1
|
Neal SJ, Rajasekaran A, Jusić N, Taylor L, Read M, Alfandari D, Pignoni F, Moody SA. Using Xenopus to discover new candidate genes involved in BOR and other congenital hearing loss syndromes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:212-240. [PMID: 37830236 PMCID: PMC11014897 DOI: 10.1002/jez.b.23222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/15/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
Hearing in infants is essential for brain development, acquisition of verbal language skills, and development of social interactions. Therefore, it is important to diagnose hearing loss soon after birth so that interventions can be provided as early as possible. Most newborns in the United States are screened for hearing deficits and commercially available next-generation sequencing hearing loss panels often can identify the causative gene, which may also identify congenital defects in other organs. One of the most prevalent autosomal dominant congenital hearing loss syndromes is branchio-oto-renal syndrome (BOR), which also presents with defects in craniofacial structures and the kidney. Currently, mutations in three genes, SIX1, SIX5, and EYA1, are known to be causative in about half of the BOR patients that have been tested. To uncover new candidate genes that could be added to congenital hearing loss genetic screens, we have combined the power of Drosophila mutants and protein biochemical assays with the embryological advantages of Xenopus, a key aquatic animal model with a high level of genomic similarity to human, to identify potential Six1 transcriptional targets and interacting proteins that play a role during otic development. We review our transcriptomic, yeast 2-hybrid, and proteomic approaches that have revealed a large number of new candidates. We also discuss how we have begun to identify how Six1 and co-factors interact to direct developmental events necessary for normal otic development.
Collapse
Affiliation(s)
- Scott J. Neal
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Anindita Rajasekaran
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Nisveta Jusić
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Louis Taylor
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Mai Read
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Francesca Pignoni
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Sally A. Moody
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
2
|
Coppenrath K, Tavares ALP, Shaidani NI, Wlizla M, Moody SA, Horb M. Generation of a new six1-null line in Xenopus tropicalis for study of development and congenital disease. Genesis 2021; 59:e23453. [PMID: 34664392 DOI: 10.1002/dvg.23453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 12/15/2022]
Abstract
The vertebrate Six (Sine oculis homeobox) family of homeodomain transcription factors plays critical roles in the development of several organs. Six1 plays a central role in cranial placode development, including the precursor tissues of the inner ear, as well as other cranial sensory organs and the kidney. In humans, mutations in SIX1 underlie some cases of Branchio-oto-renal (BOR) syndrome, which is characterized by moderate-to-severe hearing loss. We utilized CRISPR/Cas9 technology to establish a six1 mutant line in Xenopus tropicalis that is available to the research community. We demonstrate that at larval stages, the six1-null animals show severe disruptions in gene expression of putative Six1 target genes in the otic vesicle, cranial ganglia, branchial arch, and neural tube. At tadpole stages, six1-null animals display dysmorphic Meckel's, ceratohyal, and otic capsule cartilage morphology. This mutant line will be of value for the study of the development of several organs as well as congenital syndromes that involve these tissues.
Collapse
Affiliation(s)
- Kelsey Coppenrath
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Andre L P Tavares
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Nikko-Ideen Shaidani
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Marcin Wlizla
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts, USA.,Embryology Department, Charles River Laboratories, Wilmington, Massachusetts, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Marko Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
3
|
Meurer L, Ferdman L, Belcher B, Camarata T. The SIX Family of Transcription Factors: Common Themes Integrating Developmental and Cancer Biology. Front Cell Dev Biol 2021; 9:707854. [PMID: 34490256 PMCID: PMC8417317 DOI: 10.3389/fcell.2021.707854] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/28/2021] [Indexed: 01/19/2023] Open
Abstract
The sine oculis (SIX) family of transcription factors are key regulators of developmental processes during embryogenesis. Members of this family control gene expression to promote self-renewal of progenitor cell populations and govern mechanisms of cell differentiation. When the function of SIX genes becomes disrupted, distinct congenital defects develops both in animal models and humans. In addition to the embryonic setting, members of the SIX family have been found to be critical regulators of tumorigenesis, promoting cell proliferation, epithelial-to-mesenchymal transition, and metastasis. Research in both the fields of developmental biology and cancer research have provided an extensive understanding of SIX family transcription factor functions. Here we review recent progress in elucidating the role of SIX family genes in congenital disease as well as in the promotion of cancer. Common themes arise when comparing SIX transcription factor function during embryonic and cancer development. We highlight the complementary nature of these two fields and how knowledge in one area can open new aspects of experimentation in the other.
Collapse
Affiliation(s)
- Logan Meurer
- Department of Basic Sciences, NYIT College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Leonard Ferdman
- Department of Basic Sciences, NYIT College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Beau Belcher
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, United States
| | - Troy Camarata
- Department of Basic Sciences, NYIT College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| |
Collapse
|
4
|
Mutations in SIX1 Associated with Branchio-oto-Renal Syndrome (BOR) Differentially Affect Otic Expression of Putative Target Genes. J Dev Biol 2021; 9:jdb9030025. [PMID: 34208995 PMCID: PMC8293042 DOI: 10.3390/jdb9030025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/16/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Several single-nucleotide mutations in SIX1 underlie branchio-otic/branchio-oto-renal (BOR) syndrome, but the clinical literature has not been able to correlate different variants with specific phenotypes. We previously assessed whether variants in either the cofactor binding domain (V17E, R110W) or the DNA binding domain (W122R, Y129C) might differentially affect early embryonic gene expression, and found that each variant had a different combination of effects on neural crest and placode gene expression. Since the otic vesicle gives rise to the inner ear, which is consistently affected in BOR, herein we focused on whether the variants differentially affected the otic expression of genes previously found to be likely Six1 targets. We found that V17E, which does not bind Eya cofactors, was as effective as wild-type Six1 in reducing most otic target genes, whereas R110W, W122R and Y129C, which bind Eya, were significantly less effective. Notably, V17E reduced the otic expression of prdm1, whereas R110W, W122R and Y129C expanded it. Since each mutant has defective transcriptional activity but differs in their ability to interact with Eya cofactors, we propose that altered cofactor interactions at the mutated sites differentially interfere with their ability to drive otic gene expression, and these differences may contribute to patient phenotype variability.
Collapse
|
5
|
Jin L, Tang Q, Hu S, Chen Z, Zhou X, Zeng B, Wang Y, He M, Li Y, Gui L, Shen L, Long K, Ma J, Wang X, Chen Z, Jiang Y, Tang G, Zhu L, Liu F, Zhang B, Huang Z, Li G, Li D, Gladyshev VN, Yin J, Gu Y, Li X, Li M. A pig BodyMap transcriptome reveals diverse tissue physiologies and evolutionary dynamics of transcription. Nat Commun 2021; 12:3715. [PMID: 34140474 PMCID: PMC8211698 DOI: 10.1038/s41467-021-23560-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
A comprehensive transcriptomic survey of pigs can provide a mechanistic understanding of tissue specialization processes underlying economically valuable traits and accelerate their use as a biomedical model. Here we characterize four transcript types (lncRNAs, TUCPs, miRNAs, and circRNAs) and protein-coding genes in 31 adult pig tissues and two cell lines. We uncover the transcriptomic variability among 47 skeletal muscles, and six adipose depots linked to their different origins, metabolism, cell composition, physical activity, and mitochondrial pathways. We perform comparative analysis of the transcriptomes of seven tissues from pigs and nine other vertebrates to reveal that evolutionary divergence in transcription potentially contributes to lineage-specific biology. Long-range promoter–enhancer interaction analysis in subcutaneous adipose tissues across species suggests evolutionarily stable transcription patterns likely attributable to redundant enhancers buffering gene expression patterns against perturbations, thereby conferring robustness during speciation. This study can facilitate adoption of the pig as a biomedical model for human biology and disease and uncovers the molecular bases of valuable traits. A comprehensive transcriptomic survey of the pig could enable mechanistic understanding of tissue specialization and accelerate its use as a biomedical model. Here the authors characterize four distinct transcript types in 31 adult pig tissues to dissect their distinct structural and transcriptional features and uncover transcriptomic variability related to tissue physiology.
Collapse
Affiliation(s)
- Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Silu Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhongxu Chen
- Department of Life Science, Tcuni Inc., Chengdu, Sichuan, China
| | - Xuming Zhou
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bo Zeng
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuhao Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mengnan He
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lixuan Gui
- Department of Life Science, Tcuni Inc., Chengdu, Sichuan, China
| | - Linyuan Shen
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xun Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanzhi Jiang
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Guoqing Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Li Zhu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fei Liu
- Information and Educational Technology Center, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zhang
- Ya'an Digital Economy Operation Company, Ya'an, Sichuan, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guisen Li
- Renal Department and Nephrology Institute, Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Diyan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiren Gu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Xuewei Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Vermeiren S, Bellefroid EJ, Desiderio S. Vertebrate Sensory Ganglia: Common and Divergent Features of the Transcriptional Programs Generating Their Functional Specialization. Front Cell Dev Biol 2020; 8:587699. [PMID: 33195244 PMCID: PMC7649826 DOI: 10.3389/fcell.2020.587699] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Sensory fibers of the peripheral nervous system carry sensation from specific sense structures or use different tissues and organs as receptive fields, and convey this information to the central nervous system. In the head of vertebrates, each cranial sensory ganglia and associated nerves perform specific functions. Sensory ganglia are composed of different types of specialized neurons in which two broad categories can be distinguished, somatosensory neurons relaying all sensations that are felt and visceral sensory neurons sensing the internal milieu and controlling body homeostasis. While in the trunk somatosensory neurons composing the dorsal root ganglia are derived exclusively from neural crest cells, somato- and visceral sensory neurons of cranial sensory ganglia have a dual origin, with contributions from both neural crest and placodes. As most studies on sensory neurogenesis have focused on dorsal root ganglia, our understanding of the molecular mechanisms underlying the embryonic development of the different cranial sensory ganglia remains today rudimentary. However, using single-cell RNA sequencing, recent studies have made significant advances in the characterization of the neuronal diversity of most sensory ganglia. Here we summarize the general anatomy, function and neuronal diversity of cranial sensory ganglia. We then provide an overview of our current knowledge of the transcriptional networks controlling neurogenesis and neuronal diversification in the developing sensory system, focusing on cranial sensory ganglia, highlighting specific aspects of their development and comparing it to that of trunk sensory ganglia.
