1
|
Sultana OF, Bandaru M, Islam MA, Reddy PH. Unraveling the complexity of human brain: Structure, function in healthy and disease states. Ageing Res Rev 2024; 100:102414. [PMID: 39002647 PMCID: PMC11384519 DOI: 10.1016/j.arr.2024.102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The human brain stands as an intricate organ, embodying a nexus of structure, function, development, and diversity. This review delves into the multifaceted landscape of the brain, spanning its anatomical intricacies, diverse functional capacities, dynamic developmental trajectories, and inherent variability across individuals. The dynamic process of brain development, from early embryonic stages to adulthood, highlights the nuanced changes that occur throughout the lifespan. The brain, a remarkably complex organ, is composed of various anatomical regions, each contributing uniquely to its overall functionality. Through an exploration of neuroanatomy, neurophysiology, and electrophysiology, this review elucidates how different brain structures interact to support a wide array of cognitive processes, sensory perception, motor control, and emotional regulation. Moreover, it addresses the impact of age, sex, and ethnic background on brain structure and function, and gender differences profoundly influence the onset, progression, and manifestation of brain disorders shaped by genetic, hormonal, environmental, and social factors. Delving into the complexities of the human brain, it investigates how variations in anatomical configuration correspond to diverse functional capacities across individuals. Furthermore, it examines the impact of neurodegenerative diseases on the structural and functional integrity of the brain. Specifically, our article explores the pathological processes underlying neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases, shedding light on the structural alterations and functional impairments that accompany these conditions. We will also explore the current research trends in neurodegenerative diseases and identify the existing gaps in the literature. Overall, this article deepens our understanding of the fundamental principles governing brain structure and function and paves the way for a deeper understanding of individual differences and tailored approaches in neuroscience and clinical practice-additionally, a comprehensive understanding of structural and functional changes that manifest in neurodegenerative diseases.
Collapse
Affiliation(s)
- Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Madhuri Bandaru
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
2
|
Santana NNM, Silva EHA, Santos SFD, Bezerra LLF, da Silva MMO, Cavalcante JS, Fiuza FP, Morais PLADG, Engelberth RC. Neuronal Stability, Volumetric Changes, and Decrease in GFAP Expression of Marmoset (Callithrix jacchus) Subcortical Visual Nuclei During Aging. J Comp Neurol 2024; 532:e25649. [PMID: 38967410 DOI: 10.1002/cne.25649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
The physiological aging process is well known for functional decline in visual abilities. Among the components of the visual system, the dorsal lateral geniculate nucleus (DLG) and superior colliculus (SC) provide a good model for aging investigations, as these structures constitute the main visual pathways for retinal inputs reaching the visual cortex. However, there are limited data available on quantitative morphological and neurochemical aspects in DLG and SC across lifespan. Here, we used optical density to determine immunoexpression of glial fibrillary acidic protein (GFAP) and design-based stereological probes to estimate the neuronal number, total volume, and layer volume of the DLG and SC in marmosets (Callithrix jacchus), ranging from 36 to 143 months of age. Our results revealed an age-related increase in total volume and layer volume of the DLG, with an overall stability in SC volume. Furthermore, a stable neuronal number was demonstrated in DLG and superficial layers of SC (SCv). A decrease in GFAP immunoexpression was observed in both visual centers. The results indicate region-specific variability in volumetric parameter, possibly attributed to structural plastic events in response to inflammation and compensatory mechanisms at the cellular and subcellular level. Additionally, the DLG and SCv seem to be less vulnerable to aging effects in terms of neuronal number. The neuropeptidergic data suggest that reduced GFAP expression may reflect morphological atrophy in the astroglial cells. This study contributes to updating the current understanding of aging effects in the visual system and stablishes a crucial foundation for future research on visual perception throughout the aging process.
Collapse
Affiliation(s)
- Nelyane N M Santana
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Eryck H A Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sâmarah F Dos Santos
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Lyzandro L F Bezerra
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Maria M O da Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Felipe P Fiuza
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Paulo L A de G Morais
- Laboratory of Experimental Neurology, College of the Health Sciences, University of the State of Rio Grande do Norte, Mossoró, Brazil
| | - Rovena Clara Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
3
|
Castro CCM, Silva SP, Rabelo LN, Queiroz JPG, Campos LD, Silva LC, Fiuza FP. Age, Education Years, and Biochemical Factors Are Associated with Selective Neuronal Changes in the Elderly Hippocampus. Cells 2022; 11:cells11244033. [PMID: 36552799 PMCID: PMC9777473 DOI: 10.3390/cells11244033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Brain aging involves regional alterations of specific cellular subpopulations in the human hippocampus: a network hub for memory consolidation. The present study investigates whether age, sex, education years, and the concentration of neuropathological and inflammatory proteins influence neuronal-type marker expression in the elderly hippocampus. We analyzed the digital images (1 µm/pixel) of postmortem hippocampal sections from 19 non-demented individuals (from 78 to 99 years). This material was obtained from the "Aging Dementia and TBI Study" open database. Brain samples were processed through in situ hybridization (ISH) for the immunodetection of VGLUT1 (glutamatergic transporter) and GAT1 (GABAergic transporter) and mRNAs and Luminex protein quantifications. After image acquisition, we delineated the dentate gyrus, CA 3/2, and CA1 hippocampal subdivisions. Then, we estimated the area fraction in which the ISH markers were expressed. Increased VGLUT1 was observed in multiple hippocampal subfields at late ages. This glutamatergic marker is positively correlated with beta-amyloid and tau proteins and negatively correlated with interleukin-7 levels. Additionally, education years are positively correlated with GAT1 in the hippocampus of elderly women. This GABAergic marker expression is associated with interferon-gamma and brain-derived neurotrophic factor levels. These associations can help to explain how hippocampal sub-regions and neurotransmitter systems undergo distinct physiological changes during normal aging.
Collapse
|
4
|
Juraska JM. Changes in sex differences in neuroanatomical structure and cognitive behavior across the life span. Learn Mem 2022; 29:340-348. [PMID: 36206396 PMCID: PMC9488018 DOI: 10.1101/lm.053499.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
Abstract
Sex differences occur in the structure and function of the rat cerebral cortex and hippocampus, which can change from the juvenile period through old age. Although the evidence is incomplete, it appears that in at least some portions of the cortex these differences develop due to the rise of ovarian hormones at puberty and are potentially not dependent on the perinatal rise in testosterone, which is essential for sexual differentiation of the hypothalamus and sexual behavior. During aging of female rats, the presence of continued ovarian hormone secretion after cessation of the estrous cycle also influences sex differences in neuroanatomical structure and cognitive behavior, resulting in nullification or reversal of sex differences seen in younger adults. Sex differences can be altered by experience in a stimulating environment during the juvenile/adolescent period, and sex differences in performance even can be affected by the parameters of a task. Thus, broad generalizations about differences such as "spatial ability" are to be avoided. It is clear that to understand how the brain produces behavior, sex and hormones have to be taken into account.
