1
|
Suri H, Salgado-Puga K, Wang Y, Allen N, Lane K, Granroth K, Olivei A, Nass N, Rothschild G. An auditory cortical-striatal circuit supports sound-triggered timing to predict future events. PLoS Biol 2025; 23:e3003209. [PMID: 40455919 DOI: 10.1371/journal.pbio.3003209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Revised: 06/16/2025] [Accepted: 05/12/2025] [Indexed: 06/18/2025] Open
Abstract
A crucial aspect of auditory perception is the ability to use sound cues to predict future events and to time actions accordingly. For example, the sound of an approaching vehicle signals when it is safe to cross the street; distinct smartphone notification sounds reflect a call that needs to be answered within a few seconds, or a text that can be read later. Other animals similarly use sounds to plan, time and execute behaviors such as hunting, evading predation and tending to offspring. However, the neural mechanisms that underlie sound-guided prediction of upcoming salient event timing are not well understood. To address this gap, we employed an appetitive sound-triggered reward time prediction behavior in head-fixed mice. We find that mice trained on this task reliably estimate the time from a sound cue to upcoming reward on the scale of a few seconds, as demonstrated by learning-dependent well-timed increases in predictive licking for reward. Moreover, mice showed a dramatic impairment in their ability to use sound to predict delayed reward when the auditory cortex was inactivated, demonstrating its causal involvement. To identify the neurophysiological signatures of auditory cortical reward-timing prediction, we recorded local field potentials during learning and performance of this behavior and found that the magnitude of auditory cortical responses to the sound prospectively encoded the duration of the anticipated sound-reward time interval. Next, we explored how and where these sound-triggered time interval prediction signals propagate from the auditory cortex to time and initiate consequent action. We targeted the monosynaptic projections from the auditory cortex to the posterior striatum and found that chemogenetic inactivation of these projections impaired animals' ability to predict sound-triggered delayed reward. Simultaneous neural recordings in the auditory cortex and posterior striatum during task performance revealed coordination of neural activity across these regions during the sound cue predicting the time interval to reward. Collectively, our findings identify an auditory cortical-striatal circuit supporting sound-triggered timing-prediction behaviors.
Collapse
Affiliation(s)
- Harini Suri
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Karla Salgado-Puga
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yixuan Wang
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nayomie Allen
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kaitlynn Lane
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kyra Granroth
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alberto Olivei
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nathanial Nass
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gideon Rothschild
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
2
|
Hamilos AE, Wijsman IC, Ding Q, Assawaphadungsit P, Ozcan Z, Assad JA. A mechanism linking dopamine's roles in reinforcement, movement and motivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647288. [PMID: 40236124 PMCID: PMC11996583 DOI: 10.1101/2025.04.04.647288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Dopamine neurons (DANs) play seemingly distinct roles in reinforcement, 1-3 motivation, 4,5 and movement, 6,7 and DA-modulating therapies relieve symptoms across a puzzling spectrum of neurologic and psychiatric symptoms. 8 Yet, the mechanistic relationship among these roles is unknown. Here, we show DA's tripartite roles are causally linked by a process in which phasic striatal DA rapidly and persistently recalibrates the propensity to move, a measure of vigor. Using a self-timed movement task, we found that single exposures to reward-related DA transients (both endogenous and exogenously-induced) exerted one-shot updates to movement timing-but in a surprising fashion. Rather than reinforce specific movement times, DA transients quantitatively changed movement timing on the next trial, with larger transients leading to earlier movements (and smaller to later), consistent with a stochastic search process that calibrates the frequency of movement. Both abrupt and gradual changes in external and internal contingencies-such as timing criterion, reward content, and satiety state-caused changes to the amplitude of DA transients that causally altered movement timing. The rapidity and bidirectionality of the one-shot effects are difficult to reconcile with gradual synaptic plasticity, and instead point to more flexible cellular mechanisms, such as DA-dependent modulation of neuronal excitability. Our findings shed light on how natural reinforcement, as well as DA-related disorders such as Parkinson's disease, could affect behavioral vigor.
Collapse
|
3
|
Caspar EA, Rovai A, Lo Bue S, Cleeremans A. Neural correlates of the sense of agency in free and coerced moral decision-making among civilians and military personnel. Cereb Cortex 2025; 35:bhaf049. [PMID: 40067077 DOI: 10.1093/cercor/bhaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/03/2025] [Accepted: 02/12/2025] [Indexed: 05/13/2025] Open
Abstract
The sense of agency, the feeling of being the author of one's actions and outcomes, is critical for decision-making. While prior research has explored its neural correlates, most studies have focused on neutral tasks, overlooking moral decision-making. In addition, previous studies mainly used convenience samples, ignoring that some social environments may influence how authorship in moral decision-making is processed. This study investigated the neural correlates of sense of agency in civilians and military officer cadets, examining free and coerced choices in both agent and commander roles. Using a functional magnetic resonance imaging paradigm where participants could either freely choose or follow orders to inflict a mild shock on a victim, we assessed sense of agency through temporal binding-a temporal distortion between voluntary and less voluntary decisions. Our findings suggested that sense of agency is reduced when following orders compared to acting freely in both roles. Several brain regions correlated with temporal binding, notably the occipital lobe, superior/middle/inferior frontal gyrus, precuneus, and lateral occipital cortex. Importantly, no differences emerged between military and civilians at corrected thresholds, suggesting that daily environments have minimal influence on the neural basis of moral decision-making, enhancing the generalizability of the findings.
Collapse
Affiliation(s)
- Emilie A Caspar
- Moral & Social Brain Lab, Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000, Ghent, Belgium
| | - Antonin Rovai
- Department of Translational Neuroimaging, Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles and Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Salvatore Lo Bue
- Department of Life Sciences, Royal Military Academy, Rue Hobbema, 8, 1000, Brussels, Belgium
| | - Axel Cleeremans
- CO3 Lab, Center for Research in Cognition and Neuroscience, Université libre de Bruxelles, Avenue Antoine Depage, 50, 1050, Brussels, Belgium
| |
Collapse
|
4
|
Fox AE, Cooper AR, Pape AL, Tobias-Wallingford HM, DeCoteau WE. Time perception and delay discounting in the FMR1 knockout rat. J Exp Anal Behav 2025; 123:108-116. [PMID: 39513510 DOI: 10.1002/jeab.4227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
There is substantial evidence for timing (time perception) abnormalities related to developmental disabilities, particularly autism spectrum disorder. These findings have been reported in humans and nonhuman preclinical models. Our research objective was to extend that work to a genetic knockout (KO) model of fragile X/developmental disability, the FMR1 KO rat. We also sought to test delay discounting in the model and assess potential relations between timing and choice behavior. Consistent with previous human and nonhuman work, we found reduced timing precision in the FMR1 KO rats. We also discovered significantly increased smaller, sooner reward choice in the FMR1 KO rats. Performance on the timing task appeared to be unrelated to performance on the choice task for both model and control rats. These results add to what has become increasingly clear: timing is disrupted in humans diagnosed with developmental disabilities and in nonhuman models designed to model developmental disabilities. Our findings are consistent with those of previous work and the first to our knowledge to show such effects in the FMR1 KO rat. We discuss the potential clinical implications and future directions surrounding potential "timing interventions" for individuals diagnosed with developmental disabilities.
Collapse
Affiliation(s)
- Adam E Fox
- Department of Psychology, St. Lawrence University, Canton, NY, USA
| | - Abbie R Cooper
- Department of Psychology, St. Lawrence University, Canton, NY, USA
| | - Amelia L Pape
- Department of Psychology, St. Lawrence University, Canton, NY, USA
| | | | | |
Collapse
|
5
|
Bruce RA, Weber M, Bova A, Volkman R, Jacobs C, Sivakumar K, Stutt H, Kim Y, Curtu R, Narayanan K. Complementary cognitive roles for D2-MSNs and D1-MSNs during interval timing. eLife 2025; 13:RP96287. [PMID: 39812105 PMCID: PMC11735027 DOI: 10.7554/elife.96287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
The role of striatal pathways in cognitive processing is unclear. We studied dorsomedial striatal cognitive processing during interval timing, an elementary cognitive task that requires mice to estimate intervals of several seconds and involves working memory for temporal rules as well as attention to the passage of time. We harnessed optogenetic tagging to record from striatal D2-dopamine receptor-expressing medium spiny neurons (D2-MSNs) in the indirect pathway and from D1-dopamine receptor-expressing MSNs (D1-MSNs) in the direct pathway. We found that D2-MSNs and D1-MSNs exhibited distinct dynamics over temporal intervals as quantified by principal component analyses and trial-by-trial generalized linear models. MSN recordings helped construct and constrain a four-parameter drift-diffusion computational model in which MSN ensemble activity represented the accumulation of temporal evidence. This model predicted that disrupting either D2-MSNs or D1-MSNs would increase interval timing response times and alter MSN firing. In line with this prediction, we found that optogenetic inhibition or pharmacological disruption of either D2-MSNs or D1-MSNs increased interval timing response times. Pharmacologically disrupting D2-MSNs or D1-MSNs also changed MSN dynamics and degraded trial-by-trial temporal decoding. Together, our findings demonstrate that D2-MSNs and D1-MSNs had opposing dynamics yet played complementary cognitive roles, implying that striatal direct and indirect pathways work together to shape temporal control of action. These data provide novel insight into basal ganglia cognitive operations beyond movement and have implications for human striatal diseases and therapies targeting striatal pathways.
