal cortices. The results suggest that the location of neural activity within frontoparietal cortex may be influenced by these intrinsic biases toward visual and auditory processing. Thus, the location of activity in frontoparietal cortex may be influenced as much by stimulus modality as the cognitive demands of a task. It was concluded that stimulus modality was spatially encoded throughout frontal and parietal cortices, and was speculated that such an arrangement allows for top-down modulation of modality-specific information to occur within higher-order cortex. This could provide a potentially faster and more efficient pathway by which top-down selection between sensory modalities could occur, by constraining modulations to within frontal and parietal regions, rather than long-range connections to sensory cortices. Hum Brain Mapp 38:255-270, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rodrigo M Braga
- Center for Brain Science, Harvard University, Cambridge, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Charlestown, Massachusetts.,The Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
| | - Peter J Hellyer
- The Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom.,Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Richard J S Wise
- The Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
| | - Robert Leech
- The Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
van de Nieuwenhuijzen ME, Axmacher N, Fell J, Oehrn CR, Jensen O, van Gerven MAJ. Decoding of task-relevant and task-irrelevant intracranial EEG representations. Neuroimage 2016; 137:132-139. [PMID: 27153977 DOI: 10.1016/j.neuroimage.2016.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/31/2016] [Accepted: 05/02/2016] [Indexed: 11/27/2022] Open
Abstract
Natural stimuli consist of multiple properties. However, not all of these properties are equally relevant in a given situation. In this study, we applied multivariate classification algorithms to intracranial electroencephalography data of human epilepsy patients performing an auditory Stroop task. This allowed us to identify neuronal representations of task-relevant and irrelevant pitch and semantic information of spoken words in a subset of patients. When properties were relevant, representations could be detected after about 350ms after stimulus onset. When irrelevant, the association with gamma power differed for these properties. Patients with more reliable representations of irrelevant pitch showed increased gamma band activity (35-64Hz), suggesting that attentional resources allow an increase in gamma power in some but not all patients. This effect was not observed for irrelevant semantics, possibly because the more automatic processing of this property allowed for less variation in free resources. Processing of different properties of the same stimulus seems therefore to be dependent on the characteristics of the property.
Collapse
Affiliation(s)
- M E van de Nieuwenhuijzen
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, 6500 HE, Nijmegen, The Netherlands.
| | - N Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, D-44801 Bochum, Germany; German Center for Neurodegenerative Diseases, D-53175 Bonn, Germany
| | - J Fell
- Department of Epileptology, University of Bonn, D-53105 Bonn, Germany
| | - C R Oehrn
- Department of Epileptology, University of Bonn, D-53105 Bonn, Germany
| | - O Jensen
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, 6500 HE, Nijmegen, The Netherlands
| | - M A J van Gerven
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, 6500 HE, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Binder M. Neural correlates of audiovisual temporal processing – Comparison of temporal order and simultaneity judgments. Neuroscience 2015; 300:432-47. [DOI: 10.1016/j.neuroscience.2015.05.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 01/09/2023]
|
24
|
Jones PR, Moore DR, Shub DE, Amitay S. The role of response bias in perceptual learning. J Exp Psychol Learn Mem Cogn 2015; 41:1456-70. [PMID: 25867609 PMCID: PMC4562609 DOI: 10.1037/xlm0000111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sensory judgments improve with practice. Such perceptual learning is often thought to reflect an increase in perceptual sensitivity. However, it may also represent a decrease in response bias, with unpracticed observers acting in part on a priori hunches rather than sensory evidence. To examine whether this is the case, 55 observers practiced making a basic auditory judgment (yes/no amplitude-modulation detection or forced-choice frequency/amplitude discrimination) over multiple days. With all tasks, bias was present initially, but decreased with practice. Notably, this was the case even on supposedly “bias-free,” 2-alternative forced-choice, tasks. In those tasks, observers did not favor the same response throughout (stationary bias), but did favor whichever response had been correct on previous trials (nonstationary bias). Means of correcting for bias are described. When applied, these showed that at least 13% of perceptual learning on a forced-choice task was due to reduction in bias. In other situations, changes in bias were shown to obscure the true extent of learning, with changes in estimated sensitivity increasing once bias was corrected for. The possible causes of bias and the implications for our understanding of perceptual learning are discussed.
Collapse
Affiliation(s)
- Pete R Jones
- Medical Research Council (MRC) Institute of Hearing Research
| | - David R Moore
- Medical Research Council (MRC) Institute of Hearing Research
| | | | - Sygal Amitay
- Medical Research Council (MRC) Institute of Hearing Research
| |
Collapse
|
25
|
Deborah AH, Karima S. Hemodynamic imaging of the auditory cortex. HANDBOOK OF CLINICAL NEUROLOGY 2015; 129:257-75. [PMID: 25726274 DOI: 10.1016/b978-0-444-62630-1.00015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Over the past 20 years or so, functional magnetic resonance imaging (fMRI) has proven to be an influential tool for measuring perceptual and cognitive processing non-invasively in the human brain. This article provides a brief yet comprehensive overview of this dominant method for human auditory neuroscience, providing the reader with knowledge about the practicalities of using this technique to assess central auditory coding. Key learning objectives include developing an understanding of the basic MR physics underpinning the technique, the advantage of auditory fMRI over other current neuroimaging alternatives, and highlighting some of the practical considerations involved in setting up, running, and analyzing an auditory fMRI experiment. The future utility of fMRI and anticipated technical developments is also briefly evaluated. Throughout the review, key concepts are illustrated using specific author examples, with particular emphasis on fMRI findings that address questions pertaining to basic sound coding (such as frequency and pitch).
