1
|
Lin J, Jing H, Wang J, Lucien-Cabaraux JF, Yang K, Liu W, Li X. Effects of lysine and threonine on milk yield, amino acid metabolism, and fecal microbiota of Yili lactating mares. Front Vet Sci 2024; 11:1396053. [PMID: 39021407 PMCID: PMC11251924 DOI: 10.3389/fvets.2024.1396053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
The nutritional benefits of mare milk are attracting increasing consumer interest. Limited availability due to low yield poses a challenge for widespread adoption. Although lysine and threonine are often used to enhance protein synthesis and muscle mass in horses, their impact on mare milk yield and nutrient composition remains underexplored. This study investigated the effects of lysine and threonine supplementation on 24 healthy Yili mares, mares at day 30 of lactation, over a 120-day period. The mares were divided into control and three experimental groups (six mares each) under pure grazing conditions. The control group received no amino acid supplementation, while experimental groups received varying daily doses of lysine and threonine: Group I (40 g lysine + 20 g threonine), Group II (60 g lysine + 40 g threonine), and Group III (80 g lysine + 60 g threonine). Supplementation in Group II notably increased milk yield, while Groups I and II showed higher milk fat percentages, and all experimental groups exhibited improved milk protein percentages. Additionally, blood levels of total protein, albumin, triglycerides, and glucose were reduced. Detailed analyses from Group II at peak lactation (day 60) included targeted metabolomics and microbial sequencing of milk, blood, and fecal samples. Amino acid metabolomics assessed amino acid content in mare milk and serum, while 16S rRNA gene sequencing evaluated rectal microbial composition. The results indicated that lysine and threonine supplementation significantly increased levels of threonine and creatine in the blood, and lysine, threonine, glutamine, and alanine in mare milk. Microbial analysis revealed a higher prevalence of certain bacterial families and genera, including Prevotellaceae, p_251_o5, and Rikenellaceae at the family level, and unclassified_p_251_o5, Prevotellaceae_UCG_001, and Rikenellaceae_RC9_gut_group at the genus level. Multi-omics analysis showed positive correlations between specific fecal genera and amino acids in mare milk. For instance, Prevotellaceae_UCG_003, unclassified Bacteroidetes_BS11_gut_group, and Corynebacterium were positively correlated with lysine, while unclassified Prevotellaceae was positively correlated with alanine and threonine, and Unclassified_Bacteroidales_BS11_gut_group was positively correlated with glutamine. In summary, lysine and threonine supplementation in grazing lactating mares enhanced milk production and improved milk protein and fat quality. It is recommended that herders, veterinarians, and technicians consider amino acid content in the diet of lactating mares. The optimal supplementation levels under grazing conditions for Yili horses were determined to be 60 g lysine and 40 g threonine per day. Future research should explore the molecular mechanisms by which these amino acids influence milk protein and lipid synthesis in mare mammary epithelial cells.
Collapse
Affiliation(s)
- Jianwei Lin
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat and Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Hongxin Jing
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat and Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jianwen Wang
- Xinjiang Key Laboratory of Horse Breeding and Exercise Physiology, College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | | | - Kailun Yang
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat and Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Wujun Liu
- Xinjiang Key Laboratory of Horse Breeding and Exercise Physiology, College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Xiaobin Li
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat and Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Horse Breeding and Exercise Physiology, College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
2
|
Gouveia HJCB, Manhães-de-Castro R, Costa-de-Santana BJR, Vasconcelos EEM, Silva ER, Roque A, Torner L, Guzmán-Quevedo O, Toscano AE. Creatine supplementation increases postnatal growth and strength and prevents overexpression of pro-inflammatory interleukin 6 in the hippocampus in an experimental model of cerebral palsy. Nutr Neurosci 2024; 27:425-437. [PMID: 37141266 DOI: 10.1080/1028415x.2023.2206688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
ABSTRACTObjectives: The aim of this study was thus to evaluate the effect of Cr supplementation on morphological changes and expression of pro-inflammatory cytokines in the hippocampus and on developmental parameters. Methods: Male Wistar rat pups were submitted to an experimental model of CP. Cr was administered via gavage from the 21st to the 28th postnatal day, and in water after the 28th, until the end of the experiment. Body weight (BW), food consumption (FC), muscle strength, and locomotion were evaluated. Expression of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α) were assessed in the hippocampus by quantitative real-time polymerase chain reaction. Iba1 immunoreactivity was assessed by immunocytochemistry in the hippocampal hilus. Results: Experimental CP caused increased density and activation of microglial cells, and overexpression of IL-6. The rats with CP also presented abnormal BW development and impairment of strength and locomotion. Cr supplementation was able to reverse the overexpression of IL-6 in the hippocampus and mitigate the impairments observed in BW, strength, and locomotion. Discussion: Future studies should evaluate other neurobiological characteristics, including changes in neural precursor cells and other cytokines, both pro- and anti-inflammatory.
Collapse
Affiliation(s)
- Henrique J C B Gouveia
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
- Tecnológico Nacional de México (TECNM) - Instituto Tecnológico Superior de Tacámbaro, Tacámbaro, Michoacán, Mexico
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - Raul Manhães-de-Castro
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Bárbara J R Costa-de-Santana
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
- Postgraduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Emanuel Ewerton M Vasconcelos
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Eliesly Roberto Silva
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Angélica Roque
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - Luz Torner
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - Omar Guzmán-Quevedo
- Tecnológico Nacional de México (TECNM) - Instituto Tecnológico Superior de Tacámbaro, Tacámbaro, Michoacán, Mexico
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
- Postgraduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Ana E Toscano
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
- Postgraduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil
- Department of Nursing, CAV, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
3
|
Fernandes-Pires G, Braissant O. Current and potential new treatment strategies for creatine deficiency syndromes. Mol Genet Metab 2022; 135:15-26. [PMID: 34972654 DOI: 10.1016/j.ymgme.2021.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022]
Abstract
Creatine deficiency syndromes (CDS) are inherited metabolic disorders caused by mutations in GATM, GAMT and SLC6A8 and mainly affect central nervous system (CNS). AGAT- and GAMT-deficient patients lack the functional brain endogenous creatine (Cr) synthesis pathway but express the Cr transporter SLC6A8 at blood-brain barrier (BBB), and can thus be treated by oral supplementation of high doses of Cr. For Cr transporter deficiency (SLC6A8 deficiency or CTD), current treatment strategies benefit one-third of patients. However, as their phenotype is not completely reversed, and for the other two-thirds of CTD patients, the development of novel more effective therapies is needed. This article aims to review the current knowledge on Cr metabolism and CDS clinical aspects, highlighting their current treatment possibilities and the most recent research perspectives on CDS potential therapeutics designed, in particular, to bring new options for the treatment of CTD.
