1
|
Zamani A, EmamiAref P, Kubíčková L, Hašanová K, Šandor O, Dubový P, Joukal M. Paclitaxel triggers molecular and cellular changes in the choroid plexus. FRONTIERS IN PAIN RESEARCH 2024; 5:1488369. [PMID: 39654799 PMCID: PMC11625821 DOI: 10.3389/fpain.2024.1488369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Paclitaxel is a widely used chemotherapeutic agent for treating various solid tumors. However, resulting neuropathic pain, often a lifelong side effect of paclitaxel, can limit dosing and compromise optimal treatment. The choroid plexus, located in the brain ventricles, spreads peripheral inflammatory reactions into the brain. Our study is the first to analyze the effects of paclitaxel on inflammatory alterations in the choroid plexus. We hypothesized that the choroid plexus could respond directly to paclitaxel and simultaneously be indirectly altered via circulating damage-associated molecular patterns (DAMPs) produced by paclitaxel application. Using immunohistochemical and Western blot analysis, we examined the levels of toll-like receptor 9 (TLR9) and formyl peptide receptor 2 (FPR2), along with the pro-inflammatory cytokines interleukin 6 (IL6) and tumor necrosis factor α (TNFα) in choroid plexus epithelial cells of male Wistar rats following paclitaxel treatment. Moreover, we utilized an in vitro model of choroid plexus epithelial cells, the Z310 cells, to investigate the changes in these cells in response to paclitaxel and DAMPs (CpG ODN). Our results demonstrate that paclitaxel increases TLR9 and FPR2 levels in the choroid plexus while inducing IL6 and TNFα upregulation in both acute and chronic manners. In vitro experiments further revealed that paclitaxel directly interacts with epithelial cells of the choroid plexus, leading to increased levels of TLR9, FPR2, IL6, and TNFα. Additionally, treatment of cells with CpG ODN, an agonist of TLR9, elicited upregulation of IL6 and TNFα. Our findings determined that paclitaxel influences the choroid plexus through both direct and indirect mechanisms, resulting in inflammatory profile alterations. Given the pivotal role of the choroid plexus in brain homeostasis, a compromised choroid plexus following chemotherapy may facilitate the spread of peripheral inflammation into the brain, consequently exacerbating the development of neuropathic pain.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marek Joukal
- Department of Anatomy, Alemeh Zamani Research Group, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
2
|
Kim Y, Je MA, Jeong M, Kwon H, Jang A, Kim J, Choi GE. Upregulation of NGF/TrkA-Related Proteins in Dorsal Root Ganglion of Paclitaxel-Induced Peripheral Neuropathy Animal Model. J Pain Res 2024; 17:3919-3932. [PMID: 39588524 PMCID: PMC11586490 DOI: 10.2147/jpr.s470671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024] Open
Abstract
Background Paclitaxel (PTX) can induce chemotherapy-induced peripheral neuropathy (CIPN) as a side effect. The aim of this study was to understand the neurochemical changes induced by NGF/TrkA signaling in PTX-induced neuropathic pain. Methods The PTX-induced CIPN mouse model was evaluated using nerve conduction velocity (NCV) and behavioral tests. Protein expression in mouse DRG was observed by Western blotting and immunohistochemistry. Nerve growth factor (NGF), IL-6, and IL-1β mRNA levels were determined using qRT-PCR by isolating total RNA from whole blood. Results PTX showed low amplitude and high latency values in NCV in mice, and induced cold allodynia and thermal hyperalgesia in behavioral assessment. Activating transcription factor 3 (ATF3) and MAPK pathway related proteins (ERK1/2), tropomyosin receptor kinase A (TrkA), calcitonin gene related peptide (CGRP) and transient receptor potential vanilloid 1 (TRPV1) were upregulated 7th and 14th days after 2 mg/kg and 10 mg/kg of PTX administration. Protein kinase C (PKC) was upregulated 7th days after 10 mg/kg PTX treatment and 14th days after 2 mg/kg and 10 mg/kg PTX administration. NGF, IL-6, and IL-1β fold change values also showed a time- and dose-dependent increase. Conclusion Taken together, our findings may improve our understanding of the nociceptive symptoms associated with PTX-induced neuropathic pain and lead to the development of new treatments for peripheral neuropathy.
Collapse
Affiliation(s)
- Yeeun Kim
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Min-A Je
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Myeongguk Jeong
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Hyeokjin Kwon
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Aelee Jang
- Department of Nursing, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Jungho Kim
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Go-Eun Choi
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| |
Collapse
|
3
|
Girdenytė M, Hu Y, Ginosyan A, Hammarlund-Udenaes M, Loryan I. Formulation-dependent differences in paclitaxel distribution to anatomical sites relevant to chemotherapy-induced peripheral neuropathy. Front Pharmacol 2024; 15:1486686. [PMID: 39568585 PMCID: PMC11576287 DOI: 10.3389/fphar.2024.1486686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting adverse event observed in patients receiving paclitaxel, associated with initial pathological changes in the peripheral nervous system, i.e., distal nerves and dorsal root ganglia (DRG). The prevalence of CIPN in patients receiving paclitaxel formulated i) in polyethylated castor oil with ethanol (CreEL-PTX), ii) as albumin-bound (nab-PTX), and iii) in XR17 micelles (micellar-PTX), is unexpectedly varying. We hypothesize that the discrepancy in CIPN prevalence could be governed by differences in the extent of paclitaxel distribution across blood-to-tissue barriers at the CIPN-sites, caused by the specific formulation. Methods The recently developed Combinatory Mapping Approach for CIPN was used to determine the unbound tissue-to-plasma concentration ratio Kp,uu,tissue, after a 4-h infusion of 4 mg/kg CreEL-PTX, 4 mg/kg nab-PTX or 1 mg/kg micellar-PTX in male and female Sprague Dawley rats. Kp,uu,tissue was determined in conventional (DRG, sciatic nerve) and non-conventional (brain, spinal cord, skeletal muscle) CIPN-sites. Results Based on our data, the Cremophor-free paclitaxel formulations were associated with a higher distribution of paclitaxel to CIPN-sites than CreEL-PTX, e.g., Kp,uu,DRG of 0.70 and 0.60 for nab-PTX and micellar-PTX, respectively, in comparison to 0.27 for CreEL-PTX (p < 0.01). In addition, the fraction of unbound paclitaxel in plasma was on average 1.6-fold higher in nab- and micellar PTX arms and equal to 0.061 and 0.065, respectively, compared to 0.039 for the CreEL-PTX treatment arm (p < 0.0001). Discussion In the case of similar unbound paclitaxel concentration in the plasma of patients and assumed species-independent extent of paclitaxel transport across the barriers, nab- and micellar-PTX formulations can lead to higher paclitaxel exposure at CIPN-sites in comparison to CreEL-PTX.
Collapse
Affiliation(s)
- Milda Girdenytė
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
- Pharmacy and Pharmacology Center, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Yang Hu
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Aghavni Ginosyan
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Margareta Hammarlund-Udenaes
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Irena Loryan
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Price T, Shiers S, Mazhar K, Wangzhou A, Haberberger R, Lesnak J, Sankaranarayanan I, Tavares-Ferreira D, Cervantes A, Funk G, Horton P, Vines E, Dussor G. Nageotte nodules in human DRG reveal neurodegeneration in painful diabetic neuropathy. RESEARCH SQUARE 2024:rs.3.rs-5006011. [PMID: 39399674 PMCID: PMC11469377 DOI: 10.21203/rs.3.rs-5006011/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Diabetic neuropathy is frequently accompanied by pain and loss of sensation attributed to axonal dieback. We recovered dorsal root ganglia (DRGs) from 90 organ donors, 19 of whom had medical indices for diabetic painful neuropathy (DPN). Nageotte nodules, dead sensory neurons engulfed by non-neuronal cells, were abundant in DPN DRGs and accounted for 25% of all neurons. Peripherin-and Nav1.7-positive dystrophic axons invaded Nageotte nodules, forming small neuroma-like structures. Using histology and spatial sequencing, we demonstrate that Nageotte nodules are mainly composed of satellite glia and non-myelinating Schwann cells that express SPP1 and are intertwined with sprouting sensory axons originating from neighboring neurons. Our findings solve a 100-year mystery of the nature of Nageotte nodules linking these pathological structures to pain and sensory loss in DPN.
Collapse
|
5
|
Ege E, Briggi D, Vu P, Cheng J, Lin F, Xu J. Targeting dorsal root ganglia for chemotherapy-induced peripheral neuropathy: from bench to bedside. Ther Adv Neurol Disord 2024; 17:17562864241252718. [PMID: 39318973 PMCID: PMC11421407 DOI: 10.1177/17562864241252718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating condition affecting an increasing number of cancer survivors worldwide. However, insights into its pathophysiology and availability of effective therapies remain lacking. Dorsal root ganglia (DRG) have been studied as a key component of chemotherapeutic drug toxicity and a potential therapeutic target for CIPN treatment. This comprehensive review aims to synthesize, summarize, and correlate the results of both preclinical and clinical studies relevant to the pathophysiology and management of CIPN in relation to the DRG. Design: Review. A thorough literature search was conducted using the terms 'dorsal root ganglion' and 'chemotherapy-induced peripheral neuropathy', along with appropriate variations. Searched databases included PubMed, EMBASE, Medline, Cochrane Library, Wiley Library, and Web of Science. Inclusion criteria targeted all English language, peer-reviewed original research from the inception of these databases to the present year. Review articles, book chapters, and other nonoriginal publications were excluded. Of 134 relevant studies identified, the majority were preclinical studies elucidating how various chemotherapeutic agents, especially taxanes, disrupt neurotransmission, inflammatory processes, and apoptotic pathways within sensory neurons of DRG. Not only do these effects correlate with the presentation of CIPN, but their disruption has also been shown to reduce CIPN symptoms in preclinical models. However, clinical studies addressing DRG interventions are very limited in number and scope at this time. These results reveal various pathways within DRG that may be effective targets for CIPN treatment. While limited, clinical studies do offer promise in the utility of DRG neuromodulation in managing painful CIPN. In the future, clinical trials are needed to assess interventions aimed at these neuronal and nonneuronal pathological targets to better treat this complex condition.
Collapse
Affiliation(s)
- Eliana Ege
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Daniel Briggi
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Peter Vu
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jianguo Cheng
- Department of Pain Management, Cleveland Clinic, Cleveland, OH, USA
- Department of Neuroscience, Cleveland Clinic, Cleveland, OH, USA
| | - Feng Lin
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Jijun Xu
- Department of Pain Management and Inflammation and Immunity, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
6
|
Shiers SI, Mazhar K, Wangzhou A, Haberberger R, Lesnak JB, Sankaranarayanan I, Tavares-Ferreira D, Cervantes A, Funk G, Horton P, Vines E, Dussor G, Price TJ. Nageotte nodules in human DRG reveal neurodegeneration in painful diabetic neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609215. [PMID: 39229145 PMCID: PMC11370606 DOI: 10.1101/2024.08.22.609215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Diabetic neuropathy is frequently accompanied by pain and loss of sensation attributed to axonal dieback. We recovered dorsal root ganglia (DRGs) from 90 organ donors, 19 of whom had medical indices for diabetic painful neuropathy (DPN). Nageotte nodules, dead sensory neurons engulfed by non-neuronal cells, were abundant in DPN DRGs and accounted for 25% of all neurons. Peripherin-and Nav1.7-positive dystrophic axons invaded Nageotte nodules, forming small neuroma-like structures. Using histology and spatial sequencing, we demonstrate that Nageotte nodules are mainly composed of satellite glia and non-myelinating Schwann cells that express SPP1 and are intertwined with sprouting sensory axons originating from neighboring neurons. Our findings solve a 100-year mystery of the nature of Nageotte nodules linking these pathological structures to pain and sensory loss in DPN.
Collapse
Affiliation(s)
- Stephanie I Shiers
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| | - Khadijah Mazhar
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| | - Andi Wangzhou
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| | | | - Joseph B Lesnak
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| | - Diana Tavares-Ferreira
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| | | | | | | | | | - Gregory Dussor
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| | - Theodore J Price
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| |
Collapse
|
7
|
Kim JH, Cetinkaya-Fisgin A, Zahn N, Sari MC, Hoke A, Barman I. Label-Free Visualization and Morphological Profiling of Neuronal Differentiation and Axonal Degeneration through Quantitative Phase Imaging. Adv Biol (Weinh) 2024; 8:e2400020. [PMID: 38548657 PMCID: PMC11090721 DOI: 10.1002/adbi.202400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Indexed: 05/15/2024]
Abstract
Understanding the intricate processes of neuronal growth, degeneration, and neurotoxicity is paramount for unraveling nervous system function and holds significant promise in improving patient outcomes, especially in the context of chemotherapy-induced peripheral neuropathy (CIPN). These processes are influenced by a broad range of entwined events facilitated by chemical, electrical, and mechanical signals. The progress of each process is inherently linked to phenotypic changes in cells. Currently, the primary means of demonstrating morphological changes rely on measurements of neurite outgrowth and axon length. However, conventional techniques for monitoring these processes often require extensive preparation to enable manual or semi-automated measurements. Here, a label-free and non-invasive approach is employed for monitoring neuronal differentiation and degeneration using quantitative phase imaging (QPI). Operating on unlabeled specimens and offering little to no phototoxicity and photobleaching, QPI delivers quantitative maps of optical path length delays that provide an objective measure of cellular morphology and dynamics. This approach enables the visualization and quantification of axon length and other physical properties of dorsal root ganglion (DRG) neuronal cells, allowing greater understanding of neuronal responses to stimuli simulating CIPN conditions. This research paves new avenues for the development of more effective strategies in the clinical management of neurotoxicity.