Collapse
Affiliation(s)
- Robert A Bruce
- Department of Neurology, University of IowaIowa CityUnited States
| | - Matthew Weber
- Department of Neurology, University of IowaIowa CityUnited States
| | - Alexandra Bova
- Department of Neurology, University of IowaIowa CityUnited States
| | - Rachael Volkman
- Department of Neurology, University of IowaIowa CityUnited States
| | - Casey Jacobs
- Department of Neurology, University of IowaIowa CityUnited States
| | - Kartik Sivakumar
- Department of Neurology, University of IowaIowa CityUnited States
| | - Hannah Stutt
- Department of Neurology, University of IowaIowa CityUnited States
| | - Youngcho Kim
- Department of Neurology, University of IowaIowa CityUnited States
| | - Rodica Curtu
- Department of Mathematics, University of IowaIowa CityUnited States
- The Iowa Neuroscience InstituteIowa CityUnited States
| | - Kumar Narayanan
- Department of Neurology, University of IowaIowa CityUnited States
- The Iowa Neuroscience InstituteIowa CityUnited States
| |
Collapse
|
6
|
Wu J, Liu Y, Kong X, Zhang D, Hao W, Ye Z. Subjective time dilation in abstinent patients with alcohol use disorder. J Clin Exp Neuropsychol 2024; 46:878-890. [PMID: 39555615 DOI: 10.1080/13803395.2024.2427320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
INTRODUCTION Patients with alcohol use disorder (AUD) may have distortions in time perception. This study investigated subjective time dilation (the tendency to perceive a time interval longer than it is) and its association with craving and impulsivity in AUD. METHOD Thirty abstinent male inpatients with AUD (age 29-60 years) and thirty sex-, age-, and education-matched healthy controls completed a temporal generalization task, which assessed the preference (point of subjective equality, PSE) and sensitivity of time perception in the second range. Craving for alcohol was assessed using the Alcohol Urge Questionnaire. Impulsivity was assessed using a delay discounting task and the Barratt Impulsiveness Scale-11. A comprehensive battery of neuropsychological tests was used to measure executive function (flanker task, symbol digit modalities test, trail-making test-A/B), negative emotionality (Beck Depression Inventory-II, Self-rating Anxiety Scale), and incentive salience (monetary incentive delay task) following the Addictions Neuroclinical Assessment (ANA) framework. RESULTS AUD patients exhibited a smaller PSE than healthy controls, perceiving a time interval 8% longer than it was. AUD patients with a smaller PSE showed a greater craving for alcohol but not greater impulsivity. Exploratory factor analysis incorporating the PSE and ANA measures revealed four latent factors. The PSE loaded highly onto a factor reflecting time perception but not three other factors reflecting executive function, negative emotionality, and incentive salience. CONCLUSIONS AUD patients exhibit a pathological form of subjective time dilation, which is associated with a greater craving for alcohol. Time perception may be an independent functional dimension for understanding addictive behaviors in AUD.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Liu
- Department of Substance-Related Disorders, Anhui Mental Health Center, Hefei Fourth People's Hospital, Hefei, China
| | - Xiangjuan Kong
- Department of Alcohol Dependence, Shandong Daizhuang Hospital, Jining, China
| | - Dapeng Zhang
- Department of Substance Dependence, The Third People's Hospital of Fuyang, Fuyang , China
| | - Wei Hao
- Mental Health Institute & National Center on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zheng Ye
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
7
|
Bruce R, Weber MA, Bova A, Volkman R, Jacobs C, Sivakumar K, Kim Y, Curtu R, Narayanan N. Complementary cognitive roles for D2-MSNs and D1-MSNs during interval timing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.25.550569. [PMID: 37546735 PMCID: PMC10402049 DOI: 10.1101/2023.07.25.550569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The role of striatal pathways in cognitive processing is unclear. We studied dorsomedial striatal cognitive processing during interval timing, an elementary cognitive task that requires mice to estimate intervals of several seconds and involves working memory for temporal rules as well as attention to the passage of time. We harnessed optogenetic tagging to record from striatal D2-dopamine receptor-expressing medium spiny neurons (D2-MSNs) in the indirect pathway and from D1-dopamine receptor-expressing MSNs (D1-MSNs) in the direct pathway. We found that D2-MSNs and D1-MSNs exhibited distinct dynamics over temporal intervals as quantified by principal component analyses and trial-by-trial generalized linear models. MSN recordings helped construct and constrain a four-parameter drift-diffusion computational model. This model predicted that disrupting either D2-MSNs or D1-MSNs would increase interval timing response times and alter MSN firing. In line with this prediction, we found that optogenetic inhibition or pharmacological disruption of either D2-MSNs or D1-MSNs increased interval timing response times. Pharmacologically disrupting D2-MSNs or D1-MSNs also changed MSN dynamics and degraded trial-by-trial temporal decoding. Together, our findings demonstrate that D2-MSNs and D1-MSNs make complementary contributions to interval timing despite opposing dynamics, implying that striatal direct and indirect pathways work together to shape temporal control of action. These data provide novel insight into basal ganglia cognitive operations beyond movement and have implications for human striatal diseases and therapies targeting striatal pathways.
Collapse
|
8
|
Martel AC, Apicella P. Insights into the interaction between time and reward prediction on the activity of striatal tonically active neurons: A pilot study in rhesus monkeys. Physiol Rep 2024; 12:e70037. [PMID: 39245818 PMCID: PMC11381318 DOI: 10.14814/phy2.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
Prior studies have documented the role of the striatum and its dopaminergic input in time processing, but the contribution of local striatal cholinergic innervation has not been specifically investigated. To address this issue, we recorded the activity of tonically active neurons (TANs), thought to be cholinergic interneurons in the striatum, in two male macaques performing self-initiated movements after specified intervals in the seconds range have elapsed. The behavioral data showed that movement timing was adjusted according to the temporal requirements. About one-third of all recorded TANs displayed brief depressions in firing in response to the cue that indicates the interval duration, and the strength of these modulations was, in some instances, related to the timing of movement. The rewarding outcome of actions also impacted TAN activity, as reflected by stronger responses to the cue paralleled by weaker responses to reward when monkeys performed correctly timed movements over consecutive trials. It therefore appears that TAN responses may act as a start signal for keeping track of time and reward prediction could be incorporated in this signaling function. We conclude that the role of the striatal cholinergic TAN system in time processing is embedded in predicting rewarding outcomes during timing behavior.
Collapse
Affiliation(s)
- A C Martel
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université, CNRS, Marseille, France
| | - P Apicella
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université, CNRS, Marseille, France
| |
Collapse
|
9
|
Bigus ER, Lee HW, Bowler JC, Shi J, Heys JG. Medial entorhinal cortex mediates learning of context-dependent interval timing behavior. Nat Neurosci 2024; 27:1587-1598. [PMID: 38877306 DOI: 10.1038/s41593-024-01683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/14/2024] [Indexed: 06/16/2024]
Abstract
Episodic memory requires encoding the temporal structure of experience and relies on brain circuits in the medial temporal lobe, including the medial entorhinal cortex (MEC). Recent studies have identified MEC 'time cells', which fire at specific moments during interval timing tasks, collectively tiling the entire timing period. It has been hypothesized that MEC time cells could provide temporal information necessary for episodic memories, yet it remains unknown whether they display learning dynamics required for encoding different temporal contexts. To explore this, we developed a new behavioral paradigm requiring mice to distinguish temporal contexts. Combined with methods for cellular resolution calcium imaging, we found that MEC time cells display context-dependent neural activity that emerges with task learning. Through chemogenetic inactivation we found that MEC activity is necessary for learning of context-dependent interval timing behavior. Finally, we found evidence of a common circuit mechanism that could drive sequential activity of both time cells and spatially selective neurons in MEC. Our work suggests that the clock-like firing of MEC time cells can be modulated by learning, allowing the tracking of various temporal structures that emerge through experience.
Collapse
Affiliation(s)
- Erin R Bigus
- Interdepartmental PhD Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Hyun-Woo Lee
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - John C Bowler
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Jiani Shi
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - James G Heys
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
10
|
Redinbaugh MJ, Saalmann YB. Contributions of Basal Ganglia Circuits to Perception, Attention, and Consciousness. J Cogn Neurosci 2024; 36:1620-1642. [PMID: 38695762 PMCID: PMC11223727 DOI: 10.1162/jocn_a_02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Research into ascending sensory pathways and cortical networks has generated detailed models of perception. These same cortical regions are strongly connected to subcortical structures, such as the basal ganglia (BG), which have been conceptualized as playing key roles in reinforcement learning and action selection. However, because the BG amasses experiential evidence from higher and lower levels of cortical hierarchies, as well as higher-order thalamus, it is well positioned to dynamically influence perception. Here, we review anatomical, functional, and clinical evidence to demonstrate how the BG can influence perceptual processing and conscious states. This depends on the integrative relationship between cortex, BG, and thalamus, which allows contributions to sensory gating, predictive processing, selective attention, and representation of the temporal structure of events.
Collapse
Affiliation(s)
| | - Yuri B Saalmann
- University of Wisconsin-Madison
- Wisconsin National Primate Research Center
| |
Collapse
|
11
|
Nepomoceno EB, Rodrigues S, de Melo KS, Ferreira TL, Freestone D, Caetano MS. Insular and prelimbic cortices control behavioral accuracy and precision in a temporal decision-making task in rats. Behav Brain Res 2024; 465:114961. [PMID: 38494127 DOI: 10.1016/j.bbr.2024.114961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/02/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
The anterior insular cortex (AIC) comprises a region of sensory integration. It appears to detect salient events in order to guide goal-directed behavior, code tracking errors, and estimate the passage of time. Temporal processing in the AIC may be instantiated by the integration of representations of interoception. Projections between the AIC and the medial prefrontal cortex (mPFC) - found both in rats and humans - also suggest a possible role for these structures in the integration of autonomic responses during ongoing behavior. Few studies, however, have investigated the role of AIC and mPFC in decision-making and time estimation tasks. Moreover, their findings are not consistent, so the relationship between temporal decision-making and those areas remains unclear. The present study employed bilateral inactivations to explore the role of AIC and prelimbic cortex (PL) in rats during a temporal decision-making task. In this task, two levers are available simultaneously (but only one is active), one predicting reinforcement after a short, and the other after a long-fixed interval. Optimal performance requires a switch from the short to the long lever after the short-fixed interval elapsed and no reinforcement was delivered. Switch behavior from the short to the long lever was dependent on AIC and PL. During AIC inactivation, switch latencies became more variable, while during PL inactivation switch latencies became both more variable and less accurate. These findings point to a dissociation between AIC and PL in temporal decision-making, suggesting that the AIC is important for temporal precision, and PL is important for both temporal accuracy and precision.
Collapse
Affiliation(s)
- Estela B Nepomoceno
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC (UFABC), Brazil; Neuropsychology laboratory, Universidade Municipal de São Caetano do Sul (USCS), Brazil.
| | - Samanta Rodrigues
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC (UFABC), Brazil; Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), Brazil
| | - Katia S de Melo
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC (UFABC), Brazil
| | - Tatiana L Ferreira
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC (UFABC), Brazil
| | | | - Marcelo S Caetano
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC (UFABC), Brazil; Instituto Nacional de Ciência e Tecnologia sobre Comportamento, Cognição e Ensino (INCT-ECCE), Brazil
| |
Collapse
|
12
|
Mokhtarinejad E, Tavakoli M, Ghaderi AH. Exploring the correlation and causation between alpha oscillations and one-second time perception through EEG and tACS. Sci Rep 2024; 14:8035. [PMID: 38580671 PMCID: PMC10997657 DOI: 10.1038/s41598-024-57715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/21/2024] [Indexed: 04/07/2024] Open
Abstract
Alpha oscillations have been implicated in time perception, yet a consensus on their precise role remains elusive. This study directly investigates this relationship by examining the impact of alpha oscillations on time perception. Resting-state EEG recordings were used to extract peak alpha frequency (PAF) and peak alpha power (PAP) characteristics. Participants then performed a time generalization task under transcranial alternating current stimulation (tACS) at frequencies of PAF-2, PAF, and PAF+2, as well as a sham condition. Results revealed a significant correlation between PAP and accuracy, and between PAF and precision of one-second time perception in the sham condition. This suggests that alpha oscillations may influence one-second time perception by modulating their frequency and power. Interestingly, these correlations weakened with real tACS stimulations, particularly at higher frequencies. A second analysis aimed to establish a causal relationship between alpha peak modulation by tACS and time perception using repeated measures ANOVAs, but no significant effect was observed. Results were interpreted according to the state-dependent networks and internal clock model.