Collapse
Affiliation(s)
- Janice M Juraska
- Department of Psychology, Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, Illinois 61820, USA
| |
Collapse
|
5
|
Hernandez CM, McQuail JA, Ten Eyck TW, Wheeler AR, Labiste CC, Setlow B, Bizon J. GABA B receptors in prelimbic cortex and basolateral amygdala differentially influence intertemporal decision making and decline with age. Neuropharmacology 2022; 209:109001. [PMID: 35189132 DOI: 10.1016/j.neuropharm.2022.109001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022]
Abstract
The ability to decide adaptively between immediate vs. delayed gratification (intertemporal choice) is critical for well-being and is associated with a range of factors that influence quality of life. In contrast to young adults, many older adults show enhanced preference for delayed gratification; however, the neural mechanisms underlying this age difference in intertemporal choice are largely un-studied. Changes in signaling through GABAB receptors (GABABRs) mediate several age-associated differences in cognitive processes linked to intertemporal choice. The current study used a rat model to determine how GABABRs in two brain regions known to regulate intertemporal choice (prelimbic cortex; PrL and basolateral amygdala; BLA) contribute to age differences in this form of decision making in male rats. As in humans, aged rats showed enhanced preference for large, delayed over small, immediate rewards during performance in an intertemporal choice task in operant test chambers. Activation of PrL GABABRs via microinfusion of the agonist baclofen increased choice of large, delayed rewards in young adult rats but did not influence choice in aged rats. Conversely, infusion of baclofen into the BLA strongly reduced choice of large, delayed rewards in both young adult and aged rats. Aged rats further showed a significant reduction in expression of GABABR1 subunit isoforms in the prefrontal cortex, a discovery that is consonant with the null effect of intra-PrL baclofen on intertemporal choice in aged rats. In contrast, expression of GABABR subunits was generally conserved with age in the BLA. Jointly, these findings elucidate a role for GABABRs in intertemporal choice and identify fundamental features of brain maturation and aging that mediate an improved ability to delay gratification.
Collapse
Affiliation(s)
- Caesar M Hernandez
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA; Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Joseph A McQuail
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA; Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine - Columbia, Columbia, SC, 29208, USA
| | - Tyler W Ten Eyck
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Alexa-Rae Wheeler
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Chase C Labiste
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
| | - Barry Setlow
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA; Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Jennifer Bizon
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
6
|
McQuail JA, Beas BS, Kelly KB, Hernandez CM, Bizon JL, Frazier CJ. Attenuated NMDAR signaling on fast-spiking interneurons in prefrontal cortex contributes to age-related decline of cognitive flexibility. Neuropharmacology 2021; 197:108720. [PMID: 34273386 DOI: 10.1016/j.neuropharm.2021.108720] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 02/01/2023]
Abstract
Ionotropic glutamate receptors of the NMDA and AMPA subtypes transduce excitatory signaling on neurons in the prefrontal cortex (PFC) in support of cognitive flexibility. Cognitive flexibility is reliably observed to decline at advanced ages, coinciding with changes in PFC glutamate receptor expression and neuronal physiology. However, the relationship between age-related impairment of cognitive flexibility and changes to excitatory signaling on distinct classes of PFC neurons is not known. In this study, one cohort of young adult (4 months) and aged (20 months) male F344 rats were characterized for cognitive flexibility on an operant set-shifting task. Expression of the essential NMDAR subunit, NR1, was correlated with individual differences in set-shifting abilities such that lower NR1 in the aged PFC was associated with worse set-shifting. In contrast, lower expression of two AMPAR subunits, GluR1 and GluR2, was not associated with set-shift abilities in aging. As NMDARs are expressed by both pyramidal cells and fast-spiking interneurons (FSI) in PFC, whole-cell patch clamp recordings were performed in a second cohort of age-matched rats to compare age-associated changes on these neuronal subtypes. Evoked excitatory postsynaptic currents were generated using a bipolar stimulator while AMPAR vs. NMDAR-mediated components were isolated using pharmacological tools. The results revealed a clear increase in AMPA/NMDA ratio in FSIs that was not present in pyramidal neurons. Together, these data indicate that loss of NMDARs on interneurons in PFC contributes to age-related impairment of cognitive flexibility.
Collapse
Affiliation(s)
- Joseph A McQuail
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, USA.
| | - B Sofia Beas
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, 32610, USA; Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, 20892, USA
| | - Kyle B Kelly
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, FL, 32610, USA
| | - Caesar M Hernandez
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, 32610, USA; Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Charles J Frazier
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, 32610, USA; Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, FL, 32610, USA.
| |
Collapse
|
7
|
Garrido A, De La Serna M, De La Fuente M, Marco EM, López-Gallardo M. Neuronal and glial region dependent changes in female mice from a model of premature aging. Exp Gerontol 2020; 146:111224. [PMID: 33388380 DOI: 10.1016/j.exger.2020.111224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 11/30/2022]
Abstract
Adult Premature Aging Mice (PAM) show premature immunosenescence, oxidative and inflammatory stress and consequently a shorter lifespan than Exceptional Non-Prematurely Aging Mice (E-NPAM) at the same age. Indeed, adult female PAM exhibit behavioral age-related declines and abnormalities in its brain neurochemistry. Nevertheless, it is not clear whether these impairments might be accompanied by previous changes related to the neuroinflammation process in their central nervous system (CNS). Therefore, the aim of the present work was to determine if adult female PAM may show brain neuroinflammation processes comparable to those observed in chronologically old female mice. Accordingly, ICR-CD1 female mice were classified in PAM, Regular Non-Prematurely Aging Mice (R-NPAM) and E-NPAM and compared to a group of chronologically old female mice (OLD) (24±1 months). Through the application of immunohistochemical techniques we evaluated changes in the expression of NeuN (a neuronal marker), Iba-1 (a microglia marker) and GFAP (an astrocyte marker) in brain areas related to the behavioral alterations previously detected in both PAM and chronologically old mice. In general, PAM showed a lower NeuN expression and a higher GFAP and Iba1 expression mainly in the Anterior Frontal Cortex and in the Medial Hippocampal Formation, when compared to E-NPAM; similar changes were observed in OLD. Other brain areas, such as the Hypothalamic Nuclei and Motor Cortex were less affected. In conclusion, adult PAM and OLD female mice share some region-dependent neuronal and glial changes that may underlie, at least in part, some of the behavioral abnormalities previously reported in these animals.
