1
|
Giannotti A, Musco S, Miragliotta V, Lazzarini G, Pirone A, Briganti A, Verardo C, Bernini F, Del Popolo G, Micera S. Swine Pudendal Nerve as a Model for Neuromodulation Studies to Restore Lower Urinary Tract Dysfunction. Int J Mol Sci 2024; 25:855. [PMID: 38255927 PMCID: PMC10815560 DOI: 10.3390/ijms25020855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Lower urinary tract dysfunction, such as incontinence or urinary retention, is one of the leading consequences of neurological diseases. This significantly impacts the quality of life for those affected, with implications extending not only to humans but also to clinical veterinary care. Having motor and sensory fibers, the pudendal nerve is an optimal candidate for neuromodulation therapies using bidirectional intraneural prostheses, paving the way towards the restoration of a more physiological urination cycle: bladder state can be detected from recorded neural signals, then an electrical current can be injected to the nerve based on the real-time need of the bladder. To develop such prostheses and investigate this novel approach, animal studies are still required since the morphology of the target nerve is fundamental to optimizing the prosthesis design. This study aims to describe the porcine pudendal nerve as a model for neuromodulation studies aiming at restoring lower urinary tract dysfunction. Five male farm pigs were involved in the study. First, a surgical procedure to access the porcine pudendal nerve without muscle resection was developed. Then, an intraneural interface was implanted to confirm the presence of fibers innervating the external urethral sphincter by measuring its electromyographic activity. Finally, the morphophysiology of the porcine pudendal nerve at the level of surgical exposure was described by using histological and immunohistochemical characterization. This analysis confirmed the fasciculate nature of the nerve and the presence of mixed fibers with a spatial and functional organization. These achievements pave the way for further pudendal neuromodulation studies by using a clinically relevant animal model with the potential for translating the findings into clinical applications.
Collapse
Affiliation(s)
- Alice Giannotti
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (A.G.); (C.V.)
| | - Stefania Musco
- Neuro-Urology Department, Careggi University Hospital, 50134 Firenze, Italy; (S.M.); (G.D.P.)
| | - Vincenzo Miragliotta
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (V.M.); (G.L.); (A.P.); (A.B.)
| | - Giulia Lazzarini
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (V.M.); (G.L.); (A.P.); (A.B.)
| | - Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (V.M.); (G.L.); (A.P.); (A.B.)
| | - Angela Briganti
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (V.M.); (G.L.); (A.P.); (A.B.)
| | - Claudio Verardo
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (A.G.); (C.V.)
| | - Fabio Bernini
- BioMedLab, Scuola Superiore Sant’Anna, 56127 Pisa, Italy;
| | - Giulio Del Popolo
- Neuro-Urology Department, Careggi University Hospital, 50134 Firenze, Italy; (S.M.); (G.D.P.)
| | - Silvestro Micera
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (A.G.); (C.V.)
- Bertarelli Foundation Chair in Translational NeuroEngineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Dávila-Santacruz S, Corona-Quintanilla DL, Velázquez-Orozco V, Martínez-Gómez M, Castelán F, Cuevas-Romero E, Barrales-Fuentes B, Nicolás-Toledo L, Rodríguez-Antolín J. Sucrose consumption modifies the urethrogenital reflex and histological organization of the bulbospongiosus muscle in the male rat. Physiol Behav 2024; 273:114391. [PMID: 37907190 DOI: 10.1016/j.physbeh.2023.114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/06/2023] [Accepted: 10/28/2023] [Indexed: 11/02/2023]
Abstract
Disorders of the bulbospongiosus muscle (Bsm) are associated with male sexual dysfunction, such as premature ejaculation. We determined the effect of sucrose-water consumption during pregnancy-lactation and postnatal on reflex responses and morphology of Bsm fibers in adult male Wistar rat offspring. Female rats were mated and grouped into consumed tap water mothers and sucrose-water (5 %) mothers during pregnancy-lactation to obtain experimental groups. Male pups were weaned and assigned into four groups (n = 12; each group). Those from control mothers who continued drinking tap water (CM-CO group) or sucrose water (CM-SO group), and those from sucrose mothers who drank tap water (SM-CO group) or continued drinking sucrose water (SM-SO group) until adult life. In male rat offspring (n = 6 per group) was recorded the electrical activity of Bsm was recorded during penile stimulation and urethrogenital reflex (UGR). Other male rat offspring were designated for histological analysis (n = 6 per group). Sucrose consumption during prenatal stages increased the frequency of the Bsm during UGR, while pre and postnatal consumption modified muscle fiber cross-sectional area and increased the collagen content, suggesting that a combination of a diet with pre- and postnatal sucrose changes the Bsm morphophysiology possibly causing male sexual dysfunctions.