Collapse
Affiliation(s)
- Ehsan Mokhtarinejad
- Department of Psychology, Faculty of Education and Psychology, University of Isfahan, Isfahan, Iran
| | - Mahgol Tavakoli
- Department of Psychology, Faculty of Education and Psychology, University of Isfahan, Isfahan, Iran.
| | - Amir Hossein Ghaderi
- Department of Psychology, Faculty of Education and Psychology, University of Isfahan, Isfahan, Iran
- Center for Affective Neuroscience, Development, Learning and Education, University of Southern California (USC), Los Angeles, USA
| |
Collapse
|
13
|
Bigus ER, Lee HW, Bowler JC, Shi J, Heys JG. Medial entorhinal cortex plays a specialized role in learning of flexible, context-dependent interval timing behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.18.524598. [PMID: 38260332 PMCID: PMC10802491 DOI: 10.1101/2023.01.18.524598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Episodic memory requires encoding the temporal structure of experience and relies on brain circuits in the medial temporal lobe, including the medial entorhinal cortex (MEC). Recent studies have identified MEC 'time cells', which fire at specific moments during interval timing tasks, collectively tiling the entire timing period. It has been hypothesized that MEC time cells could provide temporal information necessary for episodic memories, yet it remains unknown whether MEC time cells display learning dynamics required for encoding different temporal contexts. To explore this, we developed a novel behavioral paradigm that requires distinguishing temporal contexts. Combined with methods for cellular resolution calcium imaging, we find that MEC time cells display context-dependent neural activity that emerges with task learning. Through chemogenetic inactivation we find that MEC activity is necessary for learning of context-dependent interval timing behavior. Finally, we find evidence of a common circuit mechanism that could drive sequential activity of both time cells and spatially selective neurons in MEC. Our work suggests that the clock-like firing of MEC time cells can be modulated by learning, allowing the tracking of various temporal structures that emerge through experience.
Collapse
|
14
|
Rueda-Orozco PE, Hidalgo-Balbuena AE, González-Pereyra P, Martinez-Montalvo MG, Báez-Cordero AS. The Interactions of Temporal and Sensory Representations in the Basal Ganglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:141-158. [PMID: 38918350 DOI: 10.1007/978-3-031-60183-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
In rodents and primates, interval estimation has been associated with a complex network of cortical and subcortical structures where the dorsal striatum plays a paramount role. Diverse evidence ranging from individual neurons to population activity has demonstrated that this area hosts temporal-related neural representations that may be instrumental for the perception and production of time intervals. However, little is known about how temporal representations interact with other well-known striatal representations, such as kinematic parameters of movements or somatosensory representations. An attractive hypothesis suggests that somatosensory representations may serve as the scaffold for complex representations such as elapsed time. Alternatively, these representations may coexist as independent streams of information that could be integrated into downstream nuclei, such as the substantia nigra or the globus pallidus. In this review, we will revise the available information suggesting an instrumental role of sensory representations in the construction of temporal representations at population and single-neuron levels throughout the basal ganglia.
Collapse
Affiliation(s)
- Pavel E Rueda-Orozco
- Institute of Neurobiology, National Autonomous University of México, Querétaro, Mexico.
| | | | | | | | - Ana S Báez-Cordero
- Institute of Neurobiology, National Autonomous University of México, Querétaro, Mexico
| |
Collapse
|
15
|
Balcı F, Simen P. Neurocomputational Models of Interval Timing: Seeing the Forest for the Trees. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:51-78. [PMID: 38918346 DOI: 10.1007/978-3-031-60183-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Extracting temporal regularities and relations from experience/observation is critical for organisms' adaptiveness (communication, foraging, predation, prediction) in their ecological niches. Therefore, it is not surprising that the internal clock that enables the perception of seconds-to-minutes-long intervals (interval timing) is evolutionarily well-preserved across many species of animals. This comparative claim is primarily supported by the fact that the timing behavior of many vertebrates exhibits common statistical signatures (e.g., on-average accuracy, scalar variability, positive skew). These ubiquitous statistical features of timing behaviors serve as empirical benchmarks for modelers in their efforts to unravel the processing dynamics of the internal clock (namely answering how internal clock "ticks"). In this chapter, we introduce prominent (neuro)computational approaches to modeling interval timing at a level that can be understood by general audience. These models include Treisman's pacemaker accumulator model, the information processing variant of scalar expectancy theory, the striatal beat frequency model, behavioral expectancy theory, the learning to time model, the time-adaptive opponent Poisson drift-diffusion model, time cell models, and neural trajectory models. Crucially, we discuss these models within an overarching conceptual framework that categorizes different models as threshold vs. clock-adaptive models and as dedicated clock/ramping vs. emergent time/population code models.
Collapse
Affiliation(s)
- Fuat Balcı
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Patrick Simen
- Department of Neuroscience, Oberlin College, Oberlin, OH, USA
| |
Collapse
|
16
|
Pando-Naude V, Matthews TE, Højlund A, Jakobsen S, Østergaard K, Johnsen E, Garza-Villarreal EA, Witek MAG, Penhune V, Vuust P. Dopamine dysregulation in Parkinson's disease flattens the pleasurable urge to move to musical rhythms. Eur J Neurosci 2024; 59:101-118. [PMID: 37724707 DOI: 10.1111/ejn.16128] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/12/2023] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
The pleasurable urge to move to music (PLUMM) activates motor and reward areas of the brain and is thought to be driven by predictive processes. Dopamine in motor and limbic networks is implicated in beat-based timing and music-induced pleasure, suggesting a central role of basal ganglia (BG) dopaminergic systems in PLUMM. This study tested this hypothesis by comparing PLUMM in participants with Parkinson's disease (PD), age-matched controls, and young controls. Participants listened to musical sequences with varying rhythmic and harmonic complexity (low, medium and high), and rated their experienced pleasure and urge to move to the rhythm. In line with previous results, healthy younger participants showed an inverted U-shaped relationship between rhythmic complexity and ratings, with preference for medium complexity rhythms, while age-matched controls showed a similar, but weaker, inverted U-shaped response. Conversely, PD showed a significantly flattened response for both the urge to move and pleasure. Crucially, this flattened response could not be attributed to differences in rhythm discrimination and did not reflect an overall decrease in ratings. For harmonic complexity, PD showed a negative linear pattern for both the urge to move and pleasure while healthy age-matched controls showed the same pattern for pleasure and an inverted U for the urge to move. This contrasts with the pattern observed in young healthy controls in previous studies, suggesting that both healthy aging and PD also influence affective responses to harmonic complexity. Together, these results support the role of dopamine within cortico-striatal circuits in the predictive processes that form the link between the perceptual processing of rhythmic patterns and the affective and motor responses to rhythmic music.
Collapse
Affiliation(s)
- Victor Pando-Naude
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Tomas Edward Matthews
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Andreas Højlund
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Linguistics, Cognitive Science and Semiotics, School of Communication and Culture, Aarhus University, Aarhus, Denmark
| | - Sebastian Jakobsen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Linguistics, Cognitive Science and Semiotics, School of Communication and Culture, Aarhus University, Aarhus, Denmark
| | - Karen Østergaard
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Sano, Private Hospital, Aarhus, Denmark
| | - Erik Johnsen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Eduardo A Garza-Villarreal
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro, Mexico
| | - Maria A G Witek
- Department of Music School of Languages, Cultures, Art History and Music, University of Birmingham, Birmingham, UK
| | - Virginia Penhune
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| |
Collapse
|
17
|
Kim YK, Choe HK. Core clock gene, Bmal1, is required for optimal second-level interval production. Anim Cells Syst (Seoul) 2023; 27:425-435. [PMID: 38125761 PMCID: PMC10732218 DOI: 10.1080/19768354.2023.2290827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023] Open
Abstract
Perception and production of second-level temporal intervals are critical in several behavioral and cognitive processes, including adaptive anticipation, motor control, and social communication. These processes are impaired in several neurological and psychological disorders, such as Parkinson's disease and attention-deficit hyperactivity disorder. Although evidence indicates that second-level interval timing exhibit circadian patterns, it remains unclear whether the core clock machinery controls the circadian pattern of interval timing. To investigate the role of core clock molecules in interval timing capacity, we devised a behavioral assay called the interval timing task to examine prospective motor interval timing ability. In this task, the mouse produces two separate nose pokes in a pretrained second-level interval to obtain a sucrose solution as a reward. We discovered that interval perception in wild-type mice displayed a circadian pattern, with the best performance observed during the late active phase. To investigate whether the core molecular clock is involved in the circadian control of interval timing, we employed Bmal1 knockout mice (BKO) in the interval timing task. The interval production of BKO did not display any difference between early and late active phase, without reaching the optimal interval production level observed in wild-type. In summary, we report that the core clock gene Bmal1 is required for the optimal performance of prospective motor timing typically observed during the late part of the active period.
Collapse
Affiliation(s)
- Yoon Kyoung Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Han Kyoung Choe
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, Republic of Korea
- Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| |
Collapse
|
18
|
Suri H, Salgado-Puga K, Wang Y, Allen N, Lane K, Granroth K, Olivei A, Nass N, Rothschild G. A Cortico-Striatal Circuit for Sound-Triggered Prediction of Reward Timing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568134. [PMID: 38045246 PMCID: PMC10690153 DOI: 10.1101/2023.11.21.568134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
A crucial aspect of auditory perception is the ability to use sound cues to predict future events and to time actions accordingly. For example, distinct smartphone notification sounds reflect a call that needs to be answered within a few seconds, or a text that can be read later; the sound of an approaching vehicle signals when it is safe to cross the street. Other animals similarly use sounds to plan, time and execute behaviors such as hunting, evading predation and tending to offspring. However, the neural mechanisms that underlie sound-guided prediction of upcoming salient event timing are not well understood. To address this gap, we employed an appetitive sound-triggered reward time prediction behavior in head-fixed mice. We find that mice trained on this task reliably estimate the time from a sound cue to upcoming reward on the scale of a few seconds, as demonstrated by learning-dependent well-timed increases in reward-predictive licking. Moreover, mice showed a dramatic impairment in their ability to use sound to predict delayed reward when the auditory cortex was inactivated, demonstrating its causal involvement. To identify the neurophysiological signatures of auditory cortical reward-timing prediction, we recorded local field potentials during learning and performance of this behavior and found that the magnitude of auditory cortical responses to the sound prospectively encoded the duration of the anticipated sound-reward time interval. Next, we explored how and where these sound-triggered time interval prediction signals propagate from the auditory cortex to time and initiate consequent action. We targeted the monosynaptic projections from the auditory cortex to the posterior striatum and found that chemogenetic inactivation of these projections impairs animal's ability to predict sound-triggered delayed reward. Simultaneous neural recordings in the auditory cortex and posterior striatum during task performance revealed coordination of neural activity across these regions during the sound cue predicting the time interval to reward. Collectively, our findings identify an auditory cortical-striatal circuit supporting sound-triggered timing-prediction behaviors.