Collapse
Affiliation(s)
- Jeong Hee Kim
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Aysel Cetinkaya-Fisgin
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Noah Zahn
- Department Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Mehmet Can Sari
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ahmet Hoke
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Oncology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
8
|
Li H, Ward SJ. Paclitaxel-Associated Mechanical Sensitivity and Neuroinflammation Are Sex-, Time-, and Site-Specific and Prevented through Cannabigerol Administration in C57Bl/6 Mice. Int J Mol Sci 2024; 25:4277. [PMID: 38673862 PMCID: PMC11050247 DOI: 10.3390/ijms25084277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most prevalent and dose-limiting complications in chemotherapy patients. One identified mechanism underlying CIPN is neuroinflammation. Most of this research has been conducted in only male or female rodent models, making direct comparisons regarding the role of sex differences in the neuroimmune underpinnings of CIPN limited. Moreover, most measurements have focused on the dorsal root ganglia (DRG) and/or spinal cord, while relatively few studies have been aimed at characterizing neuroinflammation in the brain, for example the periaqueductal grey (PAG). The overall goals of the present study were to determine (1) paclitaxel-associated changes in markers of inflammation in the PAG and DRG in male and female C57Bl6 mice and (2) determine the effect of prophylactic administration of an anti-inflammatory cannabinoid, cannabigerol (CBG). In Experiment 1, male and female mice were treated with paclitaxel (8-32 mg/kg/injection, Days 1, 3, 5, and 7) and mechanical sensitivity was measured using Von Frey filaments on Day 7 (Cohort 1) and Day 14 (Cohort 2). Cohorts were euthanized on Day 8 or 15, respectively, and DRG and PAG were harvested for qPCR analysis of the gene expression of markers of pain and inflammation Aig1, Gfap, Ccl2, Cxcl9, Tlr4, Il6, and Calca. In Experiment 2, male and female mice were treated with vehicle or 10 mg/kg CBG i.p. 30 min prior to each paclitaxel injection. Mechanical sensitivity was measured on Day 14. Mice were euthanized on Day 15, and PAG were harvested for qPCR analysis of the gene expression of Aig1, Gfap, Ccl2, Cxcl9, Tlr4, Il6, and Calca. Paclitaxel produced a transient increase in potency to produce mechanical sensitivity in male versus female mice. Regarding neuroinflammation, more gene expression changes were apparent earlier in the DRG and at a later time point in the PAG. Also, more changes were observed in females in the PAG than males. Overall, sex differences were observed for most markers at both time points and regions. Importantly, in both the DRG and PAG, most increases in markers of neuroinflammation and pain occurred at paclitaxel doses higher than those associated with significant changes in the mechanical threshold. Two analytes that demonstrated the most compelling sexual dimorphism and that changed more in males were Cxcl9 and Ccl2, and Tlr4 in females. Lastly, prophylactic administration of CBG protected the male and female mice from increased mechanical sensitivity and female mice from neuroinflammation in the PAG. Future studies are warranted to explore how these sex differences may shed light on the mechanisms of CIPN and how non-psychoactive cannabinoids such as CBG may engage these targets to prevent or attenuate the effects of paclitaxel and other chemotherapeutic agents on the nervous system.
Collapse
Affiliation(s)
| | - Sara Jane Ward
- Center for Substance Abuse Research, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| |
Collapse
|
9
|
Brenneman DE, Kinney WA, McDonnell ME, Ippolito MJ, Ward SJ. Knockdown siRNA Targeting GPR55 Reveals Significant Differences Between the Anti-inflammatory Actions of KLS-13019 and Cannabidiol. J Mol Neurosci 2024; 74:41. [PMID: 38602576 DOI: 10.1007/s12031-024-02217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
KLS-13019 was reported previously to reverse paclitaxel-induced mechanical allodynia in a mouse model of chemotherapy-induced peripheral neuropathy (CIPN). Recent studies demonstrated that paclitaxel-induced increases in inflammatory markers (GPR55, NLRP3, and IL-1β) of dorsal root ganglion (DRG) cultures were shown to be reversed by KLS-13019 treatment. The mechanism of action for KLS-13019-mediated reversal of paclitaxel-induced neuroinflammation now has been explored using GPR55 siRNA. Pre-treatment of DRG cultures with GPR55 siRNA produced a 21% decrease of immunoreactive (IR) area for GPR55 in cell bodies and a 59% decrease in neuritic IR area, as determined by high-content imaging. Using a 24-h reversal treatment paradigm, paclitaxel-induced increases in the inflammatory markers were reversed back to control levels after KLS-3019 treatment. Decreases in these inflammatory markers produced by KLS-13019 were significantly attenuated by GPR55 siRNA co-treatment, with mean IR area responses being attenuated by 56% in neurites and 53% in cell bodies. These data indicate that the percentage decreases in siRNA-mediated attenuation of KLS-13019-related efficacy on the inflammatory markers were similar to the percentage knockdown observed for neuritic GPR55 IR area. Similar studies conducted with cannabidiol (CBD), the parent compound of KLS-13019, produced low efficacy (25%) reversal of all inflammatory markers that were poorly attenuated (29%) by GPR55 siRNA. CBD was shown previously to be ineffective in reversing paclitaxel-induced mechanical allodynia. The present studies indicated significant differences between the anti-inflammatory properties of KLS-13019 and CBD which may play a role in their observed differences in the reversibility of mechanical allodynia in a mouse model of CIPN.
Collapse
Affiliation(s)
- Douglas E Brenneman
- Kannalife Sciences, Inc, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA, 18902, USA.
| | - William A Kinney
- Kannalife Sciences, Inc, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Mark E McDonnell
- Kannalife Sciences, Inc, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Michael J Ippolito
- Department of Neural Science, Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Sara Jane Ward
- Department of Neural Science, Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| |
Collapse
|
10
|
Brenneman DE, Kinney WA, McDonnell ME, Ippolito MJ, Ward SJ. Knockdown siRNA targeting GPR55 reveals significant differences between the anti-inflammatory actions of KLS-13019 and cannabidiol. RESEARCH SQUARE 2024:rs.3.rs-3982851. [PMID: 38464007 PMCID: PMC10925471 DOI: 10.21203/rs.3.rs-3982851/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
KLS-13019 was reported previously to reverse paclitaxel-induced mechanical allodynia in a mouse model of chemotherapy-induced peripheral neuropathy (CIPN). Recent studies demonstrated that paclitaxel-induced increases in inflammatory markers (GPR55, NLRP3 and IL-1b) of dorsal root ganglion (DRG) cultures were shown to be reversed by KLS-13019 treatment. The mechanism of action for KLS-13019-mediated reversal of paclitaxel-induced neuroinflammation now has been explored using GPR55 siRNA. Pretreatment of DRG cultures with GPR55 siRNA produced a 21% decrease of immunoreactive (IR) area for GPR55 in cell bodies and a 59% decrease in neuritic IR area, as determined by high content imaging. Using a 24-hour reversal treatment paradigm, paclitaxel-induced increases in the inflammatory markers were reversed back to control levels after KLS-3019 treatment. Decreases in these inflammatory markers produced by KLS-13019 were significantly attenuated by GPR55 siRNA co-treatment, with mean IR area responses being attenuated by 56% in neurites and 53% in cell bodies. These data indicate that the percentage decreases in siRNA-mediated attenuation of KLS-13019-related efficacy on the inflammatory markers were similar to the percentage knockdown observed for neuritic GPR55 IR area. Similar studies conducted with cannabidiol (CBD), the parent compound of KLS-13019, produced low efficacy (25%) reversal of all inflammatory markers that were poorly attenuated (29%) by GPR55 siRNA. CBD was shown previously to be ineffective in reversing paclitaxel-induced mechanical allodynia. The present studies indicated significant differences between the anti-inflammatory properties of KLS-13019 and CBD which may play a role in their observed differences in the reversibility of mechanical allodynia in a mouse model of CIPN.
Collapse
|
11
|
Bacalhau C, Costa-Pereira JT, Tavares I. Preclinical research in paclitaxel-induced neuropathic pain: a systematic review. Front Vet Sci 2023; 10:1264668. [PMID: 38188718 PMCID: PMC10766764 DOI: 10.3389/fvets.2023.1264668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Chemotherapy-induced peripheral neuropathy (CIPN) is a common consequence of cancer treatment and pain is a frequent complaint of the patients. Paclitaxel, a cytostatic drug, generates a well-described peripheral nerve injury and neuroinflammation, which may be experimentally mimicked in animal models. We conducted a systematic review analyzing the experimental design, reporting and mechanisms underlying paclitaxel-induced neuropathy in the included studies to establish the perspectives of translation of the current literature in models of CIPN. Methods We elected studies published in Pubmed and Scopus between 1 January 2018 and 3 December 2022. Results According to a defined mesh of keywords searched, and after applying exclusion and inclusion criteria, 70 original studies were included and analyzed in detail. Most studies used male Sprague-Dawley rats to induce paclitaxel-induced neuropathy, used low doses of paclitaxel, and the analyzed studies mainly focused at 14-28 days of CIPN. Mechanical nociceptive tests were preferred in the behavioral evaluation. The mechanisms under study were mainly neuroinflammation of peripheral nerves. The overall methodological quality was considered moderate, and the risk of bias was unclear. Discussion Despite the ample preclinical research in paclitaxel-induced neuropathy, this systematic review alerts to some flaws in the experimental design along with limitations in reporting, e.g., lack of representation of both sexes in experimental work and the lack of reporting of the ARRIVE guidelines. This may limit the reproducibility of preclinical studies in CIPN. In addition, the clinical features of CIPN should be considered when designing animal experiments, such as sex and age of the CIPN patients. In this way the experimental studies aiming to establish the mechanisms of CIPN may allow the development of new drugs to treat CIPN and translation in the research of CIPN could be improved.
Collapse
Affiliation(s)
- Carolina Bacalhau
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - José Tiago Costa-Pereira
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- I3S-Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Isaura Tavares
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- I3S-Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal
| |
Collapse
|
12
|
Kume M, Ahmad A, DeFea KA, Vagner J, Dussor G, Boitano S, Price TJ. Protease-Activated Receptor 2 (PAR2) Expressed in Sensory Neurons Contributes to Signs of Pain and Neuropathy in Paclitaxel Treated Mice. THE JOURNAL OF PAIN 2023; 24:1980-1993. [PMID: 37315729 PMCID: PMC10615692 DOI: 10.1016/j.jpain.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common, dose-limiting side effect of cancer therapy. Protease-activated receptor 2 (PAR2) is implicated in a variety of pathologies, including CIPN. In this study, we demonstrate the role of PAR2 expressed in sensory neurons in a paclitaxel (PTX)-induced model of CIPN in mice. PAR2 knockout/wildtype (WT) mice and mice with PAR2 ablated in sensory neurons were treated with PTX administered via intraperitoneal injection. In vivo behavioral studies were done in mice using von Frey filaments and the Mouse Grimace Scale. We then examined immunohistochemical staining of dorsal root ganglion (DRG) and hind paw skin samples from CIPN mice to measure satellite cell gliosis and intra-epidermal nerve fiber (IENF) density. The pharmacological reversal of CIPN pain was tested with the PAR2 antagonist C781. Mechanical allodynia caused by PTX treatment was alleviated in PAR2 knockout mice of both sexes. In the PAR2 sensory neuronal conditional knockout (cKO) mice, both mechanical allodynia and facial grimacing were attenuated in mice of both sexes. In the DRG of the PTX-treated PAR2 cKO mice, satellite glial cell activation was reduced compared to control mice. IENF density analysis of the skin showed that the PTX-treated control mice had a reduction in nerve fiber density while the PAR2 cKO mice had a comparable skin innervation as the vehicle-treated animals. Similar results were seen with satellite cell gliosis in the DRG, where gliosis induced by PTX was absent in PAR cKO mice. Finally, C781 was able to transiently reverse established PTX-evoked mechanical allodynia. PERSPECTIVE: Our work demonstrates that PAR2 expressed in sensory neurons plays a key role in PTX-induced mechanical allodynia, spontaneous pain, and signs of neuropathy, suggesting PAR2 as a possible therapeutic target in multiple aspects of PTX CIPN.
Collapse
Affiliation(s)
- Moeno Kume
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| | - Ayesha Ahmad
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| | | | | | - Gregory Dussor
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| | - Scott Boitano
- University of Arizona Bio5 Research Institute
- University of Arizona Heath Sciences, Asthma and Airway Disease Research Center
- University of Arizona Heath Sciences, Department of Physiology
| | - Theodore J. Price
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| |
Collapse
|
13
|
Lucarini E, Micheli L, Rajagopalan R, Ciampi C, Branca JJ, Pacini A, Leandri M, Rajagopalan P, Ghelardini C, Di Cesare Mannelli L. Broad-spectrum neuroprotection exerted by DDD-028 in a mouse model of chemotherapy-induced neuropathy. Pain 2023; 164:2581-2595. [PMID: 37556385 PMCID: PMC10578426 DOI: 10.1097/j.pain.0000000000002963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/28/2023] [Accepted: 05/02/2023] [Indexed: 08/11/2023]
Abstract
ABSTRACT Neurotoxicity of chemotherapeutics involves peculiar alterations in the structure and function, including abnormal nerve signal transmission, of both the peripheral and central nervous system. The lack of effective pharmacological approaches to prevent chemotherapy-induced neurotoxicity necessitates the identification of innovative therapies. Recent evidence suggests that repeated treatment with the pentacyclic pyridoindole derivative DDD-028 can exert both pain-relieving and glial modulatory effects in mice with paclitaxel-induced neuropathy. This work is aimed at assessing whether DDD-028 is a disease-modifying agent by protecting the peripheral nervous tissues from chemotherapy-induced damage. Neuropathy was induced in animals by paclitaxel injection (2.0 mg kg -1 i.p). DDD-028 (10 mg kg -1 ) and the reference drug, pregabalin (30 mg kg -1 ), were administered per os daily starting concomitantly with the first injection of paclitaxel and continuing 10 days after the end of paclitaxel treatment. The behavioural tests confirmed the antihyperalgesic efficacy of DDD-028 on paclitaxel-induced neuropathic pain. Furthermore, the electrophysiological analysis revealed the capacity of DDD-028 to restore near-normal sensory nerve conduction in paclitaxel-treated animals. Histopathology evidence indicated that DDD-028 was able to counteract effectively paclitaxel-induced peripheral neurotoxicity by protecting against the loss of intraepidermal nerve fibers, restoring physiological levels of neurofilament in nerve tissue and plasma, and preventing morphological alterations occurring in the sciatic nerves and dorsal root ganglia. Overall, DDD-028 is more effective than pregabalin in preventing chemotherapy-induced neurotoxicity. Thus, based on its potent antihyperalgesic and neuroprotective efficacy, DDD-028 seems to be a viable prophylactic medication to limit the development of neuropathies consequent to chemotherapy.