Collapse
Affiliation(s)
- Simon Vermeiren
- ULB Neuroscience Institute, Université Libre de Bruxelles, Gosselies, Belgium
| | - Eric J Bellefroid
- ULB Neuroscience Institute, Université Libre de Bruxelles, Gosselies, Belgium
| | - Simon Desiderio
- Institute for Neurosciences of Montpellier, INSERM U1051, University of Montpellier, Montpellier, France
| |
Collapse
|
7
|
Cell fate decisions during the development of the peripheral nervous system in the vertebrate head. Curr Top Dev Biol 2020; 139:127-167. [PMID: 32450959 DOI: 10.1016/bs.ctdb.2020.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sensory placodes and neural crest cells are among the key cell populations that facilitated the emergence and diversification of vertebrates throughout evolution. Together, they generate the sensory nervous system in the head: both form the cranial sensory ganglia, while placodal cells make major contributions to the sense organs-the eye, ear and olfactory epithelium. Both are instrumental for integrating craniofacial organs and have been key to drive the concentration of sensory structures in the vertebrate head allowing the emergence of active and predatory life forms. Whereas the gene regulatory networks that control neural crest cell development have been studied extensively, the signals and downstream transcriptional events that regulate placode formation and diversity are only beginning to be uncovered. Both cell populations are derived from the embryonic ectoderm, which also generates the central nervous system and the epidermis, and recent evidence suggests that their initial specification involves a common molecular mechanism before definitive neural, neural crest and placodal lineages are established. In this review, we will first discuss the transcriptional networks that pattern the embryonic ectoderm and establish these three cell fates with emphasis on sensory placodes. Second, we will focus on how sensory placode precursors diversify using the specification of otic-epibranchial progenitors and their segregation as an example.
Collapse
|
8
|
Takahashi M, Ikeda K, Ohmuraya M, Nakagawa Y, Sakuma T, Yamamoto T, Kawakami K. Six1 is required for signaling center formation and labial-lingual asymmetry in developing lower incisors. Dev Dyn 2020; 249:1098-1116. [PMID: 32243674 DOI: 10.1002/dvdy.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/06/2020] [Accepted: 03/26/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The structure of the mouse incisor is characterized by its asymmetric accumulation of enamel matrix proteins on the labial side. The asymmetric structure originates from the patterning of the epithelial incisor placode through the interaction with dental mesenchymal cells. However, the molecular basis for the asymmetric patterning of the incisor germ is largely unknown. RESULTS A homeobox transcription factor SIX1 was shown to be produced in the mandibular mesenchyme, and its localization patterns changed dynamically during lower incisor development. Six1-/- mice exhibited smaller lower incisor primordia than wild-type mice. Furthermore, Six1-/- mice showed enamel matrix production on both the lingual and labial sides and disturbed odontoblast maturation. In the earlier stages of development, the formation of signaling centers, the initiation knot and the enamel knot, which are essential for the morphogenesis of tooth germs, were impaired in Six1-/- embryos. Notably, Wnt signaling activity, which shows an anterior-posterior gradient, and the expression patterns of genes involved in incisor formation were altered in the mesenchyme in Six1-/- embryos. CONCLUSION Our results indicate that Six1 is required for signaling center formation in lower incisor germs and the labial-lingual asymmetry of the lower incisors by regulating the anterior-posterior patterning of the mandibular mesenchyme.
Collapse
Affiliation(s)
- Masanori Takahashi
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Keiko Ikeda
- Department of Physiology, International University of Health and Welfare, Narita, Chiba, Japan
| | - Masaki Ohmuraya
- Department of Genetics, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Yoshiko Nakagawa
- Center for Animal Resources and Development, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, HigashiHiroshima, Hiroshima, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, HigashiHiroshima, Hiroshima, Japan
| | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
9
|
Xing Y, Chen J, Hilley H, Steele H, Yang J, Han L. Molecular Signature of Pruriceptive MrgprA3 + Neurons. J Invest Dermatol 2020; 140:2041-2050. [PMID: 32234460 DOI: 10.1016/j.jid.2020.03.935] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023]
Abstract
Itch, initiated by the activation of sensory neurons, is associated frequently with dermatological diseases. MrgprA3+ sensory neurons have been identified as one of the major itch-sensing neuronal populations. Mounting evidence has demonstrated that peripheral pathological conditions induce physiological regulation of sensory neurons, which is critical for the maintenance of chronic itch sensation. However, the underlying molecular mechanisms are not clear. Here, we performed RNA sequencing of genetically labeled MrgprA3+ neurons under both naïve and allergic contact dermatitis conditions. Our results revealed the unique molecular signature of itch-sensing neurons and the distinct transcriptional profile changes that result in response to dermatitis. We found enrichment of nine Mrgpr family members and two histamine receptors in MrgprA3+ neurons, suggesting that MrgprA3+ neurons are a direct neuronal target for histamine and Mrgpr agonists. In addition, PTPN6 and PCDH12 were identified as highly selective markers of MrgprA3+ neurons. We also discovered that MrgprA3+ neurons respond to skin dermatitis in a way that is unique from other sensory neurons by regulating a combination of transcriptional factors, ion channels, and key molecules involved in synaptic transmission. These results significantly increase our knowledge of itch transmission and uncover potential targets for combating itch.
Collapse
Affiliation(s)
- Yanyan Xing
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Junyu Chen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Henry Hilley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Haley Steele
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jingjing Yang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Liang Han
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
10
|
Shah AM, Krohn P, Baxi AB, Tavares ALP, Sullivan CH, Chillakuru YR, Majumdar HD, Neilson KM, Moody SA. Six1 proteins with human branchio-oto-renal mutations differentially affect cranial gene expression and otic development. Dis Model Mech 2020; 13:dmm043489. [PMID: 31980437 PMCID: PMC7063838 DOI: 10.1242/dmm.043489] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
Single-nucleotide mutations in human SIX1 result in amino acid substitutions in either the protein-protein interaction domain or the homeodomain, and cause ∼4% of branchio-otic (BOS) and branchio-oto-renal (BOR) cases. The phenotypic variation between patients with the same mutation, even within affected members of the same family, make it difficult to functionally distinguish between the different SIX1 mutations. We made four of the BOS/BOR substitutions in the Xenopus Six1 protein (V17E, R110W, W122R, Y129C), which is 100% identical to human in both the protein-protein interaction domain and the homeodomain, and expressed them in embryos to determine whether they cause differential changes in early craniofacial gene expression, otic gene expression or otic morphology. We confirmed that, similar to the human mutants, all four mutant Xenopus Six1 proteins access the nucleus but are transcriptionally deficient. Analysis of craniofacial gene expression showed that each mutant causes specific, often different and highly variable disruptions in the size of the domains of neural border zone, neural crest and pre-placodal ectoderm genes. Each mutant also had differential effects on genes that pattern the otic vesicle. Assessment of the tadpole inner ear demonstrated that while the auditory and vestibular structures formed, the volume of the otic cartilaginous capsule, otoliths, lumen and a subset of the hair cell-containing sensory patches were reduced. This detailed description of the effects of BOS/BOR-associated SIX1 mutations in the embryo indicates that each causes subtle changes in gene expression in the embryonic ectoderm and otocyst, leading to inner ear morphological anomalies.
Collapse
Affiliation(s)
- Ankita M Shah
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Patrick Krohn
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
- Institute of Zoology, University of Hohenheim, Stuttgart 70599, Germany
| | - Aparna B Baxi
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Andre L P Tavares
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Charles H Sullivan
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
- Department of Biology, Grinnell College, Grinnell, IA 50112, USA
| | - Yeshwant R Chillakuru
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Himani D Majumdar
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Karen M Neilson
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| |
Collapse
|
11
|
Takematsu E, Spencer A, Auster J, Chen PC, Graham A, Martin P, Baker AB. Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes. PLoS One 2020; 15:e0225267. [PMID: 32084158 PMCID: PMC7034863 DOI: 10.1371/journal.pone.0225267] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases.
Collapse
Affiliation(s)
- Eri Takematsu
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Adrianne Spencer
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Jeff Auster
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Po-Chih Chen
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Scotland, United Kingdom
| | - Patricia Martin
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Scotland, United Kingdom
| | - Aaron B. Baker
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX
- The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX
- Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX
- * E-mail:
| |
Collapse
|
12
|
Efficient genome-wide first-generation phenotypic screening system in mice using the piggyBac transposon. Proc Natl Acad Sci U S A 2019; 116:18507-18516. [PMID: 31451639 DOI: 10.1073/pnas.1906354116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genome-wide phenotypic screens provide an unbiased way to identify genes involved in particular biological traits, and have been widely used in lower model organisms. However, cost and time have limited the utility of such screens to address biological and disease questions in mammals. Here we report a highly efficient piggyBac (PB) transposon-based first-generation (F1) dominant screening system in mice that enables an individual investigator to conduct a genome-wide phenotypic screen within a year with fewer than 300 cages. The PB screening system uses visually trackable transposons to induce both gain- and loss-of-function mutations and generates genome-wide distributed new insertions in more than 55% of F1 progeny. Using this system, we successfully conducted a pilot F1 screen and identified 5 growth retardation mutations. One of these mutants, a Six1/4 PB/+ mutant, revealed a role in milk intake behavior. The mutant animals exhibit abnormalities in nipple recognition and milk ingestion, as well as developmental defects in cranial nerves V, IX, and X. This PB F1 screening system offers individual laboratories unprecedented opportunities to conduct affordable genome-wide phenotypic screens for deciphering the genetic basis of mammalian biology and disease pathogenesis.