Collapse
|
19
|
Cavallaro J, Yeisley J, Akdoǧan B, Salazar RE, Floeder JR, Balsam PD, Gallo EF. Dopamine D2 receptors in nucleus accumbens cholinergic interneurons increase impulsive choice. Neuropsychopharmacology 2023; 48:1309-1317. [PMID: 37221325 PMCID: PMC10354036 DOI: 10.1038/s41386-023-01608-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
Impulsive choice, often characterized by excessive preference for small, short-term rewards over larger, long-term rewards, is a prominent feature of substance use and other neuropsychiatric disorders. The neural mechanisms underlying impulsive choice are not well understood, but growing evidence implicates nucleus accumbens (NAc) dopamine and its actions on dopamine D2 receptors (D2Rs). Because several NAc cell types and afferents express D2Rs, it has been difficult to determine the specific neural mechanisms linking NAc D2Rs to impulsive choice. Of these cell types, cholinergic interneurons (CINs) of the NAc, which express D2Rs, have emerged as key regulators of striatal output and local dopamine release. Despite these relevant functions, whether D2Rs expressed specifically in these neurons contribute to impulsive choice behavior is unknown. Here, we show that D2R upregulation in CINs of the mouse NAc increases impulsive choice as measured in a delay discounting task without affecting reward magnitude sensitivity or interval timing. Conversely, mice lacking D2Rs in CINs showed decreased delay discounting. Furthermore, CIN D2R manipulations did not affect probabilistic discounting, which measures a different form of impulsive choice. Together, these findings suggest that CIN D2Rs regulate impulsive decision-making involving delay costs, providing new insight into the mechanisms by which NAc dopamine influences impulsive behavior.
Collapse
Affiliation(s)
| | - Jenna Yeisley
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Başak Akdoǧan
- Department of Psychology, Columbia University, New York, NY, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Ronald E Salazar
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Joseph R Floeder
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Peter D Balsam
- Department of Psychology, Columbia University, New York, NY, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
- Department of Neuroscience and Behavior, Barnard College, New York, NY, USA
| | - Eduardo F Gallo
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| |
Collapse
|
20
|
Monteiro T, Rodrigues FS, Pexirra M, Cruz BF, Gonçalves AI, Rueda-Orozco PE, Paton JJ. Using temperature to analyze the neural basis of a time-based decision. Nat Neurosci 2023; 26:1407-1416. [PMID: 37443279 DOI: 10.1038/s41593-023-01378-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 06/12/2023] [Indexed: 07/15/2023]
Abstract
The basal ganglia are thought to contribute to decision-making and motor control. These functions are critically dependent on timing information, which can be extracted from the evolving state of neural populations in their main input structure, the striatum. However, it is debated whether striatal activity underlies latent, dynamic decision processes or kinematics of overt movement. Here, we measured the impact of temperature on striatal population activity and the behavior of rats, and compared the observed effects with neural activity and behavior collected in multiple versions of a temporal categorization task. Cooling caused dilation, and warming contraction, of both neural activity and patterns of judgment in time, mimicking endogenous decision-related variability in striatal activity. However, temperature did not similarly affect movement kinematics. These data provide compelling evidence that the timecourse of evolving striatal activity dictates the speed of a latent process that is used to guide choices, but not continuous motor control. More broadly, they establish temporal scaling of population activity as a likely neural basis for variability in timing behavior.
Collapse
Affiliation(s)
- Tiago Monteiro
- Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
- Department of Biology, University of Oxford, Oxford, UK
| | | | - Margarida Pexirra
- Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Bruno F Cruz
- Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
- NeuroGEARS Ltd., London, UK
| | - Ana I Gonçalves
- Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | | | - Joseph J Paton
- Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal.
| |
Collapse
|
21
|
Huang JK, Yin B. Phylogenic evolution of beat perception and synchronization: a comparative neuroscience perspective. Front Syst Neurosci 2023; 17:1169918. [PMID: 37325439 PMCID: PMC10264645 DOI: 10.3389/fnsys.2023.1169918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
The study of music has long been of interest to researchers from various disciplines. Scholars have put forth numerous hypotheses regarding the evolution of music. With the rise of cross-species research on music cognition, researchers hope to gain a deeper understanding of the phylogenic evolution, behavioral manifestation, and physiological limitations of the biological ability behind music, known as musicality. This paper presents the progress of beat perception and synchronization (BPS) research in cross-species settings and offers varying views on the relevant hypothesis of BPS. The BPS ability observed in rats and other mammals as well as recent neurobiological findings presents a significant challenge to the vocal learning and rhythm synchronization hypothesis if taken literally. An integrative neural-circuit model of BPS is proposed to accommodate the findings. In future research, it is recommended that greater consideration be given to the social attributes of musicality and to the behavioral and physiological changes that occur across different species in response to music characteristics.
Collapse
Affiliation(s)
- Jin-Kun Huang
- Laboratory for Learning and Behavioral Sciences, School of Psychology, Fujian Normal University, Fuzhou, Fujian, China
| | - Bin Yin
- Laboratory for Learning and Behavioral Sciences, School of Psychology, Fujian Normal University, Fuzhou, Fujian, China
- Department of Applied Psychology, School of Psychology, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
22
|
Stutt HR, Weber MA, Cole RC, Bova AS, Ding X, McMurrin MS, Narayanan NS. Sex similarities and dopaminergic differences in interval timing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539584. [PMID: 37205472 PMCID: PMC10187305 DOI: 10.1101/2023.05.05.539584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Rodent behavioral studies have largely focused on male animals, which has limited the generalizability and conclusions of neuroscience research. Working with humans and rodents, we studied sex effects during interval timing that requires participants to estimate an interval of several seconds by making motor responses. Interval timing requires attention to the passage of time and working memory for temporal rules. We found no differences between human females and males in interval timing response times (timing accuracy) or the coefficient of variance of response times (timing precision). Consistent with prior work, we also found no differences between female and male rodents in timing accuracy or precision. In female rodents, there was no difference in interval timing between estrus and diestrus cycle stages. Because dopamine powerfully affects interval timing, we also examined sex differences with drugs targeting dopaminergic receptors. In both female and male rodents, interval timing was delayed after administration of sulpiride (D2-receptor antagonist), quinpirole (D2-receptor agonist), and SCH-23390 (D1-receptor antagonist). By contrast, after administration of SKF-81297 (D1-receptor agonist), interval timing shifted earlier only in male rodents. These data illuminate sex similarities and differences in interval timing. Our results have relevance for rodent models of both cognitive function and brain disease by increasing represenation in behavioral neuroscience.
Collapse
|
23
|
Xie T, Huang C, Zhang Y, Liu J, Yao H. Influence of Recent Trial History on Interval Timing. Neurosci Bull 2023; 39:559-575. [PMID: 36209314 PMCID: PMC10073370 DOI: 10.1007/s12264-022-00954-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 07/10/2022] [Indexed: 11/30/2022] Open
Abstract
Interval timing is involved in a variety of cognitive behaviors such as associative learning and decision-making. While it has been shown that time estimation is adaptive to the temporal context, it remains unclear how interval timing behavior is influenced by recent trial history. Here we found that, in mice trained to perform a licking-based interval timing task, a decrease of inter-reinforcement interval in the previous trial rapidly shifted the time of anticipatory licking earlier. Optogenetic inactivation of the anterior lateral motor cortex (ALM), but not the medial prefrontal cortex, for a short time before reward delivery caused a decrease in the peak time of anticipatory licking in the next trial. Electrophysiological recordings from the ALM showed that the response profiles preceded by short and long inter-reinforcement intervals exhibited task-engagement-dependent temporal scaling. Thus, interval timing is adaptive to recent experience of the temporal interval, and ALM activity during time estimation reflects recent experience of interval.
Collapse
Affiliation(s)
- Taorong Xie
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Can Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yijie Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haishan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| |
Collapse
|
24
|
Sawatani F, Ide K, Takahashi S. The neural representation of time distributed across multiple brain regions differs between implicit and explicit time demands. Neurobiol Learn Mem 2023; 199:107731. [PMID: 36764645 DOI: 10.1016/j.nlm.2023.107731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/19/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Animals appear to possess an internal timer during action, based on the passage of time. However, the neural underpinnings of the perception of time, ranging from seconds to minutes, remain unclear. Herein, we considered the neural representation of time based on mounting evidence on the neural correlates of time perception. The passage of time in the brain is represented by two types of neural encoding as follows: (i) the modulation of firing rates in single neurons and (ii) the sequential activity in neural ensembles. Time-dependent neural activity reflects the relative time rather than the absolute time, similar to a clock. They emerge in multiple regions, including the hippocampus, medial and lateral entorhinal cortices, medial prefrontal cortex, and dorsal striatum. Moreover, they involve different brain regions, depending on an implicit or explicit event duration. Thus, the two types of internal timers distributed across multiple brain regions simultaneously engage in time perception, in response to implicit or explicit time demands.
Collapse
Affiliation(s)
- Fumiya Sawatani
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Brain Science, Doshisha University, Kyotanabe City, Kyoto 610-0394, Japan.
| | - Kaoru Ide
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Brain Science, Doshisha University, Kyotanabe City, Kyoto 610-0394, Japan
| | - Susumu Takahashi
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Brain Science, Doshisha University, Kyotanabe City, Kyoto 610-0394, Japan.
| |
Collapse
|
25
|
Panfil K, Deavours A, Kirkpatrick K. Effects of the estrous cycle on impulsive choice and interval timing in female rats. Horm Behav 2023; 149:105315. [PMID: 36669427 PMCID: PMC9974800 DOI: 10.1016/j.yhbeh.2023.105315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
Research in humans and animals shows differences in impulsive choice, which is a failure to wait for larger, delayed rewards, when comparing males and females. It is possible that fluctuations in sex hormones (estradiol and progesterone) across the reproductive cycle contribute to sex differences in impulsive choice. The current study delivered an impulsive choice task with peak interval trials to female rats while estrous cycles, the rodent reproductive cycle, were tracked over the course of the task. Female rats were more sensitive to changes in delay in the proestrus phase of the estrous cycle and made more larger-later choices when in estrus, particularly when the delay to the smaller reward was short. Estradiol increases dramatically during proestrus while progesterone peaks during estrus, suggesting that estradiol and progesterone may affect impulsive choice through mechanisms such as delay discounting, delay aversion, and/or timing processes. Analyses of timing of the choice task delays showed inconsistent effects of the estrous cycle across delays, suggesting that reward-timing interactions may have complicated how hormone fluctuations affected interval timing. Further research is needed to determine the mechanism underlying increased larger-later choices during the estrus phase, increased delay sensitivity during the proestrus phase, and variability in interval timing across delays and estrous cycle stages.
