1
|
Chen WL, Nishita Y, Nakamura A, Kato T, Nakagawa T, Zhang S, Shimokata H, Otsuka R, Su KP, Arai H. Hemoglobin Concentration is Associated with the Hippocampal Volume in Community-Dwelling Adults. Arch Gerontol Geriatr 2022; 101:104668. [DOI: 10.1016/j.archger.2022.104668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/02/2022]
|
2
|
Rahimi S, Ferdowsi A, Siahposht-Khachaki A. Neuroprotective effects of metformin on traumatic brain injury in rats is associated with the AMP-activated protein kinase signaling pathway. Metab Brain Dis 2020; 35:1135-1144. [PMID: 32621159 DOI: 10.1007/s11011-020-00594-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/29/2020] [Indexed: 01/11/2023]
Abstract
Metformin is an activator of AMP-activated protein kinase (AMPK). Thus, it has the potential to restore energy in damaged neurons and attenuate secondary brain damage due to traumatic brain injury (TBI). This study aims to investigate the potential neuroprotective effects of metformin through the energy balance reestablishment in acute severe brain injury after TBI and explore the underlying mechanisms. Male Wistar rats were divided into eight groups. The veterinary coma scale (VCS) was used to assess short-term neurological deficits. Blood-Brain barrier (BBB) disruption was evaluated by Evans Blue method 6 h post-injury. Vestibulomotor function was evaluated by beam-walk and beam-balance methods. Brain water content and brain tissue phosphorylated and total AMPK were assessed by the wet/dry method and enzyme-linked immunosorbent assay (ELISA), respectively. In order to eliminate the effect of AMPK, compound C was used as an AMPK inhibitor. The presented study showed that TBI has led to significant brain edema, BBB disruption, neurological deficit, vestibulomotor dysfunction and decrease AMPK phosphorylation in the rat brain. Metformin (100 and 200 mg/kg doses) attenuated brain edema, improved BBB and vestibulomotor dysfunction compared to TBI or Vehicle groups (P < 0.001). Furthermore, the p-AMPK/AMPK ratio was increased by metformin administration compare to TBI or Vehicle groups (p < 0.0001). Inhibition of AMPK by compound C abolished Metformin neuroprotective effects (P < 0.05 compared to Met 200 group). This study suggests that metformin inhibits TBI-mediated secondary injury via phosphorylation of AMPK and improves neurobehavioral function following TBI, which provides a potential therapeutic opportunity in the treatment of TBI.
Collapse
Affiliation(s)
- Siavash Rahimi
- Department of Physiology and Pharmacology, Ramsar Campus, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmadreza Ferdowsi
- Department of Physiology and Pharmacology, Ramsar Campus, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Siahposht-Khachaki
- Department of Physiology, Faculty of Medicine, Mazandaran University of Medical Sciences, P.O.Box: 48471-91971, Sari, Iran.
| |
Collapse
|
3
|
Hill JL, Kobori N, Zhao J, Rozas NS, Hylin MJ, Moore AN, Dash PK. Traumatic brain injury decreases AMP-activated protein kinase activity and pharmacological enhancement of its activity improves cognitive outcome. J Neurochem 2016; 139:106-19. [PMID: 27379837 DOI: 10.1111/jnc.13726] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/29/2016] [Accepted: 07/01/2016] [Indexed: 01/01/2023]
Abstract
Prolonged metabolic suppression in the brain is a well-characterized secondary pathology of both experimental and clinical traumatic brain injury (TBI). AMP-activated kinase (AMPK) acts as a cellular energy sensor that, when activated, regulates various metabolic and catabolic pathways to decrease ATP consumption and increase ATP synthesis. As energy availability after TBI is suppressed, we questioned if increasing AMPK activity after TBI would improve cognitive outcome. TBI was delivered using the electromagnetic controlled cortical impact model on male Sprague-Dawley rats (275-300 g) and C57BL/6 mice (20-25 g). AMPK activity within the injured parietal cortex and ipsilateral hippocampus was inferred by western blots using phospho-specific antibodies. The consequences of acute manipulation of AMPK signaling on cognitive function were assessed using the Morris water maze task. We found that AMPK activity is decreased as a result of injury, as indicated by reduced AMPK phosphorylation and corresponding changes in the phosphorylation of its downstream targets: ribosomal protein S6 and Akt Substrate of 160 kDa (AS160). Increasing AMPK activity after injury using the drugs 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide or metformin did not affect spatial learning, but significantly improved spatial memory. Taken together, our results suggest that decreased AMPK activity after TBI may contribute to the cellular energy crisis in the injured brain, and that AMPK activators may have therapeutic utility. Increased phosphorylation of Thr172 activates AMP-activated protein kinase (AMPK) under conditions of low cellular energy availability. This leads to inhibition of energy consuming, while activating energy generating, processes. Hill et al., present data to indicate that TBI decreases Thr172 phosphorylation and that its stimulation by pharmacological agents offers neuroprotection and improves memory. These results suggest that decreased AMPK phosphorylation after TBI incorrectly signals the injured brain that excess energy is available, thereby contributing to the cellular energy crisis and memory impairments.