Collapse
Affiliation(s)
| | | | - Verónica Velázquez-Orozco
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Mexico; Licenciatura en Química Clínica, Facultad de Ciencias de la Salud, Universidad Autónoma de Tlaxcala
| | - Margarita Martínez-Gómez
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, 90070 Mexico; Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología, Universidad Nacional Autónoma de México, Tlaxcala, Mexico
| | - Francisco Castelán
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, 90070 Mexico; Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología, Universidad Nacional Autónoma de México, Tlaxcala, Mexico
| | - Estela Cuevas-Romero
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, 90070 Mexico
| | | | - Leticia Nicolás-Toledo
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, 90070 Mexico
| | - Jorge Rodríguez-Antolín
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, 90070 Mexico.
| |
Collapse
|
3
|
Neumannova K, Machova-Urdzikova L, Kwok JCF, Fawcett JW, Jendelova P. Adaptation of tape removal test for measurement of sensitivity in perineal area of rat. Exp Neurol 2019; 324:113097. [PMID: 31707082 DOI: 10.1016/j.expneurol.2019.113097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/02/2019] [Accepted: 11/05/2019] [Indexed: 11/20/2022]
Abstract
Regeneration after spinal cord injury is a goal of many studies. Although the most obvious target is to recover motor function, restoration of sensation can also improve the quality of life after spinal cord injury. For many patients, recovery of sensation in the perineal and genital area is a high priority. Currently there is no experimental test in rodents for measuring changes in sensation in the perineal and genital area after spinal cord injury. The aim of our study was to develop a behavioural test for measuring the sensitivity of the perineal and genital area in rats. We have modified the tape removal test used routinely to test sensorimotor deficits after stroke and spinal cord injury to test the perineal area with several variations. A small piece of tape (approximately 1 cm2) was attached to the perineal area. Time to first contact and to the removal of the tape was measured. Each rat was trained for 5 consecutive days and then tested weekly. We compared different rat strains (Wistar, Sprague-Dawley, Long-Evans and Lewis), both genders, shaving and non-shaving and different types of tape. We found that the test was suitable for all tested strains, however, Lewis rats achieved the lowest contact times, but this difference was significant only for the first few days of learning the task. There were no significant differences between gender and different types of tape or shaving. After training the animals underwent dorsal column lesion at T10 and were tested at day 3, 8, 14 and 21. The test detected a sensory deficit, the average time across all animals to sense the stimulus increased from 1'32 up to 3'20. There was a strong relationship between lesion size and tape detection time, and only lesions that extended laterally to the dorsal root entry zone produced significant sensory deficits. Other standard behavioural tests (BBB, von Frey, ladder and Plantar test) were performed in the same animals. There was a correlation between lesion size and deficit for the ladder and BBB tests, but not for the von Frey and Plantar tests. We conclude that the tape removal test is suitable for testing perineal sensation in rats, can be used in different strains and is appropriate for monitoring changes in sensation after spinal cord injury.
Collapse
Affiliation(s)
- K Neumannova
- Institute of Experimental Medicine, Czech Academy of Science, Videnska 1083, 14220 Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - L Machova-Urdzikova
- Institute of Experimental Medicine, Czech Academy of Science, Videnska 1083, 14220 Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - J C F Kwok
- Institute of Experimental Medicine, Czech Academy of Science, Videnska 1083, 14220 Prague, Czech Republic; Faculty of Biological Sciences, University of Leeds, UK
| | - J W Fawcett
- Institute of Experimental Medicine, Czech Academy of Science, Videnska 1083, 14220 Prague, Czech Republic; John van Geest Centre for Brain Repair, University of Cambridge, UK
| | - P Jendelova
- Institute of Experimental Medicine, Czech Academy of Science, Videnska 1083, 14220 Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic.