Collapse
Affiliation(s)
- Gabriella Fernandes-Pires
- Service of Clinical Chemistry, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
| | - Olivier Braissant
- Service of Clinical Chemistry, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
4
|
Ardalan M, Miesner MD, Reinhardt CD, Thomson DU, Armendariz CK, Smith JS, Titgemeyer EC. Effects of guanidinoacetic acid supplementation on nitrogen retention and methionine flux in cattle. J Anim Sci 2021; 99:6308973. [PMID: 34165572 DOI: 10.1093/jas/skab172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Creatine stores high-energy phosphate bonds in muscle and is synthesized in the liver through methylation of guanidinoacetic acid (GAA). Supplementation of GAA may therefore increase methyl group requirements, and this may affect methyl group utilization. Our experiment evaluated the metabolic responses of growing cattle to postruminal supplementation of GAA, in a model where methionine (Met) was deficient, with and without Met supplementation. Seven ruminally cannulated Holstein steers (161 kg initial body weight [BW]) were limit-fed a soybean hull-based diet (2.7 kg/d dry matter) and received continuous abomasal infusions of an essential amino acid (AA) mixture devoid of Met to ensure that no AA besides Met limited animal performance. To provide energy without increasing the microbial protein supply, all steers received ruminal infusions of 200 g/d acetic acid, 200 g/d propionic acid, and 50 g/d butyric acid, as well as abomasal infusions of 300 g/d glucose. Treatments, provided abomasally, were arranged as a 2 × 3 factorial in a split-plot design, and included 0 or 6 g/d of l-Met and 0, 7.5, and 15 g/d of GAA. The experiment included six 10-d periods. Whole body Met flux was measured using continuous jugular infusion of 1-13C-l-Met and methyl-2H3-l-Met. Nitrogen retention was elevated by Met supplementation (P < 0.01). Supplementation with GAA tended to increase N retention when it was supplemented along with Met, but not when it was supplemented without Met. Supplementing GAA linearly increased plasma concentrations of GAA and creatine (P < 0.001), but treatments did not affect urinary excretion of GAA, creatine, or creatinine. Supplementation with Met decreased plasma homocysteine (P < 0.01). Supplementation of GAA tended (P = 0.10) to increase plasma homocysteine when no Met was supplemented, but not when 6 g/d Met was provided. Protein synthesis and protein degradation were both increased by GAA supplementation when no Met was supplemented, but decreased by GAA supplementation when 6 g/d Met were provided. Loss of Met through transsulfuration was increased by Met supplementation, whereas synthesis of Met from remethylation of homocysteine was decreased by Met supplementation. No differences in transmethylation, transsulfuration, or remethylation reactions were observed in response to GAA supplementation. The administration of GAA, when methyl groups are not limiting, has the potential to improve lean tissue deposition and cattle growth.
Collapse
Affiliation(s)
- Mehrnaz Ardalan
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Matt D Miesner
- Department of Clinical Sciences, Kansas State University, Manhattan, KS 66506, USA
| | - Christopher D Reinhardt
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Daniel U Thomson
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Cheryl K Armendariz
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - J Scott Smith
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Evan C Titgemeyer
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
5
|
Rubio-Atonal LF, Serrano-García N, Limón-Pacheco JH, Pedraza-Chaverri J, Orozco-Ibarra M. Cobalt protoporphyrin decreases food intake, body weight, and the number of neurons in the Nucleus Accumbens in female rats. Brain Res 2021; 1758:147337. [PMID: 33548272 DOI: 10.1016/j.brainres.2021.147337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Cobalt protoporphyrin (CoPP) is a potent heme oxygenase-1 inductor that produces temporary hypophagia and chronic weight loss. A complete description of this effect and the underlying mechanisms are unknown. In this work, we challenged the ability of CoPP to produce changes in rat behavior and cellular alterations in the Nucleus Accumbens that would explain those effects. We subcutaneously administered 25 µmol/kgbody weight CoPP in female rats and determined body weight, food intake, hyperactivity, and anxiety-like behavior, as well as the number of neurons and glial cells in the Nucleus Accumbens. CoPP significantly reduced food intake, water consumption, and body weight. Behavioral tests showed that anxiety-like behaviors and locomotor activity were not modified five days after the administration of CoPP. We also found a reduced number of neurons in the Nucleus Accumbens Shell. The above results could be relevant to diseases like anorexia, so it is necessary to deepen the study about the molecular mechanisms involved in reducing the food intake and weight loss elicited by CoPP.
Collapse
Affiliation(s)
- Luis Fernando Rubio-Atonal
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, La Fama, Alcaldía Tlalpan, CP 14269, Ciudad de México, Mexico
| | - Norma Serrano-García
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, La Fama, Alcaldía Tlalpan, CP 14269, Ciudad de México, Mexico
| | - Jorge Humberto Limón-Pacheco
- Laboratorio de Biología Celular y Tisular, Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Cerrada de Palomas S/N, Lomas de San Isidro, Alcaldía Miguel Hidalgo, CP 11200, Ciudad de México, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyoacán, CP 04510, Ciudad de México, Mexico
| | - Marisol Orozco-Ibarra
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, La Fama, Alcaldía Tlalpan, CP 14269, Ciudad de México, Mexico.