Collapse
Affiliation(s)
- Ann Hall Deborah
- National Institute for Health Research, Nottingham Hearing Biomedical Research Unit, University of Nottingham, Nottingham, UK.
| | - Susi Karima
- Division of Psychology, School of Social Sciences, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
26
|
Attention modulates cortical processing of pitch feedback errors in voice control. Sci Rep 2015; 5:7812. [PMID: 25589447 PMCID: PMC4295089 DOI: 10.1038/srep07812] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/10/2014] [Indexed: 11/23/2022] Open
Abstract
Considerable evidence has shown that unexpected alterations in auditory feedback elicit fast compensatory adjustments in vocal production. Although generally thought to be involuntary in nature, whether these adjustments can be influenced by attention remains unknown. The present event-related potential (ERP) study aimed to examine whether neurobehavioral processing of auditory-vocal integration can be affected by attention. While sustaining a vowel phonation and hearing pitch-shifted feedback, participants were required to either ignore the pitch perturbations, or attend to them with low (counting the number of perturbations) or high attentional load (counting the type of perturbations). Behavioral results revealed no systematic change of vocal response to pitch perturbations irrespective of whether they were attended or not. At the level of cortex, there was an enhancement of P2 response to attended pitch perturbations in the low-load condition as compared to when they were ignored. In the high-load condition, however, P2 response did not differ from that in the ignored condition. These findings provide the first neurophysiological evidence that auditory-motor integration in voice control can be modulated as a function of attention at the level of cortex. Furthermore, this modulatory effect does not lead to a general enhancement but is subject to attentional load.
Collapse
|
27
|
Top-down controlled and bottom-up triggered orienting of auditory attention to pitch activate overlapping brain networks. Brain Res 2014; 1626:136-45. [PMID: 25557401 DOI: 10.1016/j.brainres.2014.12.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/20/2014] [Accepted: 12/23/2014] [Indexed: 11/23/2022]
Abstract
A number of previous studies have suggested segregated networks of brain areas for top-down controlled and bottom-up triggered orienting of visual attention. However, the corresponding networks involved in auditory attention remain less studied. Our participants attended selectively to a tone stream with either a lower pitch or higher pitch in order to respond to infrequent changes in duration of attended tones. The participants were also required to shift their attention from one stream to the other when guided by a visual arrow cue. In addition to these top-down controlled cued attention shifts, infrequent task-irrelevant louder tones occurred in both streams to trigger attention in a bottom-up manner. Both cued shifts and louder tones were associated with enhanced activity in the superior temporal gyrus and sulcus, temporo-parietal junction, superior parietal lobule, inferior and middle frontal gyri, frontal eye field, supplementary motor area, and anterior cingulate gyrus. Thus, the present findings suggest that in the auditory modality, unlike in vision, top-down controlled and bottom-up triggered attention activate largely the same cortical networks. Comparison of the present results with our previous results from a similar experiment on spatial auditory attention suggests that fronto-parietal networks of attention to location or pitch overlap substantially. However, the auditory areas in the anterior superior temporal cortex might have a more important role in attention to the pitch than location of sounds. This article is part of a Special Issue entitled SI: Prediction and Attention.
Collapse
|
28
|
Selective modulation of auditory cortical alpha activity in an audiovisual spatial attention task. J Neurosci 2014; 34:6634-9. [PMID: 24806688 DOI: 10.1523/jneurosci.4813-13.2014] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite substantial research on attentional modulations of visual alpha activity, doubts remain as to the existence and functional relevance of auditory cortical alpha-band oscillations. It has been argued that auditory cortical alpha does not exist, cannot be measured noninvasively, or that it is dependent on visual alpha generators. This study aimed to address these remaining doubts concerning auditory cortical alpha. A magnetoencephalography study was conducted using a combined audiovisual spatial cueing paradigm. In each trial, a cue indicated the side (left or right) and the modality (auditory or visual) to attend, followed by a short lateralized auditory or visual stimulus. Participants were instructed to respond to the stimuli by a button press. Results show that auditory cortical alpha power is selectively modulated by the audiospatial, but not the visuospatial, attention task. These findings provide further evidence for a distinct auditory cortical alpha generator, which can be measured noninvasively.