Collapse
|
13
|
Xie Y, Jin P, Sun X, Jiao T, Zhang Y, Li Y, Sun M. SIX1 is upregulated in gastric cancer and regulates proliferation and invasion by targeting the ERK pathway and promoting epithelial-mesenchymal transition. Cell Biochem Funct 2018; 36:413-419. [PMID: 30379332 DOI: 10.1002/cbf.3361] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/29/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022]
Abstract
Sine oculis homeobox homologue 1 (SIX1) is a Six class homeobox gene conserved throughout many species. It has been reported to act as an oncogene and is overexpressed in many cancers. However, the function and regulatory mechanism of SIX1 in gastric cancer (GC) remains unclear. In our study, we detected protein levels of SIX1 via immunohistochemistry (IHC) and its proliferation and invasion effects via CCK8 and transwell assays. Additionally, expression of cyclin D1, MMP2, p-ERK, and EMT-related proteins was measured by western blotting. We found that SIX1 had significantly higher expression in GC tissues and that it could promote GC cell proliferation and invasion. Also, overexpression of SIX1 increased the expression of cyclin D1, MMP2, p-ERK, and EMT-related proteins, which could all be inhibited by knocking down SIX1. In conclusion, SIX1 is upregulated in GC tissues. It can promote GC cell proliferation by targeting cyclin D1, invasion via ERK signalling, and EMT pathways by targeting MMP2 and E-cadherin. SIGNIFICANCE OF THE STUDY: Our study showed that SIX1 was upregulated in GC tissues, and promoted GC cell proliferation by targeting cyclin D1, invasion via ERK signalling, and EMT pathways by targeting MMP2 and E-cadherin. These results suggested the potential regulatory mechanism of SIX1 in proliferation and invasion of gastric cancer.
Collapse
Affiliation(s)
- Ying Xie
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Peng Jin
- Department of the Third Urology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xuren Sun
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Taiwei Jiao
- Department of Endoscopy, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yining Zhang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yue Li
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Mingjun Sun
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
14
|
Yang Y, Workman S, Wilson M. The molecular pathways underlying early gonadal development. J Mol Endocrinol 2018; 62:JME-17-0314. [PMID: 30042122 DOI: 10.1530/jme-17-0314] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 12/30/2022]
Abstract
The body of knowledge surrounding reproductive development spans the fields of genetics, anatomy, physiology and biomedicine, to build a comprehensive understanding of the later stages of reproductive development in humans and animal models. Despite this, there remains much to learn about the bi-potential progenitor structure that the ovary and testis arise from, known as the genital ridge (GR). This tissue forms relatively late in embryonic development and has the potential to form either the ovary or testis, which in turn produce hormones required for development of the rest of the reproductive tract. It is imperative that we understand the genetic networks underpinning GR development if we are to begin to understand abnormalities in the adult. This is particularly relevant in the contexts of disorders of sex development (DSDs) and infertility, two conditions that many individuals struggle with worldwide, with often no answers as to their aetiology. Here, we review what is known about the genetics of GR development. Investigating the genetic networks required for GR formation will not only contribute to our understanding of the genetic regulation of reproductive development, it may in turn open new avenues of investigation into reproductive abnormalities and later fertility issues in the adult.
Collapse
Affiliation(s)
- Yisheng Yang
- Y Yang, Anatomy, University of Otago, Dunedin, New Zealand
| | | | - Megan Wilson
- M Wilson , Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Sato S, Furuta Y, Kawakami K. Regulation of continuous but complex expression pattern of Six1 during early sensory development. Dev Dyn 2017; 247:250-261. [PMID: 29106072 DOI: 10.1002/dvdy.24603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/17/2017] [Accepted: 10/31/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In vertebrates, cranial sensory placodes give rise to neurosensory and endocrine structures, such as the olfactory epithelium, inner ear, and anterior pituitary. We report here the establishment of a transgenic mouse line that expresses Cre recombinase under the control of Six1-21, a major placodal enhancer of the homeobox gene Six1. RESULTS In the new Cre-expressing line, mSix1-21-NLSCre, the earliest Cre-mediated recombination was induced at embryonic day 8.5 in the region overlapping with the otic-epibranchial progenitor domain (OEPD), a transient, common precursor domain for the otic and epibranchial placodes. Recombination was later observed in the OEPD-derived structures (the entire inner ear and the VIIth-Xth cranial sensory ganglia), olfactory epithelium, anterior pituitary, pharyngeal ectoderm and pouches. Other Six1-positive structures, such as salivary/lacrimal glands and limb buds, were also positive for recombination. Moreover, comparison with another mouse line expressing Cre under the control of the sensory neuron enhancer, Six1-8, indicated that the continuous and complex expression pattern of Six1 during sensory organ formation is pieced together by separate enhancers. CONCLUSIONS mSix1-21-NLSCre has several unique characteristics to make it suitable for analysis of cell lineage and gene function in sensory placodes as well as nonplacodal Six1-positive structures. Developmental Dynamics 247:250-261, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shigeru Sato
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yasuhide Furuta
- Animal Resource Development Unit and Genetic Engineering Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST), Kobe, Hyogo, Japan
| | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
16
|
Zhang T, Xu J, Maire P, Xu PX. Six1 is essential for differentiation and patterning of the mammalian auditory sensory epithelium. PLoS Genet 2017; 13:e1006967. [PMID: 28892484 PMCID: PMC5593176 DOI: 10.1371/journal.pgen.1006967] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/08/2017] [Indexed: 11/19/2022] Open
Abstract
The organ of Corti in the cochlea is a two-cell layered epithelium: one cell layer of mechanosensory hair cells that align into one row of inner and three rows of outer hair cells interdigitated with one cell layer of underlying supporting cells along the entire length of the cochlear spiral. These two types of epithelial cells are derived from common precursors in the four- to five-cell layered primordium and acquire functionally important shapes during terminal differentiation through the thinning process and convergent extension. Here, we have examined the role of Six1 in the establishment of the auditory sensory epithelium. Our data show that prior to terminal differentiation of the precursor cells, deletion of Six1 leads to formation of only a few hair cells and defective patterning of the sensory epithelium. Previous studies have suggested that downregulation of Sox2 expression in differentiating hair cells must occur after Atoh1 mRNA activation in order to allow Atoh1 protein accumulation due to antagonistic effects between Atoh1 and Sox2. Our analysis indicates that downregulation of Sox2 in the differentiating hair cells depends on Six1 activity. Furthermore, we found that Six1 is required for the maintenance of Fgf8 expression and dynamic distribution of N-cadherin and E-cadherin in the organ of Corti during differentiation. Together, our analyses uncover essential roles of Six1 in hair cell differentiation and formation of the organ of Corti in the mammalian cochlea.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jinshu Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Pascal Maire
- INSERM U1016, Institut Cochin, Paris, France; CNRS UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
17
|
Chao L, Liu J, Zhao D. Increased Six1 expression is associated with poor prognosis in patients with osteosarcoma. Oncol Lett 2017; 13:2891-2896. [PMID: 28521394 PMCID: PMC5431299 DOI: 10.3892/ol.2017.5803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/16/2016] [Indexed: 11/17/2022] Open
Abstract
Sine oculis homeobox homolog 1 (Six1) is an evolutionarily conserved transcription factor that acts as master regulator of development and is frequently dysregulated in various types of cancer. Six1 has been demonstrated to be upregulated in human osteosarcoma cell lines compared with osteoblastic cell lines. However, the association of Six1 expression with the progression and prognosis of osteosarcoma patients remains unclear. The purpose of the present study was to investigate the association between Six1 expression and the clinicopathological characteristics and prognosis of osteosarcoma. Six1 protein was detected by immunohistochemistry in a series of 100 osteosarcoma patients, and Kaplan-Meier survival analysis was performed to assess prognosis. The results revealed that increased Six1 protein expression was prevalent in osteosarcoma and was significantly associated with Enneking stage (P=0.002) and tumor size (P=0.010). Additionally, according to the log-rank test and Cox regression model, expression of Six1 is indicated to be an independent prognostic factor in osteosarcoma patients. In summary, positive expression of Six1 protein is closely associated with the tumor progression and poor survival of osteosarcoma patients. The results suggest that Six1 is a overexpressed in individuals with poor prognosis, and may thus be used as a prognostic biomarker in patients with osteosarcoma.
Collapse
Affiliation(s)
- Lemeng Chao
- Graduate College, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Orthopaedics, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region 010017, P.R. China
| | - Jianfeng Liu
- Department of Orthopaedics, Affiliated Zhongshan Hospital, Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Dewei Zhao
- Department of Orthopaedics, Affiliated Zhongshan Hospital, Dalian University, Dalian, Liaoning 116001, P.R. China
| |
Collapse
|
18
|
Neilson KM, Abbruzzesse G, Kenyon K, Bartolo V, Krohn P, Alfandari D, Moody SA. Pa2G4 is a novel Six1 co-factor that is required for neural crest and otic development. Dev Biol 2017; 421:171-182. [PMID: 27940157 PMCID: PMC5221411 DOI: 10.1016/j.ydbio.2016.11.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 11/29/2022]
Abstract
Mutations in SIX1 and in its co-factor, EYA1, underlie Branchiootorenal Spectrum disorder (BOS), which is characterized by variable branchial arch, otic and kidney malformations. However, mutations in these two genes are identified in only half of patients. We screened for other potential co-factors, and herein characterize one of them, Pa2G4 (aka Ebp1/Plfap). In human embryonic kidney cells, Pa2G4 binds to Six1 and interferes with the Six1-Eya1 complex. In Xenopus embryos, knock-down of Pa2G4 leads to down-regulation of neural border zone, neural crest and cranial placode genes, and concomitant expansion of neural plate genes. Gain-of-function leads to a broader neural border zone, expanded neural crest and altered cranial placode domains. In loss-of-function assays, the later developing otocyst is reduced in size, which impacts gene expression. In contrast, the size of the otocyst in gain-of-function assays is not changed but the expression domains of several otocyst genes are reduced. Together these findings establish an interaction between Pa2G4 and Six1, and demonstrate that it has an important role in the development of tissues affected in BOS. Thereby, we suggest that pa2g4 is a potential candidate gene for BOS.