| |
Collapse
|
6
|
Effects of guanidinoacetic acid supplementation on growth performance, nutrient digestion, rumen fermentation and blood metabolites in Angus bulls. Animal 2020; 14:2535-2542. [PMID: 32580813 DOI: 10.1017/s1751731120001603] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Guanidinoacetic acid (GAA) can improve the growth performance of bulls. This study investigated the influences of GAA addition on growth, nutrient digestion, ruminal fermentation and serum metabolites in bulls. Forty-eight Angus bulls were randomly allocated to experimental treatments, that is, control, low-GAA (LGAA), medium-GAA (MGAA) and high-GAA (HGAA), with GAA supplementation at 0, 0.3, 0.6 and 0.9 g/kg DM, respectively. Bulls were fed a basal diet containing 500 g/kg DM concentrate and 500 g/kg DM roughage. The experimental period was 104 days, with 14 days for adaptation and 90 days for data collection. Bulls in the MGAA and HGAA groups had higher DM intake and average daily gain than bulls in the LGAA and control groups. The feed conversion ratio was lowest in MGAA and highest in the control. Bulls receiving 0.9 g/kg DM GAA addition had higher digestibility of DM, organic matter, NDF and ADF than bulls in other groups. The digestibility of CP was higher for HGAA than for LGAA and control. The ruminal pH was lower for MGAA, and the total volatile fatty acid concentration was greater for MGAA and HGAA than for the control. The acetate proportion and acetate-to-propionate ratio were lower for MGAA than for LGAA and control. The propionate proportion was higher for MGAA than for control. Bulls receiving GAA addition showed decreased ruminal ammonia N. Bulls in MGAA and HGAA had higher cellobiase, pectinase and protease activities and Butyrivibrio fibrisolvens, Prevotella ruminicola and Ruminobacter amylophilus populations than bulls in LGAA and control. However, the total protozoan population was lower for MGAA and HGAA than for LGAA and control. The total bacterial and Ruminococcus flavefaciens populations increased with GAA addition. The blood level of creatine was higher for HGAA, and the activity of l-arginine glycine amidine transferase was lower for MGAA and HGAA, than for control. The blood activity of guanidine acetate N-methyltransferase and the level of folate decreased in the GAA addition groups. The results indicated that dietary addition of 0.6 or 0.9 g/kg DM GAA improved growth performance, nutrient digestion and ruminal fermentation in bulls.
Collapse
|
7
|
Aziza A, Mahmoud R, Zahran E, Gadalla H. Dietary supplementation of guanidinoacetic acid improves growth, biochemical parameters, antioxidant capacity and cytokine responses in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2020; 97:367-374. [PMID: 31866449 DOI: 10.1016/j.fsi.2019.12.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
A total of 180 unsexed Nile Tilapia fish (initial weight, 21 g) fed isonitrogenous (32%), isocaloric (3000 kcal/kg) diets containing different levels of guanidinoacetic acid (GAA) at levels of (GAA1, 0.06%, GAA2, 0.12%, GAA3, 0.18%); for 60 days. Results showed higher final body weight (FBW) and body weight gain (BWG) in groups supplemented with different levels of GAA. Specific growth rate (SGR) was the highest in groups supplemented with 0.12% and 0.18% GAA. Lipid % of whole-body composition was higher in all groups excluding GAA3 group. Serum creatine kinase (CK) activity, cholesterol, and creatinine levels showed a marked significant (P < 0.05) increase in all GAA supplemented groups compared to the control one. Triglycerides level demonstrated a higher elevation (P < 0.05) in both GAA2 and GAA3 supplemented groups. No significant observed in total protein, albumin, globulin, and A/G ratio. Lipid peroxidation marker (malondialdehyde/MDA) is markedly decreased along with a significant increase of superoxide dismutase (SOD), reduced glutathione (GSH), and nitric oxide (NO) levels in both GAA2 and GAA3 compared to other groups. Similarly, interleukin 1β (IL-1β) and tumor necrosis factor (TNF-α) gene expression levels were downregulated along with upregulation of transforming growth factor β1 (TGF-β1) at higher GAA levels, particularly at 0.18%. Our findings give important insights for the growth promoting, antioxidant and immunomodulatory effects of GAA supplemented diet particularly at level of 0.18%.
Collapse
Affiliation(s)
- Abeer Aziza
- Department of Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Rania Mahmoud
- Department of Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Eman Zahran
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Hossam Gadalla
- Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
8
|
Cassol G, Godinho DB, de Zorzi VN, Farinha JB, Della-Pace ID, de Carvalho Gonçalves M, Oliveira MS, Furian AF, Fighera MR, Royes LFF. Potential therapeutic implications of ergogenic compounds on pathophysiology induced by traumatic brain injury: A narrative review. Life Sci 2019; 233:116684. [DOI: 10.1016/j.lfs.2019.116684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022]
|
9
|
Li J, Zhang L, Fu Y, Li Y, Jiang Y, Zhou G, Gao F. Creatine Monohydrate and Guanidinoacetic Acid Supplementation Affects the Growth Performance, Meat Quality, and Creatine Metabolism of Finishing Pigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9952-9959. [PMID: 30173511 DOI: 10.1021/acs.jafc.8b02534] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study aimed to investigate the effects of creatine monohydrate (CMH) and guanidinoacetic acid (GAA) supplementation on the growth performance, meat quality, and creatine metabolism of finishing pigs. The pigs were randomly allocated to three treatment groups: the control group, CMH group, and GAA group. In comparison to the control group, CMH treatment increased average daily feed intake and GAA treatment increased average daily feed intake and average daily gain of pigs. In addition, CMH and GAA treatment increased pH45 min, myofibrillar protein solubility, and calpain 1 mRNA expression level and decreased the drip loss and shear force value in longissimus dorsi or semitendinosus muscle. Moreover, CMH and GAA supplementation increased the concentrations of creatine and phosphocreatine and the mRNA expressions of guanidinoacetate N-methyltransferase and creatine transporter in longissimus dorsi muscle, semitendinosus muscle, liver, or kidneys and decreased the mRNA expressions of arginine:glycine amidinotransferase in kidneys. In conclusion, CMH and GAA supplementation could improve the growth performance and meat quality and alter creatine metabolism of finishing pigs.