Collapse
Affiliation(s)
- Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | | | - Clara Ciampi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Jacopo J.V. Branca
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Florence, Italy
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Florence, Italy
| | - Massimo Leandri
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | | | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| |
Collapse
|
14
|
Diaz-delCastillo M, Palasca O, Nemler TT, Thygesen DM, Chávez-Saldaña NA, Vázquez-Mora JA, Ponce Gomez LY, Jensen LJ, Evans H, Andrews RE, Mandal A, Neves D, Mehlen P, Caruso JP, Dougherty PM, Price TJ, Chantry A, Lawson MA, Andersen TL, Jimenez-Andrade JM, Heegaard AM. Metastatic Infiltration of Nervous Tissue and Periosteal Nerve Sprouting in Multiple Myeloma-Induced Bone Pain in Mice and Human. J Neurosci 2023; 43:5414-5430. [PMID: 37286351 PMCID: PMC10359036 DOI: 10.1523/jneurosci.0404-23.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/15/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023] Open
Abstract
Multiple myeloma (MM) is a neoplasia of B plasma cells that often induces bone pain. However, the mechanisms underlying myeloma-induced bone pain (MIBP) are mostly unknown. Using a syngeneic MM mouse model, we show that periosteal nerve sprouting of calcitonin gene-related peptide (CGRP+) and growth associated protein 43 (GAP43+) fibers occurs concurrent to the onset of nociception and its blockade provides transient pain relief. MM patient samples also showed increased periosteal innervation. Mechanistically, we investigated MM induced gene expression changes in the dorsal root ganglia (DRG) innervating the MM-bearing bone of male mice and found alterations in pathways associated with cell cycle, immune response and neuronal signaling. The MM transcriptional signature was consistent with metastatic MM infiltration to the DRG, a never-before described feature of the disease that we further demonstrated histologically. In the DRG, MM cells caused loss of vascularization and neuronal injury, which may contribute to late-stage MIBP. Interestingly, the transcriptional signature of a MM patient was consistent with MM cell infiltration to the DRG. Overall, our results suggest that MM induces a plethora of peripheral nervous system alterations that may contribute to the failure of current analgesics and suggest neuroprotective drugs as appropriate strategies to treat early onset MIBP.SIGNIFICANCE STATEMENT Multiple myeloma (MM) is a painful bone marrow cancer that significantly impairs the quality of life of the patients. Analgesic therapies for myeloma-induced bone pain (MIBP) are limited and often ineffective, and the mechanisms of MIBP remain unknown. In this manuscript, we describe cancer-induced periosteal nerve sprouting in a mouse model of MIBP, where we also encounter metastasis to the dorsal root ganglia (DRG), a never-before described feature of the disease. Concomitant to myeloma infiltration, the lumbar DRGs presented blood vessel damage and transcriptional alterations, which may mediate MIBP. Explorative studies on human tissue support our preclinical findings. Understanding the mechanisms of MIBP is crucial to develop targeted analgesic with better efficacy and fewer side effects for this patient population.
Collapse
Affiliation(s)
- Marta Diaz-delCastillo
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
- Department of Forensic Medicine, Aarhus University, Aarhus 8870, Denmark
- Department of Oncology & Metabolism, University of Sheffield, Sheffield S10 2RX, United Kingdom
- Mellanby Centre for Bone Research, University of Sheffield, Sheffield S10 2RX, United Kingdom
- Sheffield Teaching Hospitals, Sheffield S10 2JF, United Kingdom
- The Danish Spatial Imaging Consortium (DanSIC), Denmark
| | - Oana Palasca
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Tim T Nemler
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Didde M Thygesen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Norma A Chávez-Saldaña
- Unidad Académica Multidisciplinaria Reynosa Aztlan, Autonomic University of Tamaulipas, Reynosa 88740, Mexico
| | - Juan A Vázquez-Mora
- Unidad Académica Multidisciplinaria Reynosa Aztlan, Autonomic University of Tamaulipas, Reynosa 88740, Mexico
| | - Lizeth Y Ponce Gomez
- Unidad Académica Multidisciplinaria Reynosa Aztlan, Autonomic University of Tamaulipas, Reynosa 88740, Mexico
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Holly Evans
- Department of Oncology & Metabolism, University of Sheffield, Sheffield S10 2RX, United Kingdom
- Mellanby Centre for Bone Research, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - Rebecca E Andrews
- Department of Oncology & Metabolism, University of Sheffield, Sheffield S10 2RX, United Kingdom
- Mellanby Centre for Bone Research, University of Sheffield, Sheffield S10 2RX, United Kingdom
- Sheffield Teaching Hospitals, Sheffield S10 2JF, United Kingdom
| | - Aritri Mandal
- Department of Oncology & Metabolism, University of Sheffield, Sheffield S10 2RX, United Kingdom
- Mellanby Centre for Bone Research, University of Sheffield, Sheffield S10 2RX, United Kingdom
- Sheffield Teaching Hospitals, Sheffield S10 2JF, United Kingdom
| | | | - Patrick Mehlen
- NETRIS Pharma, Lyon 69008, France
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue,' LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - James P Caruso
- Department of Neuroscience and Center for Advanced Pain, The University of Texas at Dallas, Dallas, Texas 75080
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Patrick M Dougherty
- Department of Pain Medicine, Division of Anesthesiology, MD Anderson Cancer Center, Houston, Texas 77030
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain, The University of Texas at Dallas, Dallas, Texas 75080
| | - Andrew Chantry
- Department of Oncology & Metabolism, University of Sheffield, Sheffield S10 2RX, United Kingdom
- Mellanby Centre for Bone Research, University of Sheffield, Sheffield S10 2RX, United Kingdom
- Sheffield Teaching Hospitals, Sheffield S10 2JF, United Kingdom
| | - Michelle A Lawson
- Department of Oncology & Metabolism, University of Sheffield, Sheffield S10 2RX, United Kingdom
- Mellanby Centre for Bone Research, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - Thomas L Andersen
- Department of Forensic Medicine, Aarhus University, Aarhus 8870, Denmark
- The Danish Spatial Imaging Consortium (DanSIC), Denmark
- Department of Clinical Cell Biology, University of Southern Denmark, Odense 5230, Denmark
- Department of Clinical Pathology, Odense University Hospital, Odense 5000, Denmark
| | - Juan M Jimenez-Andrade
- Unidad Académica Multidisciplinaria Reynosa Aztlan, Autonomic University of Tamaulipas, Reynosa 88740, Mexico
| | - Anne-Marie Heegaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
15
|
Dominiak HSH, Hasselsteen SD, Nielsen SW, Andersen JR, Herrstedt J. Prevention of Taste Alterations in Patients with Cancer Receiving Paclitaxel- or Oxaliplatin-Based Chemotherapy-A Pilot Trial of Cannabidiol. Nutrients 2023; 15:3014. [PMID: 37447339 DOI: 10.3390/nu15133014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
INTRODUCTION Taste alteration is a common adverse effect of chemotherapy. This study aimed to investigate the effect of cannabidiol (CBD) on Lean Body Mass (LBM), and taste alterations during oxaliplatin- or paclitaxel-based chemotherapy. METHODS LBM was estimated by bioelectrical impedance analysis (BIA), and taste perception was evaluated by a randomized sensory test of six samples: sweet, salt, and umami, all in weak and strong concentrations. Taste perceptions were scored on visual analog scales. Patients in the intervention group received oral CBD 300 mg/day for 8 days; patients in the control group did not. Patients were followed for three cycles of chemotherapy. RESULTS Twenty-two/ten patients (intervention/control group) were eligible. No effects on LBM were demonstrated. At baseline, the control group was able to differentiate between weak and strong saltiness and weak and strong sweetness but lost this ability after three cycles of chemotherapy. At baseline, the intervention group was unable to differentiate between the concentrations but gained the ability to significantly differentiate between weak and strong sweetness (p = 0.03) and weak and strong saltiness (p = 0.04) after three cycles of chemotherapy and treatment with CBD. CONCLUSIONS CBD may improve patients' ability to differentiate taste strengths during chemotherapy.
Collapse
Affiliation(s)
- Helena S H Dominiak
- Department of Clinical Oncology, Zealand University Hospital, 4000 Roskilde, Denmark
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 2200 Frederiksberg, Denmark
| | - Simone D Hasselsteen
- Department of Clinical Oncology, Zealand University Hospital, 4000 Roskilde, Denmark
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 2200 Frederiksberg, Denmark
| | - Sebastian W Nielsen
- Department of Clinical Oncology, Zealand University Hospital, 4000 Roskilde, Denmark
| | - Jens Rikardt Andersen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 2200 Frederiksberg, Denmark
| | - Jørn Herrstedt
- Department of Clinical Oncology, Zealand University Hospital, 4000 Roskilde, Denmark
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, 2200 Frederiksberg, Denmark
| |
Collapse
|
16
|
Haroun R, Wood JN, Sikandar S. Mechanisms of cancer pain. FRONTIERS IN PAIN RESEARCH 2023; 3:1030899. [PMID: 36688083 PMCID: PMC9845956 DOI: 10.3389/fpain.2022.1030899] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/14/2022] [Indexed: 01/05/2023] Open
Abstract
Personalised and targeted interventions have revolutionised cancer treatment and dramatically improved survival rates in recent decades. Nonetheless, effective pain management remains a problem for patients diagnosed with cancer, who continue to suffer from the painful side effects of cancer itself, as well as treatments for the disease. This problem of cancer pain will continue to grow with an ageing population and the rapid advent of more effective therapeutics to treat the disease. Current pain management guidelines from the World Health Organisation are generalised for different pain severities, but fail to address the heterogeneity of mechanisms in patients with varying cancer types, stages of disease and treatment plans. Pain is the most common complaint leading to emergency unit visits by patients with cancer and over one-third of patients that have been diagnosed with cancer will experience under-treated pain. This review summarises preclinical models of cancer pain states, with a particular focus on cancer-induced bone pain and chemotherapy-associated pain. We provide an overview of how preclinical models can recapitulate aspects of pain and sensory dysfunction that is observed in patients with persistent cancer-induced bone pain or neuropathic pain following chemotherapy. Peripheral and central nervous system mechanisms of cancer pain are discussed, along with key cellular and molecular mediators that have been highlighted in animal models of cancer pain. These include interactions between neuronal cells, cancer cells and non-neuronal cells in the tumour microenvironment. Therapeutic targets beyond opioid-based management are reviewed for the treatment of cancer pain.
Collapse
Affiliation(s)
- Rayan Haroun
- Division of Medicine, Wolfson Institute of Biomedical Research, University College London, London, United Kingdom
| | - John N Wood
- Division of Medicine, Wolfson Institute of Biomedical Research, University College London, London, United Kingdom
| | - Shafaq Sikandar
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
17
|
Padín JF, Maroto M, Entrena JM, Egea J, Montell E, Vergés J, López MG, Cobos EJ, García AG. Small Synthetic Hyaluronan Disaccharide BIS014 Mitigates Neuropathic Pain in Mice. THE JOURNAL OF PAIN 2023; 24:68-83. [PMID: 36087908 DOI: 10.1016/j.jpain.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/18/2022] [Accepted: 07/31/2022] [Indexed: 02/08/2023]
Abstract
Neuropathic pain (NP) is a challenging condition to treat, as the need for new drugs to treat NP is an unmet goal. We investigated the analgesic potential of a new sulfated disaccharide compound, named BIS014. Oral administration (p.o.) of this compound induced ameliorative effects in formalin-induced nociception and capsaicin-induced secondary mechanical hypersensitivity in mice, but also after partial sciatic nerve transection (spared nerve injury), chemotherapy (paclitaxel)-induced NP, and diabetic neuropathy induced by streptozotocin. Importantly, BIS014, at doses active on neuropathic hypersensitivity (60 mg/kg/p.o.), did not alter exploratory activity or motor coordination (in the rotarod test), unlike a standard dose of gabapentin (40 mg/kg/p.o.) which although inducing antiallodynic effects on the NP models, it also markedly decreased exploration and motor coordination. In docking and molecular dynamic simulation studies, BIS014 interacted with TRPV1, a receptor involved in pain transmission where it behaved as a partial agonist. Additionally, similar to capsaicin, BIS014 increased cytosolic Ca2+ concentration ([Ca2+]c) in neuroblastoma cells expressing TRPV1 receptors; these elevations were blocked by ruthenium red. BIS014 did not block capsaicin-elicited [Ca2+]c transients, but inhibited the increase in the firing rate of action potentials in bradykinin-sensitized dorsal root ganglion neurons stimulated with capsaicin. Perspective: We report that the oral administration of a new sulfated disaccharide compound, named BIS014, decreases neuropathic pain from diverse etiology in mice. Unlike the comparator gabapentin, BIS014 does not induce sedation. Thus, BIS014 has the potential to become a new efficacious non-sedative oral medication for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Juan-Fernando Padín
- Instituto-Fundación Teófilo Hernando, C/ Faraday 7, Parque Científico del Campus de Cantoblanco, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Avda. Arzobispo Morcillo 4, Madrid, Spain; Departamento de Ciencias Médicas (Farmacología), Facultad de Medicina, Universidad de Castilla-La Mancha, Ciudad Real, Spain.
| | - Marcos Maroto
- Instituto-Fundación Teófilo Hernando, C/ Faraday 7, Parque Científico del Campus de Cantoblanco, Universidad Autónoma de Madrid, Madrid, Spain.
| | - José Manuel Entrena
- Unidad de Análisis de Comportamiento Animal, Centro de Instrumentación Científica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Armilla, Granada, Spain.
| | - Javier Egea
- Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS La Princesa), C/Diego de León 62 (1ª planta), Madrid, Spain.
| | - Eulàlia Montell
- Pre-Clinical R&D Department, Bioibérica, S.A., Barcelona, Spain.
| | - Josep Vergés
- Pre-Clinical R&D Department, Bioibérica, S.A., Barcelona, Spain.
| | - Manuela G López
- Instituto-Fundación Teófilo Hernando, C/ Faraday 7, Parque Científico del Campus de Cantoblanco, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Avda. Arzobispo Morcillo 4, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS La Princesa), C/Diego de León 62 (1ª planta), Madrid, Spain.
| | - Enrique J Cobos
- Departamento de Farmacología e Instituto de Neurociencias, Facultad de Medicina, Universidad de Granada e Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - Antonio G García
- Instituto-Fundación Teófilo Hernando, C/ Faraday 7, Parque Científico del Campus de Cantoblanco, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Avda. Arzobispo Morcillo 4, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS La Princesa), C/Diego de León 62 (1ª planta), Madrid, Spain.
| |
Collapse
|
18
|
Velasco-González R, Coffeen U. Neurophysiopathological Aspects of Paclitaxel-induced Peripheral Neuropathy. Neurotox Res 2022; 40:1673-1689. [PMID: 36169871 DOI: 10.1007/s12640-022-00582-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/31/2022]
Abstract
Chemotherapy is widely used as a primary treatment or adjuvant therapy for cancer. Anti-microtubule agents (such as paclitaxel and docetaxel) are used for treating many types of cancer, either alone or in combination. However, their use has negative consequences that restrict the treatment's ability to continue. The principal negative effect is the so-called chemotherapy-induced peripheral neuropathy (CIPN). CIPN is a complex ailment that depends on diversity in the mechanisms of action of the different chemotherapy drugs, which are not fully understood. In this paper, we review several neurophysiological and pathological characteristics, such as morphological changes, changes in ion channels, mitochondria and oxidative stress, cell death, changes in the immune response, and synaptic control, as well as the characteristics of neuropathic pain produced by paclitaxel.