| |
Collapse
|
4
|
Arellano J, Xelhuantzi N, Mirto N, Hernández ME, Cruz Y. Neural interrelationships of autonomic ganglia from the pelvic region of male rats. Auton Neurosci 2018; 217:26-34. [PMID: 30704972 DOI: 10.1016/j.autneu.2018.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 11/26/2022]
Abstract
The aims of the present study were to describe, in male rats, the anatomical organization of the major and accessory pelvic ganglia (MPG, AG; respectively), the interrelationship of the pelvic plexus components, and the morphometry of the pelvic postganglionic neurons. Anatomical, histochemical and histological studies were performed in anesthetized adult Wistar male rats. We found that the pelvic plexus consists of intricate neural circuits composed of two MPG, and three pairs of AG (AGI, AGII, AGIII) anatomically interrelated through ipsilateral and contralateral commissural nerves. Around 30 nerves emerge from each MPG and 17 from AGI and AGII. The MPG efferent nerves spread out preganglionic information to several pelvic organs controlling urinary, bowel, reproductive and sexual functions, while AG innervation is more regional, and it is confined to reproductive organs located in the rostral region of the urogenital tract. Both MPG and AG contain nerve fascicles, blood vessels, small intensely fluorescent cells, satellite cells and oval neuronal somata with one to three nucleoli. The soma area of AG neurons is larger than those of MPG neurons (p < 0.005). The MPG contains about 75% of the total pelvic postganglionic neurons. Our findings corroborated previous reports about MPG inputs, and add new information regarding pelvic ganglia efferent branches, AG neurons (number and morphometry), and neural interrelationship between the pelvic plexus components. This information will be useful in designing future studies about the role of pelvic innervation in the physiology and pathophysiology of pelvic functions.
Collapse
Affiliation(s)
- Jorge Arellano
- Doctorado en Investigaciones Cerebrales, Universidad Veracruzana, Veracruz, Mexico
| | - Nicte Xelhuantzi
- Facultad de Ciencias de la Salud, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Nancy Mirto
- Doctorado en Investigaciones Cerebrales, Universidad Veracruzana, Veracruz, Mexico
| | | | - Yolanda Cruz
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico.
| |
Collapse
|
5
|
Botti M, Ragionieri L, Cacchioli A, Panu R, Gazza F. Striated Perineal Muscles: Location of Somatic and Autonomic Neurons Projecting to the Male Pig Ischiocavernous Muscle. Neurochemical Features of the Sympathetic Subset. Anat Rec (Hoboken) 2017; 301:837-848. [PMID: 29193823 DOI: 10.1002/ar.23735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/13/2017] [Accepted: 07/23/2017] [Indexed: 11/09/2022]
Abstract
The location, number and size of the central and peripheral neurons innervating the ischiocavernous muscle (ICM) were studied in male pigs by means of Fast Blue (FB) retrograde neuronal tracing. Moreover the immunohistochemical properties of the sympathetic ganglia were investigated combining the double immunolabeling method. After injection of FB into the left ICM, a mean number of 245.3 ± 134.9 labeled neurons were found in the ipsilateral ventral horn of the S1-S3 segments of the spinal cord (SC), 129.7 ± 45.5 in the L6-S3 ipsilateral and S2-S3 contralateral spinal ganglia (SGs), 2279.3 ± 622.1 in the ipsilateral L2-S2 and contralateral L5-S2 sympathetic trunk ganglia (STGs), 541.7 ± 158 in the bilateral caudal mesenteric ganglia (CMGs), and 78.3 ± 35.8 in the microganglia of the pelvic plexus (PGs). The mean area of the ICM projecting neurons was 1217 ± 69.7 μm2 in the SC, 2737.5 ± 176.5 μm2 in the SGs, 982.8 ± 36.8 μm2 in the STGs, 865.9 ± 39.14 μm2 in the CMGs and 426.2 ± 24.72 μm2 in the PGs. The FB positive neurons of autonomic ganglia contained Dopamine β hydroxylase, vesicular acetylcholine transporter, neuronal nitric oxyde sinthase, calcitonine gene related peptide, leu-enkephaline, neuropeptide Y, substance P, vasoactive intestinal polypeptide, and somatostatine often colocalized with tyrosine hydroxylase. The particular localization of the motor somatic nucleus, the abundant autonomic innervation and the qualitatively different content of ICM projecting sympathetic neurons suggest a complex regulation of this striated muscle involved in involuntary functions, such as the erection, ejaculation, micturition and defecation. Anat Rec, 301:837-848, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maddalena Botti