Collapse
Affiliation(s)
- Jiaolong Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Key Laboratory of Gastrointestinal Nutrition and Animal Health of Jiangsu Province, and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Key Laboratory of Gastrointestinal Nutrition and Animal Health of Jiangsu Province, and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Yanan Fu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Key Laboratory of Gastrointestinal Nutrition and Animal Health of Jiangsu Province, and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Yanjiao Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Key Laboratory of Gastrointestinal Nutrition and Animal Health of Jiangsu Province, and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Yun Jiang
- Ginling College , Nanjing Normal University , Nanjing , Jiangsu 210024 , People's Republic of China
| | - Guanghong Zhou
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Key Laboratory of Gastrointestinal Nutrition and Animal Health of Jiangsu Province, and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Key Laboratory of Gastrointestinal Nutrition and Animal Health of Jiangsu Province, and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| |
Collapse
|
10
|
Rempel LA, Vallet JL, Nonneman DJ. Characterization of plasma metabolites at late gestation and lactation in early parity sows on production and post-weaning reproductive performance. J Anim Sci 2018; 96:521-531. [PMID: 29385465 DOI: 10.1093/jas/skx066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/19/2017] [Indexed: 11/12/2022] Open
Abstract
Lactation is a very energy demanding period for sows. The current study provides a better understanding of the biochemical response of first- (n = 246) or second-parity (n = 127) sows during late gestation through lactation and assesses relationships with piglet production and dam reproductive performance. Plasma samples were collected from first- or second-parity dams at late gestation (110 d gestation [d110G]), d 1 post-farrowing (d1PF), and weaning (WN) then analyzed for various stress and protein metabolism compounds, including; creatine, creatine phosphokinase (CPK) activity, creatinine, urea nitrogen, albumin, and lactate. Litter performance was measured as number of piglets nursed and piglet ADG. Post-weaning reproductive performance was assessed by measuring weaning-to-estrus interval (WEI) and subsequent ovulation rate collected at time of harvest. Plasma creatine and CPK activity increased (P < 0.05) between d110G and d1PF. Plasma creatinine decreased (P < 0.05) from d110G through WN in first-parity dams, but remained similar between d110G and d1PF before declining (P < 0.05) at WN in second-parity dams. Plasma urea nitrogen increased (P < 0.05) over the course of the study and was negatively (P < 0.05) associated with piglet ADG at d110G and d1PF and with ovulation rate at d110G (P < 0.05). Similarly, plasma albumin increased (P < 0.05) in first-parity dams over the course of the study, whereas it plateaued (P < 0.05) at d1PF and remained similar (P > 0.10) through WN in second-parity dams. First-parity dams had less (P < 0.05) plasma lactate at d110G than at d1PF or WN. However, second-parity dams had increased (P < 0.05) plasma lactate at d110G and d1PF, then decreased (P < 0.05) levels at WN. Plasma lactate at WN was positively (P < 0.05) associated with WEI in first-parity dams, but negatively (P < 0.05) related to WEI at d1PF in second-parity dams. Plasma lactate levels at all time points were positively (P < 0.05) associated with ovulation rate in second-parity dams. The biochemical profile of these dams differed by parity and merits further investigations into these differences to identify methods to improve physiological response to lactation for improved animal welfare, production, and reproductive performance.
Collapse
Affiliation(s)
- Lea A Rempel
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE
| | | | - Dan J Nonneman
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE
| |
Collapse
|
11
|
Haan YC, Oudman I, Diemer FS, Karamat FA, van Valkengoed IG, van Montfrans GA, Brewster LM. Creatine kinase as a marker of obesity in a multi-ethnic population. Mol Cell Endocrinol 2017; 442:24-31. [PMID: 27894867 DOI: 10.1016/j.mce.2016.11.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/10/2016] [Accepted: 11/23/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Creatine kinase (CK), the central regulatory enzyme of energy metabolism, is particularly high in type II skeletal muscle fibers, which are associated with insulin resistance and obesity. As resting plasma CK is mainly derived from skeletal muscle, we assessed whether plasma CK is associated with markers of obesity. METHODS In this cross-sectional study, we analyzed a random sample of the multi-ethnic population of Amsterdam, the Netherlands, consisting of 1444 subjects aged 34-60 years. The primary outcome was the independent association between plasma CK after rest and waist circumference. Other outcomes included waist-to-hip ratio and body mass index. RESULTS Mean waist circumference increased from the first through the third CK tertile, respectively 90.3 (SD 13.4), 93.2 (SD 14.3), and 94.4 (SD 13.3) cm (p < 0.001 for differences between tertiles). The increase in waist circumference was 8.91 (95% CI 5.35 to 12.47) cm per log CK increase after adjustment for age, sex, African ethnicity, educational level, physical activity and plasma creatinine. Similarly, CK was independently associated with waist-to-hip ratio and body mass index, with an increase of respectively 0.05 (95% CI 0.03 to 0.07) and 3.6 (95% CI 2.3 to 5.0) kg/m2 per log CK increase. CONCLUSIONS Plasma CK is independently associated with measures of obesity in a multi-ethnic population. This is in line with the central role of type II skeletal muscle fibers in energy metabolism and obesity. Prospective studies should assess whether resting plasma CK could be an easy accessible marker of CK rich type II fiber predominance that helps identify individuals at risk for obesity.
Collapse
Affiliation(s)
- Yentl C Haan
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Inge Oudman
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Frederieke S Diemer
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Department of Cardiology, Academic Hospital Paramaribo, Flustraat 1, Paramaribo, Suriname
| | - Fares A Karamat
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Irene G van Valkengoed
- Department of Social Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Gert A van Montfrans
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Department of Internal Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Lizzy M Brewster
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Department of Social Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Department of Internal Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Department of Public Health, Anton de Kom University of Suriname, Paramaribo, Suriname
| |
Collapse
|
12
|
Rackayova V, Cudalbu C, Pouwels PJW, Braissant O. Creatine in the central nervous system: From magnetic resonance spectroscopy to creatine deficiencies. Anal Biochem 2016; 529:144-157. [PMID: 27840053 DOI: 10.1016/j.ab.2016.11.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
Creatine (Cr) is an important organic compound acting as intracellular high-energy phosphate shuttle and in energy storage. While located in most cells where it plays its main roles in energy metabolism and cytoprotection, Cr is highly concentrated in muscle and brain tissues, in which Cr also appears to act in osmoregulation and neurotransmission. This review discusses the basis of Cr metabolism, synthesis and transport within brain cells. The importance of Cr in brain function and the consequences of its impaired metabolism in primary and secondary Cr deficiencies are also discussed. Cr and phosphocreatine (PCr) in living systems can be well characterized using in vivo magnetic resonance spectroscopy (MRS). This review describes how 1H MRS allows the measurement of Cr and PCr, and how 31P MRS makes it possible to estimate the creatine kinase (CK) rate constant and so detect dynamic changes in the Cr/PCr/CK system. Absolute quantification by MRS using creatine as internal reference is also debated. The use of in vivo MRS to study brain Cr in a non-invasive way is presented, as well as its use in clinical and preclinical studies, including diagnosis and treatment follow-up in patients.