Collapse
Affiliation(s)
- Roberto Velasco-González
- Laboratorio de Neurofisiología Integrativa, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Ciudad de México, México.,Maestría en Ciencias Biológicas, UNAM, Ciudad de México, México
| | - Ulises Coffeen
- Laboratorio de Neurofisiología Integrativa, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Ciudad de México, México.
| |
Collapse
|
19
|
Brenneman DE, Kinney WA, McDonnell ME, Zhao P, Abood ME, Ward SJ. Anti-Inflammatory Properties of KLS-13019: a Novel GPR55 Antagonist for Dorsal Root Ganglion and Hippocampal Cultures. J Mol Neurosci 2022; 72:1859-1874. [PMID: 35779192 PMCID: PMC9398971 DOI: 10.1007/s12031-022-02038-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/04/2022] [Indexed: 11/28/2022]
Abstract
KLS-13019, a novel devised cannabinoid-like compound, was explored for anti-inflammatory actions in dorsal root ganglion cultures relevant to chemotherapy-induced peripheral neuropathy (CIPN). Time course studies with 3 µM paclitaxel indicated > 1.9-fold increases in immunoreactive (IR) area for cell body GPR55 after 30 min as determined by high content imaging. To test for reversibility of paclitaxel-induced increases in GPR55, cultures were treated for 8 h with paclitaxel alone and then a dose response to KLS-13019 added for another 16 h. This "reversal" paradigm indicated established increases in cell body GPR55 IR areas were decreased back to control levels. Because GPR55 had previously reported inflammatory actions, IL-1β and NLRP3 (inflammasome-3 marker) were also measured in the "reversal" paradigm. Significant increases in all inflammatory markers were produced after 8 h of paclitaxel treatment alone that were reversed to control levels with KLS-13019 treatment. Accompanying studies using alamar blue indicated that decreased cellular viability produced by paclitaxel treatment was reverted back to control levels by KLS-13019. Similar studies conducted with lysophosphatidylinositol (GPR55 agonist) in DRG or hippocampal cultures demonstrated significant increases in neuritic GPR55, NLRP3 and IL-1β areas that were reversed to control levels with KLS-13019 treatment. Studies with a human GPR55-β-arrestin assay in Discover X cells indicated that KLS-13019 was an antagonist without agonist activity. These studies indicated that KLS-13019 has anti-inflammatory properties mediated through GPR55 antagonist actions. Together with previous studies, KLS-13019 is a potent neuroprotective, anti-inflammatory cannabinoid with therapeutic potential for high efficacy treatment of neuropathic pain.
Collapse
Affiliation(s)
- Douglas E Brenneman
- Pennsylvania Biotechnology Center, Kannalife Sciences, Inc, 3805 Old Easton Road, Doylestown, PA, 18902, USA.
| | - William A Kinney
- Pennsylvania Biotechnology Center, Kannalife Sciences, Inc, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Mark E McDonnell
- Pennsylvania Biotechnology Center, Kannalife Sciences, Inc, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Pingei Zhao
- Center for Substance Abuse Research, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Mary E Abood
- Center for Substance Abuse Research, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Sara Jane Ward
- Center for Substance Abuse Research, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| |
Collapse
|
20
|
Chen Y, Lu R, Wang Y, Gan P. Shaoyao Gancao Decoction Ameliorates Paclitaxel-Induced Peripheral Neuropathy via Suppressing TRPV1 and TLR4 Signaling Expression in Rats. Drug Des Devel Ther 2022; 16:2067-2081. [PMID: 35795847 PMCID: PMC9252300 DOI: 10.2147/dddt.s357638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/26/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Paclitaxel-induced peripheral neuropathy (PIPN) is increasingly becoming one of the most widespread adverse effects in the treatment of cancer patients, and further precipitate neuroinflammation in the nervous system. Interestingly, Shaoyao Gancao Decoction (SGD), a traditional Chinese analgesic prescription, has emerged as a primary adjuvant to chemotherapy in relieving side effects, especially in the case of PIPN. However, the underlying mechanism of SGD functioning in PIPN remains elusive. Accordingly, the current study set out to explore the potential axis implicated in the functioning of SGD in PIPN. Methods First, network pharmacology was adopted to predict the role of the transient receptor potential vanilloid type 1 (TRPV1) protein in treating PIPN with SGD. Subsequently, the effects of SGD treatment on mechanical allodynia and thermal hyperalgesia were evaluated in rat PIPN models. Based on the bioinformatics information and current literature, paclitaxel activates toll-like receptor 4 (TLR4) induces the sensitization of TRPV1 mechanistically. Thereafter, TLR4-myeloid-differentiation response gene 88 (MyD88) signaling and TRPV1 expression patterns in dorsal root ganglias (DRGs) were measured by means of Western blotting, qPCR and immunofluorescence. Results Initial bioinformatics reared a total of 105 bioactive compounds and 1075 target genes from SGD. In addition, 40 target genes intersected with PIPN were considered as potential therapeutic genes. Based on the network analysis, SGD was found to exert its analgesic effect by reducing the expression of TRPV1. Further experimentation validated that SGD exerted an analgesic effect on thermal hyperalgesia in PIPN models, such that this protective effect was associated with the suppression of TRPV1 and TLR4-MyD88 Signaling over-expression. Conclusion Collectively, our findings indicated that SGD ameliorates PIPN by inhibiting the over-expression of TLR4-MyD88 Signaling and TRPV1, and further highlights the use of SGD as a potential alternative treatment for PIPN.
Collapse
Affiliation(s)
- Yu Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Ruohuang Lu
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Pingping Gan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Correspondence: Pingping Gan, Department of Oncology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China, Tel +86 13874975101, Email
| |
Collapse
|
21
|
Singh A, Nair NS, Gupta S, Parmar V, Prabhu A, Hawaldar R, Badwe RA. Effect of Menopausal Status on Chemotherapy-Induced Peripheral Neuropathy: Single-Institution Retrospective Audit. Indian J Med Paediatr Oncol 2022. [DOI: 10.1055/s-0042-1742660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Introduction Paclitaxel can cause peripheral neuropathy in up to 60% of patients. Chemotherapy-induced peripheral neuropathy (CIPN) compromises quality of life and often leads to dose reduction or discontinuation of lifesaving chemotherapy. Preclinical models have suggested the possible neuroprotective effect of progesterone through remyelination and other mechanisms.
Objectives The aim of this study was to evaluate the incidence of CIPN for different menopausal status.
Materials and Methods We evaluated the effect of menopausal status, as a surrogate for circulating progesterone levels, on the risk of developing paclitaxel-induced peripheral neuropathy, in an audit of breast cancer patients. Data on CIPN (by clinical history and examination) and other variables were collected from the case charts of patients who had received paclitaxel-based chemotherapy for breast cancer at our institution.
Results Five hundred and fifty women were treated with either neoadjuvant or adjuvant paclitaxel in this period. Of these, 262 (47.6%) women were premenopausal, 49 (8.9%) were perimenopausal, and 239 (43.5%) were postmenopausal at the time of diagnosis. Forty-five (8.1%) women had pre-existing diabetes mellitus. Two hundred and fifty-six (82.31%) developed chemotherapy-induced amenorrhea (CIA).CIPN was seen in 32.7% of women who continued to be premenopausal after receiving chemotherapy and 62.3% of postmenopausal women. Thirty-five (77.8%) out of forty-five diabetic women developed CIPN. On a multivariate logistic regression model, pre-existing diabetes mellitus (risk ratio [RR] = 2.64, 95% confidence interval [CI]: 1.26–5.52, p = 0.009), postmenopausal (RR = 2.84, 95% CI = 1.48–5.45, p = 0.002), and CIA status (RR = 2.17, 95% CI = 1.14–4.12, p = 0.018) were significantly associated with the development of CIPN. Number of cycles did not appear to have an impact (p= 0.819).
Conclusions Postmenopausal status was independently associated with higher incidence of CIPN. One of the possible mechanisms could be lower circulating progesterone levels in these patients. A randomized controlled trial (CTRI/2015/11/006381) is ongoing to test this hypothesis.
Collapse
Affiliation(s)
- Akshita Singh
- Department of Surgical Oncology, Breast Service, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Nita S Nair
- Department of Surgical Oncology, Breast Service, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sudeep Gupta
- Statistician, Clinical Research Secretariat Department, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Vani Parmar
- Department of Surgical Oncology, Breast Service, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Aruna Prabhu
- Department of Surgical Oncology, Breast Service, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Rohini Hawaldar
- Department of Medical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Rajendra A Badwe
- Department of Surgical Oncology, Breast Service, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
22
|
Livni L, Keating BA, Fiore NT, Lees JG, Goldstein D, Moalem-Taylor G. Effects of combined chemotherapy and anti-programmed cell death protein 1 treatment on peripheral neuropathy and neuroinflammation in mice. Pain 2022; 163:110-124. [PMID: 34224494 DOI: 10.1097/j.pain.0000000000002384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/27/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT A modern approach for cancer treatment is the use of immunotherapy, and particularly immune checkpoint inhibitors, such as anti-programmed cell death protein 1 (PD-1), alone and in combination with chemotherapy. The PD-1 pathway plays a crucial role in inhibiting immune responses and recently has been shown to modulate neuronal activity. However, the impact of PD-1 blockade on the development of chemotherapy-induced peripheral neuropathy is currently unknown. In this study, we show that C57BL/6 mice treated with the chemotherapeutic drug paclitaxel or cotherapy (paclitaxel and anti-PD-1), but not with anti-PD-1 alone, exhibited increased mechanical sensitivity of the hind paw. Both chemotherapy and immunotherapy caused a reduction in neurite outgrowth of dorsal root ganglion (DRG) explants derived from treated mice, whereas only paclitaxel reduced the neurite outgrowth after direct in vitro treatment. Mice treated with anti-PD-1 or cotherapy exhibited distinct T-cell changes in the lymph nodes and increased T-cell infiltration into the DRG. Mice treated with paclitaxel or cotherapy had increased macrophage presence in the DRG, and all treated groups presented an altered expression of microglia markers in the dorsal horn of the spinal cord. We conclude that combining anti-PD-1 immunotherapy with paclitaxel does not increase the severity of paclitaxel-induced peripheral neuropathy. However, because anti-PD-1 treatment caused significant changes in DRG and spinal cord immunity, caution is warranted when considering immune checkpoint inhibitors therapy in patients with a high risk of developing neuropathy.
Collapse
Affiliation(s)
- Lital Livni
- Department of Physiology, Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Brooke A Keating
- Department of Physiology, Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Nathan T Fiore
- Department of Physiology, Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Justin G Lees
- Department of Physiology, Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - David Goldstein
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
- Department of Medical Oncology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Gila Moalem-Taylor
- Department of Physiology, Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
23
|
Domoto R, Sekiguchi F, Kamaguchi R, Iemura M, Yamanishi H, Tsubota M, Wang D, Nishibori M, Kawabata A. Role of neuron-derived ATP in paclitaxel-induced HMGB1 release from macrophages and peripheral neuropathy. J Pharmacol Sci 2021; 148:156-161. [PMID: 34924121 DOI: 10.1016/j.jphs.2021.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022] Open
Abstract
We examined the role of ATP and high mobility group box 1 (HMGB1) in paclitaxel-induced peripheral neuropathy (PIPN). PIPN in mice was prevented by HMGB1 neutralization, macrophage depletion, and P2X7 or P2X4 blockade. Paclitaxel and ATP synergistically released HMGB1 from macrophage-like RAW264.7 cells, but not neuron-like NG108-15 cells. The paclitaxel-induced HMGB1 release from RAW264.7 cells was accelerated by co-culture with NG108-15 cells in a manner dependent on P2X7 or P2X4. Paclitaxel released ATP from NG108-15 cells, but not RAW264.7 cells. Thus, PIPN is considered to involve acceleration of HMGB1 release from macrophages through P2X7 and P2X4 activation by neuron-derived ATP.
Collapse
Affiliation(s)
- Risa Domoto
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Riki Kamaguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Maiko Iemura
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Hiroki Yamanishi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Dengli Wang
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan.
| |
Collapse
|
24
|
Tymon-Rosario J, Adjei NN, Roque DM, Santin AD. Microtubule-Interfering Drugs: Current and Future Roles in Epithelial Ovarian Cancer Treatment. Cancers (Basel) 2021; 13:6239. [PMID: 34944858 PMCID: PMC8699494 DOI: 10.3390/cancers13246239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Taxanes and epothilones are chemotherapeutic agents that ultimately lead to cell death through inhibition of normal microtubular function. This review summarizes the literature demonstrating their current use and potential promise as therapeutic agents in the treatment of epithelial ovarian cancer (EOC), as well as putative mechanisms of resistance. Historically, taxanes have become the standard of care in the front-line and recurrent treatment of epithelial ovarian cancer. In the past few years, epothilones (i.e., ixabepilone) have become of interest as they may retain activity in taxane-treated patients since they harbor several features that may overcome mechanisms of taxane resistance. Clinical data now support the use of ixabepilone in the treatment of platinum-resistant or refractory ovarian cancer. Clinical data strongly support the use of microtubule-interfering drugs alone or in combination in the treatment of epithelial ovarian cancer. Ongoing clinical trials will shed further light into the potential of making these drugs part of current standard practice.