Collapse
|
29
|
Abstract
The fundamental perceptual unit in hearing is the 'auditory object'. Similar to visual objects, auditory objects are the computational result of the auditory system's capacity to detect, extract, segregate and group spectrotemporal regularities in the acoustic environment; the multitude of acoustic stimuli around us together form the auditory scene. However, unlike the visual scene, resolving the component objects within the auditory scene crucially depends on their temporal structure. Neural correlates of auditory objects are found throughout the auditory system. However, neural responses do not become correlated with a listener's perceptual reports until the level of the cortex. The roles of different neural structures and the contribution of different cognitive states to the perception of auditory objects are not yet fully understood.
Collapse
|
30
|
Switching auditory attention using spatial and non-spatial features recruits different cortical networks. Neuroimage 2013; 84:681-7. [PMID: 24096028 DOI: 10.1016/j.neuroimage.2013.09.061] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/21/2013] [Accepted: 09/26/2013] [Indexed: 11/23/2022] Open
Abstract
Switching attention between different stimuli of interest based on particular task demands is important in many everyday settings. In audition in particular, switching attention between different speakers of interest that are talking concurrently is often necessary for effective communication. Recently, it has been shown by multiple studies that auditory selective attention suppresses the representation of unwanted streams in auditory cortical areas in favor of the target stream of interest. However, the neural processing that guides this selective attention process is not well understood. Here we investigated the cortical mechanisms involved in switching attention based on two different types of auditory features. By combining magneto- and electro-encephalography (M-EEG) with an anatomical MRI constraint, we examined the cortical dynamics involved in switching auditory attention based on either spatial or pitch features. We designed a paradigm where listeners were cued in the beginning of each trial to switch or maintain attention halfway through the presentation of concurrent target and masker streams. By allowing listeners time to switch during a gap in the continuous target and masker stimuli, we were able to isolate the mechanisms involved in endogenous, top-down attention switching. Our results show a double dissociation between the involvement of right temporoparietal junction (RTPJ) and the left inferior parietal supramarginal part (LIPSP) in tasks requiring listeners to switch attention based on space and pitch features, respectively, suggesting that switching attention based on these features involves at least partially separate processes or behavioral strategies.
Collapse
|
31
|
Du Y, He Y, Arnott SR, Ross B, Wu X, Li L, Alain C. Rapid tuning of auditory "what" and "where" pathways by training. ACTA ACUST UNITED AC 2013; 25:496-506. [PMID: 24042339 DOI: 10.1093/cercor/bht251] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Behavioral improvement within the first hour of training is commonly explained as procedural learning (i.e., strategy changes resulting from task familiarization). However, it may additionally reflect a rapid adjustment of the perceptual and/or attentional system in a goal-directed task. In support of this latter hypothesis, we show feature-specific gains in performance for groups of participants briefly trained to use either a spectral or spatial difference between 2 vowels presented simultaneously during a vowel identification task. In both groups, the neuromagnetic activity measured during the vowel identification task following training revealed source activity in auditory cortices, prefrontal, inferior parietal, and motor areas. More importantly, the contrast between the 2 groups revealed a striking double dissociation in which listeners trained on spectral or spatial cues showed higher source activity in ventral ("what") and dorsal ("where") brain areas, respectively. These feature-specific effects indicate that brief training can implicitly bias top-down processing to a trained acoustic cue and induce a rapid recalibration of the ventral and dorsal auditory streams during speech segregation and identification.
Collapse
Affiliation(s)
- Yi Du
- Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Ontario, Canada M6A 2E1 Department of Psychology, Speech and Hearing Research Center, Key Laboratory on Machine Perception (Ministry of Education), PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China and
| | - Yu He
- Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Ontario, Canada M6A 2E1
| | - Stephen R Arnott
- Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Ontario, Canada M6A 2E1
| | - Bernhard Ross
- Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Ontario, Canada M6A 2E1
| | - Xihong Wu
- Department of Psychology, Speech and Hearing Research Center, Key Laboratory on Machine Perception (Ministry of Education), PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China and
| | - Liang Li
- Department of Psychology, Speech and Hearing Research Center, Key Laboratory on Machine Perception (Ministry of Education), PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China and
| | - Claude Alain
- Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Ontario, Canada M6A 2E1 Department of Psychology, University of Toronto, Ontario, Canada M8V 2S4
| |
Collapse
|
32
|
Role of attention in the generation and modulation of tinnitus. Neurosci Biobehav Rev 2013; 37:1754-73. [DOI: 10.1016/j.neubiorev.2013.07.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/24/2013] [Accepted: 07/11/2013] [Indexed: 01/23/2023]
|
33
|
Abstract
The challenge of understanding how the brain processes natural signals is compounded by the fact that such signals are often tied closely to specific natural behaviors and natural environments. This added complexity is especially true for auditory communication signals that can carry information at multiple hierarchical levels, and often occur in the context of other competing communication signals. Selective attention provides a mechanism to focus processing resources on specific components of auditory signals, and simultaneously suppress responses to unwanted signals or noise. Although selective auditory attention has been well-studied behaviorally, very little is known about how selective auditory attention shapes the processing on natural auditory signals, and how the mechanisms of auditory attention are implemented in single neurons or neural circuits. Here we review the role of selective attention in modulating auditory responses to complex natural stimuli in humans. We then suggest how the current understanding can be applied to the study of selective auditory attention in the context natural signal processing at the level of single neurons and populations in animal models amenable to invasive neuroscience techniques. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives".