Collapse
Affiliation(s)
- Veronika Rackayova
- Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cristina Cudalbu
- Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Petra J W Pouwels
- Department of Physics and Medical Technology, VU University Medical Center, Amsterdam, The Netherlands
| | - Olivier Braissant
- Service of Biomedicine, Neurometabolic Unit, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
13
|
Ganesan M, Feng D, Barton RW, Thomes PG, McVicker BL, Tuma DJ, Osna NA, Kharbanda KK. Creatine Supplementation Does Not Prevent the Development of Alcoholic Steatosis. Alcohol Clin Exp Res 2016; 40:2312-2319. [PMID: 27581622 DOI: 10.1111/acer.13214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/09/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Alcohol-induced reduction in the hepatocellular S-adenosylmethionine (SAM):S-adenosylhomocysteine (SAH) ratio impairs the activities of many SAM-dependent methyltransferases. These impairments ultimately lead to the generation of several hallmark features of alcoholic liver injury including steatosis. Guanidinoacetate methyltransferase (GAMT) is an important enzyme that catalyzes the final reaction in the creatine biosynthetic process. The liver is a major site for creatine synthesis which places a substantial methylation burden on this organ as GAMT-mediated reactions consume as much as 40% of all the SAM-derived methyl groups. We hypothesized that dietary creatine supplementation could potentially spare SAM, preserve the hepatocellular SAM:SAH ratio, and thereby prevent the development of alcoholic steatosis and other consequences of impaired methylation reactions. METHODS For these studies, male Wistar rats were pair-fed the Lieber-DeCarli control or ethanol (EtOH) diet with or without 1% creatine supplementation. At the end of 4 to 5 weeks of feeding, relevant biochemical and histological analyses were performed. RESULTS We observed that creatine supplementation neither prevented alcoholic steatosis nor attenuated the alcohol-induced impairments in proteasome activity. The lower hepatocellular SAM:SAH ratio seen in the EtOH-fed rats was also not normalized or SAM levels spared when these rats were fed the creatine-supplemented EtOH diet. However, a >10-fold increased level of creatine was observed in the liver, serum, and hearts of rats fed the creatine-supplemented diets. CONCLUSIONS Overall, dietary creatine supplementation did not prevent alcoholic liver injury despite its known efficacy in preventing high-fat-diet-induced steatosis. Betaine, a promethylating agent that maintains the hepatocellular SAM:SAH, still remains our best option for treating alcoholic steatosis.
Collapse
Affiliation(s)
- Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dan Feng
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ryan W Barton
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Paul G Thomes
- Department of Internal Medicine, Carolinas Medical Center, Charlotte, North Carolina
| | - Benita L McVicker
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dean J Tuma
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
14
|
Hanna-El-Daher L, Braissant O. Creatine synthesis and exchanges between brain cells: What can be learned from human creatine deficiencies and various experimental models? Amino Acids 2016; 48:1877-95. [PMID: 26861125 DOI: 10.1007/s00726-016-2189-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022]
Abstract
While it has long been thought that most of cerebral creatine is of peripheral origin, the last 20 years has provided evidence that the creatine synthetic pathway (AGAT and GAMT enzymes) is expressed in the brain together with the creatine transporter (SLC6A8). It has also been shown that SLC6A8 is expressed by microcapillary endothelial cells at the blood-brain barrier, but is absent from surrounding astrocytes, raising the concept that the blood-brain barrier has a limited permeability for peripheral creatine. The first creatine deficiency syndrome in humans was also discovered 20 years ago (GAMT deficiency), followed later by AGAT and SLC6A8 deficiencies, all three diseases being characterized by creatine deficiency in the CNS and essentially affecting the brain. By reviewing the numerous and latest experimental studies addressing creatine transport and synthesis in the CNS, as well as the clinical and biochemical characteristics of creatine-deficient patients, our aim was to delineate a clearer view of the roles of the blood-brain and blood-cerebrospinal fluid barriers in the transport of creatine and guanidinoacetate between periphery and CNS, and on the intracerebral synthesis and transport of creatine. This review also addresses the question of guanidinoacetate toxicity for brain cells, as probably found under GAMT deficiency.
Collapse
MESH Headings
- Amidinotransferases/deficiency
- Amidinotransferases/genetics
- Amidinotransferases/metabolism
- Amino Acid Metabolism, Inborn Errors/genetics
- Amino Acid Metabolism, Inborn Errors/metabolism
- Amino Acid Metabolism, Inborn Errors/pathology
- Animals
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/pathology
- Brain Diseases, Metabolic, Inborn/genetics
- Brain Diseases, Metabolic, Inborn/metabolism
- Brain Diseases, Metabolic, Inborn/pathology
- Capillaries/metabolism
- Capillaries/pathology
- Creatine/biosynthesis
- Creatine/deficiency
- Creatine/genetics
- Creatine/metabolism
- Developmental Disabilities/genetics
- Developmental Disabilities/metabolism
- Developmental Disabilities/pathology
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Guanidinoacetate N-Methyltransferase/deficiency
- Guanidinoacetate N-Methyltransferase/genetics
- Guanidinoacetate N-Methyltransferase/metabolism
- Humans
- Intellectual Disability/genetics
- Intellectual Disability/metabolism
- Intellectual Disability/pathology
- Language Development Disorders/genetics
- Language Development Disorders/metabolism
- Language Development Disorders/pathology
- Mental Retardation, X-Linked/genetics
- Mental Retardation, X-Linked/metabolism
- Mental Retardation, X-Linked/pathology
- Movement Disorders/congenital
- Movement Disorders/genetics
- Movement Disorders/metabolism
- Movement Disorders/pathology
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Plasma Membrane Neurotransmitter Transport Proteins/deficiency
- Plasma Membrane Neurotransmitter Transport Proteins/genetics
- Plasma Membrane Neurotransmitter Transport Proteins/metabolism
- Speech Disorders/genetics
- Speech Disorders/metabolism
- Speech Disorders/pathology
Collapse
Affiliation(s)
- Layane Hanna-El-Daher
- Service of Biomedicine, Neurometabolic Unit, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Olivier Braissant
- Service of Biomedicine, Neurometabolic Unit, Lausanne University Hospital, 1011, Lausanne, Switzerland.