Collapse
Affiliation(s)
- Antonio Garrido
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), School of Biology, Complutense University of Madrid, Madrid, Spain; Institute of Investigation of Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Mariano De La Serna
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), School of Biology, Complutense University of Madrid, Madrid, Spain; Department of Physiology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Mónica De La Fuente
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), School of Biology, Complutense University of Madrid, Madrid, Spain; Institute of Investigation of Hospital 12 de Octubre (i+12), Madrid, Spain.
| | - Eva María Marco
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), School of Biology, Complutense University of Madrid, Madrid, Spain; Department of Physiology, School of Medicine, Complutense University of Madrid, Madrid, Spain.
| | | |
Collapse
|
8
|
Chakraborty A, Banerjee S, Mukherjee B, Poddar MK. Calorie restriction improves aging-induced impairment of cognitive function in relation to deregulation of corticosterone status and brain regional GABA system. Mech Ageing Dev 2020; 189:111248. [PMID: 32339520 DOI: 10.1016/j.mad.2020.111248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/16/2020] [Accepted: 04/05/2020] [Indexed: 12/21/2022]
Abstract
Aging is known to affect adversely the corticosterone status and the brain function including cognition. Calorie restricted (CR) diet has been found to improve brain aging. The objective of the present investigation is to study the effect of short-term CR diet without any food deprivation on aging-induced impairment of cognitive function in relation to the corticosterone status and the brain regional GABA system. The result showed that aging-induced deregulation of the brain regional GABA system, increase in plasma and adrenal corticosterone levels and cognitive impairment were attenuated with short-term CR diet supplementation for consecutive 1 and 2 months to the aged (18 and 24 months) rats. But in young rats (4 months) consumption of the same CR diet under similar conditions reversibly affected those above-mentioned parameters. These results, thus suggest that (a) aging down-regulates brain regional GABA system with an up-regulation of corticosterone status and impairment of cognitive function, (b) CR diet consumption improves this aging-induced deregulation of brain regional GABA system, corticosterone status, and cognitive function, (c) these attenuating effects of CR diet are greater with a longer period of consumption but (d) CR diet consumption is harmful to young rats as observed in those parameters.
Collapse
Affiliation(s)
- Apala Chakraborty
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata, 700032, India
| | - Soumyabrata Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata, 700032, India
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata, 700032, India
| | - Mrinal Kanti Poddar
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata, 700032, India.
| |
Collapse
|
9
|
Low KL, Tomm RJ, Ma C, Tobiansky DJ, Floresco SB, Soma KK. Effects of aging on testosterone and androgen receptors in the mesocorticolimbic system of male rats. Horm Behav 2020; 120:104689. [PMID: 31954104 DOI: 10.1016/j.yhbeh.2020.104689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/23/2019] [Accepted: 01/10/2020] [Indexed: 12/18/2022]
Abstract
As males age, systemic testosterone (T) levels decline. T regulates executive function, a collection of cognitive processes that are mediated by the mesocorticolimbic system. Here, we examined young adult (5 months) and aged (22 months) male Fischer 344 × Brown Norway rats, and measured systemic T levels in serum and local T levels in microdissected nodes of the mesocorticolimbic system (ventral tegmental area (VTA), nucleus accumbens (NAc), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC)). We also measured androgen receptor (AR) immunoreactivity (-ir) in the mesocorticolimbic system. As expected, systemic T levels decreased with age. Local T levels in mesocorticolimbic regions - except the VTA - also decreased with age. Mesocorticolimbic T levels were higher than serum T levels at both ages. AR-ir was present in the VTA, NAc, mPFC, and OFC and decreased with age in the mPFC. Taken together with previous results, the data suggest that changes in androgen signaling may contribute to changes in executive function during aging.
Collapse
Affiliation(s)
- Katelyn L Low
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Ryan J Tomm
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Chunqi Ma
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Daniel J Tobiansky
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Morphological and neurochemical changes in GABAergic neurons of the aging human inferior colliculus. Hear Res 2019; 377:318-329. [PMID: 30878270 DOI: 10.1016/j.heares.2019.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
It is well known that quality of hearing decreases with increasing age due to changes in the peripheral or central auditory pathway. Along with the decrease in the number of neurons the neurotransmitter profile is also affected in the various parts of the auditory system. Particularly, changes in the inhibitory neurons in the inferior colliculus (IC) are known to affect quality of hearing with aging. To date, there is no information about the status of the inhibitory neurotransmitter GABA in the human IC during aging. We have collected and processed inferior colliculi of persons aged 11-97 years at the time of death for morphometry and immunohistochemical expression of glutamic acid decarboxylase (GAD67) and parvalbumin. We used unbiased stereology to estimate the number of cresyl-violet and immunostained neurons. Quantitative real-time PCR was used to measure the relative expression of the GAD67 mRNA. We found that the number of total, GABAergic and PV-positive neurons significantly decreased with increasing age (p < 0.05). The proportion of GAD67-ir neurons to total number of neurons was also negatively associated with increasing age (p = 0.004), but there was no change observed in the proportion of PV-ir neurons relative to GABAergic neurons (p = 0.25). Further, the fold change in the levels of GAD67 mRNA was negatively correlated to age (p = 0.024). We conclude that the poorer quality of hearing with increasing age may be due to decreased expression of inhibitory neurotransmitters and the decline in the number of inhibitory neurons in the IC.
Collapse
|
11
|
Sverdeva YO, Varakuta YY, Zhdankina AA, Potapov AV, Gerasimov AV, Logvinov SV. Age-Related Structural Changes in Primary Visual Cortex Cells of Rats under High-Intensity Light Exposure. ADVANCES IN GERONTOLOGY 2018. [DOI: 10.1134/s207905701804015x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Igonina TN, Ragaeva DS, Tikhonova MA, Petrova OM, Herbeck YE, Rozhkova IN, Amstislavskaya TG, Amstislavsky SY. Neurodevelopment and behavior in neonatal OXYS rats with genetically determined accelerated senescence. Brain Res 2018; 1681:75-84. [DOI: 10.1016/j.brainres.2017.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/14/2017] [Accepted: 12/18/2017] [Indexed: 12/29/2022]
|
13
|
Fiuza FP, Aquino ACQ, Câmara DA, Cavalcanti JRLP, Nascimento Júnior ES, Lima RH, Engelberth RCGJ, Cavalcante JS. Region-specific glial hyperplasia and neuronal stability of rat lateral geniculate nucleus during aging. Exp Gerontol 2017; 100:91-99. [PMID: 29113752 DOI: 10.1016/j.exger.2017.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/20/2017] [Accepted: 11/03/2017] [Indexed: 10/18/2022]
Abstract
The normal aging process is accompanied by functional declines in image-forming and non-image forming visual systems. Among the components of these systems, the thalamic lateral geniculate nucleus (LGN) offers a good model for aging studies since its three anatomical subdivisions, namely dorsal lateral geniculate nucleus (dLGN), intergeniculate leaflet (IGL) and ventral lateral geniculate nucleus (vLGN), receives light information from retina and projects to different brain areas involved in visual-related functions. Nevertheless, there is very little data available about quantitative morphological aspects in LGN across lifespan. In this study, we used design-based stereology to estimate the number of neurons, glial cells, the glia/neuron ratio and the volume of the LGN of Wistar rats from 3, 13 or 23months of age. We examined each LGN subdivision processed by immunohistochemistry for NeuN and Nissl counterstain. We observed no significant age-related neuronal loss in any nuclei and a 21% and 33% significant increase in dLGN and IGL glial cells of 23month-old rats. We also observed the glia/neuron relation increases in dLGN of 13month-old rats and in dLGN, IGL and vLGN internal portion of 23month-old ones. Moreover, we report an age-related increase in IGL volume. These results show region-specific glial hyperplasia during aging within LGN nuclei, perhaps due to compensatory responses to inflammation. In addition, we observed the glia/neuron ratio as a more sensitive parameter to quantify age-related alterations. Hence, we provide an updated and expanded quantitative characterization of these visual-related thalamic nuclei and its variability across lifespan.