Collapse
|
34
|
Alho K, Rinne T, Herron TJ, Woods DL. Stimulus-dependent activations and attention-related modulations in the auditory cortex: a meta-analysis of fMRI studies. Hear Res 2013; 307:29-41. [PMID: 23938208 DOI: 10.1016/j.heares.2013.08.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/22/2013] [Accepted: 08/01/2013] [Indexed: 11/28/2022]
Abstract
We meta-analyzed 115 functional magnetic resonance imaging (fMRI) studies reporting auditory-cortex (AC) coordinates for activations related to active and passive processing of pitch and spatial location of non-speech sounds, as well as to the active and passive speech and voice processing. We aimed at revealing any systematic differences between AC surface locations of these activations by statistically analyzing the activation loci using the open-source Matlab toolbox VAMCA (Visualization and Meta-analysis on Cortical Anatomy). AC activations associated with pitch processing (e.g., active or passive listening to tones with a varying vs. fixed pitch) had median loci in the middle superior temporal gyrus (STG), lateral to Heschl's gyrus. However, median loci of activations due to the processing of infrequent pitch changes in a tone stream were centered in the STG or planum temporale (PT), significantly posterior to the median loci for other types of pitch processing. Median loci of attention-related modulations due to focused attention to pitch (e.g., attending selectively to low or high tones delivered in concurrent sequences) were, in turn, centered in the STG or superior temporal sulcus (STS), posterior to median loci for passive pitch processing. Activations due to spatial processing were centered in the posterior STG or PT, significantly posterior to pitch processing loci (processing of infrequent pitch changes excluded). In the right-hemisphere AC, the median locus of spatial attention-related modulations was in the STS, significantly inferior to the median locus for passive spatial processing. Activations associated with speech processing and those associated with voice processing had indistinguishable median loci at the border of mid-STG and mid-STS. Median loci of attention-related modulations due to attention to speech were in the same mid-STG/STS region. Thus, while attention to the pitch or location of non-speech sounds seems to recruit AC areas less involved in passive pitch or location processing, focused attention to speech predominantly enhances activations in regions that already respond to human vocalizations during passive listening. This suggests that distinct attention mechanisms might be engaged by attention to speech and attention to more elemental auditory features such as tone pitch or location. This article is part of a Special Issue entitled Human Auditory Neuroimaging.
Collapse
Affiliation(s)
- Kimmo Alho
- Helsinki Collegium for Advanced Studies, University of Helsinki, PO Box 4, FI 00014 Helsinki, Finland; Institute of Behavioural Sciences, University of Helsinki, PO Box 9, FI 00014 Helsinki, Finland.
| | | | | | | |
Collapse
|
35
|
Seydell-Greenwald A, Greenberg AS, Rauschecker JP. Are you listening? Brain activation associated with sustained nonspatial auditory attention in the presence and absence of stimulation. Hum Brain Mapp 2013; 35:2233-52. [PMID: 23913818 DOI: 10.1002/hbm.22323] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 02/22/2013] [Accepted: 04/15/2013] [Indexed: 11/12/2022] Open
Abstract
Neuroimaging studies investigating the voluntary (top-down) control of attention largely agree that this process recruits several frontal and parietal brain regions. Since most studies used attention tasks requiring several higher-order cognitive functions (e.g. working memory, semantic processing, temporal integration, spatial orienting) as well as different attentional mechanisms (attention shifting, distractor filtering), it is unclear what exactly the observed frontoparietal activations reflect. The present functional magnetic resonance imaging study investigated, within the same participants, signal changes in (1) a "Simple Attention" task in which participants attended to a single melody, (2) a "Selective Attention" task in which they simultaneously ignored another melody, and (3) a "Beep Monitoring" task in which participants listened in silence for a faint beep. Compared to resting conditions with identical stimulation, all tasks produced robust activation increases in auditory cortex, cross-modal inhibition in visual and somatosensory cortex, and decreases in the default mode network, indicating that participants were indeed focusing their attention on the auditory domain. However, signal increases in frontal and parietal brain areas were only observed for tasks 1 and 2, but completely absent for task 3. These results lead to the following conclusions: under most conditions, frontoparietal activations are crucial for attention since they subserve higher-order cognitive functions inherently related to attention. However, under circumstances that minimize other demands, nonspatial auditory attention in the absence of stimulation can be maintained without concurrent frontal or parietal activations.