Collapse
Affiliation(s)
- Julia L Hill
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas, USA
| | - Nobuhide Kobori
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas, USA
| | - Jing Zhao
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas, USA
| | - Natalia S Rozas
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas, USA
| | - Michael J Hylin
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas, USA
| | - Anthony N Moore
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas, USA
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas, USA.
| |
Collapse
|
4
|
Mrozek S, Luzi A, Gonzalez L, Kerhuel L, Fourcade O, Geeraerts T. Cerebral and extracerebral vulnerability to hypoxic insults after diffuse traumatic brain injury in rats. Brain Res 2016; 1646:334-341. [PMID: 27302136 DOI: 10.1016/j.brainres.2016.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 11/30/2022]
Abstract
The post-traumatic brain vulnerability suggests that after traumatic brain injury (TBI), the brain may be more susceptible to posttraumatic hypoxic insults. This concept could be extended to 'peripheral' organs, as non-neurologic organ failure is common after TBI. This study aims to characterize and quantify cerebral and extracerebral tissue hypoxia with pimonidazole resulting from a standardized hypoxia-hypotension (HH) phase occurring after a diffuse experimental TBI in rats. Rats were allocated to Sham (n=5), TBI (n=7), HH (n=7) and TBI+HH (n=7) groups. Then, pimonidazole was injected and brain, liver, heart and kidneys were analysed. In the cerebral cortex, post-treatment hypoxia was higher in TBI+HH group than Sham group (p=0.003), HH group (p=0.003) and TBI group (p=0.002). Large trends in thalamus, hippocampus and striatum for the TBI+HH group compared to the other groups were observed. For the heart and liver, the 4 groups were comparable. For the kidneys, post-treatment hypoxia was higher in the TBI group compared to the Sham and HH groups, but not more than TBI+HH group. This study reveals that a posttraumatic hypoxic insult occurring after a severe TBI has major hypoxic consequences on brain structures. However, TBI by itself appears to induce renal hypoxia that is not enhanced by posttraumatic hypoxic insult.
Collapse
Affiliation(s)
- Ségolène Mrozek
- Equipe d'accueil' Modélisation de l'aggression tissulaire et nociceptive', University Toulouse 3 Paul Sabatier, Toulouse, France; Departement of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France.
| | - Aymeric Luzi
- Equipe d'accueil' Modélisation de l'aggression tissulaire et nociceptive', University Toulouse 3 Paul Sabatier, Toulouse, France; Departement of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France.
| | - Leslie Gonzalez
- Equipe d'accueil' Modélisation de l'aggression tissulaire et nociceptive', University Toulouse 3 Paul Sabatier, Toulouse, France; Departement of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France.
| | - Lionel Kerhuel
- Equipe d'accueil' Modélisation de l'aggression tissulaire et nociceptive', University Toulouse 3 Paul Sabatier, Toulouse, France; Departement of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France.
| | - Olivier Fourcade
- Equipe d'accueil' Modélisation de l'aggression tissulaire et nociceptive', University Toulouse 3 Paul Sabatier, Toulouse, France; Departement of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France.