Collapse
Affiliation(s)
- Felipe P Fiuza
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil.
| | - Antônio Carlos Q Aquino
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Diego A Câmara
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - José Rodolfo L P Cavalcanti
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Health Science Center, University of State of Rio Grande do Norte, 59607-360 Mossoró, RN, Brazil
| | - Expedito S Nascimento Júnior
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Ramon H Lima
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Rovena Clara G J Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Jeferson S Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| |
Collapse
|
14
|
Pereira PA, Millner T, Vilela M, Sousa S, Cardoso A, Madeira MD. Nerve growth factor-induced plasticity in medial prefrontal cortex interneurons of aged Wistar rats. Exp Gerontol 2016; 85:59-70. [DOI: 10.1016/j.exger.2016.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/04/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023]
|
15
|
Arey RN, Murphy CT. Conserved regulators of cognitive aging: From worms to humans. Behav Brain Res 2016; 322:299-310. [PMID: 27329151 DOI: 10.1016/j.bbr.2016.06.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/27/2016] [Accepted: 06/17/2016] [Indexed: 01/25/2023]
Abstract
Cognitive decline is a major deficit that arises with age in humans. While some research on the underlying causes of these problems can be done in humans, harnessing the strengths of small model systems, particularly those with well-studied longevity mutants, such as the nematode C. elegans, will accelerate progress. Here we review the approaches being used to study cognitive decline in model organisms and show how simple model systems allow the rapid discovery of conserved molecular mechanisms, which will eventually enable the development of therapeutics to slow cognitive aging.
Collapse
Affiliation(s)
- Rachel N Arey
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, United States
| | - Coleen T Murphy
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
16
|
Jing Y, Liu P, Leitch B. Region-specific changes in presynaptic agmatine and glutamate levels in the aged rat brain. Neuroscience 2015; 312:10-8. [PMID: 26548412 DOI: 10.1016/j.neuroscience.2015.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/14/2015] [Accepted: 11/01/2015] [Indexed: 01/11/2023]
Abstract
During the normal aging process, the brain undergoes a range of biochemical and structural alterations, which may contribute to deterioration of sensory and cognitive functions. Age-related deficits are associated with altered efficacy of synaptic neurotransmission. Emerging evidence indicates that levels of agmatine, a putative neurotransmitter in the mammalian brain, are altered in a region-specific manner during the aging process. The gross tissue content of agmatine in the prefrontal cortex (PFC) of aged rat brains is decreased whereas levels in the temporal cortex (TE) are increased. However, it is not known whether these changes in gross tissue levels are also mirrored by changes in agmatine levels at synapses and thus could potentially contribute to altered synaptic function with age. In the present study, agmatine levels in presynaptic terminals in the PFC and TE regions (300 terminals/region) of young (3month; n=3) and aged (24month; n=3) brains of male Sprague-Dawley rats were compared using quantitative post-embedding immunogold electron-microscopy. Presynaptic levels of agmatine were significantly increased in the TE region (60%; p<0.001) of aged rats compared to young rats, however no significant differences were detected in synaptic levels in the PFC region. Double immunogold labeling indicated that agmatine and glutamate were co-localized in the same synaptic terminals, and quantitative analyses revealed significantly reduced glutamate levels in agmatine-immunopositive synaptic terminals in both regions in aged rats compared to young animals. This study, for the first time, demonstrates differential effects of aging on agmatine and glutamate in the presynaptic terminals of PFC and TE. Future research is required to understand the functional significance of these changes and the underlying mechanisms.
Collapse
Affiliation(s)
- Y Jing
- Department of Anatomy, Brain Health Research Centre, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - P Liu
- Department of Anatomy, Brain Health Research Centre, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - B Leitch
- Department of Anatomy, Brain Health Research Centre, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
17
|
McQuail JA, Frazier CJ, Bizon JL. Molecular aspects of age-related cognitive decline: the role of GABA signaling. Trends Mol Med 2015; 21:450-60. [PMID: 26070271 DOI: 10.1016/j.molmed.2015.05.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 12/19/2022]
Abstract
Alterations in inhibitory interneurons contribute to cognitive deficits associated with several psychiatric and neurological diseases. Phasic and tonic inhibition imparted by γ-aminobutyric acid (GABA) receptors regulates neural activity and helps to establish the appropriate network dynamics in cortical circuits that support normal cognition. This review highlights basic science demonstrating that inhibitory signaling is altered in aging, and discusses the impact of age-related shifts in inhibition on different forms of memory function, including hippocampus-dependent spatial reference memory and prefrontal cortex (PFC)-dependent working memory. The clinical appropriateness and tractability of select therapeutic candidates for cognitive aging that target receptors mediating inhibition are also discussed.
Collapse
Affiliation(s)
- Joseph A McQuail
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Charles J Frazier
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Department of Pharmacodynamics, University of Florida, Gainesville, FL 32610, USA
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
18
|
Burianová J, Ouda L, Syka J. The influence of aging on the number of neurons and levels of non-phosporylated neurofilament proteins in the central auditory system of rats. Front Aging Neurosci 2015; 7:27. [PMID: 25852543 PMCID: PMC4366680 DOI: 10.3389/fnagi.2015.00027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/23/2015] [Indexed: 12/11/2022] Open
Abstract
In the present study, an unbiased stereological method was used to determine the number of all neurons in Nissl stained sections of the inferior colliculus (IC), medial geniculate body (MGB), and auditory cortex (AC) in rats (strains Long Evans and Fischer 344) and their changes with aging. In addition, using the optical fractionator and western blot technique, we also evaluated the number of SMI-32-immunoreactive (-ir) neurons and levels of non-phosphorylated neurofilament proteins in the IC, MGB, AC, and visual cortex of young and old rats of the two strains. The SMI-32 positive neuronal population comprises about 10% of all neurons in the rat IC, MGB, and AC and represents a prevalent population of large neurons with highly myelinated and projecting processes. In both Long Evans and Fischer 344 rats, the total number of neurons in the IC was roughly similar to that in the AC. With aging, we found a rather mild and statistically non-significant decline in the total number of neurons in all three analyzed auditory regions in both rat strains. In contrast to this, the absolute number of SMI-32-ir neurons in both Long Evans and Fischer 344 rats significantly decreased with aging in all the examined structures. The western blot technique also revealed a significant age-related decline in the levels of non-phosphorylated neurofilaments in the auditory brain structures, 30–35%. Our results demonstrate that presbycusis in rats is not likely to be primarily associated with changes in the total number of neurons. On the other hand, the pronounced age-related decline in the number of neurons containing non-phosphorylated neurofilaments as well as their protein levels in the central auditory system may contribute to age-related deterioration of hearing function.