Collapse
Affiliation(s)
- Anna Seydell-Greenwald
- Laboratory of Integrative Neuroscience and Cognition, Department of Neuroscience, Georgetown University Medical Center, Washington DC, 20007
| | | | | |
Collapse
|
36
|
Lee AKC, Larson E, Maddox RK, Shinn-Cunningham BG. Using neuroimaging to understand the cortical mechanisms of auditory selective attention. Hear Res 2013; 307:111-20. [PMID: 23850664 DOI: 10.1016/j.heares.2013.06.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/20/2013] [Accepted: 06/25/2013] [Indexed: 11/30/2022]
Abstract
Over the last four decades, a range of different neuroimaging tools have been used to study human auditory attention, spanning from classic event-related potential studies using electroencephalography to modern multimodal imaging approaches (e.g., combining anatomical information based on magnetic resonance imaging with magneto- and electroencephalography). This review begins by exploring the different strengths and limitations inherent to different neuroimaging methods, and then outlines some common behavioral paradigms that have been adopted to study auditory attention. We argue that in order to design a neuroimaging experiment that produces interpretable, unambiguous results, the experimenter must not only have a deep appreciation of the imaging technique employed, but also a sophisticated understanding of perception and behavior. Only with the proper caveats in mind can one begin to infer how the cortex supports a human in solving the "cocktail party" problem. This article is part of a Special Issue entitled Human Auditory Neuroimaging.
Collapse
Affiliation(s)
- Adrian K C Lee
- Institute for Learning and Brain Sciences, University of Washington, WA 98195, USA; Department of Speech & Hearing Sciences, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
37
|
Neural pathways conveying novisual information to the visual cortex. Neural Plast 2013; 2013:864920. [PMID: 23840972 PMCID: PMC3690246 DOI: 10.1155/2013/864920] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 05/22/2013] [Indexed: 11/18/2022] Open
Abstract
The visual cortex has been traditionally considered as a stimulus-driven, unimodal system with a hierarchical organization. However, recent animal and human studies have shown that the visual cortex responds to non-visual stimuli, especially in individuals with visual deprivation congenitally, indicating the supramodal nature of the functional representation in the visual cortex. To understand the neural substrates of the cross-modal processing of the non-visual signals in the visual cortex, we firstly showed the supramodal nature of the visual cortex. We then reviewed how the nonvisual signals reach the visual cortex. Moreover, we discussed if these non-visual pathways are reshaped by early visual deprivation. Finally, the open question about the nature (stimulus-driven or top-down) of non-visual signals is also discussed.
Collapse
|
38
|
Lee AKC, Rajaram S, Xia J, Bharadwaj H, Larson E, Hämäläinen MS, Shinn-Cunningham BG. Auditory selective attention reveals preparatory activity in different cortical regions for selection based on source location and source pitch. Front Neurosci 2013; 6:190. [PMID: 23335874 PMCID: PMC3538445 DOI: 10.3389/fnins.2012.00190] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/16/2012] [Indexed: 01/08/2023] Open
Abstract
In order to extract information in a rich environment, we focus on different features that allow us to direct attention to whatever source is of interest. The cortical network deployed during spatial attention, especially in vision, is well characterized. For example, visuospatial attention engages a frontoparietal network including the frontal eye fields (FEFs), which modulate activity in visual sensory areas to enhance the representation of an attended visual object. However, relatively little is known about the neural circuitry controlling attention directed to non-spatial features, or to auditory objects or features (either spatial or non-spatial). Here, using combined magnetoencephalography (MEG) and anatomical information obtained from MRI, we contrasted cortical activity when observers attended to different auditory features given the same acoustic mixture of two simultaneous spoken digits. Leveraging the fine temporal resolution of MEG, we establish that activity in left FEF is enhanced both prior to and throughout the auditory stimulus when listeners direct auditory attention to target location compared to when they focus on target pitch. In contrast, activity in the left posterior superior temporal sulcus (STS), a region previously associated with auditory pitch categorization, is greater when listeners direct attention to target pitch rather than target location. This differential enhancement is only significant after observers are instructed which cue to attend, but before the acoustic stimuli begin. We therefore argue that left FEF participates more strongly in directing auditory spatial attention, while the left STS aids auditory object selection based on the non-spatial acoustic feature of pitch.
Collapse
Affiliation(s)
- Adrian K C Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Charlestown, MA, USA ; Department of Speech and Hearing Sciences, Institute for Learning and Brain Sciences, University of Washington Seattle, WA, USA ; Center for Computational Neuroscience and Neural Technology, Boston University Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Rauschecker JP. Processing Streams in Auditory Cortex. NEURAL CORRELATES OF AUDITORY COGNITION 2013. [DOI: 10.1007/978-1-4614-2350-8_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
40
|
Criaud M, Boulinguez P. Have we been asking the right questions when assessing response inhibition in go/no-go tasks with fMRI? A meta-analysis and critical review. Neurosci Biobehav Rev 2012; 37:11-23. [PMID: 23164813 DOI: 10.1016/j.neubiorev.2012.11.003] [Citation(s) in RCA: 277] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/20/2012] [Accepted: 11/05/2012] [Indexed: 10/27/2022]
Abstract
The popular go/no-go paradigm is supposed to ensure a reliable probing of response inhibition mechanisms. Functional magnetic resonance imaging (fMRI) studies have repeatedly found a large number of structures, usually including a right lateralized parieto-frontal network and the pre-supplementary motor area (pre-SMA). However, it is unlikely that all these regions are directly related to the mechanism that actively suppresses the motor command. Since most go/no-go designs involve complex stimulus identification/detection processes, these activations may rather reflect the engagement of different cognitive processes that are intrinsically related and quite difficult to disentangle. The current critical review is based on repeated meta-analyses of 30 go/no-go fMRI experiments using the Activation Likelihood Estimate method to contrast studies using simple vs. complex stimuli. The results show that most of the activity typically elicited by no-go signals, including pre-SMA hemodynamic response, is actually driven by the engagement of high attentional or working memory resources, not by inhibitory processes per se. Implications for current methods and theories of inhibitory control are discussed, and new lines of inquiry are proposed.