Collapse
Affiliation(s)
- Karen M Neilson
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Genevieve Abbruzzesse
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Kristy Kenyon
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, USA
| | - Vanessa Bartolo
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Patrick Krohn
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
19
|
Zhang X, Xu R. Six1 expression is associated with a poor prognosis in patients with glioma. Oncol Lett 2017; 13:1293-1298. [PMID: 28454249 DOI: 10.3892/ol.2017.5577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/04/2016] [Indexed: 11/05/2022] Open
Abstract
Glioma is the most common human brain cancer and has poor prognosis. Messenger RNA profiling identified that sineoculis homeobox homolog 1 (Six1) is dysregulated in glioma tumor progenitor cells from glial progenitor cells isolated from normal white matter. However, the expression and role of Six1 in glioma remains unclear. The purpose of the present study was to investigate the expression level of Six1 in glioma tissues and the association between Six1 expression and clinicopathological characteristics and prognosis of gliomas. The Six1 protein was detected by immunohistochemistry in 163 glioma tissues of distinct malignancy grades, and Kaplan-Meier survival analysis was performed to assess the prognosis of the patients. The Six1 protein was stained in 49.1% (80 out of 163) of the glioma tissues, including 34.2% of low-grade [World Health Organization (WHO) I/II] gliomas and 80.8% of high-grade (WHO III/IV) gliomas. Normal brain tissues rarely expressed the Six1 protein. In addition, Six1 expression was significantly associated with WHO grade (P<0.001). According to the log-rank test and Cox regression model, Six1 may be suggested as an independent prognostic factor, in addition to the WHO grade. Overall, Six1 protein expression varies between different grades of glioma and is associated with the WHO grade. Upregulation of Six1 is more frequent in high-grade glioma and is an independent prognostic factor of poor clinical outcome.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Neurosurgery, Affiliated Bayi Brain Hospital, Affiliated General Hospital of Beijing Military Region, Southern Medical University, Beijing 100700, P.R. China.,Department of Neurosurgery, Inner Mongolia People's Hospital, Hohot, Inner Mongolia Autonomous Region 010017, P.R. China
| | - Ruxiang Xu
- Department of Neurosurgery, Affiliated Bayi Brain Hospital, Affiliated General Hospital of Beijing Military Region, Southern Medical University, Beijing 100700, P.R. China.,Neurosurgery Institute of Beijing Military Region, Beijing 100700, P.R. China
| |
Collapse
|
20
|
Moorthy SD, Davidson S, Shchuka VM, Singh G, Malek-Gilani N, Langroudi L, Martchenko A, So V, Macpherson NN, Mitchell JA. Enhancers and super-enhancers have an equivalent regulatory role in embryonic stem cells through regulation of single or multiple genes. Genome Res 2016; 27:246-258. [PMID: 27895109 PMCID: PMC5287230 DOI: 10.1101/gr.210930.116] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/18/2016] [Indexed: 12/31/2022]
Abstract
Transcriptional enhancers are critical for maintaining cell-type-specific gene expression and driving cell fate changes during development. Highly transcribed genes are often associated with a cluster of individual enhancers such as those found in locus control regions. Recently, these have been termed stretch enhancers or super-enhancers, which have been predicted to regulate critical cell identity genes. We employed a CRISPR/Cas9-mediated deletion approach to study the function of several enhancer clusters (ECs) and isolated enhancers in mouse embryonic stem (ES) cells. Our results reveal that the effect of deleting ECs, also classified as ES cell super-enhancers, is highly variable, resulting in target gene expression reductions ranging from 12% to as much as 92%. Partial deletions of these ECs which removed only one enhancer or a subcluster of enhancers revealed partially redundant control of the regulated gene by multiple enhancers within the larger cluster. Many highly transcribed genes in ES cells are not associated with a super-enhancer; furthermore, super-enhancer predictions ignore 81% of the potentially active regulatory elements predicted by cobinding of five or more pluripotency-associated transcription factors. Deletion of these additional enhancer regions revealed their robust regulatory role in gene transcription. In addition, select super-enhancers and enhancers were identified that regulated clusters of paralogous genes. We conclude that, whereas robust transcriptional output can be achieved by an isolated enhancer, clusters of enhancers acting on a common target gene act in a partially redundant manner to fine tune transcriptional output of their target genes.
Collapse
Affiliation(s)
- Sakthi D Moorthy
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Scott Davidson
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Virlana M Shchuka
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Gurdeep Singh
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Nakisa Malek-Gilani
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Lida Langroudi
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Alexandre Martchenko
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Vincent So
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Neil N Macpherson
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
21
|
Kawasaki T, Takahashi M, Yajima H, Mori Y, Kawakami K. Six1 is required for mouse dental follicle cell and human periodontal ligament-derived cell proliferation. Dev Growth Differ 2016; 58:530-45. [DOI: 10.1111/dgd.12291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/28/2016] [Accepted: 04/12/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Tatsuki Kawasaki
- Department of Oral and Maxillofacial Surgery; Jichi Medical University; 3311-1, Yakushiji Shimotsuke Tochigi 329-0498 Japan
- Division of Biology; Center for Molecular Medicine; Jichi Medical University; 3311-1, Yakushiji Shimotsuke Tochigi 329-0498 Japan
| | - Masanori Takahashi
- Division of Biology; Center for Molecular Medicine; Jichi Medical University; 3311-1, Yakushiji Shimotsuke Tochigi 329-0498 Japan
| | - Hiroshi Yajima
- Division of Biology; Center for Molecular Medicine; Jichi Medical University; 3311-1, Yakushiji Shimotsuke Tochigi 329-0498 Japan
| | - Yoshiyuki Mori
- Department of Oral and Maxillofacial Surgery; Jichi Medical University; 3311-1, Yakushiji Shimotsuke Tochigi 329-0498 Japan
| | - Kiyoshi Kawakami
- Division of Biology; Center for Molecular Medicine; Jichi Medical University; 3311-1, Yakushiji Shimotsuke Tochigi 329-0498 Japan
| |
Collapse
|
22
|
Yajima H, Kawakami K. LowSix4andSix5gene dosage improves dystrophic phenotype and prolongs life span of mdx mice. Dev Growth Differ 2016; 58:546-61. [DOI: 10.1111/dgd.12290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/30/2016] [Accepted: 04/04/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Hiroshi Yajima
- Division of Biology; Center for Molecular Medicine; Jichi Medical University; 3311-1 Yakushiji Shimotsuke Tochigi 329-0498 Japan
| | - Kiyoshi Kawakami
- Division of Biology; Center for Molecular Medicine; Jichi Medical University; 3311-1 Yakushiji Shimotsuke Tochigi 329-0498 Japan
| |
Collapse
|
23
|
Gao J, Kang XY, Sun S, Li L, Zhang BL, Li YQ, Gao DS. Transcription factor Six2 mediates the protection of GDNF on 6-OHDA lesioned dopaminergic neurons by regulating Smurf1 expression. Cell Death Dis 2016; 7:e2217. [PMID: 27148690 PMCID: PMC4917658 DOI: 10.1038/cddis.2016.120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 01/19/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) has strong neuroprotective and neurorestorative effects on dopaminergic (DA) neurons in the substantia nigra (SN); however, the underlying molecular mechanisms remain to be fully elucidated. In this study, we found that the expression level of transcription factor Six2 was increased in damaged DA neurons after GDNF rescue in vivo and in vitro. Knockdown of Six2 resulted in decreased cell viability and increased the apoptosis of damaged DA neurons after GDNF treatment in vitro. In contrast, Six2 overexpression increased cell viability and decreased cell apoptosis. Furthermore, genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) indicated that Six2 directly bound to the promoter CAGCTG sequence of smad ubiquitylation regulatory factor 1 (Smurf1). ChIP-quantitative polymerase chain reaction (qPCR) analysis showed that Smurf1 expression was significantly upregulated after GDNF rescue. Moreover, knockdown of Six2 decreased Smurf1 expression, whereas overexpression of Six2 increased Smurf1 expression in damaged DA neurons after GDNF rescue. Meanwhile, knockdown and overexpression of Smurf1 increased and decreased p53 expression, respectively. Taken together, our results from in vitro and in vivo analysis indicate that Six2 mediates the protective effects of GDNF on damaged DA neurons by regulating Smurf1 expression, which could be useful in identifying potential drug targets for injured DA neurons.