- Department of Veterinary Science, Via del Taglio, 10, Parma, 43126, Italy
| | - Luisa Ragionieri
- Department of Veterinary Science, Via del Taglio, 10, Parma, 43126, Italy
| | - Antonio Cacchioli
- Department of Veterinary Science, Via del Taglio, 10, Parma, 43126, Italy
| | - Rino Panu
- Department of Veterinary Science, Via del Taglio, 10, Parma, 43126, Italy
| | - Ferdinando Gazza
- Department of Veterinary Science, Via del Taglio, 10, Parma, 43126, Italy
| |
Collapse
|
6
|
Cruz Y, Hernández-Plata I, Lucio RA, Zempoalteca R, Castelán F, Martínez-Gómez M. Anatomical organization and somatic axonal components of the lumbosacral nerves in female rabbits. Neurourol Urodyn 2017; 36:1749-1756. [PMID: 28102579 DOI: 10.1002/nau.23209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 11/06/2022]
Abstract
AIM To determine the anatomical organization and somatic axonal components of the lumbosacral nerves in female rabbits. METHODS Chinchilla adult anesthetized female rabbits were used. Anatomical, electrophysiological, and histological studies were performed. RESULTS L7, S1, and some fibers from S2 and S3 form the lumbosacral trunk, which gives origin to the sciatic nerve and innervation to the gluteal region. From S2 to S3 originates the pudendal nerve, whose branches innervates the striated anal and urethra sphincters, as well as the bulbospongiosus, ischiocavernosus, and constrictor vulvae muscles. The sensory field of the pudendal nerve is ∼1800 mm2 and is localized in the clitoral sheath and perineal and perigenital skin. The organization of the pudendal nerve varies between individuals, three patterns were identified, and one of them was present in 50% of the animals. From S3 emerge the pelvic nerve, which anastomoses to form a plexus localized between the vagina and the rectum. The innervation of the pelvic floor originates from S3 to S4 fibers. CONCLUSIONS Most of the sacral spinal nerves of rabbit are mixed, carrying sensory, and motor information. Sacral nerves innervate the hind limbs, pelvic viscera, clitoris, perineal muscles, inguinal and anal glands and perineal, perigenital, and rump skin. The detailed description of the sacral nerves organization, topography, and axonal components further the knowledge of the innervation in pelvic and perinal structures of the female rabbit. This information will be useful in future studies about the physiology and physiopathology of urinary, fecal, reproductive, and sexual functions.
Collapse
Affiliation(s)
- Yolanda Cruz
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | | | - Rosa Angélica Lucio
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - René Zempoalteca
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Francisco Castelán
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, UNAM, D.F., Tlaxcala, México
| | - Margarita Martínez-Gómez
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México.,Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, UNAM, D.F., Tlaxcala, México
| |
Collapse
|
7
|
Juárez R, Zempoalteca R, Pacheco P, Lucio RA, Medel A, Cruz Y. Activity of the external urethral sphincter evoked by genital stimulation in male rats. Neurourol Urodyn 2015; 35:914-919. [DOI: 10.1002/nau.22850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/22/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Raúl Juárez
- Doctorado en Ciencias Biológicas; Universidad Autónoma de Tlaxcala; Tlaxcala México
| | - René Zempoalteca
- Centro Tlaxcala de Biología de la Conducta; Universidad Autónoma de Tlaxcala; Tlaxcala México
| | - Pablo Pacheco
- Instituto de Investigaciones Biomédicas; UNAM; D.F. México
| | - Rosa Angélica Lucio
- Centro Tlaxcala de Biología de la Conducta; Universidad Autónoma de Tlaxcala; Tlaxcala México
| | - Alfonso Medel
- Centro Tlaxcala de Biología de la Conducta; Universidad Autónoma de Tlaxcala; Tlaxcala México
| | - Yolanda Cruz
- Doctorado en Ciencias Biológicas; Universidad Autónoma de Tlaxcala; Tlaxcala México
- Centro Tlaxcala de Biología de la Conducta; Universidad Autónoma de Tlaxcala; Tlaxcala México
| |
Collapse
|
8
|