Collapse
|
41
|
Elmer S. The Investigation of Simultaneous Interpreters as an Alternative Approach to Address the Signature of Multilingual Speech Processing. ZEITSCHRIFT FUR NEUROPSYCHOLOGIE 2012. [DOI: 10.1024/1016-264x/a000068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the field of cognitive neuroscience, understanding the functional, temporal, and anatomical characteristics of multilingual speech processing has previously been a topic of intense investigations. In this article, I will attempt to describe how the investigation of simultaneous interpreters can be used as a fruitful and alternative approach for better comprehending the neuronal signature of multilingual speech processing, foreign language acquisition, as well as the functional and structural adaptivity of the human brain in general. Thereby, I will primarily focus on the commonalities underlying different degrees of speech competence rather than on the differences. In this context, particular emphasis will be placed on the contribution of extra-linguistic brain functions which are necessary for accommodating cognitive and motor control mechanisms in the multilingual brain. Certainly, the framework outlined in this article will not replace the meanwhile established psycholinguistic or neuroscientific models of speech processing, but only attempts to provide a novel and alternative perspective.
Collapse
Affiliation(s)
- Stefan Elmer
- Division Neuropsychology, Institute of Psychology, University of Zurich, Switzerland
| |
Collapse
|
42
|
Harinen K, Aaltonen O, Salo E, Salonen O, Rinne T. Task-dependent activations of human auditory cortex to prototypical and nonprototypical vowels. Hum Brain Mapp 2012; 34:1272-81. [PMID: 22287197 DOI: 10.1002/hbm.21506] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/06/2011] [Accepted: 10/10/2011] [Indexed: 11/10/2022] Open
Abstract
Research in auditory neuroscience has largely neglected the possible effects of different listening tasks on activations of auditory cortex (AC). In the present study, we used high-resolution fMRI to compare human AC activations with sounds presented during three auditory and one visual task. In all tasks, subjects were presented with pairs of Finnish vowels, noise bursts with pitch and Gabor patches. In the vowel pairs, one vowel was always either a prototypical /i/ or /ae/ (separately defined for each subject) or a nonprototype. In different task blocks, subjects were either required to discriminate (same/different) vowel pairs, to rate vowel "goodness" (first/second sound was a better exemplar of the vowel class), to discriminate pitch changes in the noise bursts, or to discriminate Gabor orientation changes. We obtained distinctly different AC activation patterns to identical sounds presented during the four task conditions. In particular, direct comparisons between the vowel tasks revealed stronger activations during vowel discrimination in the anterior and posterior superior temporal gyrus (STG), while the vowel rating task was associated with increased activations in the inferior parietal lobule (IPL). We also found that AC areas in or near Heschl's gyrus (HG) were sensitive to the speech-specific difference between a vowel prototype and nonprototype during active listening tasks. These results show that AC activations to speech sounds are strongly dependent on the listening tasks.
Collapse
Affiliation(s)
- Kirsi Harinen
- Institute of Behavioural Sciences, University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|
43
|
The auditory dorsal pathway: Orienting vision. Neurosci Biobehav Rev 2011; 35:2162-73. [PMID: 21530585 DOI: 10.1016/j.neubiorev.2011.04.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 03/16/2011] [Accepted: 04/10/2011] [Indexed: 11/24/2022]
|
44
|
Rinne T, Koistinen S, Talja S, Wikman P, Salonen O. Task-dependent activations of human auditory cortex during spatial discrimination and spatial memory tasks. Neuroimage 2011; 59:4126-31. [PMID: 22062190 DOI: 10.1016/j.neuroimage.2011.10.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 10/10/2011] [Accepted: 10/18/2011] [Indexed: 11/24/2022] Open
Abstract
In the present study, we applied high-resolution functional magnetic resonance imaging (fMRI) of the human auditory cortex (AC) and adjacent areas to compare activations during spatial discrimination and spatial n-back memory tasks that were varied parametrically in difficulty. We found that activations in the anterior superior temporal gyrus (STG) were stronger during spatial discrimination than during spatial memory, while spatial memory was associated with stronger activations in the inferior parietal lobule (IPL). We also found that wide AC areas were strongly deactivated during the spatial memory tasks. The present AC activation patterns associated with spatial discrimination and spatial memory tasks were highly similar to those obtained in our previous study comparing AC activations during pitch discrimination and pitch memory (Rinne et al., 2009). Together our previous and present results indicate that discrimination and memory tasks activate anterior and posterior AC areas differently and that this anterior-posterior division is present both when these tasks are performed on spatially invariant (pitch discrimination vs. memory) or spatially varying (spatial discrimination vs. memory) sounds. These results also further strengthen the view that activations of human AC cannot be explained only by stimulus-level parameters (e.g., spatial vs. nonspatial stimuli) but that the activations observed with fMRI are strongly dependent on the characteristics of the behavioral task. Thus, our results suggest that in order to understand the functional structure of AC a more systematic investigation of task-related factors affecting AC activations is needed.