Collapse
Affiliation(s)
- Jana Burianová
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague Czech Republic
| | - Ladislav Ouda
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague Czech Republic
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague Czech Republic
| |
Collapse
|
19
|
Lesions of the laterodorsal tegmental nucleus alter the cholinergic innervation and neuropeptide Y expression in the medial prefrontal cortex and nucleus accumbens. Neuroscience 2014; 284:707-718. [PMID: 25451286 DOI: 10.1016/j.neuroscience.2014.10.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 01/25/2023]
Abstract
The effects of the ibotenic acid infused into the area of the laterodorsal tegmental nucleus (LDT) of rats on the expression of cortical and accumbal neuropeptides were assessed. The effects of this manipulation were determined in the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) by estimating the numerical density of varicosities immunoreactive for vesicular acetylcholine transporter and the total number of NAc neurons immunoreactive for choline acetyltransferase (ChAT) and neuropeptide Y (NPY) as well as the total number of mPFC neurons immunoreactive for NPY and vasoactive intestinal polypeptide (VIP). In LDT-lesioned rats, the density of the cholinergic varicosities was reduced in the ventral divisions of the mPFC and in all divisions of the NAc. In addition, in these rats, the total number of NPY-immunoreactive neurons was reduced in all subregions of the mPFC and in the NAc. Conversely, the total number of VIP-immunoreactive neurons in the mPFC and of ChAT-immunoreactive neurons in the NAc did not differ between LDT- and sham-lesioned rats. These data provide the first direct evidence for a relationship between selective damage of LDT cholinergic neurons and decreased expression of NPY in the mPFC and NAc. They also reveal that different types of cortical and accumbal interneurons respond differently to the cholinergic denervation induced by LDT lesions.
Collapse
|
20
|
Effects of an early experience of reward through maternal contact or its denial on the dopaminergic system of the rat brain. Neuroscience 2014; 269:11-20. [DOI: 10.1016/j.neuroscience.2014.03.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 01/19/2023]
|
21
|
Konsolaki E, Skaliora I. Premature Aging Phenotype in Mice Lacking High-Affinity Nicotinic Receptors: Region-Specific Changes in Layer V Pyramidal Cell Morphology. Cereb Cortex 2014; 25:2138-48. [PMID: 24554727 DOI: 10.1093/cercor/bhu019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mechanisms by which aging leads to alterations in brain structure and cognitive deficits are unclear. Α deficient cholinergic system has been implicated as one of the main factors that could confer a heightened vulnerability to the aging process, and mice lacking high-affinity nicotinic receptors (β2(-/-)) have been proposed as an animal model of accelerated cognitive aging. To date, however, age-related changes in neuronal microanatomy have not been studied in these mice. In the present study, we examine the neuronal structure of yellow fluorescent protein (YFP(+)) layer V neurons in 2 cytoarchitectonically distinct cortical regions in wild-type (WT) and β2(-/-) animals. We find that (1) substantial morphological differences exist between YFP(+) cells of the anterior cingulate cortex (ACC) and primary visual cortex (V1), in both genotypes; (2) in WT animals, ACC cells are more susceptible to aging compared with cells in V1; and (3) β2 deletion is associated with a regionally and temporally specific increase in vulnerability to aging. ACC cells exhibit a prematurely aged phenotype already at 4-6 months, whereas V1 cells are spared in adulthood but strongly affected in old animals. Collectively, our data reveal region-specific synergistic effects of aging and genotype and suggest distinct vulnerabilities in V1 and ACC neurons.
Collapse
Affiliation(s)
- Eleni Konsolaki
- Neurophysiology Laboratory, Division of Developmental Biology, Biomedical Research Foundation of the Academy of Athens, Athens 115 27, Greece
| | - Irini Skaliora
- Neurophysiology Laboratory, Division of Developmental Biology, Biomedical Research Foundation of the Academy of Athens, Athens 115 27, Greece
| |
Collapse
|
22
|
Samson RD, Barnes CA. Impact of aging brain circuits on cognition. Eur J Neurosci 2013; 37:1903-15. [PMID: 23773059 DOI: 10.1111/ejn.12183] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/05/2013] [Accepted: 02/11/2013] [Indexed: 01/01/2023]
Abstract
Brain networks that engage the hippocampus and prefrontal cortex are central for enabling effective interactions with our environment. Some of the cognitive processes that these structures mediate, such as encoding and retrieving episodic experience, wayfinding, working memory and attention are known to be altered across the lifespan. As illustrated by examples given below, there is remarkable consistency across species in the pattern of age-related neural and cognitive change observed in healthy humans and other animals. These include changes in cognitive operations that are known to be dependent on the hippocampus, as well as those requiring intact prefrontal cortical circuits. Certain cognitive constructs that reflect the function of these areas lend themselves to investigation across species, allowing brain mechanisms at different levels of analysis to be studied in greater depth.
Collapse
Affiliation(s)
- Rachel D Samson
- Evelyn F McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
23
|
Koss WA, Belden CE, Hristov AD, Juraska JM. Dendritic remodeling in the adolescent medial prefrontal cortex and the basolateral amygdala of male and female rats. Synapse 2013; 68:61-72. [PMID: 24105875 DOI: 10.1002/syn.21716] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/31/2013] [Indexed: 12/12/2022]
Abstract
There is recent evidence of continuing development throughout adolescence in two neural areas involved in emotion and cognition, the basolateral amygdala (BLN) and the medial prefrontal cortex (mPFC). Previous research from our laboratory has demonstrated a cellular loss in both of these brain regions in rats between postnatal day (P) 35 and 90. This study investigates dendritic changes in pyramidal neurons of the BLN and Layer 5 of the mPFC at P20 (juvenile), 35 (puberty), and 90 (adulthood) in hooded rats of both sexes. Dendritic branching and dendritic spines were quantified in Golgi-Cox impregnated tissue. Between P20 and 35, dendritic length and complexity, as well as the density of dendritic spines, increased in both structures. Between P35 and 90, dendritic spines in the mPFC neurons significantly decreased in both sexes, while a loss of basilar dendrites was only detected in females. In the BLN, there was an increase in the number of branches between P35 and 90 without an increase in the total length of the dendritic tree. BLN spine density also remained stable during this period. These results show that the dendritic tree grows prior to puberty while dendritic remodeling and pruning occurs after puberty in both of these neural areas. This late development may lead to susceptibilities to psychopathologies and addictions that often develop at this time.