Danziger ZC, Grill WM. Dynamics of the sensory response to urethral flow over multiple time scales in rat. J Physiol 2015; 593:3351-71. [PMID: 26041695 DOI: 10.1113/jp270911] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/01/2015] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS Sensory information from the urethra is essential to maintain continence and to achieve efficient micturition and when compromised by disease or injury can lead to substantial loss of function. Despite the key role urethral sensory information plays in the lower urinary tract, the relationship between physiological urethral stimuli, such as fluid flow, and the neural sensory response is poorly understood. This work systematically quantifies pudendal afferent responses to a range of fluid flows in the urethra in vivo and describes a previously unknown long-term neural accommodation phenomenon in these afferents. We present a compact mechanistic mathematical model that reproduces the pudendal sensory activity in response to urethral flow. These results have implications for understanding urinary tract dysfunction caused by neuropathy or nerve damage, such as urinary retention or incontinence, as well as for the development of strategies to mitigate the symptoms of these conditions. The pudendal nerve carries sensory information from the urethra that controls spinal reflexes necessary to maintain continence and achieve efficient micturition. Despite the key role urethral sensory feedback plays in regulation of the lower urinary tract, there is little information about the characteristics of urethral sensory responses to physiological stimuli, and the quantitative relationship between physiological stimuli and the evoked sensory activation is unknown. Such a relation is critical to understanding the neural control of the lower urinary tract and how dysfunction arises in disease states. We systematically quantified pudendal afferent responses to fluid flow in the urethra in vivo in the rat. We characterized the sensory response across a range of stimuli, and describe a previously unreported long-term neural accommodation phenomenon. We developed and validated a compact mechanistic mathematical model capable of reproducing the pudendal sensory activity in response to arbitrary profiles of urethral flows. These results describe the properties and function of urethral afferents that are necessary to understand how sensory disruption manifests in lower urinary tract pathophysiology.
Collapse
Affiliation(s)
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Department of Neurobiology, Duke University, Durham, NC, USA.,Department of Surgery, Duke University, Durham, NC, USA.,Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
9
|
McCarthy CJ, Tomasella E, Malet M, Seroogy KB, Hökfelt T, Villar MJ, Gebhart GF, Brumovsky PR. Axotomy of tributaries of the pelvic and pudendal nerves induces changes in the neurochemistry of mouse dorsal root ganglion neurons and the spinal cord. Brain Struct Funct 2015; 221:1985-2004. [PMID: 25749859 DOI: 10.1007/s00429-015-1019-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/24/2015] [Indexed: 12/31/2022]
Abstract
Using immunohistochemical techniques, we characterized changes in the expression of several neurochemical markers in lumbar 4-sacral 2 (L4-S2) dorsal root ganglion (DRG) neuron profiles (NPs) and the spinal cord of BALB/c mice after axotomy of the L6 and S1 spinal nerves, major tributaries of the pelvic (targeting pelvic visceral organs) and pudendal (targeting perineum and genitalia) nerves. Sham animals were included. Expression of cyclic AMP-dependent transcription factor 3 (ATF3), calcitonin gene-related peptide (CGRP), transient receptor potential cation channel subfamily V, member 1 (TRPV1), tyrosine hydroxylase (TH) and vesicular glutamate transporters (VGLUT) types 1 and -2 was analysed seven days after injury. L6-S1 axotomy induced dramatic de novo expression of ATF3 in many L6-S1 DRG NPs, and parallel significant downregulations in the percentage of CGRP-, TRPV1-, TH- and VGLUT2-immunoreactive (IR) DRG NPs, as compared to their expression in uninjured DRGs (contralateral L6-S1-AXO; sham mice); VGLUT1 expression remained unaltered. Sham L6-S1 DRGs only showed a small ipsilateral increase in ATF3-IR NPs (other markers were unchanged). L6-S1-AXO induced de novo expression of ATF3 in several lumbosacral spinal cord motoneurons and parasympathetic preganglionic neurons; in sham mice the effect was limited to a few motoneurons. Finally, a moderate decrease in CGRP- and TRPV1-like-immunoreactivities was observed in the ipsilateral superficial dorsal horn neuropil. In conclusion, injury of a mixed visceral/non-visceral nerve leads to considerable neurochemical alterations in DRGs matched, to some extent, in the spinal cord. Changes in these and potentially other nociception-related molecules could contribute to pain due to injury of nerves in the abdominopelvic cavity.