| |
Collapse
|
15
|
Kharbanda KK, Todero SL, Moats JC, Harris RM, Osna NA, Thomes PG, Tuma DJ. Alcohol consumption decreases rat hepatic creatine biosynthesis via altered guanidinoacetate methyltransferase activity. Alcohol Clin Exp Res 2014; 38:641-8. [PMID: 24256608 DOI: 10.1111/acer.12306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/17/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND We have previously shown that decreased S-adenosylmethionine (SAM):S-adenosylhomocysteine (SAH) ratio generated in livers of alcohol-fed rats can impair the activities of many SAM-dependent methyltransferases. One such methyltransferase is guanidinoacetate methyltransferase (GAMT) that catalyzes the last step of creatine synthesis. As GAMT is the major utilizer of SAM, the purpose of the study was to examine the effects of ethanol (EtOH) on liver creatine levels and GAMT activity. METHODS Male Wistar rats were pair-fed the Lieber-DeCarli control and EtOH diet for 4 to 5 weeks. At the end of the feeding regimen, the liver, kidney, and blood were removed from these rats for subsequent biochemical analyses. RESULTS We observed ~60% decrease in creatine levels in the livers from EtOH-fed rats as compared to controls. The reduction in creatine levels correlated with lower SAM:SAH ratio observed in the livers of the EtOH-fed rats. Further, in vitro experiments with cell-free system and hepatic cells revealed it is indeed elevated SAH and lower SAM:SAH ratio that directly impairs GAMT activity and significantly reduces creatine synthesis. EtOH intake also slightly decreases the hepatocellular uptake of the creatine precursor, guanidinoacetate (GAA), and the GAMT enzyme expression that could additionally contribute to reduced liver creatine synthesis. The consequences of impaired hepatic creatine synthesis by chronic EtOH consumption include (i) increased toxicity due to GAA accumulation in the liver; (ii) reduced protection due to lower creatine levels in the liver, and (iii) reduced circulating and cardiac creatine levels. CONCLUSIONS Chronic EtOH consumption affects the hepatic creatine biosynthetic pathway leading to detrimental consequences not only in the liver but could also affect distal organs such as the heart that depend on a steady supply of creatine from the liver.
Collapse
Affiliation(s)
- Kusum K Kharbanda
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska; Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | | | | | | | |
Collapse
|
16
|
van de Kamp JM, Betsalel OT, Mercimek-Mahmutoglu S, Abulhoul L, Grünewald S, Anselm I, Azzouz H, Bratkovic D, de Brouwer A, Hamel B, Kleefstra T, Yntema H, Campistol J, Vilaseca MA, Cheillan D, D’Hooghe M, Diogo L, Garcia P, Valongo C, Fonseca M, Frints S, Wilcken B, von der Haar S, Meijers-Heijboer HE, Hofstede F, Johnson D, Kant SG, Lion-Francois L, Pitelet G, Longo N, Maat-Kievit JA, Monteiro JP, Munnich A, Muntau AC, Nassogne MC, Osaka H, Ounap K, Pinard JM, Quijano-Roy S, Poggenburg I, Poplawski N, Abdul-Rahman O, Ribes A, Arias A, Yaplito-Lee J, Schulze A, Schwartz CE, Schwenger S, Soares G, Sznajer Y, Valayannopoulos V, Van Esch H, Waltz S, Wamelink MMC, Pouwels PJW, Errami A, van der Knaap MS, Jakobs C, Mancini GM, Salomons GS. Phenotype and genotype in 101 males with X-linked creatine transporter deficiency. J Med Genet 2013; 50:463-72. [DOI: 10.1136/jmedgenet-2013-101658] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
17
|
Oudman I, Clark JF, Brewster LM. The effect of the creatine analogue beta-guanidinopropionic acid on energy metabolism: a systematic review. PLoS One 2013; 8:e52879. [PMID: 23326362 PMCID: PMC3541392 DOI: 10.1371/journal.pone.0052879] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 11/23/2012] [Indexed: 11/19/2022] Open
Abstract
Background Creatine kinase plays a key role in cellular energy transport. The enzyme transfers high-energy phosphoryl groups from mitochondria to subcellular sites of ATP hydrolysis, where it buffers ADP concentration by catalyzing the reversible transfer of the high-energy phosphate moiety (P) between creatine and ADP. Cellular creatine uptake is competitively inhibited by beta-guanidinopropionic acid. This substance is marked as safe for human use, but the effects are unclear. Therefore, we systematically reviewed the effect of beta-guanidinopropionic acid on energy metabolism and function of tissues with high energy demands. Methods We performed a systematic review and searched the electronic databases Pubmed, EMBASE, the Cochrane Library, and LILACS from their inception through March 2011. Furthermore, we searched the internet and explored references from textbooks and reviews. Results After applying the inclusion criteria, we retrieved 131 publications, mainly considering the effect of chronic oral administration of beta-guanidinopropionic acid (0.5 to 3.5%) on skeletal muscle, the cardiovascular system, and brain tissue in animals. Beta-guanidinopropionic acid decreased intracellular creatine and phosphocreatine in all tissues studied. In skeletal muscle, this effect induced a shift from glycolytic to oxidative metabolism, increased cellular glucose uptake and increased fatigue tolerance. In heart tissue this shift to mitochondrial metabolism was less pronounced. Myocardial contractility was modestly reduced, including a decreased ventricular developed pressure, albeit with unchanged cardiac output. In brain tissue adaptations in energy metabolism resulted in enhanced ATP stability and survival during hypoxia. Conclusion Chronic beta-guanidinopropionic acid increases fatigue tolerance of skeletal muscle and survival during ischaemia in animal studies, with modestly reduced myocardial contractility. Because it is marked as safe for human use, there is a need for human data.
Collapse
Affiliation(s)
- Inge Oudman
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
18
|
Braissant O, Henry H, Béard E, Uldry J. Creatine deficiency syndromes and the importance of creatine synthesis in the brain. Amino Acids 2011; 40:1315-24. [DOI: 10.1007/s00726-011-0852-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 11/25/2010] [Indexed: 10/18/2022]
|
19
|
Béard E, Braissant O. Synthesis and transport of creatine in the CNS: importance for cerebral functions. J Neurochem 2010; 115:297-313. [DOI: 10.1111/j.1471-4159.2010.06935.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Nasrallah F, Feki M, Kaabachi N. Creatine and creatine deficiency syndromes: biochemical and clinical aspects. Pediatr Neurol 2010; 42:163-71. [PMID: 20159424 DOI: 10.1016/j.pediatrneurol.2009.07.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 06/10/2009] [Accepted: 07/30/2009] [Indexed: 11/28/2022]
Abstract
Creatine deficiency syndromes, which have only recently been described, represent a group of inborn errors of creatine synthesis (L-arginine-glycine amidinotransferase deficiency and guanidinoacetate methyltransferase deficiency) and transport (creatine transporter deficiency). Patients with creatine deficiency syndromes present with mental retardation expressive speech and language delay, and epilepsy. Patients with guanidinoacetate methyltransferase deficiency or creatine transporter deficiency may exhibit autistic behavior. The common denominator of these disorders is the depletion of the brain creatine pool, as demonstrated by in vivo proton magnetic resonance spectroscopy. For diagnosis, laboratory investigations start with analysis of guanidinoacetate, creatine, and creatinine in plasma and urine. Based on these findings, enzyme assays or DNA mutation analysis may be performed. The creatine deficiency syndromes are underdiagnosed, so the possibility should be considered in all children affected by unexplained mental retardation, seizures, and speech delay. Guanidinoacetate methyltransferase deficiency and arginine-glycine amidinotransferase deficiency are treatable by oral creatine supplementation, but patients with creatine transporter deficiency do not respond to this type of treatment.