Collapse
Affiliation(s)
- Wendy A Koss
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, Illinois, 61820
| | | | | | | |
Collapse
|
24
|
Bengoetxea H, Ortuzar N, Rico-Barrio I, Lafuente JV, Argandoña EG. Increased physical activity is not enough to recover astrocytic population from dark-rearing. Synergy with multisensory enrichment is required. Front Cell Neurosci 2013; 7:170. [PMID: 24109431 PMCID: PMC3790150 DOI: 10.3389/fncel.2013.00170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/11/2013] [Indexed: 12/17/2022] Open
Abstract
Elimination of sensory inputs (deprivation) modifies the properties of the sensory cortex and serves as a model for studying plasticity during postnatal development. Many studies on the effects of deprivation have been performed in the visual cortex using dark-rearing as a visual deprivation model. It induces changes in all cellular and molecular components, including astrocytes, which play an important role in the development, maintenance, and plasticity of the cortex, mediated by cytokines which have been termed angioglioneurins. When one sense is deprived, a compensatory mechanism called cross-modal plasticity increases performance in the remaining senses. Environmental enrichment is so far the best-known method to compensate sensorial deprivation. The aim of this work is to study the effects of exercise alone, and of an enriched environment combined with exercise, on astroglial population in order to observe the effects of exercise by itself, or the potential synergistic effect during the rat visual system development. Pregnant Sprague-Dawley rats were raised in one of the following rearing conditions: in total darkness and enriched environment conditions with physical exercise, and in total darkness with voluntary physical exercise. Astrocytic density was estimated by immunohistochemistry for S-100β protein and quantifications were performed in layer IV. The somatosensorial cortex barrel field was also studied as control. Our main result shows that an enriched environment combined with voluntary physical exercise manages to reverse the negative effects induced by darkness over the astroglial population of both the visual and the somatosensory cortices. On the other hand, exercise alone only produces effects upon the astroglial population of the somatosensory cortex, and less so when combined with an enriched environment.
Collapse
Affiliation(s)
- Harkaitz Bengoetxea
- Laboratory of Experimental Neuroscience, Department of Neuroscience, Faculty of Medicine and Odontology, University of the Basque Country Leioa, Spain
| | | | | | | | | |
Collapse
|
25
|
Chisholm NC, Kim T, Juraska JM. Males, but not females, lose tyrosine hydroxylase fibers in the medial prefrontal cortex and are impaired on a delayed alternation task during aging. Behav Brain Res 2013; 243:239-46. [PMID: 23327742 DOI: 10.1016/j.bbr.2013.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 01/02/2013] [Accepted: 01/08/2013] [Indexed: 02/08/2023]
Abstract
The structure of the prefrontal cortex (PFC) is particularly vulnerable to the effects of aging, and behaviors mediated by the PFC are impaired during aging in both humans and animals. In male rats, behavioral deficits have been correlated with a decrease in dopaminergic functioning. However, studies have found that anatomical changes associated with aging are sexually dimorphic, with males experiencing greater age-related loss than females. The present study investigated the effects of sex and aging on performance of a delayed alternation t-maze, a task mediated by the medial prefrontal cortex (mPFC), and on tyrosine hydroxylase (TH) immunoreactivity in this brain region using adult (7 months) and aged (21 months) male and female F344 rats. There was a sex by age interaction in performance of the delayed alternation task such that adult males performed better than aged males, but aged females were not different than adult females. Adult males performed better than adult females across all delays; however, this sex difference was reversed during aging and aged males performed worse than aged females. In addition, TH immunoreactivity decreased during aging in layers 2/3 in the male, but not female mPFC. Thus females were less sensitive to the effects of aging on the prefrontal dopaminergic system and on performance of a delayed alternation task. These effects may be due to decreases in testosterone in aging males, as well as the protective effects of ovarian hormones, which continue to be secreted after cessation of the estrous cycle in aging females.
Collapse
Affiliation(s)
- Nioka C Chisholm
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States
| | | | | |
Collapse
|
26
|
Morterá P, Herculano-Houzel S. Age-related neuronal loss in the rat brain starts at the end of adolescence. Front Neuroanat 2012; 6:45. [PMID: 23112765 PMCID: PMC3481355 DOI: 10.3389/fnana.2012.00045] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/09/2012] [Indexed: 02/03/2023] Open
Abstract
Aging-related changes in the brain have been mostly studied through the comparison of young adult and very old animals. However, aging must be considered a lifelong process of cumulative changes that ultimately become evident at old age. To determine when this process of decline begins, we studied how the cellular composition of the rat brain changes from infancy to adolescence, early adulthood, and old age. Using the isotropic fractionator to determine total numbers of neuronal and non-neuronal cells in different brain areas, we find that a major increase in number of neurons occurs during adolescence, between 1 and 2-3 months of age, followed by a significant trend of widespread and progressive neuronal loss that begins as early as 3 months of age, when neuronal numbers are maximal in all structures, until decreases in numbers of neurons become evident at 12 or 22 months of age. Our findings indicate that age-related decline in the brain begins as soon as the end of adolescence, a novel finding has important clinical and social implications for public health and welfare.
Collapse
Affiliation(s)
- Priscilla Morterá
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil ; Instituto Nacional de Neurociência Translacional São Paulo, Brazil
| | | |
Collapse
|
27
|
Chisholm NC, Packard AR, Koss WA, Juraska JM. The effects of long-term treatment with estradiol and medroxyprogesterone acetate on tyrosine hydroxylase fibers and neuron number in the medial prefrontal cortex of aged female rats. Endocrinology 2012; 153:4874-82. [PMID: 22903611 PMCID: PMC3512004 DOI: 10.1210/en.2012-1412] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Menopausal women often initiate hormone treatment to alleviate the symptoms of menopause. Research suggests that these treatments also affect cognition, and studies in young animals indicate that hormone treatment can alter several neuroanatomical measures. However, very little is known about the effects of long-term hormone treatment on the aging female brain. This study investigated the effects of hormone treatment on neuron number and tyrosine hydroxylase (TH) in the rat medial prefrontal cortex (mPFC). Female Long Evans rats were ovariectomized at middle age (12-13 months) and placed in one of four groups: no replacement (NR) (n = 12), 17β-estradiol (E(2)) (n = 12), E(2) and progesterone (n = 7), or E(2) and medroxyprogesterone acetate (MPA) (n = 10). Animals were euthanized at 20 months, and the brains were Nissl stained; a subset was immunostained for TH [NR (n = 5); E(2) (n = 6); E(2) + MPA (n = 4); E(2) + progesterone (n = 6)]. E(2) was administered through the drinking water, and progestagens were administered via pellets inserted at the nape of the neck. Neuron number and TH fiber density were quantified in the mPFC. Hormone treatment did not alter neuron number. Treatment with E(2) and MPA resulted in greater TH densities than NR in layer 1 (P < 0.05). In layers 2/3, animals receiving E(2) had greater TH densities than NR animals (P < 0.01). These results indicate that long-term hormone treatments alter dopaminergic fibers and potentially the functioning of the aging mPFC.
Collapse
Affiliation(s)
- Nioka C Chisholm
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61820, USA
| | | | | | | |
Collapse
|
28
|
Morphological and molecular changes in aging rat prelimbic prefrontal cortical synapses. Neurobiol Aging 2012; 34:200-10. [PMID: 22727942 DOI: 10.1016/j.neurobiolaging.2012.05.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 05/23/2012] [Accepted: 05/24/2012] [Indexed: 01/07/2023]
Abstract
Age-related impairments of executive functions appear to be related to reductions of the number and plasticity of dendritic spine synapses in the prefrontal cortex (PFC). Experimental evidence suggests that synaptic plasticity is mediated by the spine actin cytoskeleton, and a major pathway regulating actin-based plasticity is controlled by phosphorylated LIM kinase (pLIMK). We asked whether aging resulted in altered synaptic density, morphology, and pLIMK expression in the rat prelimbic region of the PFC. Using unbiased electron microscopy, we found an approximate 50% decrease in the density of small synapses with aging, while the density of large synapses remained unchanged. Postembedding immunogold revealed that pLIMK localized predominantly to the postsynaptic density where it was increased in aging synapses by approximately 50%. Furthermore, the age-related increase in pLIMK occurred selectively within the largest subset of prelimbic PFC synapses. Because pLIMK is known to inhibit actin filament plasticity, these data support the hypothesis that age-related increases in pLIMK may explain the stability of large synapses at the expense of their plasticity.