Collapse
Affiliation(s)
- Carly J McCarthy
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina
| | - Eugenia Tomasella
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mariana Malet
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Kim B Seroogy
- Department of Neurology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Marcelo J Villar
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina
| | - G F Gebhart
- Department of Anesthesiology, Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Pablo R Brumovsky
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. .,Department of Anesthesiology, Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
10
|
Martín-Alguacil N, Cooper RS, Aardsma N, Mayoglou L, Pfaff D, Schober J. Terminal innervation of the male genitalia, cutaneous sensory receptors of the male foreskin. Clin Anat 2015; 28:385-91. [DOI: 10.1002/ca.22501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/05/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Nieves Martín-Alguacil
- Department of Neurobiology and Behavior; Rockefeller University; New York New York
- Department of Anatomy and Embryology; School of Veterinary Medicine, Universidad Complutense de Madrid; Madrid Spain
| | - R. Scott Cooper
- UPMC Hamot; Erie Pennsylvania
- Lake Erie College of Osteopathic Medicine; Erie Pennsylvania
| | - Nathan Aardsma
- UPMC Hamot; Erie Pennsylvania
- Lake Erie College of Osteopathic Medicine; Erie Pennsylvania
| | - Lazarus Mayoglou
- Department of Neurobiology and Behavior; Rockefeller University; New York New York
- UPMC Hamot; Erie Pennsylvania
| | - Donald Pfaff
- Department of Neurobiology and Behavior; Rockefeller University; New York New York
| | - Justine Schober
- Department of Neurobiology and Behavior; Rockefeller University; New York New York
- UPMC Hamot; Erie Pennsylvania
| |
Collapse
|
11
|
Mathews KS, Wark HA, Warren DJ, Christensen MB, Nolta NF, Cartwright PC, Normann RA. Acute Monitoring of Genitourinary Function Using Intrafascicular Electrodes: Selective Pudendal Nerve Activity Corresponding to Bladder Filling, Bladder Fullness, and Genital Stimulation. Urology 2014; 84:722-9. [DOI: 10.1016/j.urology.2014.05.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 05/01/2014] [Accepted: 05/13/2014] [Indexed: 11/15/2022]
|
12
|
Hubscher CH, Gupta DS, Brink TS. Convergence and cross talk in urogenital neural circuitries. J Neurophysiol 2013; 110:1997-2005. [DOI: 10.1152/jn.00297.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Despite common comorbidity of sexual and urinary dysfunctions, the interrelationships between the neural control of these functions are poorly understood. The medullary reticular formation (MRF) contributes to both mating/arousal functions and micturition, making it a good site to test circuitry interactions. Urethane-anesthetized adult Wistar rats were used to examine the impact of electrically stimulating different nerve targets [dorsal nerve of the penis (DNP) or clitoris (DNC); L6/S1 trunk] on responses of individual extracellularly recorded MRF neurons. The effect of bladder filling on MRF neurons was also examined, as was stimulation of DNP on bladder reflexes via cystometry. In total, 236 MRF neurons responded to neurostimulation: 102 to DNP stimulation (12 males), 64 to DNC stimulation (12 females), and 70 to L6/S1 trunk stimulation (12 males). Amplitude thresholds were significantly different at DNP (15.0 ± 0.6 μA), DNC (10.5 ± 0.7 μA), and L6/S1 trunk (54.2 ± 4.6 μA), whereas similar frequency responses were found (max responses near 30–40 Hz). In five males, filling/voiding cycles were lengthened with DNP stimulation (11.0 ± 0.9 μA), with a maximal effective frequency plateau beginning at 30 Hz. Bladder effects lasted ∼2 min after DNP stimulus offset. Many MRF neurons receiving DNP/DNC input responded to bladder filling (35.0% and 68.3%, respectively), either just before (43%) or simultaneously with (57%) the voiding reflex. Taken together, MRF-evoked responses with neurostimulation of multiple nerve targets along with different responses to bladder infusion have implications for the role of MRF in multiple aspects of urogenital functions.