Collapse
|
21
|
Peral M, Vázquez-Carretero M, Ilundain A. Na+/Cl−/creatine transporter activity and expression in rat brain synaptosomes. Neuroscience 2010; 165:53-60. [DOI: 10.1016/j.neuroscience.2009.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/01/2009] [Accepted: 10/01/2009] [Indexed: 10/20/2022]
|
22
|
Braissant O. Ammonia toxicity to the brain: effects on creatine metabolism and transport and protective roles of creatine. Mol Genet Metab 2010; 100 Suppl 1:S53-8. [PMID: 20227315 DOI: 10.1016/j.ymgme.2010.02.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 02/08/2010] [Indexed: 11/17/2022]
Abstract
Hyperammonemia can provoke irreversible damage to the developing brain, with the formation of cortical atrophy, ventricular enlargement, demyelination or gray and white matter hypodensities. Among the various pathogenic mechanisms involved, alterations in cerebral energy have been demonstrated. In particular, we could show that ammonia exposure generates a secondary deficiency in creatine in brain cells, by altering the brain expression and activity of the genes allowing creatine synthesis (AGAT and GAMT) and transport (SLC6A8). On the other hand, it is known that creatine administration can exert protective effects in various neurodegenerative processes. We could also show that creatine co-treatment under ammonia exposure can protect developing brain cells from some of the deleterious effects of ammonia, in particular axonal growth impairment. This article focuses on the effects of ammonia exposure on creatine metabolism and transport in developing brain cells, and on the potential neuroprotective properties of creatine in the brain exposed to ammonium.
Collapse
Affiliation(s)
- Olivier Braissant
- Inborn Errors of Metabolism, Clinical Chemistry Laboratory, Center Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
23
|
Sakkas GK, Schambelan M, Mulligan K. Can the use of creatine supplementation attenuate muscle loss in cachexia and wasting? Curr Opin Clin Nutr Metab Care 2009; 12:623-7. [PMID: 19741514 PMCID: PMC2905310 DOI: 10.1097/mco.0b013e328331de63] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Weight loss and low BMI due to an underlying illness have been associated with increased mortality, reduced functional capacity, and diminished quality of life. There is a need for well tolerated, long-term approaches to maintain body weight in patients with cachexia or wasting. The purpose of this review is to highlight the scientific and clinical evidence derived from the recent literature investigating the rationale for and potential medical use of creatine supplementation in patients with cachexia or wasting. RECENT FINDINGS Some studies have demonstrated that supplementation with creatine can increase creatine reserves in skeletal muscle and increase muscle mass and performance in various disease states that affect muscle size and function. The mechanisms underlying these effects are not clear. It has been suggested that creatine supplementation may increase intramuscular phosphocreatine stores and promote more rapid recovery of adenosine triphosphate levels following exercise, thus allowing users to exercise for longer periods or at higher intensity levels. Other hypothesized mechanisms include attenuation of proinflammatory cytokines, stimulation of satellite cell proliferation and upregulation of genes that promote protein synthesis and cell repair. SUMMARY Creatine is a generally well tolerated, low-cost, over-the-counter nutritional supplement that shows potential in improving lean body mass and functionality in patients with wasting diseases. However, placebo-controlled studies have shown variable effects, with improvements in some and not in others. Additional studies with longer follow-up are required to identify the populations that might benefit most from creatine supplementation.
Collapse
Affiliation(s)
- Giorgos K. Sakkas
- Department of Medicine, University of Thessaly, Greece
- Center for Research and Technology, Thessaly, Greece
| | - Morris Schambelan
- Department of Medicine, University of California, San Francisco, CA, USA
- Division of Endocrinology, San Francisco General Hospital, San Francisco, CA, USA
| | - Kathleen Mulligan
- Department of Medicine, University of California, San Francisco, CA, USA
- Division of Endocrinology, San Francisco General Hospital, San Francisco, CA, USA
| |
Collapse
|
24
|
Transient alterations of creatine, creatine phosphate, N-acetylaspartate and high-energy phosphates after mild traumatic brain injury in the rat. Mol Cell Biochem 2009; 333:269-77. [PMID: 19688182 DOI: 10.1007/s11010-009-0228-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 08/06/2009] [Indexed: 10/20/2022]
Abstract
In this study, the concentrations of creatine (Cr), creatine phosphate (CrP), N-acetylaspartate (NAA), ATP, ADP and phosphatidylcholine (PC) were measured at different time intervals after mild traumatic brain injury (mTBI) in whole brain homogenates of rats. Anaesthetized animals underwent to the closed-head impact acceleration "weight-drop" model (450 g delivered from 1 m height = mild traumatic brain injury) and were killed at 2, 6, 24, 48 and 120 h after the insult (n = 6 for each time point). Sham-operated rats (n = 6) were used as controls. Compounds of interest were synchronously measured by HPLC in organic solvent deproteinized whole brain homogenates. A reversible decrease of all metabolites but PC was observed, with minimal values recorded at 24 h post-injury (minimum of CrP = 48 h after impact). In particular, Cr and NAA showed a decrease of 44.5 and 29.5%, respectively, at this time point. When measuring NAA in relation to other metabolites, as it is commonly carried out in "in vivo" (1)H-magnetic resonance spectroscopy ((1)H-MRS), an increase in the NAA/Cr ratio and a decrease in the NAA/PC ratio was observed. Besides confirming a transient alteration of NAA homeostasis and ATP imbalance, our results clearly show significant changes in the cerebral concentration of Cr and CrP after mTBI. This suggests a careful use of the NAA/Cr ratio to measure NAA by (1)H-MRS in conditions of altered cerebral energy metabolism. Viceversa, the NAA/PC ratio appears to be a better indicator of actual NAA levels during energy metabolism impairment. Furthermore, our data suggest that, under pathological conditions affecting the brain energetic, the Cr-CrP system is not a suitable tool to buffer possible ATP depletion in the brain, thus supporting the growing indications for alternative roles of cerebral Cr.