| | - Thomas Geeraerts
- Equipe d'accueil' Modélisation de l'aggression tissulaire et nociceptive', University Toulouse 3 Paul Sabatier, Toulouse, France; Departement of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France.
| |
Collapse
|
5
|
Amorini AM, Lazzarino G, Di Pietro V, Signoretti S, Lazzarino G, Belli A, Tavazzi B. Metabolic, enzymatic and gene involvement in cerebral glucose dysmetabolism after traumatic brain injury. Biochim Biophys Acta Mol Basis Dis 2016; 1862:679-687. [PMID: 26844378 DOI: 10.1016/j.bbadis.2016.01.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/29/2016] [Indexed: 12/16/2022]
Abstract
In this study, the metabolic, enzymatic and gene changes causing cerebral glucose dysmetabolism following graded diffuse traumatic brain injury (TBI) were evaluated. TBI was induced in rats by dropping 450g from 1 (mild TBI; mTBI) or 2m height (severe TBI; sTBI). After 6, 12, 24, 48, and 120h gene expressions and enzymatic activities of glycolysis and pentose phosphate pathway (PPP) enzymes, and levels of lactate, ATP, ADP, ATP/ADP (indexing mitochondrial phosphorylating capacity), NADP(+), NADPH and GSH were determined in whole brain extracts (n=9 rats at each time for both TBI levels). Sham-operated animals (n=9) were used as controls. Results demonstrated that mTBI caused a late increase (48-120h post injury) of glycolytic gene expression and enzymatic activities, concomitantly with mitochondrial functional recovery (ATP and ATP/ADP normalization). No changes in lactate and PPP genes and enzymes, were accompanied by transient decrease in GSH, NADP(+), NADPH and NADPH/NADP(+). Animals following sTBI showed early increase (6-24h post injury) of glycolytic gene expression and enzymatic activities, occurring during mitochondrial malfunctioning (50% decrease in ATP and ATP/ADP). Higher lactate and lower GSH, NADP(+), NADPH, NADPH/NADP(+) than controls were recorded at anytime post injury (p<0.01). Both TBI levels caused metabolic and gene changes affecting glucose metabolism. Following mTBI, increased glucose flux through glycolysis is coupled to mitochondrial glucose oxidation. "True" hyperglycolysis occurs only after sTBI, where metabolic changes, caused by depressed mitochondrial phosphorylating capacity, act on genes causing net glycolytic flux increase uncoupled from mitochondrial glucose oxidation.
Collapse
Affiliation(s)
- Angela Maria Amorini
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Largo F. Vito 1, 00168 Rome, Italy.
| | - Giacomo Lazzarino
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Largo F. Vito 1, 00168 Rome, Italy.
| | - Valentina Di Pietro
- Neurobiology, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK.
| | - Stefano Signoretti
- Division of Neurosurgery, Department of Neurosciences Head and Neck Surgery, S. Camillo Hospital, Circonvallazione Gianicolense 87, 00152 Rome, Italy.
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Antonio Belli
- Neurobiology, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK; National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Edgbaston, B15 2TH Birmingham, UK.
| | - Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Largo F. Vito 1, 00168 Rome, Italy.
| |
Collapse
|
6
|
Balança B, Bapteste L, Lieutaud T, Ressnikoff D, Guy R, Bezin L, Marinesco S. Neuronal loss as evidenced by automated quantification of neuronal density following moderate and severe traumatic brain injury in rats. J Neurosci Res 2015; 94:39-49. [PMID: 26451689 DOI: 10.1002/jnr.23676] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/10/2015] [Accepted: 09/14/2015] [Indexed: 11/11/2022]
Abstract
Traumatic brain injury causes widespread neurological lesions that can be reproduced in animals with the lateral fluid percussion (LFP) model. The characterization of the pattern of neuronal death generated in this model remains unclear, involving both cortical and subcortical brain regions. Here, 7 days after moderate (3 atmospheres absolute [ATA]) or severe (3.8 ATA) LFP, we estimated neuronal loss by using immunohistochemistry together with a computer-assisted automated method for quantifying neuronal density in brain sections. Neuronal counts were performed ipsilateral to the impact, in the parietal cortex ventral to the site of percussion, in the temporal cortex, in the dorsal thalamus, and in the hippocampus. These results were compared with the counts observed at similar areas in sham animals. We found that neuronal density was severely decreased in the temporal cortex (-60%), in the dorsal thalamus (-63%), and in area CA3 of the hippocampus (-36%) of injured animals compared with controls but was not significantly modified in the cortices located immediately ventral to the impact. Total cellular density increased in brain structures displaying neuronal death, suggesting the presence of gliosis. The increase in the severity of LFP did not change the pattern of neuronal injury. This automated method simplified the study of neuronal loss following traumatic brain injury and allowed the identification of a pattern of neuronal loss that spreads from the dorsal thalamus to the temporal cortex, with the most severe lesions being in brain structures remote from the site of impact.