Collapse
Affiliation(s)
- C. H. Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky; and
| | - D. S. Gupta
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky; and
| | - T. S. Brink
- Neuromodulation Research, Medtronic Incorporated, Minneapolis, Minnesota
| |
Collapse
|
13
|
Ejaculatory Responses are Inhibited by a New Chemical Entity, DA-8031, in Preclinical Rodent Models of Ejaculation. Urology 2013; 81:920.e13-8. [DOI: 10.1016/j.urology.2012.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/30/2012] [Accepted: 12/04/2012] [Indexed: 01/17/2023]
|
14
|
Abstract
OBJECTIVE Stimulation of the pudendal nerve or the anal sphincter could provide therapeutic options for fecal incontinence with little involvement of other organs. The goal of this project was to assess the effects of pudendal nerve and anal sphincter stimulation on bladder and anal pressures. DESIGN Ten virgin female Sprague Dawley rats were randomly allocated to control (n = 2), perianal stimulation (n = 4), and pudendal nerve stimulation (n = 4) groups. A monopolar electrode was hooked to the pudendal nerve or placed on the anal sphincter. Aballoon catheter was inserted into the anus to measure anal pressure, and a catheter was inserted into the bladder via the urethra to measure bladder pressure. Bladder and anal pressures were measured with different electrical stimulation parameters and different timing of electrical stimulation relative to spontaneous anal sphincter contractions. RESULTS Increasing stimulation current had the most dramatic effect on both anal and bladder pressures. An immediate increase in anal pressure was observed when stimulating either the anal sphincter or the pudendal nerve at stimulation values of 1 mA or 2 mA. No increase in anal pressure was observed for lower current values. Bladder pressure increased at high current during anal sphincter stimulation, but not as much as during pudendal nerve stimulation. Increased bladder pressure during anal sphincter stimulation was due to contraction of the abdominal muscles. CONCLUSION Electrical stimulation caused an increase in anal pressures with bladder involvement only at high current. These initial results suggest that electrical stimulation can increase anal sphincter pressure, enhancing continence control.
Collapse
|
15
|
Tanahashi M, Karicheti V, Thor KB, Marson L. Characterization of bulbospongiosus muscle reflexes activated by urethral distension in male rats. Am J Physiol Regul Integr Comp Physiol 2012; 303:R737-47. [DOI: 10.1152/ajpregu.00004.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The urethrogenital reflex (UGR) is used as a surrogate model of the autonomic and somatic nerve and muscle activity that accompanies ejaculation. The UGR is evoked by distension of the urethra and activation of penile afferents. The current study compares two methods of elevating urethral intraluminal pressure in spinalized, anesthetized male Sprague-Dawley rats ( n = 60). The first method, penile extension UGR, involves extracting the penis from the foreskin, so that urethral pressure rises due to a natural anatomical flexure in the penis. The second method, penile clamping UGR, involves penile extension UGR with the addition of clamping of the glans penis. Groups of animals were prepared that either received no additional treatment, surgical shams, or received bilateral nerve cuts (4 nerve cut groups): either the pudendal sensory nerve branch (SbPN), the pelvic nerves, the hypogastric nerves, or all three nerves. Penile clamping UGR was characterized by multiple bursts, monitored by electromyography (EMG) of the bulbospongiosus muscle (BSM) accompanied by elevations in urethral pressure. The penile clamping UGR activity declined across multiple trials and eventually resulted in only a single BSM burst, indicating desensitization. In contrast, the penile extension UGR, without penile clamping, evoked only a single BSM EMG burst that showed no desensitization. Thus, the UGR is composed of two BSM patterns: an initial single burst, termed urethrobulbospongiosus (UBS) reflex and a subsequent multiple bursting pattern (termed ejaculation-like response, ELR) that was only induced with penile clamping urethral occlusion. Transection of the SbPN eliminated the ELR in the penile clamping model, but the single UBS reflex remained in both the clamping and extension models. Pelvic nerve (PelN) transection increased the threshold for inducing BSM activation with both methods of occlusion but actually unmasked an ELR in the penile extension method. Hypogastric nerve (HgN) cuts did not significantly alter any parameter. Transection of all three nerves eliminated BSM activation completely. In conclusion, penile clamping occlusion recruits penile and urethral primary afferent fibers that are necessary for an ELR. Urethral distension without significant penile afferent activation recruits urethral primary afferent fibers carried in either the pelvic or pudendal nerve that are necessary for the single-burst UBS reflex.