Collapse
|
29
|
Stranahan AM, Jiam NT, Spiegel AM, Gallagher M. Aging reduces total neuron number in the dorsal component of the rodent prefrontal cortex. J Comp Neurol 2012; 520:1318-26. [PMID: 22020730 PMCID: PMC3931233 DOI: 10.1002/cne.22790] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
For many years, aging was thought to be accompanied by significant decreases in total neuron number across multiple brain regions. However, this view was revised with the advent of modern quantification methods, and it is now widely accepted that the hippocampus and many regions of the cortex show substantially preserved numbers of neurons during normal aging. Nonetheless, age-related changes in neuron number do occur in focal regions of the primate prefrontal cortex (PFC), but the question of whether age-related neuron loss is an exclusive characteristic of the PFC in primates remains relatively unexplored. To investigate the loss of neurons with normal aging in rodents, we used unbiased stereological methods to quantify the number of principal neurons and interneurons in the PFC of young and aged rats. We observed a significant age-related decline in the number of principal neurons in the dorsal PFC. The number of interneurons positively stained with antibodies to glutamic acid decarboxylase 67 was also reduced in the dorsal PFC of aged rats. These observations indicate that the dorsal PFC is susceptible to neuron loss with aging in rodent brain and suggest some common basis for vulnerability in cortical circuits across species.
Collapse
Affiliation(s)
- Alexis M. Stranahan
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218
| | - Nicole T. Jiam
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218
| | - Amy M. Spiegel
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218
| | - Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
30
|
Abstract
The literature on the neuroanatomical changes that occur during normal, non-demented aging is reviewed here with an emphasis on the improved accuracy of studies that use stereological techniques. Loss of neural tissue involved in cognition occurs during aging of humans as well as the other mammals that have been examined. There is considerable regional specificity within the cerebral cortex and the hippocampus in both the degree and cellular basis for loss. The anatomy of the prefrontal cortex is especially vulnerable to the effects of aging while the major subfields of the hippocampus are not. A loss of neurons, dendrites and synapses has been documented, as well as changes in neurotransmitter systems, in some regions of the cortex and hippocampus but not others. Species differences are also apparent in the cortical white matter and the corpus callosum where there are indications of loss of myelin in humans, but most evidence favors preservation in rats. The examination of whether the course of neuroanatomical aging is altered by hormone replacement in females is just beginning. When hormone replacement is started close to the time of cycle cessation, there are indications in humans and rats that replacement can preserve neural tissue but there is some variability due to the type of hormones and regimen of administration.
Collapse
Affiliation(s)
- Janice M Juraska
- Department of Psychology and Program in Neuroscience, University of Illinois, 603 E Daniel, Champaign, IL, 61820, USA,
| | | |
Collapse
|
31
|
Abstract
Steroid hormones may alter mnemonic processes. The majority of investigations have focused on the effects of 17β-estradiol (E(2)) to mediate learning. However, progesterone (P(4)), which varies across endogenous hormonal milieu with E(2), may also have effects on cognitive processes. P(4) may have effects in the hippocampus, prefrontal cortex (PFC) and/or striatum to enhance cognitive performance. Cognitive performance/learning has been assessed using tasks that are mediated by the hippocampus (water maze), PFC (object recognition) and striatum (conditioning). Our findings suggest that progestogens can have pervasive effects to enhance cognitive performance and learning in tasks mediated by the hippocampus, PFC and striatum and that these effects may be in part independent of actions at intracellular progestin receptors. Progestogens may therefore influence cognitive processes.
Collapse
|
32
|
Udomuksorn W, Mukem S, Kumarnsit E, Vongvatcharanon S, Vongvatcharanon U. Effects of alcohol administration during adulthood on parvalbumin and glial fibrillary acidic protein immunoreactivity in the rat cerebral cortex. Acta Histochem 2011; 113:283-9. [PMID: 20056265 DOI: 10.1016/j.acthis.2009.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 11/09/2009] [Accepted: 11/18/2009] [Indexed: 11/18/2022]
Abstract
The pathology of brain atrophy mediated by alcohol was investigated in all parts of the cerebral cortex (the frontal, parietal, temporal lobes and occipital cortex) by using two markers: parvalbumin (PV) and glial fibrillary acidic protein (GFAP). Three-month old male Wistar rats were divided into control (C) and alcohol-exposed groups. The control group received distilled water, whereas the alcohol-exposed groups received either a low dose (2g/kg body wt) or a high dose (5g/kg) of ethanol for periods of 21 days, 3 or 6 months. The brains of the animals were processed for immunohistochemistry using anti-parvalbumin and anti-GFAP antibodies and the number of PV immunoreactive (PV-ir) neurons and GFAP immunoreactive (GFAP-ir) astrocytes were counted per unit area. Results showed that all groups exposed to ethanol had significantly reduced numbers of PV-ir neurons in all parts of the cerebral cortex compared to those of the control group (p<0.05). In contrast, the numbers of GFAP-ir astrocytes were increased in all parts of the cerebral cortex following the exposure to a high dose of ethanol after 21-days (but not a low dose) and both high and low doses of ethanol after 3-months or 6-months treatment compared to those of age-matched control groups (p<0.05). This indicated that in young rats (21-days), PV-ir neurons in all cerebral cortex areas seemed to be more sensitive to alcohol than GFAP-ir astrocytes. Moreover, the change in densities of both PV-ir neurons and GFAP-ir astrocytes became more apparent after exposure to prolonged and high doses of ethanol. The decrease of PV-ir neurons and the increase of GFAP-ir astrocytes indicated that alcohol may induce pathology in broad areas of the cerebral cortex. This may explain the underlying mechanism of brain atrophy and other impairments found in alcoholics. For investigations of the effects of alcohol on mediating brain pathology, we recommend the use of the two markers (PV and GFAP).