Collapse
Affiliation(s)
- Kelsey Panfil
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506, United States of America.
| | - Aubrey Deavours
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506, United States of America; Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, United States of America
| | - Kimberly Kirkpatrick
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506, United States of America
| |
Collapse
|
26
|
Cavallaro J, Yeisley J, Akdoǧan B, Floeder J, Balsam PD, Gallo EF. Dopamine D2 receptors in nucleus accumbens cholinergic interneurons increase impulsive choice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524596. [PMID: 36711450 PMCID: PMC9882257 DOI: 10.1101/2023.01.20.524596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Impulsive choice, often characterized by excessive preference for small, short-term rewards over larger, long-term rewards, is a prominent feature of substance use and other neuropsychiatric disorders. The neural mechanisms underlying impulsive choice are not well understood, but growing evidence implicates nucleus accumbens (NAc) dopamine and its actions on dopamine D2 receptors (D2Rs). Because several NAc cell types and afferents express D2Rs, it has been difficult to determine the specific neural mechanisms linking NAc D2Rs to impulsive choice. Of these cell types, cholinergic interneurons (CINs) of the NAc, which express D2Rs, have emerged as key regulators of striatal output and local dopamine release. Despite these relevant functions, whether D2Rs expressed specifically in these neurons contribute to impulsive choice behavior is unknown. Here, we show that D2R upregulation in CINs of the mouse NAc increases impulsive choice as measured in a delay discounting task without affecting reward magnitude sensitivity or interval timing. Conversely, mice lacking D2Rs in CINs showed decreased delay discounting. Furthermore, CIN D2R manipulations did not affect probabilistic discounting, which measures a different form of impulsive choice. Together, these findings suggest that CIN D2Rs regulate impulsive decision-making involving delay costs, providing new insight into the mechanisms by which NAc dopamine influences impulsive behavior.
Collapse
Affiliation(s)
| | - Jenna Yeisley
- Department of Biological Sciences, Fordham University, Bronx, NY
| | - Başak Akdoǧan
- Department of Psychology, Columbia University, New York, NY.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY
| | - Joseph Floeder
- Department of Biological Sciences, Fordham University, Bronx, NY
| | - Peter D. Balsam
- Department of Psychology, Columbia University, New York, NY.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY.,Department of Neuroscience and Behavior, Barnard College, New York, NY
| | - Eduardo F. Gallo
- Department of Biological Sciences, Fordham University, Bronx, NY
| |
Collapse
|
27
|
Altınok S, Vatansever G, Apaydın N, Üstün S, Kale EH, Çelikağ İ, Devrimci-Özgüven H, Baskak B, Çiçek M. Reward Processing Alters the Time Perception Networks in Patients with Major Depressive Disorder. TIMING & TIME PERCEPTION 2023. [DOI: 10.1163/22134468-bja10073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Abstract
Behavioral studies revealed that time perception is affected by the presence of a reward. Both the experience of time and the reward processing were shown to be distorted in major depressive disorder (MDD). We aimed to investigate how neural correlates of time perception and reward anticipation interact in patients with MDD. Participants (17 healthy, seven MDD) performed a time perception task during fMRI scanning that requires estimating the speed of a moving rectangle which was briefly occluded. In the control condition, participants attended to the change in color tone of the rectangle. Half of the runs were rewarded with a monetary payment per correctly done trial to evaluate the effect of a reward. The fMRI data were acquired with a 3T scanner and analyzed with repeated-measures analysis of variance (ANOVA) using SPM12. The activations related to the integration of time with reward were different between both groups in the supplementary motor area, intraparietal sulcus, thalamus, frontal eye field and caudate nucleus. Increased coupling between supplementary motor area and caudate/putamen region during timing was found in MDD patients more than in controls. Overall, our findings suggest that functional differences related to the interaction of time perception with reward anticipation in MDD occur via dysfunction of the cortico-striatal-thalamic network.
Collapse
Affiliation(s)
- Simge Altınok
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, 06230 Turkey
- Brain Research Center, Ankara University, Ankara, 06340 Turkey
| | - Gözde Vatansever
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, 06230 Turkey
- Brain Research Center, Ankara University, Ankara, 06340 Turkey
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, 06560 Turkey
| | - Nihal Apaydın
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, 06230 Turkey
- Brain Research Center, Ankara University, Ankara, 06340 Turkey
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, 06560 Turkey
- Department of Anatomy, School of Medicine, Ankara University, Ankara, 06230 Turkey
| | - Sertaç Üstün
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, 06230 Turkey
- Brain Research Center, Ankara University, Ankara, 06340 Turkey
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, 06560 Turkey
- Department of Physiology, School of Medicine, Ankara University, Ankara, 06230 Turkey
| | - Emre H. Kale
- Brain Research Center, Ankara University, Ankara, 06340 Turkey
| | - İpek Çelikağ
- Brain Research Center, Ankara University, Ankara, 06340 Turkey
| | - Halise Devrimci-Özgüven
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, 06230 Turkey
- Brain Research Center, Ankara University, Ankara, 06340 Turkey
- Department of Psychiatry, School of Medicine, Ankara University, Ankara, 06590 Turkey
| | - Bora Baskak
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, 06230 Turkey
- Brain Research Center, Ankara University, Ankara, 06340 Turkey
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, 06560 Turkey
- Department of Psychiatry, School of Medicine, Ankara University, Ankara, 06590 Turkey
| | - Metehan Çiçek
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, 06230 Turkey
- Brain Research Center, Ankara University, Ankara, 06340 Turkey
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, 06560 Turkey
- Department of Physiology, School of Medicine, Ankara University, Ankara, 06230 Turkey
| |
Collapse
|
28
|
De Corte BJ, Akdoğan B, Balsam PD. Temporal scaling and computing time in neural circuits: Should we stop watching the clock and look for its gears? Front Behav Neurosci 2022; 16:1022713. [PMID: 36570701 PMCID: PMC9773401 DOI: 10.3389/fnbeh.2022.1022713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022] Open
Abstract
Timing underlies a variety of functions, from walking to perceiving causality. Neural timing models typically fall into one of two categories-"ramping" and "population-clock" theories. According to ramping models, individual neurons track time by gradually increasing or decreasing their activity as an event approaches. To time different intervals, ramping neurons adjust their slopes, ramping steeply for short intervals and vice versa. In contrast, according to "population-clock" models, multiple neurons track time as a group, and each neuron can fire nonlinearly. As each neuron changes its rate at each point in time, a distinct pattern of activity emerges across the population. To time different intervals, the brain learns the population patterns that coincide with key events. Both model categories have empirical support. However, they often differ in plausibility when applied to certain behavioral effects. Specifically, behavioral data indicate that the timing system has a rich computational capacity, allowing observers to spontaneously compute novel intervals from previously learned ones. In population-clock theories, population patterns map to time arbitrarily, making it difficult to explain how different patterns can be computationally combined. Ramping models are viewed as more plausible, assuming upstream circuits can set the slope of ramping neurons according to a given computation. Critically, recent studies suggest that neurons with nonlinear firing profiles often scale to time different intervals-compressing for shorter intervals and stretching for longer ones. This "temporal scaling" effect has led to a hybrid-theory where, like a population-clock model, population patterns encode time, yet like a ramping neuron adjusting its slope, the speed of each neuron's firing adapts to different intervals. Here, we argue that these "relative" population-clock models are as computationally plausible as ramping theories, viewing population-speed and ramp-slope adjustments as equivalent. Therefore, we view identifying these "speed-control" circuits as a key direction for evaluating how the timing system performs computations. Furthermore, temporal scaling highlights that a key distinction between different neural models is whether they propose an absolute or relative time-representation. However, we note that several behavioral studies suggest the brain processes both scales, cautioning against a dichotomy.
Collapse
Affiliation(s)
- Benjamin J. De Corte
- Department of Psychology, Columbia University, New York, NY, United States
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, United States
| | - Başak Akdoğan
- Department of Psychology, Columbia University, New York, NY, United States
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, United States
| | - Peter D. Balsam
- Department of Psychology, Columbia University, New York, NY, United States
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, United States
- Department of Neuroscience and Behavior, Barnard College, New York, NY, United States
| |
Collapse
|
29
|
Ponzi A, Wickens J. Ramping activity in the striatum. Front Comput Neurosci 2022; 16:902741. [PMID: 35978564 PMCID: PMC9376361 DOI: 10.3389/fncom.2022.902741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Control of the timing of behavior is thought to require the basal ganglia (BG) and BG pathologies impair performance in timing tasks. Temporal interval discrimination depends on the ramping activity of medium spiny neurons (MSN) in the main BG input structure, the striatum, but the underlying mechanisms driving this activity are unclear. Here, we combine an MSN dynamical network model with an action selection system applied to an interval discrimination task. We find that when network parameters are appropriate for the striatum so that slowly fluctuating marginally stable dynamics are intrinsically generated, up and down ramping populations naturally emerge which enable significantly above chance task performance. We show that emergent population activity is in very good agreement with empirical studies and discuss how MSN network dysfunction in disease may alter temporal perception.
Collapse
Affiliation(s)
- Adam Ponzi
- Institute of Biophysics, Italian National Research Council, Palermo, Italy
- *Correspondence: Adam Ponzi
| | - Jeff Wickens
- Neurobiology Research Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, Japan
| |
Collapse
|
30
|
Yin B, Shi Z, Wang Y, Meck WH. Oscillation/Coincidence-Detection Models of Reward-Related Timing in Corticostriatal Circuits. TIMING & TIME PERCEPTION 2022. [DOI: 10.1163/22134468-bja10057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
The major tenets of beat-frequency/coincidence-detection models of reward-related timing are reviewed in light of recent behavioral and neurobiological findings. This includes the emphasis on a core timing network embedded in the motor system that is comprised of a corticothalamic-basal ganglia circuit. Therein, a central hub provides timing pulses (i.e., predictive signals) to the entire brain, including a set of distributed satellite regions in the cerebellum, cortex, amygdala, and hippocampus that are selectively engaged in timing in a manner that is more dependent upon the specific sensory, behavioral, and contextual requirements of the task. Oscillation/coincidence-detection models also emphasize the importance of a tuned ‘perception’ learning and memory system whereby target durations are detected by striatal networks of medium spiny neurons (MSNs) through the coincidental activation of different neural populations, typically utilizing patterns of oscillatory input from the cortex and thalamus or derivations thereof (e.g., population coding) as a time base. The measure of success of beat-frequency/coincidence-detection accounts, such as the Striatal Beat-Frequency model of reward-related timing (SBF), is their ability to accommodate new experimental findings while maintaining their original framework, thereby making testable experimental predictions concerning diagnosis and treatment of issues related to a variety of dopamine-dependent basal ganglia disorders, including Huntington’s and Parkinson’s disease.