Collapse
|
16
|
Pastelín C, Pacheco P, Camacho M, Cruz Y. Another Component of the Pelvic Plexus That Innervates the Penis in the Rat. Urology 2011; 78:232.e7-13. [DOI: 10.1016/j.urology.2011.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 03/11/2011] [Accepted: 03/11/2011] [Indexed: 01/04/2023]
|
17
|
Normandin JJ, Murphy AZ. Somatic genital reflexes in rats with a nod to humans: anatomy, physiology, and the role of the social neuropeptides. Horm Behav 2011; 59:656-65. [PMID: 21338605 PMCID: PMC3105176 DOI: 10.1016/j.yhbeh.2011.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 02/03/2011] [Accepted: 02/03/2011] [Indexed: 12/31/2022]
Abstract
Somatic genital reflexes such as ejaculation and vaginocervical contractions are produced through the striated muscles associated with the genitalia. The coordination of these reflexes is surprisingly complex and involves a number of lumbosacral spinal and supraspinal systems. The rat model has been proven to be an excellent source of information regarding these mechanisms, and many parallels to research in humans can be drawn. An understanding of the spinal systems involving the lumbosacral spinal cord, both efferent and afferent, has been generated through decades of research. Spinal and supraspinal mechanisms of descending excitation, through a spinal ejaculation generator in the lumbar spinal cord and thalamus, and descending inhibition, through the ventrolateral medulla, have been identified and characterized both anatomically and physiologically. In addition, delineation of the neural circuits whereby ascending genitosensory information regarding the regulation of somatic genital reflexes is relayed supraspinally has also been the topic of recent investigation. Lastly, the importance of the "social neuropeptides" oxytocin and vasopressin in the regulation of somatic genital reflexes, and associated sociosexual behaviors, is emerging. This work not only has implications for understanding how nervous systems generate sexual behavior but also provides treatment targets for sexual dysfunction in people.
Collapse
Affiliation(s)
- Joseph J. Normandin
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-5010
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302-5010
| | - Anne Z. Murphy
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302-5010
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302-5010
| |
Collapse
|
18
|
Hubscher CH, Reed WR, Kaddumi EG, Armstrong JE, Johnson RD. Select spinal lesions reveal multiple ascending pathways in the rat conveying input from the male genitalia. J Physiol 2010; 588:1073-83. [PMID: 20142271 DOI: 10.1113/jphysiol.2009.186544] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The specific white matter location of all the spinal pathways conveying penile input to the rostral medulla is not known. Our previous studies using rats demonstrated the loss of low but not high threshold penile inputs to medullary reticular formation (MRF) neurons after acute and chronic dorsal column (DC) lesions of the T8 spinal cord and loss of all penile inputs after lesioning the dorsal three-fifths of the cord. In the present study, select T8 lesions were made and terminal electrophysiological recordings were performed 45-60 days later in a limited portion of the nucleus reticularis gigantocellularis (Gi) and Gi pars alpha. Lesions included subtotal dorsal hemisections that spared only the lateral half of the dorsal portion of the lateral funiculus on one side, dorsal and over-dorsal hemisections, and subtotal transections that spared predominantly just the ventromedial white matter. Electrophysiological data for 448 single unit recordings obtained from 32 urethane-anaesthetized rats, when analysed in groups based upon histological lesion reconstructions, revealed (1) ascending bilateral projections in the dorsal, dorsolateral and ventrolateral white matter of the spinal cord conveying information from the male external genitalia to MRF, and (2) ascending bilateral projections in the ventrolateral white matter conveying information from the pelvic visceral organs (bladder, descending colon, urethra) to MRF. Multiple spinal pathways from the penis to the MRF may correspond to different functions, including those processing affective/pleasure/motivational, nociception, and mating-specific (such as for erection and ejaculation) inputs.
Collapse
Affiliation(s)
- C H Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA.
| | | | | | | | | |
Collapse
|