Collapse
Affiliation(s)
- Teemu Rinne
- Institute of Behavioural Sciences, University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|
45
|
Elmer S, Meyer M, Marrama L, Jäncke L. Intensive language training and attention modulate the involvement of fronto-parietal regions during a non-verbal auditory discrimination task. Eur J Neurosci 2011; 34:165-75. [PMID: 21649758 DOI: 10.1111/j.1460-9568.2011.07728.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This event-related functional magnetic resonance imaging (fMRI) study was designed in such a manner so as to contribute to the present debate on behavioural and functional transfer effects associated with intensive language training. To address this novel issue, we measured professional simultaneous interpreters and control subjects while they performed a non-verbal auditory discrimination task that primarily relies on attention and categorization functions. The fMRI results revealed that the discrimination of the target stimuli was associated with differential blood oxygen level-dependent responses in fronto-parietal regions between the two groups, even though in-scanner behavioural results did not show significant group differences. These findings are in line with previous observations showing the contribution of fronto-parietal regions to auditory attention and categorization functions. Our results imply that language training modulates brain activity in regions involved in the top-down regulation of auditory functions.
Collapse
Affiliation(s)
- Stefan Elmer
- Department of Neuropsychology, Institute of Psychology, University of Zürich, Zürich, Switzerland.
| | | | | | | |
Collapse
|
46
|
Paltoglou AE, Sumner CJ, Hall DA. Mapping feature-sensitivity and attentional modulation in human auditory cortex with functional magnetic resonance imaging. Eur J Neurosci 2011; 33:1733-41. [PMID: 21447093 PMCID: PMC3110306 DOI: 10.1111/j.1460-9568.2011.07656.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Feature-specific enhancement refers to the process by which selectively attending to a particular stimulus feature specifically increases the response in the same region of the brain that codes that stimulus property. Whereas there are many demonstrations of this mechanism in the visual system, the evidence is less clear in the auditory system. The present functional magnetic resonance imaging (fMRI) study examined this process for two complex sound features, namely frequency modulation (FM) and spatial motion. The experimental design enabled us to investigate whether selectively attending to FM and spatial motion enhanced activity in those auditory cortical areas that were sensitive to the two features. To control for attentional effort, the difficulty of the target-detection tasks was matched as closely as possible within listeners. Locations of FM-related and motion-related activation were broadly compatible with previous research. The results also confirmed a general enhancement across the auditory cortex when either feature was being attended to, as compared with passive listening. The feature-specific effects of selective attention revealed the novel finding of enhancement for the nonspatial (FM) feature, but not for the spatial (motion) feature. However, attention to spatial features also recruited several areas outside the auditory cortex. Further analyses led us to conclude that feature-specific effects of selective attention are not statistically robust, and appear to be sensitive to the choice of fMRI experimental design and localizer contrast.
Collapse
|
47
|
Rinne T. Activations of human auditory cortex during visual and auditory selective attention tasks with varying difficulty. Open Neuroimag J 2010; 4:187-93. [PMID: 21760872 PMCID: PMC3134945 DOI: 10.2174/1874440001004010187] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/07/2010] [Accepted: 10/19/2010] [Indexed: 11/22/2022] Open
Abstract
The present study was designed to directly test the hypothesis that suppression of activations to task-irrelevant sounds contributes to the attention-related modulations of auditory cortex (AC) activations observed in previous fMRI studies. Subjects selectively attended to auditory (broadband noise bursts with pitch) or visual (Gabor gratings) asynchronous fast-rate stimulus streams concurrently presented to left-ear, right-ear, above-fixation, or below-fixation. Auditory and visual task difficulty was parametrically manipulated in three levels. Behavioral data obtained during fMRI indicated that subjects achieved acceptable performance levels in all tasks and that the task-difficulty manipulation was effective. Consistent with previous studies, AC activations strongly depended on the direction of attention. AC activations to sounds were higher during auditory than during visual tasks and AC activations were higher in the hemisphere contralateral to the attended ear. However, the effects of task difficulty on AC activations were weak or non-existent. In particular, increasing task difficulty was not associated with a systematic decrease of AC activations in areas that were modulated by attention. These results suggest that suppression of AC activations to task-irrelevant sounds is likely to be small or negligible as compared with the strong activation enhancements observed in fMRI during active auditory tasks.