Collapse
Affiliation(s)
- Bin Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
- School of Psychology, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Zhuanghua Shi
- Department of Psychology, Ludwig Maximilian University of Munich, 80802 Munich, Germany
| | - Yaxin Wang
- School of Psychology, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Warren H. Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
31
|
Thomson H, Labuschagne I, Greenwood LM, Robinson E, Sehl H, Suo C, Lorenzetti V. Is resting-state functional connectivity altered in regular cannabis users? A systematic review of the literature. Psychopharmacology (Berl) 2022; 239:1191-1209. [PMID: 34415377 DOI: 10.1007/s00213-021-05938-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022]
Abstract
RATIONALE Regular cannabis use has been associated with brain functional alterations within frontal, temporal, and striatal pathways assessed during various cognitive tasks. Whether such alterations are consistently reported in the absence of overt task performance needs to be elucidated to uncover the core neurobiological mechanisms of regular cannabis use. OBJECTIVES We aim to systematically review findings from studies that examine spontaneous fluctuations of brain function using functional Magnetic Resonance Imaging (fMRI) resting-state functional connectivity (rsFC) in cannabis users versus controls, and the association between rsFC and cannabis use chronicity, mental health symptoms, and cognitive performance. METHODS We conducted a PROSPERO registered systematic review following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and searched eight databases. RESULTS Twenty-one studies were included for review. Samples comprised 1396 participants aged 16 to 42 years, of which 737 were cannabis users and 659 were controls. Most studies found greater positive rsFC in cannabis users compared to controls between frontal-frontal, fronto-striatal, and fronto-temporal region pairings. The same region pairings were found to be preliminarily associated with varying measures of cannabis exposure. CONCLUSIONS The evidence to date shows that regular cannabis exposure is consistently associated with alteration of spontaneous changes in Blood Oxygenation Level-Dependent signal without any explicit cognitive input or output. These findings have implications for interpreting results from task-based fMRI studies of cannabis users, which may additionally tax overlapping networks. Future longitudinal rsFC fMRI studies are required to determine the clinical relevance of the findings and their link to the chronicity of use, mental health, and cognitive performance.
Collapse
Affiliation(s)
- Hannah Thomson
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health, Australian Catholic University, 17 Young Street, Fitzroy, VIC, 3065, Australia
| | - Izelle Labuschagne
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health, Australian Catholic University, 17 Young Street, Fitzroy, VIC, 3065, Australia
| | - Lisa-Marie Greenwood
- Research School of Psychology, Australian National University, Canberra, Australian Capital Territory, Australia.,The Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, NSW, Australia
| | - Emily Robinson
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health, Australian Catholic University, 17 Young Street, Fitzroy, VIC, 3065, Australia
| | - Hannah Sehl
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health, Australian Catholic University, 17 Young Street, Fitzroy, VIC, 3065, Australia
| | - Chao Suo
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Valentina Lorenzetti
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health, Australian Catholic University, 17 Young Street, Fitzroy, VIC, 3065, Australia.
| |
Collapse
|
32
|
Gable PA, Wilhelm AL, Poole BD. How Does Emotion Influence Time Perception? A Review of Evidence Linking Emotional Motivation and Time Processing. Front Psychol 2022; 13:848154. [PMID: 35572264 PMCID: PMC9094696 DOI: 10.3389/fpsyg.2022.848154] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/18/2022] [Indexed: 12/03/2022] Open
Abstract
Emotions have a strong influence on how we experience time passing. The body of research investigating the role of emotion on time perception has steadily increased in the past twenty years. Several affective mechanisms have been proposed to influence the passing of time. The current review focuses on how three dimensions of affect-valence, arousal, and motivation-are related to time perception. The valence-based model of time perception predicts that all positive affects hasten the perception of time and all negative affects slow the perception of time. Arousal is thought to intensify the effects of the influence of valence on time perception. In much of this past work, motivational direction has been confounded with valence, whereas motivational intensity has been confounded with arousal. Research investigating the role of motivation in time perception has found that approach-motivated positive and negative affects hasten the perception of time, but withdrawal-motivated affects slow the perception of time. Perceiving time passing quickly while experiencing approach-motivated states may provide significant advantages related to goal pursuit. In contrast, perceiving time passing slowly while experiencing withdrawal-motivated states may increase avoidance actions. Below, we review evidence supporting that approach motivation hastens the passing of time, whereas withdrawal motivation slows the passing of time. These results suggest that motivational direction, rather than affective valence and arousal, drive emotional changes in time perception.
Collapse
Affiliation(s)
- Philip A. Gable
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Andrea L. Wilhelm
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Bryan D. Poole
- Department of Behavioral and Social Sciences, Lee University, Cleveland, TN, United States
| |
Collapse
|
33
|
Bromazepam increases the error of the time interval judgments and modulates the EEG alpha asymmetry during time estimation. Conscious Cogn 2022; 100:103317. [PMID: 35364385 DOI: 10.1016/j.concog.2022.103317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 11/23/2022]
Abstract
AIM This study investigated the bromazepam effects in male subjects during the time estimation performance and EEG alpha asymmetry in electrodes associated with the frontal and motor cortex. MATERIAL AND METHODS This is a double-blind, crossover study with a sample of 32 healthy adults under control (placebo) vs. experimental (bromazepam) during visual time-estimation task in combination with electroencephalographic analysis. RESULTS The results demonstrated that the bromazepam increased the relative error in the 4 s, 7 s, and 9 s intervals (p = 0.001). In addition, oral bromazepam modulated the EEG alpha asymmetry in cortical areas during the time judgment (p ≤ 0.025). CONCLUSION The bromazepam decreases the precision of time estimation judgments and modulates the EEG alpha asymmetry, with greater left hemispheric dominance during time perception. Our findings suggest that bromazepam influences internal clock synchronization via the modulation of GABAergic receptors, strongly relating to attention, conscious perception, and behavioral performance.
Collapse
|
34
|
Cook JR, Li H, Nguyen B, Huang HH, Mahdavian P, Kirchgessner MA, Strassmann P, Engelhardt M, Callaway EM, Jin X. Secondary auditory cortex mediates a sensorimotor mechanism for action timing. Nat Neurosci 2022; 25:330-344. [PMID: 35260862 DOI: 10.1038/s41593-022-01025-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/26/2022] [Indexed: 01/08/2023]
Abstract
The ability to accurately determine when to perform an action is a fundamental brain function and vital to adaptive behavior. The behavioral mechanism and neural circuit for action timing, however, remain largely unknown. Using a new, self-paced action timing task in mice, we found that deprivation of auditory, but not somatosensory or visual input, disrupts learned action timing. The hearing effect was dependent on the auditory feedback derived from the animal's own actions, rather than passive environmental cues. Neuronal activity in the secondary auditory cortex was found to be both correlated with and necessary for the proper execution of learned action timing. Closed-loop, action-dependent optogenetic stimulation of the specific task-related neuronal population within the secondary auditory cortex rescued the key features of learned action timing under auditory deprivation. These results unveil a previously underappreciated sensorimotor mechanism in which the secondary auditory cortex transduces self-generated audiomotor feedback to control action timing.
Collapse
Affiliation(s)
- Jonathan R Cook
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.,Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA.,Champalimaud Centre for the Unknown, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Hao Li
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bella Nguyen
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Hsiang-Hsuan Huang
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.,Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Payaam Mahdavian
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Megan A Kirchgessner
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA.,Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA.,Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Patrick Strassmann
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.,Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Max Engelhardt
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Xin Jin
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA. .,Center for Motor Control and Disease, Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China. .,NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China.
| |
Collapse
|
35
|
Bakhurin KI, Yin HH. Closing the loop on models of interval timing. Nat Neurosci 2022; 25:270-271. [PMID: 35260861 DOI: 10.1038/s41593-022-01015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.
| |
Collapse
|
36
|
Nishioka M, Kamada T, Nakata A, Shiokawa N, Kinoshita A, Hata T. Intra-dorsal striatal acetylcholine M1 but not dopaminergic D1 or glutamatergic NMDA receptor antagonists inhibit consolidation of duration memory in interval timing. Behav Brain Res 2022; 419:113669. [PMID: 34800548 DOI: 10.1016/j.bbr.2021.113669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/02/2022]
Abstract
The striatal beat frequency model assumes that striatal medium spiny neurons encode duration via synaptic plasticity. Muscarinic 1 (M1) cholinergic receptors as well as dopamine and glutamate receptors are important for neural plasticity in the dorsal striatum. Therefore, we investigated the effect of inhibiting these receptors on the formation of duration memory. After sufficient training in a peak interval (PI)-20-s procedure, rats were administered a single or mixed infusion of a selective antagonist for the dopamine D1 receptor (SCH23390, 0.5 µg per side), N-methyl-D-aspartic acid (NMDA)-type glutamate receptor (D-AP5, 3 µg), or M1 receptor (pirenzepine, 10 µg) bilaterally in the dorsal striatum, immediately before initiating a PI-40 s session (shift session). The next day, the rats were tested for new duration memory (40 s) in a session in which no lever presses were reinforced (test session). In the shift session, the performance was comparable irrespective of the drug injected. However, in the test session, the mean peak time (an index of duration memory) of the M1 + NMDA co-blockade group, but not of the D1 + NMDA co-blockade group, was lower than that of the control group (Experiments 1 and 2). In Experiment 3, the effect of the co-blockade of M1 and NMDA receptors was replicated. Moreover, sole blockade of M1 receptors induced the same effect as M1 and NMDA blockade. These results suggest that in the dorsal striatum, the M1 receptor, but not the D1 or NMDA receptors, is involved in the consolidation of duration memory.
Collapse
Affiliation(s)
- Masahiko Nishioka
- Graduate School of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan.
| | - Taisuke Kamada
- Graduate School of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Atsushi Nakata
- Faculty of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Naoko Shiokawa
- Faculty of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Aoi Kinoshita
- Faculty of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Toshimichi Hata
- Faculty of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan.
| |
Collapse
|
37
|
Hamilos AE, Spedicato G, Hong Y, Sun F, Li Y, Assad J. Slowly evolving dopaminergic activity modulates the moment-to-moment probability of reward-related self-timed movements. eLife 2021; 10:62583. [PMID: 34939925 PMCID: PMC8860451 DOI: 10.7554/elife.62583] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Clues from human movement disorders have long suggested that the neurotransmitter dopamine plays a role in motor control, but how the endogenous dopaminergic system influences movement is unknown. Here we examined the relationship between dopaminergic signaling and the timing of reward-related movements in mice. Animals were trained to initiate licking after a self-timed interval following a start-timing cue; reward was delivered in response to movements initiated after a criterion time. The movement time was variable from trial-to-trial, as expected from previous studies. Surprisingly, dopaminergic signals ramped-up over seconds between the start-timing cue and the self-timed movement, with variable dynamics that predicted the movement/reward time on single trials. Steeply rising signals preceded early lick-initiation, whereas slowly rising signals preceded later initiation. Higher baseline signals also predicted earlier self-timed movements. Optogenetic activation of dopamine neurons during self-timing did not trigger immediate movements, but rather caused systematic early-shifting of movement initiation, whereas inhibition caused late-shifting, as if modulating the probability of movement. Consistent with this view, the dynamics of the endogenous dopaminergic signals quantitatively predicted the moment-by-moment probability of movement initiation on single trials. We propose that ramping dopaminergic signals, likely encoding dynamic reward expectation, can modulate the decision of when to move.