Collapse
Affiliation(s)
- J Gao
- Department of Anatomy and Histology, The Fourth Military Medical University, Xian 710003, Shanxi, China.,Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China
| | - X-Y Kang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China
| | - S Sun
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China
| | - L Li
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China
| | - B-L Zhang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China
| | - Y-Q Li
- Department of Anatomy and Histology, The Fourth Military Medical University, Xian 710003, Shanxi, China
| | - D-S Gao
- Department of Anatomy and Histology, The Fourth Military Medical University, Xian 710003, Shanxi, China.,Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
24
|
Karpinski BA, Bryan CA, Paronett EM, Baker JL, Fernandez A, Horvath A, Maynard TM, Moody SA, LaMantia AS. A cellular and molecular mosaic establishes growth and differentiation states for cranial sensory neurons. Dev Biol 2016; 415:228-241. [PMID: 26988119 DOI: 10.1016/j.ydbio.2016.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 02/02/2016] [Accepted: 03/13/2016] [Indexed: 02/06/2023]
Abstract
We compared apparent origins, cellular diversity and regulation of initial axon growth for differentiating cranial sensory neurons. We assessed the molecular and cellular composition of the developing olfactory and otic placodes, and cranial sensory ganglia to evaluate contributions of ectodermal placode versus neural crest at each site. Special sensory neuron populations-the olfactory and otic placodes, as well as those in vestibulo-acoustic ganglion- are entirely populated with cells expressing cranial placode-associated, rather than neural crest-associated markers. The remaining cranial sensory ganglia are a mosaic of cells that express placode-associated as well as neural crest-associated markers. We found two distinct populations of neural crest in the cranial ganglia: the first, as expected, is labeled by Wnt1:Cre mediated recombination. The second is not labeled by Wnt1:Cre recombination, and expresses both Sox10 and FoxD3. These populations-Wnt1:Cre recombined, and Sox10/Foxd3-expressing- are proliferatively distinct from one another. Together, the two neural crest-associated populations are substantially more proliferative than their placode-associated counterparts. Nevertheless, the apparently placode- and neural crest-associated populations are similarly sensitive to altered signaling that compromises cranial morphogenesis and differentiation. Acute disruption of either Fibroblast growth factor (Fgf) or Retinoic acid (RA) signaling alters axon growth and cell death, but does not preferentially target any of the three distinct populations. Apparently, mosaic derivation and diversity of precursors and early differentiating neurons, modulated uniformly by local signals, supports early cranial sensory neuron differentiation and growth.
Collapse
Affiliation(s)
- Beverly A Karpinski
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Corey A Bryan
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Elizabeth M Paronett
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Jennifer L Baker
- Center for the Advanced Study of Human Paleobiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Alejandra Fernandez
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Anelia Horvath
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Thomas M Maynard
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| | - Anthony-S LaMantia
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA; The GW Institute for Neuroscience, The George Washington University, School of Medicine and Health Sciences, Washington DC, USA.
| |
Collapse
|
25
|
Moody SA, Neilson KM, Kenyon KL, Alfandari D, Pignoni F. Using Xenopus to discover new genes involved in branchiootorenal spectrum disorders. Comp Biochem Physiol C Toxicol Pharmacol 2015; 178:16-24. [PMID: 26117063 PMCID: PMC4662879 DOI: 10.1016/j.cbpc.2015.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 12/14/2022]
Abstract
Congenital hearing loss is an important clinical problem because, without early intervention, affected children do not properly acquire language and consequently have difficulties developing social skills. Although most newborns in the US are screened for hearing deficits, even earlier diagnosis can be made with prenatal genetic screening. Genetic screening that identifies the relevant mutated gene can also warn about potential congenital defects in organs not related to hearing. We will discuss efforts to identify new candidate genes that underlie the Branchiootorenal spectrum disorders in which affected children have hearing deficits and are also at risk for kidney defects. Mutations in two genes, SIX1 and EYA1, have been identified in about half of the patients tested. To uncover new candidate genes, we have used the aquatic animal model, Xenopus laevis, to identify genes that are part of the developmental genetic pathway of Six1 during otic and kidney development. We have already identified a large number of potential Six1 transcriptional targets and candidate co-factor proteins that are expressed at the right time and in the correct tissues to interact with Six1 during development. We discuss the advantages of using this system for gene discovery in a human congenital hearing loss syndrome.
Collapse
Affiliation(s)
- Sally A Moody
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA.
| | - Karen M Neilson
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Kristy L Kenyon
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Francesca Pignoni
- Department of Ophthalmology, Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
26
|
Sato S, Yajima H, Furuta Y, Ikeda K, Kawakami K. Activation of Six1 Expression in Vertebrate Sensory Neurons. PLoS One 2015; 10:e0136666. [PMID: 26313368 PMCID: PMC4551851 DOI: 10.1371/journal.pone.0136666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/05/2015] [Indexed: 12/31/2022] Open
Abstract
SIX1 homeodomain protein is one of the essential key regulators of sensory organ development. Six1-deficient mice lack the olfactory epithelium, vomeronasal organs, cochlea, vestibule and vestibuloacoustic ganglion, and also show poor neural differentiation in the distal part of the cranial ganglia. Simultaneous loss of both Six1 and Six4 leads to additional abnormalities such as small trigeminal ganglion and abnormal dorsal root ganglia (DRG). The aim of this study was to understand the molecular mechanism that controls Six1 expression in sensory organs, particularly in the trigeminal ganglion and DRG. To this end, we focused on the sensory ganglia-specific Six1 enhancer (Six1-8) conserved between chick and mouse. In vivo reporter assays using both animals identified an important core region comprising binding consensus sequences for several transcription factors including nuclear hormone receptors, TCF/LEF, SMAD, POU homeodomain and basic-helix-loop-helix proteins. The results provided information on upstream factors and signals potentially relevant to Six1 regulation in sensory neurons. We also report the establishment of a new transgenic mouse line (mSix1-8-NLSCre) that expresses Cre recombinase under the control of mouse Six1-8. Cre-mediated recombination was detected specifically in ISL1/2-positive sensory neurons of Six1-positive cranial sensory ganglia and DRG. The unique features of the mSix1-8-NLSCre line are the absence of Cre-mediated recombination in SOX10-positive glial cells and central nervous system and ability to induce recombination in a subset of neurons derived from the olfactory placode/epithelium. This mouse model can be potentially used to advance research on sensory development.
Collapse
Affiliation(s)
- Shigeru Sato
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
- * E-mail:
| | - Hiroshi Yajima
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yasuhide Furuta
- Animal Resource Development Unit and Genetic Engineering Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST), Kobe, Hyogo, Japan
| | - Keiko Ikeda
- Division of Biology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
27
|
Sai X, Ladher RK. Early steps in inner ear development: induction and morphogenesis of the otic placode. Front Pharmacol 2015; 6:19. [PMID: 25713536 PMCID: PMC4322616 DOI: 10.3389/fphar.2015.00019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 01/21/2015] [Indexed: 01/09/2023] Open
Abstract
Various cellular replacement therapies using in vitro generated cells to replace damaged tissue have been proposed as strategies to alleviate hearing loss. All such therapies must involve a complete understanding of the earliest steps in inner ear development; its induction as a thickened plate of cells in the non-neural, surface ectoderm of the embryo, to its internalization as an otocyst embedded in the head mesenchyme of the embryo. Such knowledge informs researchers addressing the feasibility of the proposed strategy and present alternatives if needed. In this review we describe the mechanisms of inner ear induction, concentrating on the factors that steer the fate of ectoderm into precursors of the inner ear. Induction then leads to inner ear morphogenesis and we describe the cellular changes that occur as the inner ear is converted from a superficial placode to an internalized otocyst, and how they are coordinated with a particular emphasis on how the signaling environment surrounding the inner ear influences these processes.
Collapse
Affiliation(s)
- Xiaorei Sai
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology Kobe, Japan
| | - Raj K Ladher
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology Kobe, Japan
| |
Collapse
|
28
|
Abstract
Cranial sensory placodes derive from discrete patches of the head ectoderm and give rise to numerous sensory structures. During gastrulation, a specialized "neural border zone" forms around the neural plate in response to interactions between the neural and nonneural ectoderm and signals from adjacent mesodermal and/or endodermal tissues. This zone subsequently gives rise to two distinct precursor populations of the peripheral nervous system: the neural crest and the preplacodal ectoderm (PPE). The PPE is a common field from which all cranial sensory placodes arise (adenohypophyseal, olfactory, lens, trigeminal, epibranchial, otic). Members of the Six family of transcription factors are major regulators of PPE specification, in partnership with cofactor proteins such as Eya. Six gene activity also maintains tissue boundaries between the PPE, neural crest, and epidermis by repressing genes that specify the fates of those adjacent ectodermally derived domains. As the embryo acquires anterior-posterior identity, the PPE becomes transcriptionally regionalized, and it subsequently becomes subdivided into specific placodes with distinct developmental fates in response to signaling from adjacent tissues. Each placode is characterized by a unique transcriptional program that leads to the differentiation of highly specialized cells, such as neurosecretory cells, sensory receptor cells, chemosensory neurons, peripheral glia, and supporting cells. In this review, we summarize the transcriptional and signaling factors that regulate key steps of placode development, influence subsequent sensory neuron specification, and discuss what is known about mutations in some of the essential PPE genes that underlie human congenital syndromes.
Collapse
Affiliation(s)
- Sally A Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA; George Washington University Institute for Neuroscience, Washington, DC, USA.
| | - Anthony-Samuel LaMantia
- George Washington University Institute for Neuroscience, Washington, DC, USA; Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
29
|
Yan B, Neilson KM, Ranganathan R, Maynard T, Streit A, Moody SA. Microarray identification of novel genes downstream of Six1, a critical factor in cranial placode, somite, and kidney development. Dev Dyn 2014; 244:181-210. [PMID: 25403746 DOI: 10.1002/dvdy.24229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 11/03/2014] [Accepted: 11/12/2014] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Six1 plays an important role in the development of several vertebrate organs, including cranial sensory placodes, somites, and kidney. Although Six1 mutations cause one form of branchio-otic syndrome (BOS), the responsible gene in many patients has not been identified; genes that act downstream of Six1 are potential BOS candidates. RESULTS We sought to identify novel genes expressed during placode, somite and kidney development by comparing gene expression between control and Six1-expressing ectodermal explants. The expression patterns of 19 of the significantly up-regulated and 11 of the significantly down-regulated genes were assayed from cleavage to larval stages. A total of 28/30 genes are expressed in the otocyst, a structure that is functionally disrupted in BOS, and 26/30 genes are expressed in the nephric mesoderm, a structure that is functionally disrupted in the related branchio-otic-renal (BOR) syndrome. We also identified the chick homologues of five genes and show that they have conserved expression patterns. CONCLUSIONS Of the 30 genes selected for expression analyses, all are expressed at many of the developmental times and appropriate tissues to be regulated by Six1. Many have the potential to play a role in the disruption of hearing and kidney function seen in BOS/BOR patients.