Collapse
Affiliation(s)
- Teemu Rinne
- Institute of Behavioural Sciences, University of Helsinki, Finland
| |
Collapse
|
48
|
Woods DL, Herron TJ, Cate AD, Yund EW, Stecker GC, Rinne T, Kang X. Functional properties of human auditory cortical fields. Front Syst Neurosci 2010; 4:155. [PMID: 21160558 PMCID: PMC3001989 DOI: 10.3389/fnsys.2010.00155] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 11/05/2010] [Indexed: 11/23/2022] Open
Abstract
While auditory cortex in non-human primates has been subdivided into multiple functionally specialized auditory cortical fields (ACFs), the boundaries and functional specialization of human ACFs have not been defined. In the current study, we evaluated whether a widely accepted primate model of auditory cortex could explain regional tuning properties of fMRI activations on the cortical surface to attended and non-attended tones of different frequency, location, and intensity. The limits of auditory cortex were defined by voxels that showed significant activations to non-attended sounds. Three centrally located fields with mirror-symmetric tonotopic organization were identified and assigned to the three core fields of the primate model while surrounding activations were assigned to belt fields following procedures similar to those used in macaque fMRI studies. The functional properties of core, medial belt, and lateral belt field groups were then analyzed. Field groups were distinguished by tonotopic organization, frequency selectivity, intensity sensitivity, contralaterality, binaural enhancement, attentional modulation, and hemispheric asymmetry. In general, core fields showed greater sensitivity to sound properties than did belt fields, while belt fields showed greater attentional modulation than core fields. Significant distinctions in intensity sensitivity and contralaterality were seen between adjacent core fields A1 and R, while multiple differences in tuning properties were evident at boundaries between adjacent core and belt fields. The reliable differences in functional properties between fields and field groups suggest that the basic primate pattern of auditory cortex organization is preserved in humans. A comparison of the sizes of functionally defined ACFs in humans and macaques reveals a significant relative expansion in human lateral belt fields implicated in the processing of speech.
Collapse
Affiliation(s)
- David L Woods
- Human Cognitive Neurophysiology Laboratory, VANCHCS Martinez, CA, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Gu JW, Halpin CF, Nam EC, Levine RA, Melcher JR. Tinnitus, diminished sound-level tolerance, and elevated auditory activity in humans with clinically normal hearing sensitivity. J Neurophysiol 2010; 104:3361-70. [PMID: 20881196 DOI: 10.1152/jn.00226.2010] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phantom sensations and sensory hypersensitivity are disordered perceptions that characterize a variety of intractable conditions involving the somatosensory, visual, and auditory modalities. We report physiological correlates of two perceptual abnormalities in the auditory domain: tinnitus, the phantom perception of sound, and hyperacusis, a decreased tolerance of sound based on loudness. Here, subjects with and without tinnitus, all with clinically normal hearing thresholds, underwent 1) behavioral testing to assess sound-level tolerance and 2) functional MRI to measure sound-evoked activation of central auditory centers. Despite receiving identical sound stimulation levels, subjects with diminished sound-level tolerance (i.e., hyperacusis) showed elevated activation in the auditory midbrain, thalamus, and primary auditory cortex compared with subjects with normal tolerance. Primary auditory cortex, but not subcortical centers, showed elevated activation specifically related to tinnitus. The results directly link hyperacusis and tinnitus to hyperactivity within the central auditory system. We hypothesize that the tinnitus-related elevations in cortical activation may reflect undue attention drawn to the auditory domain, an interpretation consistent with the lack of tinnitus-related effects subcortically where activation is less potently modulated by attentional state. The data strengthen, at a mechanistic level, analogies drawn previously between tinnitus/hyperacusis and other, nonauditory disordered perceptions thought to arise from neural hyperactivity such as chronic neuropathic pain and photophobia.
Collapse
Affiliation(s)
- Jianwen Wendy Gu
- Eaton-Peabody Lab., Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
50
|
Rauschecker JP. An expanded role for the dorsal auditory pathway in sensorimotor control and integration. Hear Res 2010; 271:16-25. [PMID: 20850511 DOI: 10.1016/j.heares.2010.09.001] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 08/08/2010] [Accepted: 09/05/2010] [Indexed: 11/30/2022]
Abstract
The dual-pathway model of auditory cortical processing assumes that two largely segregated processing streams originating in the lateral belt subserve the two main functions of hearing: identification of auditory "objects", including speech; and localization of sounds in space (Rauschecker and Tian, 2000). Evidence has accumulated, chiefly from work in humans and nonhuman primates, that an antero-ventral pathway supports the former function, whereas a postero-dorsal stream supports the latter, i.e processing of space and motion-in-space. In addition, the postero-dorsal stream has also been postulated to subserve some functions of speech and language in humans. A recent review (Rauschecker and Scott, 2009) has proposed the possibility that both functions of the postero-dorsal pathway can be subsumed under the same structural forward model: an efference copy sent from prefrontal and premotor cortex provides the basis for "optimal state estimation" in the inferior parietal lobe and in sensory areas of the posterior auditory cortex. The current article corroborates this model by adding and discussing recent evidence.
Collapse
Affiliation(s)
- Josef P Rauschecker
- Department of Physiology and Biophysics, Laboratory of Integrative Neuroscience and Cognition, Georgetown University Medical Center, New Research Building, Room WP19, Washington, DC 20057-1460, USA.
| |
Collapse
|