Collapse
|
25
|
Gualano B, Artioli GG, Poortmans JR, Lancha Junior AH. Exploring the therapeutic role of creatine supplementation. Amino Acids 2009; 38:31-44. [PMID: 19253023 DOI: 10.1007/s00726-009-0263-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 02/11/2009] [Indexed: 12/12/2022]
Abstract
Creatine (Cr) plays a central role in energy provision through a reaction catalyzed by phosphorylcreatine kinase. Furthermore, this amine enhances both gene expression and satellite cell activation involved in hypertrophic response. Recent findings have indicated that Cr supplementation has a therapeutic role in several diseases characterized by atrophic conditions, weakness, and metabolic disturbances (i.e., in the muscle, bone, lung, and brain). Accordingly, there has been an evidence indicating that Cr supplementation is capable of attenuating the degenerative state in some muscle disorders (i.e., Duchenne and inflammatory myopathies), central nervous diseases (i.e., Parkinson's, Huntington's, and Alzheimer's), and bone and metabolic disturbances (i.e., osteoporosis and type II diabetes). In light of this, Cr supplementation could be used as a therapeutic tool for the elderly. The aim of this review is to summarize the main studies conducted in this field and to highlight the scientific and clinical perspectives of this promising therapeutic supplement.
Collapse
Affiliation(s)
- Bruno Gualano
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
26
|
Braissant O, Henry H. AGAT, GAMT and SLC6A8 distribution in the central nervous system, in relation to creatine deficiency syndromes: a review. J Inherit Metab Dis 2008; 31:230-9. [PMID: 18392746 DOI: 10.1007/s10545-008-0826-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 02/01/2008] [Accepted: 02/05/2008] [Indexed: 11/25/2022]
Abstract
Creatine deficiency syndromes, either due to AGAT, GAMT or SLC6A8 deficiencies, lead to a complete absence, or a very strong decrease, of creatine within the brain, as measured by magnetic resonance spectroscopy. While the mammalian central nervous system (CNS) expresses AGAT, GAMT and SLC6A8, the lack of SLC6A8 in astrocytes around the blood-brain barrier limits the brain capacity to import creatine from the periphery, and suggests that the CNS has to rely mainly on endogenous creatine synthesis through AGAT and GAMT expression. This seems contradictory with SLC6A8 deficiency, which, despite AGAT and GAMT expression, also leads to creatine deficiency in the CNS. We present novel data showing that in cortical grey matter, AGAT and GAMT are expressed in a dissociated way: e.g. only a few cells co-express both genes. This suggests that to allow synthesis of creatine within the CNS, at least for a significant part of it, guanidinoacetate must be transported from AGAT- to GAMT-expressing cells, possibly through SLC6A8. This would explain the creatine deficiency observed in SLC6A8-deficient patients. By bringing together creatine deficiency syndromes, AGAT, GAMT and SLC6A8 distribution in CNS, as well as a synthetic view on creatine and guanidinoacetate levels in the brain, this review presents a comprehensive framework, including new hypotheses, on brain creatine metabolism and transport, both in normal conditions and in case of creatine deficiency.
Collapse
Affiliation(s)
- O Braissant
- Inborn Errors of Metabolism, Clinical Chemistry Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|
27
|
Wyss M, Braissant O, Pischel I, Salomons GS, Schulze A, Stockler S, Wallimann T. Creatine and creatine kinase in health and disease--a bright future ahead? Subcell Biochem 2007; 46:309-34. [PMID: 18652084 DOI: 10.1007/978-1-4020-6486-9_16] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many links are reported or suspected between the functioning of creatine, phosphocreatine, the creatine kinase isoenzymes or the creatine biosynthesis enzymes on one hand, and health or disease on the other hand. The aim of the present book was to outline our current understanding on many of these links. In this chapter, we summarize the main messages and conclusions presented in this book. In addition, we refer to a number of recent publications that highlight the pleiotropy in physiological functions of creatine and creatine kinase, and which suggest that numerous discoveries on new functions of this system are still ahead of us. Finally, we present our views on the most promising future avenues of research to deepen our knowledge on creatine and creatine kinase. In particular, we elaborate on how state-of-the-art high-throughput analytical ("omics") technologies and systems biology approaches may be used successfully to unravel the complex network of interdependent physiological functions related to creatine and creatine kinase.
Collapse
Affiliation(s)
- Markus Wyss
- DSM Nutritional Products Ltd., Biotechnology R&D, Bldg. 203/17B, P.O. Box 3255, CH-4002 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
28
|
Braissant O, Bachmann C, Henry H. Expression and function of AGAT, GAMT and CT1 in the mammalian brain. Subcell Biochem 2007; 46:67-81. [PMID: 18652072 DOI: 10.1007/978-1-4020-6486-9_4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In mammals, creatine is taken up from the diet and can be synthesized endogenously by a two-step mechanism involving the enzymes arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT). Creatine (Cr) is taken up by cells through a specific transporter, CT1. While the major part of endogenous synthesis of Cr is thought to occur in kidney, pancreas and liver, the brain widely expresses AGAT, GAMT and CT1, both during development and in adulthood. The adult central nervous system (CNS) has a limited capacity to take up Cr from periphery, and seems to rely more on its endogenous Cr synthesis. In contrast, the embryonic CNS might be more dependent on Cr supply from periphery than on endogenous synthesis. This review will focus on the expression and function of AGAT, GAMT and CT1 in the mammalian CNS, both during development and in adulthood. Emphasis will also be placed on their specific roles in the different cell types of the brain, to analyze which brain cells are responsible for the CNS capacity of (i) endogenous Cr synthesis and (ii) Cr uptake from the periphery, and which brain cells are the main Cr consumers. The potential role of CT1 as guanidinoacetate transporter between "AGAT-only" and "GAMT-only" expressing cells will also be explored.
Collapse
Affiliation(s)
- Olivier Braissant
- Clinical Chemistry Laboratory, Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland
| | | | | |
Collapse
|