Collapse
Affiliation(s)
- Bo Yan
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, Washington, DC
| | | | | | | | | | | |
Collapse
|
30
|
Yajima H, Suzuki M, Ochi H, Ikeda K, Sato S, Yamamura KI, Ogino H, Ueno N, Kawakami K. Six1 is a key regulator of the developmental and evolutionary architecture of sensory neurons in craniates. BMC Biol 2014; 12:40. [PMID: 24885223 PMCID: PMC4084797 DOI: 10.1186/1741-7007-12-40] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/22/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Various senses and sensory nerve architectures of animals have evolved during adaptation to exploit diverse environments. In craniates, the trunk sensory system has evolved from simple mechanosensory neurons inside the spinal cord (intramedullary), called Rohon-Beard (RB) cells, to multimodal sensory neurons of dorsal root ganglia (DRG) outside the spinal cord (extramedullary). The fish and amphibian trunk sensory systems switch from RB cells to DRG during development, while amniotes rely exclusively on the DRG system. The mechanisms underlying the ontogenic switching and its link to phylogenetic transition remain unknown. RESULTS In Xenopus, Six1 overexpression promoted precocious apoptosis of RB cells and emergence of extramedullary sensory neurons, whereas Six1 knockdown delayed the reduction in RB cell number. Genetic ablation of Six1 and Six4 in mice led to the appearance of intramedullary sensory neuron-like cells as a result of medial migration of neural crest cells into the spinal cord and production of immature DRG neurons and fused DRG. Restoration of SIX1 expression in the neural crest-linage partially rescued the phenotype, indicating the cell autonomous requirements of SIX1 for normal extramedullary sensory neurogenesis. Mouse Six1 enhancer that mediates the expression in DRG neurons activated transcription in Xenopus RB cells earlier than endogenous six1 expression, suggesting earlier onset of mouse SIX1 expression than Xenopus during sensory development. CONCLUSIONS The results indicated the critical role of Six1 in transition of RB cells to DRG neurons during Xenopus development and establishment of exclusive DRG system of mice. The study provided evidence that early appearance of SIX1 expression, which correlated with mouse Six1 enhancer, is essential for the formation of DRG-dominant system in mice, suggesting that heterochronic changes in Six1 enhancer sequence play an important role in alteration of trunk sensory architecture and contribute to the evolution of the trunk sensory system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| |
Collapse
|
31
|
Saint-Jeannet JP, Moody SA. Establishing the pre-placodal region and breaking it into placodes with distinct identities. Dev Biol 2014; 389:13-27. [PMID: 24576539 DOI: 10.1016/j.ydbio.2014.02.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 11/17/2022]
Abstract
Specialized sensory organs in the vertebrate head originate from thickenings in the embryonic ectoderm called cranial sensory placodes. These placodes, as well as the neural crest, arise from a zone of ectoderm that borders the neural plate. This zone separates into a precursor field for the neural crest that lies adjacent to the neural plate, and a precursor field for the placodes, called the pre-placodal region (PPR), that lies lateral to the neural crest. The neural crest domain and the PPR are established in response to signaling events mediated by BMPs, FGFs and Wnts, which differentially activate transcription factors in these territories. In the PPR, members of the Six and Eya families, act in part to repress neural crest specific transcription factors, thus solidifying a placode developmental program. Subsequently, in response to environmental cues the PPR is further subdivided into placodal territories with distinct characteristics, each expressing a specific repertoire of transcription factors that provide the necessary information for their progression to mature sensory organs. In this review we summarize recent advances in the characterization of the signaling molecules and transcriptional effectors that regulate PPR specification and its subdivision into placodal domains with distinct identities.
Collapse
Affiliation(s)
- Jean-Pierre Saint-Jeannet
- Department of Basic Science and Craniofacial Biology, New York University, College of Dentistry, 345 East 24th Street, New York City, NY 10010, USA.
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC 20037, USA.
| |
Collapse
|
32
|
Wu W, Ren Z, Li P, Yu D, Chen J, Huang R, Liu H. Six1: A critical transcription factor in tumorigenesis. Int J Cancer 2014; 136:1245-53. [DOI: 10.1002/ijc.28755] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/15/2014] [Accepted: 01/20/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Wangjun Wu
- Department of Animal Genetics; Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
- Huaian Academy of Nanjing Agricultural University; Huaian Jiangsu China
| | - Zhuqing Ren
- Key Laboratory of Swine Genetics and Breeding; Ministry of Agriculture; Key Lab of Agriculture Animal Genetics; Breeding and Reproduction; Ministry of Education; College of Animal Science; Huazhong Agricultural University; Wuhan Hubei China
| | - Pinghua Li
- Department of Animal Genetics; Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Debing Yu
- Department of Animal Genetics; Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Jie Chen
- Department of Animal Genetics; Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Ruihua Huang
- Department of Animal Genetics; Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Honglin Liu
- Department of Animal Genetics; Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| |
Collapse
|
33
|
Setting appropriate boundaries: fate, patterning and competence at the neural plate border. Dev Biol 2013; 389:2-12. [PMID: 24321819 DOI: 10.1016/j.ydbio.2013.11.027] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 11/20/2022]
Abstract
The neural crest and craniofacial placodes are two distinct progenitor populations that arise at the border of the vertebrate neural plate. This border region develops through a series of inductive interactions that begins before gastrulation and progressively divide embryonic ectoderm into neural and non-neural regions, followed by the emergence of neural crest and placodal progenitors. In this review, we describe how a limited repertoire of inductive signals-principally FGFs, Wnts and BMPs-set up domains of transcription factors in the border region which establish these progenitor territories by both cross-inhibitory and cross-autoregulatory interactions. The gradual assembly of different cohorts of transcription factors that results from these interactions is one mechanism to provide the competence to respond to inductive signals in different ways, ultimately generating the neural crest and cranial placodes.
Collapse
|
34
|
Hua L, Fan L, Aichun W, Yongjin Z, Qingqing C, Xiaojian W. Inhibition of Six1 promotes apoptosis, suppresses proliferation, and migration of osteosarcoma cells. Tumour Biol 2013; 35:1925-31. [PMID: 24114014 DOI: 10.1007/s13277-013-1258-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 09/25/2013] [Indexed: 12/21/2022] Open
Abstract
Sineoculis homeobox homolog 1 (Six1) is one of the transcription factors that act as master regulators of development and is frequently dysregulated in cancers. However, the biological role of Six1 is not clear in osteosarcoma. To address the expression of Six1 in osteosarcoma cells, three osteosarcoma cell lines (U2OS, SaOS-2, and MG63) and a human osteoblastic cell line (hFOB1.19) were used to detect the expression of Six1 by quantitative real-time polymerase chain reaction and western blotting. The results showed that Six1 was upregulated in osteosarcoma cell lines compared to human osteoblastic cell line hFOB1.19. To investigate the role of Six1 in osteosarcoma cells, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry analysis, and transwell chamber assays were used to determine the effects of Six1 on the cell viability, cycle, apoptosis, and migration properties in U2OS cells. The results showed that Six1 could promote U2OS cell proliferation and migration, and suppress U2OS cell apoptosis. In addition, we investigated the effects of Six1 on the expression of following proteins (cyclin D1, caspase-3, and vascular endothelial growth factor-C (VEGF-C)). Results showed that Six1 could increase the expression of cyclin D1 and VEGF-C, and decrease the expression of caspase-3. All these data suggested that Six1 might be involved in the promotion of growth, proliferation, and migration of U2OS cells, as well as the inhibition of apoptosis of U2OS cells. These data might provide information for the prediction of osteosarcoma prognosis and potential targets for therapy of osteosarcoma.
Collapse
Affiliation(s)
- Liu Hua
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, 55 Ninghai Middle Road, Haian, 226600, Jiangsu Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
35
|
Fujimoto Y, Tanaka S, Yamaguchi Y, Kobayashi H, Kuroki S, Tachibana M, Shinomura M, Kanai Y, Morohashi KI, Kawakami K, Nishinakamura R. Homeoproteins Six1 and Six4 Regulate Male Sex Determination and Mouse Gonadal Development. Dev Cell 2013; 26:416-30. [DOI: 10.1016/j.devcel.2013.06.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 06/11/2013] [Accepted: 06/19/2013] [Indexed: 01/11/2023]
|
36
|
Xu PX. The EYA-SO/SIX complex in development and disease. Pediatr Nephrol 2013; 28:843-54. [PMID: 22806561 PMCID: PMC6592036 DOI: 10.1007/s00467-012-2246-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/10/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
Eyes absent (EYA) and Sine oculis (SO/SIX) proteins function as transcriptional activation complexes and play essential roles in organogenesis during embryonic development in regulating cell proliferation and survival and coordination of particular differentiation programs. Mutations of the Eya and So/Six genes cause profound developmental defects in organisms as diverse as flies, frogs, fish, mice, and humans. EYA proteins also possess an intrinsic phosphatase activity, which is essential for normal development. Here, we review crucial roles of EYA and SO/SIX in development and disease in mice and humans.
Collapse
Affiliation(s)
- Pin-Xian Xu
- Department of Genetics and Genomic Sciences and Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
37
|
Li Z, Tian T, Lv F, Chang Y, Wang X, Zhang L, Li X, Li L, Ma W, Wu J, Zhang M. Six1 promotes proliferation of pancreatic cancer cells via upregulation of cyclin D1 expression. PLoS One 2013; 8:e59203. [PMID: 23527134 PMCID: PMC3604102 DOI: 10.1371/journal.pone.0059203] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/12/2013] [Indexed: 12/15/2022] Open
Abstract
Six1 is one of the transcription factors that act as master regulators of development and are frequently dysregulated in cancers. However, the role of Six1 in pancreatic cancer is not clear. Here we show that the relative expression of Six1 mRNA is increased in pancreatic cancer and correlated with advanced tumor stage. In vitro functional assays demonstrate that forced overexpression of Six1 significantly enhances the growth rate and proliferation ability of pancreatic cancer cells. Knockdown of endogenous Six1 decreases the proliferation of these cells dramatically. Furthermore, Six1 promotes the growth of pancreatic cancer cells in a xenograft assay. We also show that the gene encoding cyclin D1 is a direct transcriptional target of Six1 in pancreatic cancer cells. Overexpression of Six1 upregulates cyclin D1 mRNA and protein, and significantly enhances the activity of the cyclin D1 promoter in PANC-1 cells. We demonstrate that Six1 promotes cell cycle progression and proliferation by upregulation of cyclin D1. These data suggest that Six1 is overexpressed in pancreatic cancer and may contribute to the increased cell proliferation through upregulation of cyclin D1.