Collapse
Affiliation(s)
- Joan Tymon-Rosario
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA; (J.T.-R.); (N.N.A.)
| | - Naomi N. Adjei
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA; (J.T.-R.); (N.N.A.)
| | - Dana M. Roque
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Alessandro D. Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA; (J.T.-R.); (N.N.A.)
| |
Collapse
|
25
|
Burgess J, Ferdousi M, Gosal D, Boon C, Matsumoto K, Marshall A, Mak T, Marshall A, Frank B, Malik RA, Alam U. Chemotherapy-Induced Peripheral Neuropathy: Epidemiology, Pathomechanisms and Treatment. Oncol Ther 2021; 9:385-450. [PMID: 34655433 PMCID: PMC8593126 DOI: 10.1007/s40487-021-00168-y] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE This review provides an update on the current clinical, epidemiological and pathophysiological evidence alongside the diagnostic, prevention and treatment approach to chemotherapy-induced peripheral neuropathy (CIPN). FINDINGS The incidence of cancer and long-term survival after treatment is increasing. CIPN affects sensory, motor and autonomic nerves and is one of the most common adverse events caused by chemotherapeutic agents, which in severe cases leads to dose reduction or treatment cessation, with increased mortality. The primary classes of chemotherapeutic agents associated with CIPN are platinum-based drugs, taxanes, vinca alkaloids, bortezomib and thalidomide. Platinum agents are the most neurotoxic, with oxaliplatin causing the highest prevalence of CIPN. CIPN can progress from acute to chronic, may deteriorate even after treatment cessation (a phenomenon known as coasting) or only partially attenuate. Different chemotherapeutic agents share both similarities and key differences in pathophysiology and clinical presentation. The diagnosis of CIPN relies heavily on identifying symptoms, with limited objective diagnostic approaches targeting the class of affected nerve fibres. Studies have consistently failed to identify at-risk cohorts, and there are no proven strategies or interventions to prevent or limit the development of CIPN. Furthermore, multiple treatments developed to relieve symptoms and to modify the underlying disease in CIPN have failed. IMPLICATIONS The increasing prevalence of CIPN demands an objective approach to identify at-risk patients in order to prevent or limit progression and effectively alleviate the symptoms associated with CIPN. An evidence base for novel targets and both pharmacological and non-pharmacological treatments is beginning to emerge and has been recognised recently in publications by the American Society of Clinical Oncology and analgesic trial design expert groups such as ACTTION.
Collapse
Affiliation(s)
- Jamie Burgess
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK.
- Clinical Sciences Centre, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK.
| | - Maryam Ferdousi
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - David Gosal
- Department of Neurology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Cheng Boon
- Department of Clinical Oncology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
| | - Kohei Matsumoto
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK
| | - Anne Marshall
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK
| | - Tony Mak
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Andrew Marshall
- Faculty of Health and Life Sciences, Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
- Faculty of Health and Life Sciences, The Pain Research Institute, University of Liverpool, Liverpool, L9 7AL, UK
- Department of Pain Medicine, The Walton Centre, Liverpool, L9 7LJ, UK
| | - Bernhard Frank
- Department of Pain Medicine, The Walton Centre, Liverpool, L9 7LJ, UK
| | - Rayaz A Malik
- Research Division, Qatar Foundation, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Uazman Alam
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK.
- Division of Endocrinology, Diabetes and Gastroenterology, University of Manchester, Manchester, M13 9PT, UK.
- Clinical Sciences Centre, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK.
| |
Collapse
|
26
|
Carozzi VA, Salio C, Rodriguez-Menendez V, Ciglieri E, Ferrini F. 2D <em>vs</em> 3D morphological analysis of dorsal root ganglia in health and painful neuropathy. Eur J Histochem 2021; 65. [PMID: 34664808 PMCID: PMC8547168 DOI: 10.4081/ejh.2021.3276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Dorsal root ganglia (DRGs) are clusters of sensory neurons that transmit the sensory information from the periphery to the central nervous system, and satellite glial cells (SGCs), their supporting trophic cells. Sensory neurons are pseudounipolar neurons with a heterogeneous neurochemistry reflecting their functional features. DRGs, not protected by the blood brain barrier, are vulnerable to stress and damage of different origin (i.e., toxic, mechanical, metabolic, genetic) that can involve sensory neurons, SGCs or, considering their intimate intercommunication, both cell populations. DRG damage, primary or secondary to nerve damage, produces a sensory peripheral neuropathy, characterized by neurophysiological abnormalities, numbness, paraesthesia and dysesthesia, tingling and burning sensations and neuropathic pain. DRG stress can be morphologically detected by light and electron microscope analysis with alterations in cell size (swelling/atrophy) and in different subcellular compartments (i.e., mitochondria, endoplasmic reticulum, and nucleus) of neurons and/or SGCs. In addition, neurochemical changes can be used to portray abnormalities of neurons and SGC. Conventional immunostaining, i.e., immunohistochemical detection of specific molecules in tissue slices, can be employed to detect, localize and quantify particular markers of damage in neurons (i.e., nuclear expression of ATF3) or SGCs (i.e., increased expression of GFAP), markers of apoptosis (i.e., caspases), markers of mitochondrial suffering and oxidative stress (i.e., 8-OHdG), markers of tissue inflammation (i.e., CD68 for macrophage infiltration) etc. However classical (2D) methods of immunostaining disrupt the overall organization of the DRG, thus resulting in the loss of some crucial information. Whole-mount (3D) methods have been recently developed to investigate DRG morphology and neurochemistry without tissue slicing, giving the opportunity to study the intimate relationship between SGCs and sensory neurons in health and disease. Here, we aim to compare classical (2D) vs whole-mount (3D) approaches to highlight “pros” and “cons” of the two methodologies when analysing neuropathy-induced alterations in DRGs.
Collapse
Affiliation(s)
- Valentina Alda Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza (MB).
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco (TO).
| | | | | | - Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Grugliasco (TO).
| |
Collapse
|
27
|
Hino S, Yamada M, Iijima Y, Fujita Y, Sano M, Kaneko T, Horie N. Cancer Chemotherapy-Induced Oral Adverse Events: Oral Dysesthesia and Toothache - A Retrospective Study. Ann Maxillofac Surg 2021; 11:86-90. [PMID: 34522660 PMCID: PMC8407618 DOI: 10.4103/ams.ams_136_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 11/04/2022] Open
Abstract
Introduction Due to the development of newly developed anticancer drugs, oral dysesthesia and toothache other than conventional oral mucositis, dry mouth, and dysgeusia are increasing among oral adverse events. The objective of this study was to assess the characteristics of chemotherapy-induced oral dysesthesia and toothache. Materials and Methods Subjects were patients referred to the oral surgery clinic for oral adverse events related to cancer chemotherapy and with an observation period of more than 1 month after the last course of chemotherapy. Oral adverse events were divided according to the categories of the National Cancer Institute Common Terminology Criteria for Adverse Events, v5.0. Statistical comparison was made using the binomial test. Results A total of 180 patients were referred to the oral surgery clinic. Oral dysesthesia and/or toothache was found in 15 cases, which included 13 with oral dysesthesia, 4 with toothache, and 2 with both oral dysesthesia and toothache. Of these 15 cases, 13 had concomitant occurrence of peripheral neuropathy (PN) (86.7%, P = 0.0037) and 12 cases had dysgeusia (80.0%, P = 0.0176). Symptoms of oral dysesthesia and/or toothache continued after chemotherapy in 10 of 15 cases with the continuation of accompanied PN (66.7%) and/or dysgeusia and persisted for more than 6 months in 5 cases (33.3%). Discussion Although oral dysesthesia and toothache are low-grade chemotherapy-induced adverse events, it is suggested that they may be nervous system disorders rather than gastrointestinal disorders. Clinicians should understand that they potentially persist for a long period after the end of chemotherapy.
Collapse
Affiliation(s)
- Shunsuke Hino
- Department of Oral and Maxillofacial Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Miki Yamada
- Department of Oral and Maxillofacial Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Yosuke Iijima
- Department of Oral and Maxillofacial Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Yuki Fujita
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Hospital, Okayama, Japan
| | - Motohiko Sano
- Division of Applied Pharmaceutical Education and Research, Hoshi University, Tokyo, Japan
| | - Takahiro Kaneko
- Department of Oral and Maxillofacial Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Norio Horie
- Department of Oral and Maxillofacial Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
28
|
Macrophage as a Peripheral Pain Regulator. Cells 2021; 10:cells10081881. [PMID: 34440650 PMCID: PMC8392675 DOI: 10.3390/cells10081881] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/30/2022] Open
Abstract
A neuroimmune crosstalk is involved in somatic and visceral pathological pain including inflammatory and neuropathic components. Apart from microglia essential for spinal and supraspinal pain processing, the interaction of bone marrow-derived infiltrating macrophages and/or tissue-resident macrophages with the primary afferent neurons regulates pain signals in the peripheral tissue. Recent studies have uncovered previously unknown characteristics of tissue-resident macrophages, such as their origins and association with regulation of pain signals. Peripheral nerve macrophages and intestinal resident macrophages, in addition to adult monocyte-derived infiltrating macrophages, secrete a variety of mediators, such as tumor necrosis factor-α, interleukin (IL)-1β, IL-6, high mobility group box 1 and bone morphogenic protein 2 (BMP2), that regulate the excitability of the primary afferents. Neuron-derived mediators including neuropeptides, ATP and macrophage-colony stimulating factor regulate the activity or polarization of diverse macrophages. Thus, macrophages have multitasks in homeostatic conditions and participate in somatic and visceral pathological pain by interacting with neurons.
Collapse
|
29
|
Bouali-Benazzouz R, Landry M, Benazzouz A, Fossat P. Neuropathic pain modeling: Focus on synaptic and ion channel mechanisms. Prog Neurobiol 2021; 201:102030. [PMID: 33711402 DOI: 10.1016/j.pneurobio.2021.102030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/22/2021] [Indexed: 12/28/2022]
Abstract
Animal models of pain consist of modeling a pain-like state and measuring the consequent behavior. The first animal models of neuropathic pain (NP) were developed in rodents with a total lesion of the sciatic nerve. Later, other models targeting central or peripheral branches of nerves were developed to identify novel mechanisms that contribute to persistent pain conditions in NP. Objective assessment of pain in these different animal models represents a significant challenge for pre-clinical research. Multiple behavioral approaches are used to investigate and to validate pain phenotypes including withdrawal reflex to evoked stimuli, vocalizations, spontaneous pain, but also emotional and affective behaviors. Furthermore, animal models were very useful in investigating the mechanisms of NP. This review will focus on a detailed description of rodent models of NP and provide an overview of the assessment of the sensory and emotional components of pain. A detailed inventory will be made to examine spinal mechanisms involved in NP-induced hyperexcitability and underlying the current pharmacological approaches used in clinics with the possibility to present new avenues for future treatment. The success of pre-clinical studies in this area of research depends on the choice of the relevant model and the appropriate test based on the objectives of the study.
Collapse
Affiliation(s)
- Rabia Bouali-Benazzouz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
| | - Marc Landry
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Abdelhamid Benazzouz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Pascal Fossat
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| |
Collapse
|
30
|
Simultaneous hyperbaric oxygen therapy during systemic chemotherapy reverses chemotherapy-induced peripheral neuropathy by inhibiting TLR4 and TRPV1 activation in the central and peripheral nervous system. Support Care Cancer 2021; 29:6841-6850. [PMID: 34003380 DOI: 10.1007/s00520-021-06269-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND OBJECTIVES Chemotherapy-induced peripheral neuropathy (CIPN) is considered one of the most common sequelae in patients with cancer who experience consistent abnormal sensations or pain symptoms during or after paclitaxel (PAC) chemotherapy. Transient receptor potential vanilloid 1 (TRPV1) and toll-like receptor 4 (TLR4) have been reported to interact in the nervous system in patients with CIPN. The antinociceptive effects of hyperbaric oxygen therapy (HBOT) on CIPN was demonstrated in this study through behavior tests. Using a CIPN rat model, we examined the effects of simultaneous HBOT (SHBOT) administration during chemotherapy and discovered that SHBOT achieved better reversal effects than chemotherapy alone. MATERIALS AND METHODS Twenty-four rats were randomly allocated to four groups: control, PAC, SHBOT, and HBOT after PAC groups. Behavior tests were performed to evaluate mechanical allodynia and thermal hyperalgesia status. Tissues from the spinal cord and dorsal root ganglions were collected, and TLR4 and TRPV1 expression and microglial activation were investigated through immunofluorescence (IF) staining. RESULTS The mechanical and thermal behavior tests revealed that HBOT intervention during PAC treatment led to the early alleviation of CIPN symptoms and inhibited CIPN deterioration. IF staining revealed that TLR4, TRPV1, and microglial activation were all upregulated in PAC-injected rats and exhibited early and significant downregulation in SHBOT-treated rats. CONCLUSION This study is the first to demonstrate that the use of SHBOT during PAC treatment has potential for the early suppression of CIPN initiation and deterioration, indicating that it can alleviate CIPN symptoms and may reverse CIPN in patients undergoing systemic chemotherapy.