Collapse
Affiliation(s)
- Allison E Hamilos
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Giulia Spedicato
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Ye Hong
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Fangmiao Sun
- State Key Laboratory of Membrane Biology, Peking University School of Life Science, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peiking University School of Life Sciences, Beijing, China
| | - John Assad
- Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
38
|
Zhang Q, Abdelmotilib H, Larson T, Keomanivong C, Conlon M, Aldridge GM, Narayanan NS. Cortical alpha-synuclein preformed fibrils do not affect interval timing in mice. Neurosci Lett 2021; 765:136273. [PMID: 34601038 DOI: 10.1016/j.neulet.2021.136273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
One hallmark feature of Parkinson's disease (PD) is Lewy body pathology associated with misfolded alpha-synuclein. Previous studies have shown that striatal injection of alpha-synuclein preformed fibrils (PFF) can induce misfolding and aggregation of native alpha-synuclein in a prion-like manner, leading to cell death and motor dysfunction in mouse models. Here, we tested whether alpha-synuclein PFFs injected into the medial prefrontal cortex results in deficits in interval timing, a cognitive task which is disrupted in human PD patients and in rodent models of PD. We injected PFF or monomers of human alpha-synuclein into the medial prefrontal cortex of mice pre-injected with adeno-associated virus (AAV) coding for overexpression of human alpha-synuclein or control protein. Despite notable medial prefrontal cortical synucleinopathy, we did not observe consistent deficits in fixed-interval timing. These results suggest that cortical alpha-synuclein does not reliably disrupt fixed-interval timing.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States.
| | - Hisham Abdelmotilib
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - Travis Larson
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - Cameron Keomanivong
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - Mackenzie Conlon
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - Georgina M Aldridge
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | | |
Collapse
|
39
|
Bruce RA, Weber MA, Volkman RA, Oya M, Emmons EB, Kim Y, Narayanan NS. Experience-related enhancements in striatal temporal encoding. Eur J Neurosci 2021; 54:5063-5074. [PMID: 34097793 PMCID: PMC8511940 DOI: 10.1111/ejn.15344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Abstract
Temporal control of action is key for a broad range of behaviors and is disrupted in human diseases such as Parkinson's disease and schizophrenia. A brain structure that is critical for temporal control is the dorsal striatum. Experience and learning can influence dorsal striatal neuronal activity, but it is unknown how these neurons change with experience in contexts which require precise temporal control of movement. We investigated this question by recording from medium spiny neurons (MSNs) via dorsal striatal microelectrode arrays in mice as they gained experience controlling their actions in time. We leveraged an interval timing task optimized for mice which required them to "switch" response ports after enough time had passed without receiving a reward. We report three main results. First, we found that time-related ramping activity and response-related activity increased with task experience. Second, temporal decoding by MSN ensembles improved with experience and was predominantly driven by time-related ramping activity. Finally, we found that a subset of MSNs had differential modulation on error trials. These findings enhance our understanding of dorsal striatal temporal processing by demonstrating how MSN ensembles can evolve with experience. Our results can be linked to temporal habituation and illuminate striatal flexibility during interval timing, which may be relevant for human disease.
Collapse
Affiliation(s)
- R. Austin. Bruce
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, 52242
- Department of Neurology, University of Iowa, Iowa City, IA 52242
| | - Matthew A. Weber
- Department of Neurology, University of Iowa, Iowa City, IA 52242
| | | | - Mayu Oya
- Department of Neurology, University of Iowa, Iowa City, IA 52242
| | - Eric B. Emmons
- Department of Biology, Wartburg College, Waverly, IA, 50677
| | - Youngcho Kim
- Department of Neurology, University of Iowa, Iowa City, IA 52242
| | | |
Collapse
|
40
|
Timing and Intertemporal Choice Behavior in the Valproic Acid Rat Model of Autism Spectrum Disorder. J Autism Dev Disord 2021; 52:2414-2429. [DOI: 10.1007/s10803-021-05129-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 12/16/2022]
|
41
|
Fung BJ, Sutlief E, Hussain Shuler MG. Dopamine and the interdependency of time perception and reward. Neurosci Biobehav Rev 2021; 125:380-391. [PMID: 33652021 PMCID: PMC9062982 DOI: 10.1016/j.neubiorev.2021.02.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 01/14/2023]
Abstract
Time is a fundamental dimension of our perception of the world and is therefore of critical importance to the organization of human behavior. A corpus of work - including recent optogenetic evidence - implicates striatal dopamine as a crucial factor influencing the perception of time. Another stream of literature implicates dopamine in reward and motivation processes. However, these two domains of research have remained largely separated, despite neurobiological overlap and the apothegmatic notion that "time flies when you're having fun". This article constitutes a review of the literature linking time perception and reward, including neurobiological and behavioral studies. Together, these provide compelling support for the idea that time perception and reward processing interact via a common dopaminergic mechanism.
Collapse
Affiliation(s)
- Bowen J Fung
- The Behavioural Insights Team, Suite 3, Level 13/9 Hunter St, Sydney NSW 2000, Australia.
| | - Elissa Sutlief
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Woods Basic Science Building Rm914, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Marshall G Hussain Shuler
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Woods Basic Science Building Rm914, 725 N. Wolfe Street, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
42
|
Yousefzadeh SA, Youngkin AE, Lusk NA, Wen S, Meck WH. Bidirectional role of microtubule dynamics in the acquisition and maintenance of temporal information in dorsolateral striatum. Neurobiol Learn Mem 2021; 183:107468. [PMID: 34058346 DOI: 10.1016/j.nlm.2021.107468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 11/25/2022]
Abstract
Accurate and precise timing is crucial for complex and purposeful behaviors, such as foraging for food or playing a musical instrument. The brain is capable of processing temporal information in a coordinated manner, as if it contains an 'internal clock'. Similar to the need for the brain to orient itself in space in order to understand its surroundings, temporal orientation and tracking is an essential component of cognition as well. While there have been multiple models explaining the neural correlates of timing, independent lines of research appear to converge on the conclusion that populations of neurons in the dorsal striatum encode information relating to where a subject is in time relative to an anticipated goal. Similar to other learning processes, acquisition and maintenance of this temporal information is dependent on synaptic plasticity. Microtubules are cytoskeletal proteins that have been implicated in synaptic plasticity mechanisms and therefore are considered key elements in learning and memory. In this study, we investigated the role of microtubule dynamics in temporal learning by local infusions of microtubule stabilizing and destabilizing agents into the dorsolateral striatum. Our results suggested a bidirectional role for microtubules in timing, such that microtubule stabilization improves the maintenance of learned target durations, but impairs the acquisition of a novel duration. On the other hand, microtubule destabilization enhances the acquisition of novel target durations, while compromising the maintenance of previously learned durations. These findings suggest that microtubule dynamics plays an important role in synaptic plasticity mechanisms in the dorsolateral striatum, which in turn modulates temporal learning and time perception.
Collapse
Affiliation(s)
- S Aryana Yousefzadeh
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States.
| | - Anna E Youngkin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Nicholas A Lusk
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Shufan Wen
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Warren H Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| |
Collapse
|
43
|
Boulanger-Bertolus J, Parrot S, Doyère V, Mouly AM. Dorsal striatum and the temporal expectancy of an aversive event in Pavlovian odor fear learning. Neurobiol Learn Mem 2021; 182:107446. [PMID: 33915299 DOI: 10.1016/j.nlm.2021.107446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/07/2021] [Accepted: 04/22/2021] [Indexed: 11/28/2022]
Abstract
Interval timing, the ability to encode and retrieve the memory of intervals from seconds to minutes, guides fundamental animal behaviors across the phylogenetic tree. In Pavlovian fear conditioning, an initially neutral stimulus (conditioned stimulus, CS) predicts the arrival of an aversive unconditioned stimulus (US, generally a mild foot-shock) at a fixed time interval. Although some studies showed that temporal relations between CS and US events are learned from the outset of conditioning, the question of the memory of time and its underlying neural network in fear conditioning is still poorly understood. The aim of the present study was to investigate the role of the dorsal striatum in timing intervals in odor fear conditioning in male rats. To assess the animal's interval timing ability in this paradigm, we used the respiratory frequency. This enabled us to detect the emergence of temporal patterns related to the odor-shock time interval from the early stage of learning, confirming that rats are able to encode the odor-shock time interval after few training trials. We carried out reversible inactivation of the dorsal striatum before the acquisition session and before a shift in the learned time interval, and measured the effects of this treatment on the temporal pattern of the respiratory rate. In addition, using intracerebral microdialysis, we monitored extracellular dopamine level in the dorsal striatum throughout odor-shock conditioning and in response to a shift of the odor-shock time interval. Contrary to our initial predictions based on the existing literature on interval timing, we found evidence suggesting that transient inactivation of the dorsal striatum may favor a more precocious buildup of the respiratory frequency's temporal pattern during the odor-shock interval in a manner that reflected the duration of the interval. Our data further suggest that the conditioning and the learning of a novel time interval were associated with a decrease in dopamine level in the dorsal striatum, but not in the nucleus accumbens. These findings prompt a reassessment of the role of the striatum and striatal dopamine in interval timing, at least when considering Pavlovian aversive conditioning.
Collapse
Affiliation(s)
- Julie Boulanger-Bertolus
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Lyon 1, Lyon 69366, France.
| | - Sandrine Parrot
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Valérie Doyère
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190 Gif-sur-Yvette, France; NYU Child Study Center Department of Child and Adolescent Psychiatry, New York University Langone School of Medicine, NY, USA
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Lyon 1, Lyon 69366, France
| |
Collapse
|
44
|
Shikano Y, Ikegaya Y, Sasaki T. Minute-encoding neurons in hippocampal-striatal circuits. Curr Biol 2021; 31:1438-1449.e6. [PMID: 33545048 DOI: 10.1016/j.cub.2021.01.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/16/2020] [Accepted: 01/11/2021] [Indexed: 11/16/2022]
Abstract
Animals process temporal information in an ever-changing environment, but the neuronal mechanisms of this process, especially on timescales longer than seconds, remain unresolved. Here, we designed a hippocampus-dependent task in which rats prospectively increased their reward-seeking behavior over a duration of minutes. During this timing behavior, hippocampal and striatal neurons represented successive time points on the order of minutes by gradually changing their firing rates and transiently increasing their firing rates at specific time points. These minute-encoding patterns progressively developed as the rats learned a time-reward relationship, and the patterns underwent flexible scaling in parallel with timing behavior. These observations suggest a neuronal basis in the hippocampal-striatal circuits that enables temporal processing and formation of episodic memory on a timescale of minutes.
Collapse
Affiliation(s)
- Yu Shikano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Center for Information and Neural Networks, 1-4 Yamadaoka, Suita City, Osaka 565-0871, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takuya Sasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
45
|
Shields AK, Suarez M, Wakabayashi KT, Bass CE. Activation of VTA GABA neurons disrupts reward seeking by altering temporal processing. Behav Brain Res 2021; 410:113292. [PMID: 33836166 DOI: 10.1016/j.bbr.2021.113292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/30/2022]
Abstract
The role of ventral tegmental area (VTA) dopamine in reward, cue processing, and interval timing is well characterized. Using a combinatorial viral approach to target activating DREADDs (Designer Receptors Exclusively Activated by Designer Drugs, hM3D) to GABAergic neurons in the VTA of male rats, we previously showed that activation disrupts responding to reward-predictive cues. Here we explored how VTA GABA neurons influence the perception of time in two fixed interval (FI) tasks, one where the reward or interval is not paired with predictive cues (Non-Cued FI), and another where the start of the FI is signaled by a constant tone that continues until the rewarded response is emitted (Cued FI). Under vehicle conditions in both tasks, responding was characterized by "scalloping" over the 30 s FI, in which responding increased towards the end of the FI. However, when VTA GABA neurons were activated in the Non-Cued FI, the time between the end of the 30 s interval and when the rats made a reinforced response increased. Additionally, post-reinforcement pauses and overall session length increased. In the Cued FI task, VTA GABA activation produced erratic responding, with a decrease in earned rewards. Thus, while both tasks were disrupted by VTA GABA activation, responding that is constrained by a cue was more sensitive to this manipulation, possibly due to convergent effects on timing and cue processing. Together these results demonstrate that VTA GABA activity disrupts the perception of interval timing, particularly when the timing is set by cues.