Collapse
Affiliation(s)
- Zhaoming Li
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Tian Tian
- Department of Neurology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, People’s Republic of China
- * E-mail: (TT); (MZ)
| | - Feng Lv
- Department of Surgery, People’s Hospital of Henan Province, Zhengzhou, People’s Republic of China
| | - Yu Chang
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xinhua Wang
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Lei Zhang
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xin Li
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Ling Li
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Jingjing Wu
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, People’s Republic of China
- * E-mail: (TT); (MZ)
| |
Collapse
|
38
|
Abstract
Despite its complexity in the adult, during development the inner ear arises from a simple epithelium, the otic placode. Placode specification is a multistep process that involves the integration of various signalling pathways and downstream transcription factors in time and space. Here we review the molecular events that successively commit multipotent ectodermal precursors to the otic lineage. The first step in this hierarchy is the specification of sensory progenitor cells, which can contribute to all sensory placodes, followed by the induction of a common otic-epibranchial field and finally the establishment the otic territory. In recent years, some of the molecular components that control this process have been identified, and begin to reveal complex interactions. Future studies will need to unravel how this information is integrated and encoded in the genome. This will form the blueprint for stem cell differentiation towards otic fates and generate a predictive gene regulatory network that models the earliest steps of otic specification.
Collapse
Affiliation(s)
- Jingchen Chen
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Tower Wing, Floor 27, London SE1 9RT, UK
| | | |
Collapse
|
39
|
Sehic D, Karlsson J, Sandstedt B, Gisselsson D. SIX1 protein expression selectively identifies blastemal elements in Wilms tumor. Pediatr Blood Cancer 2012; 59:62-8. [PMID: 22180226 DOI: 10.1002/pbc.24025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/04/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Wilms tumor (WT) is the most common renal neoplasm in children. Histologically, most WTs consist of three tissue elements: blastema, epithelium, and stroma. Some cases also show diffuse or focal anaplastic features. Previous studies have shown that a predominance of blastemal cells in post-chemotherapy WT specimens is associated with a poor clinical course. However, there is currently no molecular marker for blastemal cells, and risk stratification for post-nephrectomy treatment is therefore often based on clinico-histological parameters alone. PROCEDURE In the present study, three public gene expression microarray datasets, including 82 WTs and 8 normal fetal kidneys, were used to establish a consensus gene expression profile of WT. By bioinformatic analyses, 17 genes overexpressed in WT compared to fetal kidney were then selected for evaluation of their protein expression in WT cell lines and in the different histological components in paraffin-embedded WT tissue sections by immunofluorescence. RESULTS Most of the evaluated proteins were expressed in all three common histological components. A prominent exception was SIX1, being expressed predominantly in blastemal elements in 24/25 pediatric cases containing blastema. Anaplastic elements exhibited highly variable SIX1-positivity. The SIX2 protein, known to be co-expressed with SIX1 during nephrogenesis, only exhibited blastemal-predominant expression in half of the SIX2 evaluated cases. CONCLUSIONS Genes highly expressed in WT compared to fetal kidney are generally overexpressed in all of the three common WT tissue elements. An exception is the predominant expression of SIX1 in blastemal cells, hereby identifying this protein as a candidate marker for blastema.
Collapse
Affiliation(s)
- Daniel Sehic
- Department of Clinical Genetics, Lund University, University and Regional Laboratories, Lund, Sweden
| | | | | | | |
Collapse
|
40
|
Grocott T, Tambalo M, Streit A. The peripheral sensory nervous system in the vertebrate head: a gene regulatory perspective. Dev Biol 2012; 370:3-23. [PMID: 22790010 DOI: 10.1016/j.ydbio.2012.06.028] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 02/06/2023]
Abstract
In the vertebrate head, crucial parts of the sense organs and sensory ganglia develop from special regions, the cranial placodes. Despite their cellular and functional diversity, they arise from a common field of multipotent progenitors and acquire distinct identity later under the influence of local signalling. Here we present the gene regulatory network that summarises our current understanding of how sensory cells are specified, how they become different from other ectodermal derivatives and how they begin to diversify to generate placodes with different identities. This analysis reveals how sequential activation of sets of transcription factors subdivides the ectoderm over time into smaller domains of progenitors for the central nervous system, neural crest, epidermis and sensory placodes. Within this hierarchy the timing of signalling and developmental history of each cell population is of critical importance to determine the ultimate outcome. A reoccurring theme is that local signals set up broad gene expression domains, which are further refined by mutual repression between different transcription factors. The Six and Eya network lies at the heart of sensory progenitor specification. In a positive feedback loop these factors perpetuate their own expression thus stabilising pre-placodal fate, while simultaneously repressing neural and neural crest specific factors. Downstream of the Six and Eya cassette, Pax genes in combination with other factors begin to impart regional identity to placode progenitors. While our review highlights the wealth of information available, it also points to the lack information on the cis-regulatory mechanisms that control placode specification and of how the repeated use of signalling input is integrated.
Collapse
Affiliation(s)
- Timothy Grocott
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Tower Wing, Floor 27, London SE1 9RT, UK
| | | | | |
Collapse
|
41
|
Sato S, Ikeda K, Shioi G, Nakao K, Yajima H, Kawakami K. Regulation of Six1 expression by evolutionarily conserved enhancers in tetrapods. Dev Biol 2012; 368:95-108. [PMID: 22659139 DOI: 10.1016/j.ydbio.2012.05.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/16/2012] [Accepted: 05/21/2012] [Indexed: 11/16/2022]
Abstract
The Six1 homeobox gene plays critical roles in vertebrate organogenesis. Mice deficient for Six1 show severe defects in organs such as skeletal muscle, kidney, thymus, sensory organs and ganglia derived from cranial placodes, and mutations in human SIX1 cause branchio-oto-renal syndrome, an autosomal dominant developmental disorder characterized by hearing loss and branchial defects. The present study was designed to identify enhancers responsible for the dynamic expression pattern of Six1 during mouse embryogenesis. The results showed distinct enhancer activities of seven conserved non-coding sequences (CNSs) retained in tetrapod Six1 loci. The activities were detected in all cranial placodes (excluding the lens placode), dorsal root ganglia, somites, nephrogenic cord, notochord and cranial mesoderm. The major Six1-expression domains during development were covered by the sum of activities of these enhancers, together with the previously identified enhancer for the pre-placodal region and foregut endoderm. Thus, the eight CNSs identified in a series of our study represent major evolutionarily conserved enhancers responsible for the expression of Six1 in tetrapods. The results also confirmed that chick electroporation is a robust means to decipher regulatory information stored in vertebrate genomes. Mutational analysis of the most conserved placode-specific enhancer, Six1-21, indicated that the enhancer integrates a variety of inputs from Sox, Pax, Fox, Six, Wnt/Lef1 and basic helix-loop-helix proteins. Positive autoregulation of Six1 is achieved through the regulation of Six protein-binding sites. The identified Six1 enhancers provide valuable tools to understand the mechanism of Six1 regulation and to manipulate gene expression in the developing embryo, particularly in the sensory organs.
Collapse
Affiliation(s)
- Shigeru Sato
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Ogino H, Ochi H, Reza HM, Yasuda K. Transcription factors involved in lens development from the preplacodal ectoderm. Dev Biol 2012; 363:333-47. [PMID: 22269169 DOI: 10.1016/j.ydbio.2012.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 12/14/2011] [Accepted: 01/09/2012] [Indexed: 12/14/2022]
Abstract
Lens development is a stepwise process accompanied by the sequential activation of transcription factors. Transcription factor genes can be classified into three groups according to their functions: the first group comprises preplacodal genes, which are implicated in the formation of the preplacodal ectoderm that serves as a common primordium for cranial sensory tissues, including the lens. The second group comprises lens-specification genes, which establish the lens-field within the preplacodal ectoderm. The third group comprises lens-differentiation genes, which promote lens morphogenesis after the optic vesicle makes contact with the presumptive lens ectoderm. Analyses of the regulatory interactions between these genes have provided an overview of lens development, highlighting crucial roles for positive cross-regulation in fate specification and for feed-forward regulation in the execution of terminal differentiation. This overview also sheds light upon the mechanisms of how preplacodal gene activities lead to the activation of genes involved in lens-specification.
Collapse
Affiliation(s)
- Hajime Ogino
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan.
| | | | | | | |
Collapse
|
43
|
Suzuki Y, Ikeda K, Kawakami K. Development of gustatory papillae in the absence of Six1 and Six4. J Anat 2011; 219:710-21. [PMID: 21978088 DOI: 10.1111/j.1469-7580.2011.01435.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Six family genes encode homeobox transcription factors, and a deficiency in them leads to abnormal structures of the sensory organs. In a previous paper, Six1 was reported to be expressed in the taste bud-bearing lingual papillae of mice, and loss of Six1 affected the development of these gustatory papillae. We show here that embryos lacking both Six1 and Six4 revealed more severe abnormalities than those lacking Six1 alone during morphogenesis of their gustatory papillae. By in situ hybridization, Six4 was shown to be broadly distributed in the epithelium of the lateral lingual swellings at embryonic day (E) 11.5, and in the tongue epithelium, mesenchyme, and muscles at E12.5. From E14, Six4 was similar in expression pattern to Six1, as previously reported. In the fungiform papillae, Six4 was expressed in the epithelium at E14-E16.5. In the circumvallate and foliate papillae, Six4 expression was observed in the trench wall of these papillae at E15.5-P0. Although Six4-deficient mice had no abnormalities, Six1/Six4-deficient mice showed distinct morphological changes: fusion of the lateral lingual swellings was delayed, and the tongue was poorly developed. The primordia of fungiform papillae appeared earlier than those in the wild-type or Six1-deficient mice, and the papillae rapidly increased in size; thus fusion of each papilla was evident. The circumvallate papillae showed severe defects; for example, invagination of the trenches started asymmetrically, which resulted in longer and shorter trenches. The foliate papillae elevated initially, and showed stunted trenches. Therefore, Six1 and Six4 function synergistically to form gustatory papillae during development of the tongue.