Collapse
Affiliation(s)
- Wandee Udomuksorn
- Department of Pharmacology, Faculty of Science, Prince of Songkla University, Hat-Yai, Thailand
| | | | | | | | | |
Collapse
|
33
|
Aging redistributes medial prefrontal neuronal excitability and impedes extinction of trace fear conditioning. Neurobiol Aging 2011; 33:1744-57. [PMID: 21531046 DOI: 10.1016/j.neurobiolaging.2011.03.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/17/2011] [Accepted: 03/22/2011] [Indexed: 12/21/2022]
Abstract
Cognitive flexibility is critical for survival and reflects the malleability of the central nervous system (CNS) in response to changing environmental demands. Normal aging results in difficulties modifying established behaviors, which may involve medial prefrontal cortex (mPFC) dysfunction. Using extinction of conditioned fear in rats to assay cognitive flexibility, we demonstrate that extinction deficits reminiscent of mPFC dysfunction first appear during middle age, in the absence of hippocampus-dependent context deficits. Emergence of aging-related extinction deficits paralleled a redistribution of neuronal excitability across two critical mPFC regions via two distinct mechanisms. First, excitability decreased in regular spiking neurons of infralimbic-mPFC (IL), a region whose activity is required for extinction. Second, excitability increased in burst spiking neurons of prelimbic-mPFC (PL), a region whose activity hinders extinction. Experiments using synaptic blockers revealed that these aging-related differences were intrinsic. Thus, changes in IL and PL intrinsic excitability may contribute to cognitive flexibility impairments observed during normal aging.
Collapse
|
34
|
The sexual difference of aging-associated functional degradation in visual cortical cells of rats. Neurosci Lett 2010; 486:179-83. [PMID: 20868727 DOI: 10.1016/j.neulet.2010.09.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 07/21/2010] [Accepted: 09/16/2010] [Indexed: 11/21/2022]
Abstract
Function of visual cortical cells declines during normal aging. Whether there are sex-related differences in this functional degradation is still unknown. In the present study we compared the properties of adaptation, onset latency, and signal-to-noise ratio of visual cortical cells between age-matched sexes in order to investigate any sex related difference. Our results show that visual cortical cell function did not differ between young male and young female rats. However, compared with female rats in the same age, the signal-to-noise ratio, but not adaptation or onset latency, was significantly impaired in mid-aged and aged male rats. These results indicate that the functional degradation of visual cortical cells to some extent is associated with sex and therefore, could contribute for the differential degree of cognitive decline that occurs in males and females during senescence.
Collapse
|
35
|
Anderson BJ, Greenwood SJ, McCloskey D. Exercise as an intervention for the age-related decline in neural metabolic support. Front Aging Neurosci 2010; 2. [PMID: 20802804 PMCID: PMC2928710 DOI: 10.3389/fnagi.2010.00030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 06/27/2010] [Indexed: 12/24/2022] Open
Abstract
To identify interventions for brain aging, we must first identify the processes in which we hope to intervene. Brain aging is a period of decreasing functional capacity and increasing vulnerability, which reflect a reduction in morphological organization and perhaps degeneration. Since life is ultimately dependent upon the ability to maintain cellular organization through metabolism, this review explores evidence for a decline in neural metabolic support during aging, which includes a reduction in whole brain cerebral blood flow, and cellular metabolic capacity. Capillary density may also decrease with age, although the results are less clear. Exercise may be a highly effective intervention for brain aging, because it improves the cardiovascular system as a whole, and increases regional capillary density and neuronal metabolic capacity. Although the evidence is strongest for motor regions, more work may yield additional evidence for exercise-related improvement in metabolic support in non-motor regions. The protective effects of exercise may be specific to brain region and the type of insult. For example, exercise protects striatal cells from ischemia, but it produces mixed results after hippocampal seizures. Exercise can improve metabolic support and bioenergetic capacity in adult animals, but it remains to be determined whether it has similar effects in aging animals. What is clear is that exercise can influence the multiple levels of support necessary for maintaining optimal neuronal function, which is unique among proposed interventions for aging.
Collapse
Affiliation(s)
- Brenda J Anderson
- Department of Psychology and Program Neuroscience, Stony Brook University Stony Brook, NY, USA
| | | | | |
Collapse
|
36
|
Argandoña EG, Bengoetxea H, Lafuente JV. Physical exercise is required for environmental enrichment to offset the quantitative effects of dark-rearing on the S-100beta astrocytic density in the rat visual cortex. J Anat 2009; 215:132-40. [PMID: 19500177 DOI: 10.1111/j.1469-7580.2009.01103.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
After birth, exposure to visual inputs modulates cortical development, inducing numerous changes in all of the components of the visual cortex. Most of the cortical changes thus induced occur during what is called the critical period. Astrocytes play an important role in the development, maintenance and plasticity of the cortex as well as in the structure and function of the vascular network. Visual deprivation induces a decrease in the astroglial population, whereas enhanced experience increases it. Exposure to an enriched environment has been shown to prevent the effects of dark-rearing in the visual cortex. Our purpose was to study the effects of an enriched environment on the density of astrocytes per reference surface at the visual cortex of dark-reared rats, in order to determine if enhanced experience is able to compensate the quantitative effects of visual deprivation and the role of physical exercise on the enrichment paradigm. Pregnant Sprague-Dawley rats were raised in one of the following rearing conditions: control rats with standard housing (12-h light/dark cycle); in total darkness for the dark-rearing experiments; and dark-rearing in conditions of enriched environment without and with physical exercise. The astrocytic density was estimated by immunohistochemistry for S-100beta protein. Quantifications were performed in layer IV. The somatosensorial cortex barrel field was also studied as control. The volume of layer IV was stereologically calculated for each region, age and experimental condition. From the beginning of the critical period, astrocyte density was higher in control rats than in the enriched environment group without physical exercise, with densities of astrocytes around 20% higher at all of the different ages. In contrast, when the animals had access to voluntary exercise, densities were significantly higher than even the control rats. Our main result shows that strategies to apply environmental enrichment should always consider the incorporation of physical exercise, even for sensorial areas such as the visual area, where complex enriched experience by itself is not enough to compensate the effects of visual deprivation.
Collapse
Affiliation(s)
- Enrike G Argandoña
- Department of Nursing I, Faculty of Medicine and Odontology, Basque Country University, Leioa, Spain.
| | | | | |
Collapse
|
37
|
Rubinow MJ, Juraska JM. Neuron and glia numbers in the basolateral nucleus of the amygdala from preweaning through old age in male and female rats: a stereological study. J Comp Neurol 2009; 512:717-25. [PMID: 19065620 DOI: 10.1002/cne.21924] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The rat basolateral nucleus of the amygdala continues to develop connectivity with the frontal cortex through the periadolescent period and even into young adulthood. Although neuronal loss in the prefrontal cortex has been found during the periadolescent period, prior literature has not examined whether neuron number in the basolateral amygdala is stable through this period. In addition, aging of the rat basolateral nucleus is accompanied by significant increases in the dendritic tree of its principal neurons, but whether this occurs in the context of neuronal death has not been previously explored. In the present study, a stereological examination of neuron and glia numbers in the rat basolateral amygdalar nucleus was undertaken in male and female hooded rats at four ages across the lifespan. Our findings indicate 1) a significant decrease in the number of neurons and glia in the basolateral nucleus between adolescence and adulthood; and 2) the number of glia, as well as the volume of the basolateral nucleus, increases between adulthood and old age, whereas neuron number remains stable. These findings provide an important cellular context for interpretation of the neurochemical and other alterations documented in developmental and age-related literature on the rat basolateral amygdala, and underline the substantial development of this brain area during adolescence, as well as its comparative preservation during aging.
Collapse
Affiliation(s)
- Marisa J Rubinow
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, Illinois 61820, USA.
| | | |
Collapse
|