Collapse
Affiliation(s)
- Baptiste Balança
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Team WAKING, Lyon, France.,Department of Anesthesiology and Intensive Care, P. Wertheimer Neurological Hospital, Hospices Civils de Lyon, Lyon, France.,University Claude Bernard Lyon 1, Lyon, France
| | - Lionel Bapteste
- Department of Anesthesiology and Intensive Care, P. Wertheimer Neurological Hospital, Hospices Civils de Lyon, Lyon, France.,University Claude Bernard Lyon 1, Lyon, France
| | - Thomas Lieutaud
- University Claude Bernard Lyon 1, Lyon, France.,INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Team TIGER, Lyon, France
| | - Denis Ressnikoff
- University Claude Bernard Lyon 1, Lyon, France.,Centre d'Imagerie Quantitative Lyon Est, Lyon, France
| | - Rainui Guy
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Team WAKING, Lyon, France.,University Claude Bernard Lyon 1, Lyon, France
| | - Laurent Bezin
- University Claude Bernard Lyon 1, Lyon, France.,INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Team TIGER, Lyon, France
| | - Stéphane Marinesco
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Team WAKING, Lyon, France.,University Claude Bernard Lyon 1, Lyon, France.,INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, AniRA-Neurochem Technological Platform, Lyon, France
| |
Collapse
|
7
|
Park Y, Liu C, Luo T, Dietrich WD, Bramlett H, Hu B. Chaperone-Mediated Autophagy after Traumatic Brain Injury. J Neurotrauma 2015; 32:1449-57. [PMID: 25891649 DOI: 10.1089/neu.2014.3694] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) and the ubiquitin-proteasomal system (UPS) are two major protein degradation systems responsible for maintaining cellular homeostasis, but how these two systems are regulated after traumatic brain injury (TBI) remains unknown. TBI produces primary mechanical damage that must be repaired to maintain neuronal homeostasis. The level of lysosomal-associated membrane protein type 2A (LAMP2A) is the hallmark of CMA activity. The level of polyubiquitinated proteins (ubi-proteins) reflects UPS activity. This study utilized a moderate fluid percussion injury model in rats to investigate the changes in CMA and the UPS after TBI. Induction of CMA was manifested by significant upregulation of LAMP2A and secondary lysosomes during the periods of 1-15 days of recovery after TBI. In comparison, the levels of ubi-proteins were increased only moderately after TBI. The increases in the levels of LAMP2A and 70 kDa heat-shock protein for CMA after TBI were seen mainly in the secondary lysosome-containing fractions. Confocal and electron microscopy further showed that increased LAMP2A or lysosomes were found mainly in neurons and proliferated microglia. Because CMA and the UPS are two major routes for elimination of different types of cellular aberrant proteins, the consecutive activation of these two pathways may serve as a protective mechanism for maintaining cellular homeostasis after TBI.