Collapse
|
31
|
Abstract
Of all the oral sensations that are experienced, "metallic" is one that is rarely reported in healthy participants. So why, then, do chemotherapy patients so frequently report that "metallic" sensations overpower and interfere with their enjoyment of food and drink? This side-effect of chemotherapy-often referred to (e.g., by patients) as "metal mouth"-can adversely affect their appetite, resulting in weight loss, which potentially endangers (or at the very least slows) their recovery. The etiology of "metal mouth" is poorly understood, and current management strategies are largely unevidenced. As a result, patients continue to suffer as a result of this poorly understood phenomenon. Here, we provide our perspective on the issue, outlining the evidence for a range of possible etiologies, and highlighting key research questions. We explore the evidence for "metallic" as a putative taste, and whether "metal mouth" might therefore be a form of phantageusia, perhaps similar to already-described "release-of-inhibition" phenomena. We comment on the possibility that "metal mouth" may simply be a direct effect of chemotherapy drugs. We present the novel theory that "metal mouth" may be linked to chemotherapy-induced sensitization of TRPV1. Finally, we discuss the evidence for retronasal olfaction of lipid oxidation products in the etiology of "metal mouth." This article seeks principally to guide much-needed future research which will hopefully one day provide a basis for the development of novel supportive therapies for future generations of patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Alastair J M Reith
- Oxford Medical School, Medical Sciences Division, John Radcliffe Hospital, UK
| | - Charles Spence
- Crossmodal Research Laboratory, Department of Experimental Psychology, Oxford University, UK
| |
Collapse
|
32
|
Akin EJ, Alsaloum M, Higerd GP, Liu S, Zhao P, Dib-Hajj FB, Waxman SG, Dib-Hajj SD. Paclitaxel increases axonal localization and vesicular trafficking of Nav1.7. Brain 2021; 144:1727-1737. [PMID: 33734317 PMCID: PMC8320304 DOI: 10.1093/brain/awab113] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/09/2021] [Accepted: 03/04/2021] [Indexed: 01/15/2023] Open
Abstract
The microtubule-stabilizing chemotherapy drug paclitaxel (PTX) causes dose-limiting chemotherapy-induced peripheral neuropathy (CIPN), which is often accompanied by pain. Among the multifaceted effects of PTX is an increased expression of sodium channel Nav1.7 in rat and human sensory neurons, enhancing their excitability. However, the mechanisms underlying this increased Nav1.7 expression have not been explored, and the effects of PTX treatment on the dynamics of trafficking and localization of Nav1.7 channels in sensory axons have not been possible to investigate to date. In this study we used a recently developed live imaging approach that allows visualization of Nav1.7 surface channels and long-distance axonal vesicular transport in sensory neurons to fill this basic knowledge gap. We demonstrate concentration and time-dependent effects of PTX on vesicular trafficking and membrane localization of Nav1.7 in real-time in sensory axons. Low concentrations of PTX increase surface channel expression and vesicular flux (number of vesicles per axon). By contrast, treatment with a higher concentration of PTX decreases vesicular flux. Interestingly, vesicular velocity is increased for both concentrations of PTX. Treatment with PTX increased levels of endogenous Nav1.7 mRNA and current density in dorsal root ganglion neurons. However, the current produced by transfection of dorsal root ganglion neurons with Halo-tag Nav1.7 was not increased after exposure to PTX. Taken together, this suggests that the increased trafficking and surface localization of Halo-Nav1.7 that we observed by live imaging in transfected dorsal root ganglion neurons after treatment with PTX might be independent of an increased pool of Nav1.7 channels. After exposure to inflammatory mediators to mimic the inflammatory condition seen during chemotherapy, both Nav1.7 surface levels and vesicular transport are increased for both low and high concentrations of PTX. Overall, our results show that PTX treatment increases levels of functional endogenous Nav1.7 channels in dorsal root ganglion neurons and enhances trafficking and surface distribution of Nav1.7 in sensory axons, with outcomes that depend on the presence of an inflammatory milieu, providing a mechanistic explanation for increased excitability of primary afferents and pain in CIPN.
Collapse
Affiliation(s)
- Elizabeth J Akin
- Department of Neurology, Yale University, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Matthew Alsaloum
- Department of Neurology, Yale University, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA.,MD/PhD Program, Yale University, New Haven, CT 06510, USA
| | - Grant P Higerd
- Department of Neurology, Yale University, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA.,MD/PhD Program, Yale University, New Haven, CT 06510, USA
| | - Shujun Liu
- Department of Neurology, Yale University, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Peng Zhao
- Department of Neurology, Yale University, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Fadia B Dib-Hajj
- Department of Neurology, Yale University, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale University, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
33
|
Cilostazol is an effective causal therapy for preventing paclitaxel-induced peripheral neuropathy by suppression of Schwann cell dedifferentiation. Neuropharmacology 2021; 188:108514. [PMID: 33684416 DOI: 10.1016/j.neuropharm.2021.108514] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 12/28/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) can lead to discontinuation of chemotherapy and is consequently a serious impediment to effective cancer treatment. Due to our limited understanding of mechanisms underlying the pathogenesis of CIPN, no causal therapy has been approved for relief of this condition. We previously demonstrated that taxanes (paclitaxel and docetaxel) induce Schwann cell dedifferentiation, characterized by increased expression of p75 and galectin-3, ultimately leading to demyelination. These changes appear to be responsible for CIPN pathogenesis. This study was designed to identify a novel candidate therapeutic for CIPN with the ability to suppress paclitaxel-induced Schwann cell dedifferentiation. Given that elevation of cyclic adenosine monophosphate (cAMP) signaling participates in Schwann cell differentiation, we performed immunocytochemical screening of phosphodiesterase (PDE) inhibitors. We found that the PDE3 inhibitor cilostazol strongly promoted differentiation of primary cultures of rat Schwann cells via a mechanism involving cAMP/exchange protein directly activated by cAMP (Epac) signaling. Co-treatment with cilostazol prevented paclitaxel-induced dedifferentiation of Schwann cell cultures and demyelination in a mixed culture of Schwann cells and dorsal root ganglia neurons. Notably, continuous oral administration of cilostazol suppressed Schwann cell dedifferentiation within the sciatic nerve and the development of mechanical hypersensitivity in a mouse model of paclitaxel-related CIPN. Importantly, cilostazol potentiated, rather than inhibited, the anti-cancer effect of paclitaxel on the human breast cancer cell line MDA-MB-231. These findings highlight the potential utility of cilostazol as a causal therapeutic that avoids the development of paclitaxel-related CIPN without compromising anti-cancer properties.
Collapse
|
34
|
Koyanagi M, Imai S, Matsumoto M, Iguma Y, Kawaguchi-Sakita N, Kotake T, Iwamitsu Y, Ntogwa M, Hiraiwa R, Nagayasu K, Saigo M, Ogihara T, Yonezawa A, Omura T, Nakagawa S, Nakagawa T, Matsubara K. Pronociceptive Roles of Schwann Cell-Derived Galectin-3 in Taxane-Induced Peripheral Neuropathy. Cancer Res 2021; 81:2207-2219. [PMID: 33608316 DOI: 10.1158/0008-5472.can-20-2799] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/18/2020] [Accepted: 01/14/2021] [Indexed: 11/16/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a severe dose-limiting side effect of taxanes such as paclitaxel and docetaxel. Despite the high medical needs, insufficient understanding of the complex mechanism underlying CIPN pathogenesis precludes any endorsed causal therapy to prevent or relieve CIPN. In this study, we report that elevation of plasma galectin-3 level is a pathologic change common to both patients with taxane-treated breast cancer with CIPN and a mouse model of taxane-related CIPN. Following multiple intraperitoneal injections of paclitaxel in mice, galectin-3 levels were elevated in Schwann cells within the sciatic nerve but not in other peripheral organs or cells expressing galectin-3. Consistent with this, paclitaxel treatment of primary cultures of rat Schwann cells induced upregulation and secretion of galectin-3. In vitro migration assays revealed that recombinant galectin-3 induced a chemotactic response of the murine macrophage cell line RAW 264.7. In addition, perineural administration of galectin-3 to the sciatic nerve of naive mice mimicked paclitaxel-induced macrophage infiltration and mechanical hypersensitivity. By contrast, chemical depletion of macrophages by clodronate liposomes suppressed paclitaxel-induced mechanical hypersensitivity despite the higher level of plasma galectin-3. Deficiency (Galectin-3 -/- mice) or pharmacologic inhibition of galectin-3 inhibited paclitaxel-induced macrophage infiltration and mechanical hypersensitivity. In conclusion, we propose that Schwann cell-derived galectin-3 plays a pronociceptive role via macrophage infiltration in the pathogenesis of taxane-induced peripheral neuropathy. Therapies targeting this phenomenon, which is common to patients with CIPN and mouse models, represent a novel approach to suppress taxane-related CIPN. SIGNIFICANCE: These findings demonstrate that the elevation of plasma galectin-3 is a CIPN-related pathologic change common to humans and mice, and that targeting galectin-3 is a therapeutic option to delay CIPN progression.
Collapse
Affiliation(s)
- Madoka Koyanagi
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Satoshi Imai
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan.
| | - Mayuna Matsumoto
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Yoko Iguma
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Nobuko Kawaguchi-Sakita
- Department of Breast Surgery, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan.,Department of Clinical Oncology, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Takeshi Kotake
- Department of Breast Surgery, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan.,Department of Clinical Oncology, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Yuki Iwamitsu
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Mpumelelo Ntogwa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Ren Hiraiwa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mamiko Saigo
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Takashi Ogihara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Tomohiro Omura
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Shunsaku Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Kazuo Matsubara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
35
|
Kim HK, Bae J, Lee SH, Hwang SH, Kim MS, Kim MJ, Jun S, Cervantes CL, Jung YS, Back S, Lee H, Lee SE, Dougherty PM, Lee SW, Park JI, Abdi S. Blockers of Wnt3a, Wnt10a, or β-Catenin Prevent Chemotherapy-Induced Neuropathic Pain In Vivo. Neurotherapeutics 2021; 18:601-614. [PMID: 33128175 PMCID: PMC8116404 DOI: 10.1007/s13311-020-00956-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 12/20/2022] Open
Abstract
Although chemotherapy is a key cancer treatment, many chemotherapeutic drugs produce chronic neuropathic pain, called chemotherapy-induced neuropathic pain (CINP), which is a dose-limiting adverse effect. To date, there is no medicine that prevents CINP in cancer patients and survivors. We determined whether blockers of the canonical Wnt signaling pathway prevent CINP. Neuropathic pain was induced by intraperitoneal injection of paclitaxel (PAC) on four alternate days in male Sprague-Dawley rats or male Axin2-LacZ knock-in mice. XAV-939, LGK-974, and iCRT14, Wnt/β-catenin blockers, were administered intraperitoneally as a single or multiple doses before or after injury. Mechanical allodynia, phosphoproteome profiling, Wnt ligands, and inflammatory mediators were measured by von Frey filament, phosphoproteomics, reverse transcription-polymerase chain reaction, and Western blot analysis. Localization of β-catenin was determined by immunohistochemical analysis in the dorsal root ganglia (DRGs) in rats and human. Our phosphoproteome profiling of CINP rats revealed significant phosphorylation changes in Wnt signaling components. Importantly, repeated systemic injections of XAV-939 or LGK-974 prevented the development of CINP in rats. In addition, XAV-939, LGK-974, and iCRT14 ameliorated CINP. PAC increased Wnt3a and Wnt10a, activated β-catenin in DRG, and increased monocyte chemoattractant protein-1 and interleukin-1β in DRG. PAC also upregulated rAxin2 in mice. Furthermore, β-catenin was expressed in neurons, including calcitonin gene-related protein-expressing neurons and satellite cells in rat and human DRG. In conclusion, chemotherapy increases Wnt3a, Wnt10a, and β-catenin in DRG and their pharmacological blockers prevent and ameliorate CINP, suggesting a target for the prevention and treatment of CINP.
Collapse
Affiliation(s)
- Hee Kee Kim
- Department of Pain Medicine, Division of Anesthesiology, Critical Care & Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Jingi Bae
- Department of Chemistry, Center for Proteogenome Research, Korea University, Seoul, 02841, Republic of Korea
| | - Sung Ho Lee
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Seon-Hee Hwang
- Department of Pain Medicine, Division of Anesthesiology, Critical Care & Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Min-Sik Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Moon Jong Kim
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sohee Jun
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chris L Cervantes
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Youn-Sang Jung
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Seunghoon Back
- Department of Chemistry, Center for Proteogenome Research, Korea University, Seoul, 02841, Republic of Korea
| | - Hangyeore Lee
- Department of Chemistry, Center for Proteogenome Research, Korea University, Seoul, 02841, Republic of Korea
| | - Seung-Eun Lee
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Patrick M Dougherty
- Department of Pain Medicine, Division of Anesthesiology, Critical Care & Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sang-Won Lee
- Department of Chemistry, Center for Proteogenome Research, Korea University, Seoul, 02841, Republic of Korea
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Salahadin Abdi
- Department of Pain Medicine, Division of Anesthesiology, Critical Care & Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
36
|
Selective activation of metabotropic glutamate receptor 7 blocks paclitaxel-induced acute neuropathic pain and suppresses spinal glial reactivity in rats. Psychopharmacology (Berl) 2021; 238:107-119. [PMID: 33089875 DOI: 10.1007/s00213-020-05662-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 09/10/2020] [Indexed: 12/30/2022]
Abstract
RATIONALE Paclitaxel-induced acute pain syndrome (P-APS), characterized by deep muscle aches and arthralgia, occurs in more than 70% of patients who receive paclitaxel. P-APS can be debilitating for patients and lead to reductions and discontinuation of potentially curable therapy. Despite being relatively common in clinical practice, no clear treatment exists for P-APS and the underlying mechanisms remain poorly defined. Regulation of glutamatergic transmission by metabotropic glutamate receptors (mGluRs) has received growing attention with respect to its role in neuropathic pain. To our knowledge, no study has been conducted on alterations and functions of group III mGluR7 signaling in P-APS. OBJECTIVES In the present study, we determined whether a single administration of paclitaxel induces glutamatergic alterations and whether mGluR7 activation blocks paclitaxel-induced neuropathic pain by suppressing glial reactivity in the spinal cord. RESULTS A single paclitaxel injection dose-dependently induced acute mechanical and thermal hypersensitivity, and was associated with increased glutamate level accompanied by reduction in mGluR7 expression in the spinal cord. Selective activation of mGluR7 by its positive allosteric modulator, AMN082, blocked the development of paclitaxel-induced acute mechanical and thermal hypersensitivity, without affecting the normal pain behavior of control rats. Moreover, activation of mGluR7 by AMN082 inhibited glial reactivity and decreased pro-inflammatory cytokine release during P-APS. Abortion of spinal glial reaction to paclitaxel alleviated paclitaxel-induced acute mechanical and thermal hypersensitivity. CONCLUSIONS There results support the hypothesis that spinal mGluR7 signaling plays an important role in P-APS; Selective activation of mGluR7 by its positive allosteric modulator, AMN082, blocks P-APS in part by reducing spinal glial reactivity and neuroinflammatory process.
Collapse
|
37
|
Jiménez-López J, Bravo-Caparrós I, Cabeza L, Nieto FR, Ortiz R, Perazzoli G, Fernández-Segura E, Cañizares FJ, Baeyens JM, Melguizo C, Prados J. Paclitaxel antitumor effect improvement in lung cancer and prevention of the painful neuropathy using large pegylated cationic liposomes. Biomed Pharmacother 2021; 133:111059. [PMID: 33378963 DOI: 10.1016/j.biopha.2020.111059] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Paclitaxel (PTX), a drug widely used in lung cancer, has serious limitations including the development of peripheral neurotoxicity, which may lead to treatment discontinuation and therapy failure. The transport of PTX in large cationic liposomes could avoid this undesirable effect, improving the patient's prognosis. PTX was encapsulated in cationic liposomes with two different sizes, MLV (180-200 nm) and SUV (80-100 nm). In both cases, excellent biocompatibility and improved internalization and antitumor effect of PTX were observed in human and mice lung cancer cells in culture, multicellular spheroids and cancer stem cells (CSCs). In addition, both MLV and SUV with a polyethylene glycol (PEG) shell, induced a greater tumor volume reduction than PTX (56.4 % and 57.1 % vs. 36.7 %, respectively) in mice. Interestingly, MLV-PEG-PTX did not induce either mechanical or heat hypersensitivity whereas SUV-PEG-PTX produced a similar response to free PTX. Analysis of PTX distribution showed a very low concentration of the drug in the dorsal root ganglia (DRG) with MLV-PEG-PTX, but not with SUV-PEG-PTX or free PTX. These results support the hypothesis that PTX induces peripheral neuropathy by penetrating the endothelial fenestrations of the DRG (80-100 nm, measured in mice). In conclusion, our larger liposomes (MLV-PEG-PTX) not only showed biocompatibility, antitumor activity against CSCs, and in vitro and in vivo antitumor effect that improved PTX free activity, but also protected from PTX-induced painful peripheral neuropathy. These advantages could be used as a new strategy of lung cancer chemotherapy to increase the PTX activity and reduce its side effects.