Collapse
Affiliation(s)
- Andrea K Shields
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, 14214, United States
| | - Mauricio Suarez
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, 14214, United States; Clinical Research Institute on Addictions, University at Buffalo, State University of New York, Buffalo, NY, 14203, United States
| | - Ken T Wakabayashi
- Department of Psychology, University of Nebraska-Lincoln, 1220 T. Street, Lincoln, NE, 68588, United States
| | - Caroline E Bass
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, 14214, United States; Clinical Research Institute on Addictions, University at Buffalo, State University of New York, Buffalo, NY, 14203, United States.
| |
Collapse
|
46
|
Terao Y, Honma M, Asahara Y, Tokushige SI, Furubayashi T, Miyazaki T, Inomata-Terada S, Uchibori A, Miyagawa S, Ichikawa Y, Chiba A, Ugawa Y, Suzuki M. Time Distortion in Parkinsonism. Front Neurosci 2021; 15:648814. [PMID: 33815049 PMCID: PMC8017233 DOI: 10.3389/fnins.2021.648814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
Although animal studies and studies on Parkinson’s disease (PD) suggest that dopamine deficiency slows the pace of the internal clock, which is corrected by dopaminergic medication, timing deficits in parkinsonism remain to be characterized with diverse findings. Here we studied patients with PD and progressive supranuclear palsy (PSP), 3–4 h after drug intake, and normal age-matched subjects. We contrasted perceptual (temporal bisection, duration comparison) and motor timing tasks (time production/reproduction) in supra- and sub-second time domains, and automatic versus cognitive/short-term memory–related tasks. Subjects were allowed to count during supra-second production and reproduction tasks. In the time production task, linearly correlating the produced time with the instructed time showed that the “subjective sense” of 1 s is slightly longer in PD and shorter in PSP than in normals. This was superposed on a prominent trend of underestimation of longer (supra-second) durations, common to all groups, suggesting that the pace of the internal clock changed from fast to slow as time went by. In the time reproduction task, PD and, more prominently, PSP patients over-reproduced shorter durations and under-reproduced longer durations at extremes of the time range studied, with intermediate durations reproduced veridically, with a shallower slope of linear correlation between the presented and produced time. In the duration comparison task, PD patients overestimated the second presented duration relative to the first with shorter but not longer standard durations. In the bisection task, PD and PSP patients estimated the bisection point (BP50) between the two supra-second but not sub-second standards to be longer than normal subjects. Thus, perceptual timing tasks showed changes in opposite directions to motor timing tasks: underestimating shorter durations and overestimating longer durations. In PD, correlation of the mini-mental state examination score with supra-second BP50 and the slope of linear correlation in the reproduction task suggested involvement of short-term memory in these tasks. Dopamine deficiency didn’t correlate significantly with timing performances, suggesting that the slowed clock hypothesis cannot explain the entire results. Timing performance in PD may be determined by complex interactions among time scales on the motor and sensory sides, and by their distortion in memory.
Collapse
Affiliation(s)
- Yasuo Terao
- Department of Medical Physiology, School of Medicine, Kyorin University, Tokyo, Japan
| | - Motoyasu Honma
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Yuki Asahara
- Department of Neurology, The Jikei University Katsushika Medical Center, Tokyo, Japan
| | | | - Toshiaki Furubayashi
- Graduate School of Health and Environment Science, Tohoku Bunka Gakuen University, Sendai, Japan
| | - Tai Miyazaki
- Department of Neurology, Kyorin University Hospital, Tokyo, Japan
| | - Satomi Inomata-Terada
- Department of Medical Physiology, School of Medicine, Kyorin University, Tokyo, Japan
| | - Ayumi Uchibori
- Department of Neurology, Kyorin University Hospital, Tokyo, Japan
| | - Shinji Miyagawa
- Department of Neurology, The Jikei University Katsushika Medical Center, Tokyo, Japan
| | - Yaeko Ichikawa
- Department of Neurology, Kyorin University Hospital, Tokyo, Japan
| | - Atsuro Chiba
- Department of Neurology, Kyorin University Hospital, Tokyo, Japan
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Masahiko Suzuki
- Department of Neurology, The Jikei University Katsushika Medical Center, Tokyo, Japan
| |
Collapse
|
47
|
Timing behavior in genetic murine models of neurological and psychiatric diseases. Exp Brain Res 2021; 239:699-717. [PMID: 33404792 DOI: 10.1007/s00221-020-06021-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/16/2020] [Indexed: 01/17/2023]
Abstract
How timing behavior is altered in different neurodevelopmental and neurodegenerative disorders is a contemporary research question. Genetic murine models (GMM) that offer high construct validity also serve as useful tools to investigate this question. But the literature on timing behavior of different GMMs largely remains to be consolidated. The current paper addresses this gap by reviewing studies that have been conducted with GMMs of neurodevelopmental (e.g. ADHD, schizophrenia, autism spectrum disorder), neurodegenerative disorders (e.g., Alzheimer's disease, Huntington's disease) as well as circadian and other mutant lines. The review focuses on those studies that specifically utilized the peak interval procedure to improve the comparability of findings both within and between different disease models. The reviewed studies revealed timing deficits that are characteristic of different disorders. Specifically, Huntington's disease models had weaker temporal control over the termination of their anticipatory responses, Alzheimer's disease models had earlier timed responses, schizophrenia models had weaker temporal control, circadian mutants had shifted timed responses consistent with shifts in the circadian periods. The differences in timing behavior were less consistent for other conditions such as attention deficit and hyperactivity disorder and mutations related to intellectual disability. We discuss the implications of these findings for the neural basis of an internal stopwatch. Finally, we make methodological recommendations for future research for improving the comparability of the timing behavior across different murine models.
Collapse
|
48
|
Kamada T, Hata T. Striatal dopamine D1 receptors control motivation to respond, but not interval timing, during the timing task. ACTA ACUST UNITED AC 2020; 28:24-29. [PMID: 33323499 PMCID: PMC7747650 DOI: 10.1101/lm.052266.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/05/2020] [Indexed: 11/24/2022]
Abstract
Dopamine plays a critical role in behavioral tasks requiring interval timing (time perception in a seconds-to-minutes range). Although some studies demonstrate the role of dopamine receptors as a controller of the speed of the internal clock, other studies demonstrate their role as a controller of motivation. Both D1 dopamine receptors (D1DRs) and D2 dopamine receptors (D2DRs) within the dorsal striatum may play a role in interval timing because the dorsal striatum contains rich D1DRs and D2DRs. However, relative to D2DRs, the precise role of D1DRs within the dorsal striatum in interval timing is unclear. To address this issue, rats were trained on the peak-interval 20-sec procedure, and D1DR antagonist SCH23390 was infused into the bilateral dorsocentral striatum before behavioral sessions. Our results showed that the D1DR blockade drastically reduced the maximum response rate and increased the time to start responses with no effects on the time to terminate responses. These findings suggest that the D1DRs within the dorsal striatum are required for motivation to respond, but not for modulation of the internal clock speed.
Collapse
Affiliation(s)
- Taisuke Kamada
- Organization for Research Initiatives and Development, Doshisha University, Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan.,Faculty of Psychology, Doshisha University, Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Toshimichi Hata
- Faculty of Psychology, Doshisha University, Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| |
Collapse
|
49
|
Balcı F, Freestone D. The Peak Interval Procedure in Rodents: A Tool for Studying the Neurobiological Basis of Interval Timing and Its Alterations in Models of Human Disease. Bio Protoc 2020; 10:e3735. [PMID: 33659396 PMCID: PMC7854006 DOI: 10.21769/bioprotoc.3735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 11/02/2022] Open
Abstract
Animals keep track of time intervals in the seconds to minutes range with, on average, high accuracy but substantial trial-to-trial variability. The ability to detect the statistical signatures of such timing behavior is an indispensable feature of a good and theoretically-tractable testing procedure. A widely used interval timing procedure is the peak interval (PI) procedure, where animals learn to anticipate rewards that become available after a fixed delay. After learning, they cluster their responses around that reward-availability time. The in-depth analysis of such timed anticipatory responses leads to the understanding of an internal timing mechanism, that is, the processing dynamics and systematic biases of the brain's clock. This protocol explains in detail how the PI procedure can be implemented in rodents, from training through testing to analysis. We showcase both trial-by-trial and trial-averaged analytical methods as a window into these internal processes. This protocol has the advantages of capturing timing behavior in its full-complexity in a fashion that allows for a theoretical treatment of the data.
Collapse
Affiliation(s)
- Fuat Balcı
- Koç University, Department of Psychology, Istanbul, Turkey
| | - David Freestone
- William Paterson University, Department of Psychology, NJ, United States
| |
Collapse
|
50
|
van de Ven V, Lee C, Lifanov J, Kochs S, Jansma H, De Weerd P. Hippocampal-striatal functional connectivity supports processing of temporal expectations from associative memory. Hippocampus 2020; 30:926-937. [PMID: 32275344 PMCID: PMC7496232 DOI: 10.1002/hipo.23205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 03/14/2020] [Accepted: 03/20/2020] [Indexed: 12/02/2022]
Abstract
The hippocampus and dorsal striatum are both associated with temporal processing, but they are thought to play distinct roles. The hippocampus has been reported to contribute to storing temporal structure of events in memory, whereas the striatum contributes to temporal motor preparation and reward anticipation. Here, we asked whether the striatum cooperates with the hippocampus in processing the temporal context of memorized visual associations. In our task, participants were trained to implicitly form temporal expectations for one of two possible time intervals associated to specific cue-target associations, and subsequently were scanned using ultra-high-field 7T functional magnetic resonance imaging. During scanning, learned temporal expectations could be violated when the pairs were presented at either the associated or not-associated time intervals. When temporal expectations were met during testing trials, activity in left and right hippocampal subfields and right putamen decreased, compared to when temporal expectations were not met. Further, psycho-physiological interactions showed that functional connectivity between left hippocampal subfields and caudate decreased when temporal expectations were not met. Our results indicate that the hippocampus and striatum cooperate to process implicit temporal expectation from mnemonic associations. Our findings provide further support for a hippocampal-striatal network in temporal associative processing.
Collapse
Affiliation(s)
- Vincent van de Ven
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Chanju Lee
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | | | - Sarah Kochs
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Henk Jansma
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Peter De Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|