Collapse
Affiliation(s)
- Yuko Suzuki
- Division of Biostatistics, Department of Clinical Psychology, School of Psychological Science, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan.
| | | | | |
Collapse
|
44
|
Cimadamore F, Fishwick K, Giusto E, Gnedeva K, Cattarossi G, Miller A, Pluchino S, Brill LM, Bronner-Fraser M, Terskikh AV. Human ESC-derived neural crest model reveals a key role for SOX2 in sensory neurogenesis. Cell Stem Cell 2011; 8:538-51. [PMID: 21549328 DOI: 10.1016/j.stem.2011.03.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 01/26/2011] [Accepted: 03/04/2011] [Indexed: 10/18/2022]
Abstract
The transcription factor SOX2 is widely known to play a critical role in the central nervous system; however, its role in peripheral neurogenesis remains poorly understood. We recently developed an hESC-based model in which migratory cells undergo epithelial to mesenchymal transition (EMT) to acquire properties of neural crest (NC) cells. In this model, we found that migratory NC progenitors downregulate SOX2, but then start re-expressing SOX2 as they differentiate to form neurogenic dorsal root ganglion (DRG)-like clusters. SOX2 downregulation was sufficient to induce EMT and resulted in massive apoptosis when neuronal differentiation was induced. In vivo, downregulation of SOX2 in chick and mouse NC cells significantly reduced the numbers of neurons within DRG. We found that SOX2 binds directly to NGN1 and MASH1 promoters and is required for their expression. Our data suggest that SOX2 plays a key role for NGN1-dependent acquisition of neuronal fates in sensory ganglia.
Collapse
Affiliation(s)
- Flavio Cimadamore
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Origin and segregation of cranial placodes in Xenopus laevis. Dev Biol 2011; 360:257-75. [PMID: 21989028 DOI: 10.1016/j.ydbio.2011.09.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 08/31/2011] [Accepted: 09/01/2011] [Indexed: 11/23/2022]
Abstract
Cranial placodes are local thickenings of the vertebrate head ectoderm that contribute to the paired sense organs (olfactory epithelium, lens, inner ear, lateral line), cranial ganglia and the adenohypophysis. Here we use tissue grafting and dye injections to generated fate maps of the dorsal cranial part of the non-neural ectoderm for Xenopus embryos between neural plate and early tailbud stages. We show that all placodes arise from a crescent-shaped area located around the anterior neural plate, the pre-placodal ectoderm. In agreement with proposed roles of Six1 and Pax genes in the specification of a panplacodal primordium and different placodal areas, respectively, we show that Six1 is expressed uniformly throughout most of the pre-placodal ectoderm, while Pax6, Pax3, Pax8 and Pax2 each are confined to specific subregions encompassing the precursors of different subsets of placodes. However, the precursors of the vagal epibranchial and posterior lateral line placodes, which arise from the posteriormost pre-placodal ectoderm, upregulate Six1 and Pax8/Pax2 only at tailbud stages. Whereas our fate map suggests that regions of origin for different placodes overlap extensively with each other and with other ectodermal fates at neural plate stages, analysis of co-labeled placodes reveals that the actual degree of overlap is much smaller. Time lapse imaging of the pre-placodal ectoderm at single cell resolution demonstrates that no directed, large-scale cell rearrangements occur, when the pre-placodal region segregates into distinct placodes at subsequent stages. Our results indicate that individuation of placodes from the pre-placodal ectoderm does not involve large-scale cell sorting in Xenopus.
Collapse
|
46
|
Six family genes control the proliferation and differentiation of muscle satellite cells. Exp Cell Res 2010; 316:2932-44. [DOI: 10.1016/j.yexcr.2010.08.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/19/2010] [Accepted: 08/03/2010] [Indexed: 12/23/2022]
|
47
|
Expression of Six1 and Six4 in mouse taste buds. J Mol Histol 2010; 41:205-14. [PMID: 20668922 DOI: 10.1007/s10735-010-9280-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 07/13/2010] [Indexed: 10/19/2022]
Abstract
Members of the Six gene family are expressed in various tissues including sensory organs, such as the inner ear and olfactory epithelium. We examined the expression of Six1 and Six4 mRNAs in mouse taste buds by using in situ hybridization. Six1 was detected immunohistochemically in the nuclei of taste bud cells, in a subset of type-II cells, as shown by double-immunolabeling with anti-Six1 together with anti-PLCβ2 or anti-IP(3)R3 antibodies. Six1-immunoreactive (IR) nuclei appeared at embryonic day 17.5 in the dorsal epithelium, and in the trench wall epithelium of circumvallate papillae at postnatal day 5. At this stage, Six1-IR nuclei were observed in all newly-formed type-II cells. During postnatal development, type-II cells increased in number, but those with Six1-IR nuclei showed no apparent increase. After transection of the bilateral glossopharyngeal nerve, type-II cells gradually disappeared; but some of them remained in the epithelium even at 11-17 days post-transection. The remaining type-II cells showed Six1-immunoreactivity. At 24 days after nerve transection, regenerating type-II cells appeared; and strong Six1-immunoreactivity was observed in them. Also, enhanced green fluorescent protein-immunoreactivity and β-galactosidase-immunoreactivity, which were indicators for Six1 transcripts and Six4 transcripts, respectively, overlapped. These results suggest that Six1 and Six4 genes are expressed in the taste bud cells, in newly formed or surviving type-II cells.
Collapse
|
48
|
Sato S, Ikeda K, Shioi G, Ochi H, Ogino H, Yajima H, Kawakami K. Conserved expression of mouse Six1 in the pre-placodal region (PPR) and identification of an enhancer for the rostral PPR. Dev Biol 2010; 344:158-71. [PMID: 20471971 DOI: 10.1016/j.ydbio.2010.04.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 04/24/2010] [Accepted: 04/26/2010] [Indexed: 10/19/2022]
Abstract
All cranial sensory organs and sensory neurons of vertebrates develop from cranial placodes. In chick, amphibians and zebrafish, all placodes originate from a common precursor domain, the pre-placodal region (PPR), marked by the expression of Six1/4 and Eya1/2. However, the PPR has never been described in mammals and the mechanism involved in the formation of PPR is poorly defined. Here, we report the expression of Six1 in the horseshoe-shaped mouse ectoderm surrounding the anterior neural plate in a pattern broadly similar to that of non-mammalian vertebrates. To elucidate the identity of Six1-positive mouse ectoderm, we searched for enhancers responsible for Six1 expression by in vivo enhancer assays. One conserved non-coding sequence, Six1-14, showed specific enhancer activity in the rostral PPR of chick and Xenopus and in the mouse ectoderm. These results strongly suggest the presence of PPR in mouse and that it is conserved in vertebrates. Moreover, we show the importance of the homeodomain protein-binding sites of Six1-14, the Six1 rostral PPR enhancer, for enhancer activity, and that Dlx5, Msx1 and Pax7 are candidate binding factors that regulate the level and area of Six1 expression, and thereby the location of the PPR. Our findings provide critical information and tools to elucidate the molecular mechanism of early sensory development and have implications for the development of sensory precursor/stem cells.
Collapse
Affiliation(s)
- Shigeru Sato
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| | | | | | | | | | | | | |
Collapse
|
49
|
Hartwig S, Ho J, Pandey P, Macisaac K, Taglienti M, Xiang M, Alterovitz G, Ramoni M, Fraenkel E, Kreidberg JA. Genomic characterization of Wilms' tumor suppressor 1 targets in nephron progenitor cells during kidney development. Development 2010; 137:1189-203. [PMID: 20215353 DOI: 10.1242/dev.045732] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Wilms' tumor suppressor 1 (WT1) gene encodes a DNA- and RNA-binding protein that plays an essential role in nephron progenitor differentiation during renal development. To identify WT1 target genes that might regulate nephron progenitor differentiation in vivo, we performed chromatin immunoprecipitation (ChIP) coupled to mouse promoter microarray (ChIP-chip) using chromatin prepared from embryonic mouse kidney tissue. We identified 1663 genes bound by WT1, 86% of which contain a previously identified, conserved, high-affinity WT1 binding site. To investigate functional interactions between WT1 and candidate target genes in nephron progenitors, we used a novel, modified WT1 morpholino loss-of-function model in embryonic mouse kidney explants to knock down WT1 expression in nephron progenitors ex vivo. Low doses of WT1 morpholino resulted in reduced WT1 target gene expression specifically in nephron progenitors, whereas high doses of WT1 morpholino arrested kidney explant development and were associated with increased nephron progenitor cell apoptosis, reminiscent of the phenotype observed in Wt1(-/-) embryos. Collectively, our results provide a comprehensive description of endogenous WT1 target genes in nephron progenitor cells in vivo, as well as insights into the transcriptional signaling networks controlled by WT1 that might direct nephron progenitor fate during renal development.
Collapse
Affiliation(s)
- Sunny Hartwig
- Department of Medicine, Children's Hospital Boston; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Suzuki Y, Ikeda K, Kawakami K. Regulatory role of Six1 in the development of taste papillae. Cell Tissue Res 2010; 339:513-25. [DOI: 10.1007/s00441-009-0917-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 12/11/2009] [Indexed: 11/29/2022]
|