Collapse
Affiliation(s)
- Julia Jiménez-López
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), 18014, Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18012, Granada, Spain
| | - Inmaculada Bravo-Caparrós
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18012, Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), 18014, Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18012, Granada, Spain
| | - Francisco R Nieto
- Department of Pharmacology, Institute of Neuroscience, Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain
| | - Raúl Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), 18014, Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18012, Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), 18014, Granada, Spain
| | - Eduardo Fernández-Segura
- Department of Histology, Institute of Neuroscience, Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain
| | - Francisco J Cañizares
- Department of Histology, Institute of Neuroscience, Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain
| | - José M Baeyens
- Department of Pharmacology, Institute of Neuroscience, Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), 18014, Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18012, Granada, Spain.
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain; Instituto Biosanitario de Granada (ibs. GRANADA), 18014, Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18012, Granada, Spain
| |
Collapse
|
38
|
Renthal W, Tochitsky I, Yang L, Cheng YC, Li E, Kawaguchi R, Geschwind DH, Woolf CJ. Transcriptional Reprogramming of Distinct Peripheral Sensory Neuron Subtypes after Axonal Injury. Neuron 2020; 108:128-144.e9. [PMID: 32810432 PMCID: PMC7590250 DOI: 10.1016/j.neuron.2020.07.026] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/27/2020] [Accepted: 07/22/2020] [Indexed: 12/27/2022]
Abstract
Primary somatosensory neurons are specialized to transmit specific types of sensory information through differences in cell size, myelination, and the expression of distinct receptors and ion channels, which together define their transcriptional and functional identity. By profiling sensory ganglia at single-cell resolution, we find that all somatosensory neuronal subtypes undergo a similar transcriptional response to peripheral nerve injury that both promotes axonal regeneration and suppresses cell identity. This transcriptional reprogramming, which is not observed in non-neuronal cells, resolves over a similar time course as target reinnervation and is associated with the restoration of original cell identity. Injury-induced transcriptional reprogramming requires ATF3, a transcription factor that is induced rapidly after injury and necessary for axonal regeneration and functional recovery. Our findings suggest that transcription factors induced early after peripheral nerve injury confer the cellular plasticity required for sensory neurons to transform into a regenerative state.
Collapse
Affiliation(s)
- William Renthal
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA.
| | - Ivan Tochitsky
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Cir., Boston, MA 02115, USA
| | - Lite Yang
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Cir., Boston, MA 02115, USA
| | - Yung-Chih Cheng
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Cir., Boston, MA 02115, USA
| | - Emmy Li
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Cir., Boston, MA 02115, USA.
| |
Collapse
|
39
|
Xie AX, Madayag A, Minton SK, McCarthy KD, Malykhina AP. Sensory satellite glial Gq-GPCR activation alleviates inflammatory pain via peripheral adenosine 1 receptor activation. Sci Rep 2020; 10:14181. [PMID: 32843670 PMCID: PMC7447794 DOI: 10.1038/s41598-020-71073-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Glial fibrillary acidic protein expressing (GFAP+) glia modulate nociceptive neuronal activity in both the peripheral nervous system (PNS) and the central nervous system (CNS). Resident GFAP+ glia in dorsal root ganglia (DRG) known as satellite glial cells (SGCs) potentiate neuronal activity by releasing pro-inflammatory cytokines and neuroactive compounds. In this study, we tested the hypothesis that SGC Gq-coupled receptor (Gq-GPCR) signaling modulates pain sensitivity in vivo using Gfap-hM3Dq mice. Complete Freund's adjuvant (CFA) was used to induce inflammatory pain, and mechanical sensitivity and thermal sensitivity were used to assess the neuromodulatory effect of glial Gq-GPCR activation in awake mice. Pharmacogenetic activation of Gq-GPCR signaling in sensory SGCs decreased heat-induced nociceptive responses and reversed inflammation-induced mechanical allodynia via peripheral adenosine A1 receptor activation. These data reveal a previously unexplored role of sensory SGCs in decreasing afferent excitability. The identified molecular mechanism underlying the analgesic role of SGCs offers new approaches for reversing peripheral nociceptive sensitization.
Collapse
MESH Headings
- Animals
- Benzilates/pharmacology
- Clozapine/analogs & derivatives
- Clozapine/pharmacology
- Freund's Adjuvant/toxicity
- GTP-Binding Protein alpha Subunits, Gq-G11/physiology
- Genes, Synthetic
- Hot Temperature
- Hyperalgesia/physiopathology
- Hyperalgesia/prevention & control
- Inflammation/chemically induced
- Inflammation/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscarinic Agonists/pharmacology
- Neuroglia/enzymology
- Neuroglia/physiology
- Nociception/physiology
- Nortropanes/pharmacology
- Promoter Regions, Genetic
- Purinergic P1 Receptor Agonists/pharmacology
- Purinergic P1 Receptor Antagonists/pharmacology
- Receptor, Adenosine A1/drug effects
- Receptor, Adenosine A1/physiology
- Receptor, Muscarinic M3/drug effects
- Receptor, Muscarinic M3/genetics
- Receptor, Muscarinic M3/physiology
- Receptors, G-Protein-Coupled
- Recombinant Fusion Proteins/drug effects
- Recombinant Fusion Proteins/metabolism
- Theophylline/analogs & derivatives
- Theophylline/pharmacology
- Touch
- Xanthines/pharmacology
Collapse
Affiliation(s)
- Alison Xiaoqiao Xie
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, USA.
- Division of Urology, Department of Surgery, University of Colorado Denver (UCD), Anschutz Medical Campus (AMC), 12700E 19th Ave., Room 6440D, Mail stop C317, Aurora, CO, 80045, USA.
- Department of Surgery, UCD-AMC, Aurora, CO, USA.
| | - Aric Madayag
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, USA
- NeuroCycle Therapeutics, Inc., 3829 N Cramer St., Shorewood, WI, 53211, USA
| | - Suzanne K Minton
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, USA
- Certara, 5511 Capital Center Drive, Ste. 204, Raleigh, NC, 27606, USA
| | - Ken D McCarthy
- Professor Emeritus in the Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, 120 Mason Farm Road, 4010 Genetic Medicine Bldg, Campus Box 7365, Chapel Hill, NC, 27599-7365, USA
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Colorado Denver (UCD), Anschutz Medical Campus (AMC), 12700E 19th Ave., Room 6440D, Mail stop C317, Aurora, CO, 80045, USA
- Department of Physiology and Biophysics, University of Colorado School of Medicine, 12700 East 19th Ave., Rm 6001, Mail Stop C317, Aurora, CO, 80045, USA
| |
Collapse
|
40
|
Kim HK, Lee SY, Koike N, Kim E, Wirianto M, Burish MJ, Yagita K, Lee HK, Chen Z, Chung JM, Abdi S, Yoo SH. Circadian regulation of chemotherapy-induced peripheral neuropathic pain and the underlying transcriptomic landscape. Sci Rep 2020; 10:13844. [PMID: 32796949 PMCID: PMC7427990 DOI: 10.1038/s41598-020-70757-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Growing evidence demonstrates circadian rhythms of pain hypersensitivity in various chronic disorders. In chemotherapy-induced peripheral neuropathy (CIPN), agents such as paclitaxel are known to elicit chronic neuropathic pain in cancer patients and seriously compromise their quality of life. Here, we report that the mechanical threshold for allodynia in paclitaxel-treated rats exhibited a robust circadian oscillation, reaching the nadir during the daytime (inactive phase). Using Per2::LucSV circadian reporter mice expressing a PER2::LUC fusion protein, we isolated dorsal root ganglia (DRG), the primary sensory cell body for peripheral nerve injury generated hypersensitivity, and monitored ex vivo reporter bioluminescence. We observed strong circadian reporter rhythms in DRG neurons which are highly entrainable by external cues. Paclitaxel treatment significantly lengthened DRG circadian periods, with little effects on the amplitude of oscillation. We further observed the core protein BMAL1 and PER2 in DRG neurons and satellite cells. Using DRG and dorsal horn (DH; another key structure for CIPN pain response) tissues from vehicle and paclitaxel treated rats, we performed RNA-sequencing and identified diurnal expression of core clock genes as well as clock-controlled genes in both sites. Interestingly, 20.1% and 30.4% of diurnal differentially expressed genes (DEGs) overlapped with paclitaxel-induced DEGs in the DRG and the DH respectively. In contrast, paclitaxel-induced DEGs displayed only a modest overlap between daytime and nighttime (Zeitgeber Time 8 and 20). Furthermore, paclitaxel treatment induced de novo diurnal DEGs, suggesting reciprocal interaction of circadian rhythms and chemotherapy. Our study therefore demonstrates a circadian oscillation of CIPN and its underlying transcriptomic landscape.
Collapse
Affiliation(s)
- Hee Kee Kim
- Division of Anesthesiology, Critical Care and Pain Medicine, Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sun-Yeul Lee
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center At Houston, 6431 Fannin St., Houston, TX, 77030, USA
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, South Korea
| | - Nobuya Koike
- Department of Physiology and Systems Bioscience, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center At Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Marvin Wirianto
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center At Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Mark J Burish
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, 6400 Fannin St., Houston, TX, 77030, USA
| | - Kazuhiro Yagita
- Department of Physiology and Systems Bioscience, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hyun Kyoung Lee
- Department of Pediatrics, Baylor College of Medicine, Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center At Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Jin Mo Chung
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Salahadin Abdi
- Division of Anesthesiology, Critical Care and Pain Medicine, Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center At Houston, 6431 Fannin St., Houston, TX, 77030, USA.
| |
Collapse
|
41
|
Preventive hypothermia as a neuroprotective strategy for paclitaxel-induced peripheral neuropathy. Pain 2020; 160:1505-1521. [PMID: 30839425 DOI: 10.1097/j.pain.0000000000001547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a severe adverse effect that occurs secondary to anticancer treatments and has no known preventive or therapeutic strategy. Therapeutic hypothermia has been shown to be effective in protecting against central and peripheral nervous system injuries. However, the effects of therapeutic hypothermia on CIPN have rarely been explored. We induced lower back hypothermia (LBH) in an established paclitaxel-induced CIPN rat model and found that the paclitaxel-induced impairments observed in behavioral, electrophysiological, and histological impairments were inhibited by LBH when applied at an optimal setting of 24°C to the sciatic nerve and initiated 90 minutes before paclitaxel infusion. Lower back hypothermia also inhibited the paclitaxel-induced activation of astroglia and microglia in the spinal cord and macrophage infiltration into and neuronal injury in the dorsal root ganglia and sciatic nerves. Furthermore, LBH decreased the local blood flow and local tissue concentrations of paclitaxel. Finally, in NOD/SCID mice inoculated with cancer cells, the antiproliferative effect of paclitaxel was not affected by the distal application of LBH. In conclusion, our findings indicate that early exposure to regional hypothermia alleviates paclitaxel-induced peripheral neuropathy. Therapeutic hypothermia may therefore represent an economical and nonpharmaceutical preventive strategy for CIPN in patients with localized solid tumors.
Collapse
|
42
|
Tanabe Y, Shiraishi S, Hashimoto K, Ikeda K, Nishizawa D, Hasegawa J, Shimomura A, Ozaki Y, Tamura N, Yunokawa M, Yonemori K, Takano T, Kawabata H, Tamura K, Fujiwara Y, Shimizu C. Taxane-induced sensory peripheral neuropathy is associated with an SCN9A single nucleotide polymorphism in Japanese patients. BMC Cancer 2020; 20:325. [PMID: 32295642 PMCID: PMC7161266 DOI: 10.1186/s12885-020-06834-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/06/2020] [Indexed: 12/26/2022] Open
Abstract
Background Sodium channels located in the dorsal root ganglion, particularly Nav1.7 and Nav1.8, encoded by SCN9A and SCN10A, respectively, act as molecular gatekeepers for pain detection. Our aim was to determine the association between TIPN and SCN9A and SCN10A polymorphisms. Methods Three single nucleotide polymorphisms (SNPs) in SCN9A and two in SCN10A were investigated using whole-genome genotyping data from 186 Japanese breast or ovarian cancer patients classified into two groups as follows: cases that developed taxane-induced grade 2–3 neuropathy (N = 108) and controls (N = 78) with grade 0–1 neuropathy. Multiple logistic regression analyses were conducted to evaluate associations between TIPN and SNP genotypes. Results SCN9A-rs13017637 was a significant predictor of grade 2 or higher TIPN (odds ratio (OR) = 3.463; P = 0.0050) after correction for multiple comparisons, and precision was improved when only breast cancer patients were included (OR 5.053, P = 0.0029). Moreover, rs13017637 was a significant predictor of grade 2 or higher TIPN 1 year after treatment (OR 3.906, P = 0.037), indicating its contribution to TIPN duration. Conclusion SCN9A rs13017637 was associated with the severity and duration of TIPN. These findings are highly exploratory and require replication and validation prior to any consideration of clinical use.
Collapse
Affiliation(s)
- Yuko Tanabe
- Department of Breast and Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan. .,Department of Medical Oncology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan.
| | - Seiji Shiraishi
- Department of Anesthesiology, Kohnodai Hospital, National Center for Global Health and Medicine, 1-7-1, Kohnodai, Ichikawa-shi, Chiba, 272-8516, Japan
| | - Kenji Hashimoto
- Department of Breast and Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Akihiko Shimomura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Medical Oncology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Yukinori Ozaki
- Department of Medical Oncology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Nobuko Tamura
- Department of Breast and Endocrine Surgery, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Mayu Yunokawa
- Department of Breast and Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kan Yonemori
- Department of Breast and Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Toshimi Takano
- Department of Medical Oncology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Hidetaka Kawabata
- Department of Breast and Endocrine Surgery, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Kenji Tamura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yasuhiro Fujiwara
- Department of Breast and Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Chikako Shimizu
- Department of Breast Medical Oncology, Comprehensive Cancer Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| |
Collapse
|
43
|
Lee JY, Sim WS, Cho NR, Kim BW, Moon JY, Park HJ. The Antiallodynic Effect of Nefopam on Vincristine-Induced Neuropathy in Mice. J Pain Res 2020; 13:323-329. [PMID: 32104054 PMCID: PMC7012248 DOI: 10.2147/jpr.s224478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
Background Chemotherapy-induced neuropathic pain is a disabling condition following cancer treatment. Vincristine has more neurotoxicity than other vinca alkaloid agents. This study evaluated the correlation of different doses of nefopam with antiallodynic effects in a mouse vincristine neuropathy model. Methods A peripheral neuropathic mouse model was made by intraperitoneal injection of vincristine (0.1 mg/kg/day; 5-day-on, 2-day-off schedule over 12 days). After the development of allodynia, mice were injected intraperitoneally with 0.9% normal saline (NS group) or various doses (10, 30, 60 mg/kg) of nefopam (Nefopam group). We examined allodynia using von Frey hairs pre-administration and at 30, 60, 90, 120, 180, 240 mins, and 24 hrs after drug administration. We also measured the neurokinin-1 receptor concentrations in the spinal cord to confirm the antiallodynic effect of nefopam after drug administration. Results The peripheral neuropathic mouse model showed prominent mechanical allodynia. Intraperitoneal nefopam produced a clear dose-dependent increase in paw withdrawal threshold compared with pre-administration values and versus the NS group. The concentration of neurokinin-1 receptor was significantly decreased in the Nefopam group (P<0.05). Conclusion Intraperitoneally administered nefopam yielded a dose-dependent attenuation of mechanical allodynia and decreased neurokinin-1 receptor concentration, suggesting that the neurokinin-1 receptor is involved in the antiallodynic effects of nefopam in vincristine neuropathy.
Collapse
Affiliation(s)
- Jin Young Lee
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Korea
| | - Woo Seog Sim
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Korea
| | - Noo Ree Cho
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Seoul, Korea
| | - Bae Wook Kim
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Seoul, Korea
| | - Jeong Yeon Moon
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Seoul, Korea
| | - Hue Jung Park
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Seoul, Korea
| |
Collapse
|
44
|
Abstract
Toxic peripheral neuropathies are an important form of acquired polyneuropathy produced by a variety of xenobiotics and different exposure scenarios. Delineating the mechanisms of neurotoxicants and determining the degenerative biological pathways triggered by peripheral neurotoxicants will facilitate the development of sensitive and specific biochemical-based methods for identifying neurotoxicants, designing therapeutic interventions, and developing structure-activity relationships for predicting potential neurotoxicants. This review presents an overview of the general concepts of toxic peripheral neuropathies with the goal of providing insight into why certain agents target the peripheral nervous system and produce their associated lesions. Experimental data and the main hypotheses for the mechanisms of selected agents that produce neuronopathies, axonopathies, or myelinopathies including covalent or noncovalent modifications, compromised energy or protein biosynthesis, and oxidative injury and disruption of ionic gradients across membranes are presented. The relevance of signaling between the main components of peripheral nerve, that is, glia, neuronal perikaryon, and axon, as a target for neurotoxicants and the contribution of active programmed degenerative pathways to the lesions observed in toxic peripheral neuropathies is also discussed.
Collapse
|
45
|
Eldridge S, Guo L, Hamre J. A Comparative Review of Chemotherapy-Induced Peripheral Neuropathy in In Vivo and In Vitro Models. Toxicol Pathol 2020; 48:190-201. [PMID: 31331249 PMCID: PMC6917839 DOI: 10.1177/0192623319861937] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is an adverse effect caused by several classes of widely used anticancer therapeutics. Chemotherapy-induced peripheral neuropathy frequently leads to dose reduction or discontinuation of chemotherapy regimens, and CIPN symptoms can persist long after completion of chemotherapy and severely diminish the quality of life of patients. Differences in the clinical presentation of CIPN by widely diverse classifications of anticancer agents have spawned multiple mechanistic hypotheses that seek to explain the pathogenesis of CIPN. Despite its clinical relevance, common occurrence, and extensive investigation, the pathophysiology of CIPN remains unclear. Furthermore, there is no unequivocal gold standard for the prevention and treatment of CIPN. Herein, we review in vivo and in vitro models of CIPN with a focus on histopathological changes and morphological features aimed at understanding the pathophysiology of CIPN and identify gaps requiring deeper exploration. An elucidation of the underlying mechanisms of CIPN is imperative to identify potential targets and approaches for prevention and treatment.
Collapse
Affiliation(s)
- Sandy Eldridge
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Liang Guo
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - John Hamre
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
46
|
Costa‐Pereira JT, Serrão P, Martins I, Tavares I. Serotoninergic pain modulation from the rostral ventromedial medulla (RVM) in chemotherapy‐induced neuropathy: The role of spinal 5‐HT3 receptors. Eur J Neurosci 2019; 51:1756-1769. [DOI: 10.1111/ejn.14614] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/03/2019] [Accepted: 10/30/2019] [Indexed: 01/31/2023]
Affiliation(s)
- José Tiago Costa‐Pereira
- Department of Biomedicine Unit of Experimental Biology Faculty of Medicine University of Porto Porto Portugal
- IBMC‐Institute of Molecular and Cell Biology University of Porto Porto Portugal
- I3S‐ Institute of Investigation and Innovation in Health University of Porto Porto Portugal
| | - Paula Serrão
- Department of Biomedicine Unit of Pharmacology and Therapeutics Faculty of Medicine University of Porto Porto Portugal
- MedInUP ‐ Center for Drug Discovery and Innovative Medicines University of Porto Porto Portugal
| | - Isabel Martins
- Department of Biomedicine Unit of Experimental Biology Faculty of Medicine University of Porto Porto Portugal
- IBMC‐Institute of Molecular and Cell Biology University of Porto Porto Portugal
- I3S‐ Institute of Investigation and Innovation in Health University of Porto Porto Portugal
| | - Isaura Tavares
- Department of Biomedicine Unit of Experimental Biology Faculty of Medicine University of Porto Porto Portugal
- IBMC‐Institute of Molecular and Cell Biology University of Porto Porto Portugal
- I3S‐ Institute of Investigation and Innovation in Health University of Porto Porto Portugal
| |
Collapse
|
47
|
Ebbinghaus M, Müller S, Segond von Banchet G, Eitner A, Wank I, Hess A, Hilger I, Kamradt T, Schaible HG. Contribution of Inflammation and Bone Destruction to Pain in Arthritis: A Study in Murine Glucose-6-Phosphate Isomerase-Induced Arthritis. Arthritis Rheumatol 2019; 71:2016-2026. [PMID: 31332965 DOI: 10.1002/art.41051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 07/16/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Arthritis is often characterized by inflammation and bone destruction. This study was undertaken to investigate the contribution of inflammation and bone destruction to pain. METHODS Inflammation, bone resorption, pain-related behaviors, and molecular markers (activating transcription factor 3 [ATF-3], p-CREB, and transient receptor potential vanilloid channel 1) in sensory neurons were measured in murine glucose-6-phosphate isomerase (G6PI)-induced arthritis, a model of rheumatoid arthritis. Depletion of Treg cells before immunization changed self-limiting arthritis into nonremitting arthritis with pronounced bone destruction. Zoledronic acid (ZA) was administered to reduce bone resorption. RESULTS Compared to nondepleted mice, Treg cell-depleted mice exhibited arthritis with more severe bone destruction and higher guarding scores (P < 0.05; n = 10 mice per group) as well as more persistent thermal hyperalgesia (P < 0.05), but displayed similar mechanical hyperalgesia at the hindpaws (n = 18-26 mice per group). These pain-related behaviors, as well as an up-regulation of the neuronal injury marker ATF-3 in sensory neurons (studied in 39 mice), appeared before the clinical score (inflammation) became positive and persisted in Treg cell-depleted and nondepleted mice. In the late stage of arthritis, Treg cell-depleted mice treated with ZA showed less bone resorption (<50%; P < 0.01) and less thermal hyperalgesia (P < 0.01) than Treg cell-depleted mice without ZA treatment (n = 15 mice per group), but ZA treatment did not reduce the clinical score and local mechanical hyperalgesia. CONCLUSION Pain-related behaviors precede and outlast self-limiting arthritis. In nonremitting arthritis with enhanced bone destruction, mainly local thermal, but not local mechanical, hyperalgesia was aggravated. The up-regulation of ATF-3 indicates an early and persisting affection of sensory neurons by G6PI-induced arthritis.
Collapse
Affiliation(s)
- Matthias Ebbinghaus
- Jenna University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Sylvia Müller
- Jenna University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | | | - Annett Eitner
- Jenna University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Isabel Wank
- Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Hess
- Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ingrid Hilger
- Jenna University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas Kamradt
- Jenna University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Hans-Georg Schaible
- Jenna University Hospital, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
48
|
Chen G, Zhang YQ, Qadri YJ, Serhan CN, Ji RR. Microglia in Pain: Detrimental and Protective Roles in Pathogenesis and Resolution of Pain. Neuron 2019; 100:1292-1311. [PMID: 30571942 DOI: 10.1016/j.neuron.2018.11.009] [Citation(s) in RCA: 506] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022]
Abstract
The previous decade has seen a rapid increase in microglial studies on pain, with a unique focus on microgliosis in the spinal cord after nerve injury and neuropathic pain. Numerous signaling molecules are altered in microglia and contribute to the pathogenesis of pain. Here, we discuss how microglial signaling regulates spinal cord synaptic plasticity in acute and chronic pain conditions with different degrees and variations of microgliosis. We highlight that microglial mediators such as pro- and anti-inflammatory cytokines are powerful neuromodulators that regulate synaptic transmission and pain via neuron-glial interactions. We also reveal an emerging role of microglia in the resolution of pain, in part via specialized pro-resolving mediators including resolvins, protectins, and maresins. We also discuss a possible role of microglia in chronic itch.
Collapse
Affiliation(s)
- Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Yu-Qiu Zhang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yawar J Qadri
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Hale Transformative Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
49
|
Preliminary Effectiveness of Auricular Point Acupressure on Chemotherapy-Induced Neuropathy: Part 2 Laboratory-Assessed and Objective Outcomes. Pain Manag Nurs 2019; 20:623-632. [PMID: 31204029 DOI: 10.1016/j.pmn.2019.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 03/18/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE To manage chemotherapy-induced neuropathy (CIN), this paper explores reliable and valid objectives measures to evaluate the treatment effects of auricular point acupressure (APA). DESIGN/METHOD This study was a repeated-measures one-group design. Participants received four weeks of APA to manage their CIN. The laboratory-assessed and objective outcomes included quantitative sensory testing, grip and pinch strength, and inflammatory biomarkers. Wilcoxon matched pairs signed-rank tests were conducted to determine change scores of outcomes at pre- vs. post- and pre- vs. 1-month follow-up. Spearman's rho correlation coefficient was used to examine the linear association of score changes of all objective study outcomes. RESULTS Comparing pre-and-post APA, (1) the mean score of the monofilament for all lower extremity sites tested decreased after APA, indicating sensory improvement; (2) the suprathreshold pinprick stimuli mean scores on the upper extremities increased, except the scores from the index finger and thumb; (3) the pain tolerance of thumb and trapezius areas increased; (4) decreasing IL1β (p = .05), IFNγ (p = .02), IL-2 (p = .03), IL-6 (p = .05), IL-10 (p = .05), and IP10/CXCL10 (p = .04) were observed pre-post APA. Conditional pain modulation was significantly (p< .05) associated with pain intensity (r = 0.55), tingling (r = 0.59); and IL1β concentration (r = 0.53) pre-post APA. The sustained effects of 4-week APA were observed at the 1-month follow-up. CONCLUSIONS Our study findings demonstrated the promising effectiveness of APA in the management of CIN, and these treatment effects can be assessed using reliable and valid objective measures. CLINICAL IMPLICATIONS If the efficacy of APA to manage CIN is confirmed in a larger sample, APA has the potential to be a scalable treatment for CIN because it is a reproducible, standardized, and easy-to-perform intervention.
Collapse
|
50
|
Orally active Epac inhibitor reverses mechanical allodynia and loss of intraepidermal nerve fibers in a mouse model of chemotherapy-induced peripheral neuropathy. Pain 2019; 159:884-893. [PMID: 29369966 DOI: 10.1097/j.pain.0000000000001160] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect of cancer treatment that significantly compromises quality of life of cancer patients and survivors. Identification of targets for pharmacological intervention to prevent or reverse CIPN is needed. We investigated exchange protein regulated by cAMP (Epac) as a potential target. Epacs are cAMP-binding proteins known to play a pivotal role in mechanical allodynia induced by nerve injury and inflammation. We demonstrate that global Epac1-knockout (Epac1-/-) male and female mice are protected against paclitaxel-induced mechanical allodynia. In addition, spinal cord astrocyte activation and intraepidermal nerve fiber (IENF) loss are significantly reduced in Epac1-/- mice as compared to wild-type mice. Moreover, Epac1-/- mice do not develop the paclitaxel-induced deficits in mitochondrial bioenergetics in the sciatic nerve that are a hallmark of CIPN. Notably, mice with cell-specific deletion of Epac1 in Nav1.8-positive neurons (N-Epac1-/-) also show reduced paclitaxel-induced mechanical allodynia, astrocyte activation, and IENF loss, indicating that CIPN develops downstream of Epac1 activation in nociceptors. The Epac-inhibitor ESI-09 reversed established paclitaxel-induced mechanical allodynia in wild-type mice even when dosing started 10 days after completion of paclitaxel treatment. In addition, oral administration of ESI-09 suppressed spinal cord astrocyte activation in the spinal cord and protected against IENF loss. Ex vivo, ESI-09 blocked paclitaxel-induced abnormal spontaneous discharges in dorsal root ganglion neurons. Collectively, these findings implicate Epac1 in nociceptors as a novel target for treatment of CIPN. This is clinically relevant because ESI-09 has the potential to reverse a debilitating and long-lasting side effect of cancer treatment.
Collapse
|