Collapse
Affiliation(s)
- Yujung Park
- 1 Neurochemistry Laboratory of Brain Injury, Shock Trauma and Anesthesiology Research Center; University of Maryland School of Medicine , Baltimore, Maryland
| | - Chunli Liu
- 1 Neurochemistry Laboratory of Brain Injury, Shock Trauma and Anesthesiology Research Center; University of Maryland School of Medicine , Baltimore, Maryland
| | - Tianfei Luo
- 1 Neurochemistry Laboratory of Brain Injury, Shock Trauma and Anesthesiology Research Center; University of Maryland School of Medicine , Baltimore, Maryland
| | - W Dalton Dietrich
- 2 Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami School of Medicine , Miami, Florida
| | - Helen Bramlett
- 2 Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami School of Medicine , Miami, Florida
| | - Bingren Hu
- 1 Neurochemistry Laboratory of Brain Injury, Shock Trauma and Anesthesiology Research Center; University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|
8
|
Rowe RK, Harrison JL, O'Hara BF, Lifshitz J. Diffuse brain injury does not affect chronic sleep patterns in the mouse. Brain Inj 2014; 28:504-10. [PMID: 24702469 DOI: 10.3109/02699052.2014.888768] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PRIMARY OBJECTIVE To test if the current model of diffuse brain injury produces chronic sleep disturbances similar to those reported by TBI patients. METHODS AND PROCEDURES Adult male C57BL/6 mice were subjected to moderate midline fluid percussion injury (n = 7; 1.4 atm; 6-10 minutes righting reflex time) or sham injury (n = 5). Sleep-wake activity was measured post-injury using a non-invasive, piezoelectric cage system. Chronic sleep patterns were analysed weekly for increases or decreases in percentage sleep (hypersomnia or insomnia) and changes in bout length (fragmentation). MAIN OUTCOMES AND RESULTS During the first week after diffuse TBI, brain-injured mice exhibited increased mean percentage sleep and mean bout length compared to sham-injured mice. Further analysis indicated the increase in mean percentage sleep occurred during the dark cycle. Injury-induced changes in sleep, however, did not extend beyond the first week post-injury and were not present in weeks 2-5 post-injury. CONCLUSIONS Previously, it has been shown that the midline fluid percussion model used in this study immediately increased post-traumatic sleep. The current study extended the timeline of investigation to show that sleep disturbances extended into the first week post-injury, but did not develop into chronic sleep disturbances. However, the clinical prevalence of TBI-related sleep-wake disturbances warrants further experimental investigation.
Collapse
Affiliation(s)
- Rachel K Rowe
- BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix, AZ , USA
| | | | | | | |
Collapse
|
9
|
Hylin MJ, Orsi SA, Rozas NS, Hill JL, Zhao J, Redell JB, Moore AN, Dash PK. Repeated mild closed head injury impairs short-term visuospatial memory and complex learning. J Neurotrauma 2013; 30:716-26. [PMID: 23489238 DOI: 10.1089/neu.2012.2717] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Concussive force can cause neurocognitive and neurobehavioral dysfunction by inducing functional, electrophysiological, and/or ultrastructural changes within the brain. Although concussion-triggered symptoms typically subside within days to weeks in most people, in 15%-20% of the cases, symptomology can continue beyond this time point. Problems with memory, attention, processing speed, and cognitive flexibility (e.g., problem solving, conflict resolution) are some of the prominent post-concussive cognitive symptoms. Repeated concussions (with loss or altered consciousness), which are common to many contact sports, can exacerbate these symptoms. The pathophysiology of repeated concussions is not well understood, nor is an effective treatment available. In order to facilitate drug discovery to treat post-concussive symptoms (PCSs), there is a need to determine if animal models of repeated mild closed head injury (mCHI) can mimic the neurocognitive and histopathological consequences of repeated concussions. To this end, we employed a controlled cortical impact (CCI) device to deliver a mCHI directly to the skull of mice daily for 4 days, and examined the ensuing neurological and neurocognitive functions using beam balance, foot-fault, an abbreviated Morris water maze test, context discrimination, and active place avoidance tasks. Repeated mCHI exacerbated vestibulomotor, motor, short-term memory and conflict learning impairments as compared to a single mCHI. Learning and memory impairments were still observed in repeated mCHI mice when tested 3 months post-injury. Repeated mCHI also reduced cerebral perfusion, prolonged the inflammatory response, and in some animals, caused hippocampal neuronal loss. Our results show that repeated mCHI can reproduce some of the deficits seen after repeated concussions in humans and may be suitable for drug discovery studies and translational research.
Collapse
Affiliation(s)
- Michael J Hylin
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, Texas 77225, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Bartnik-Olson BL, Harris NG, Shijo K, Sutton RL. Insights into the metabolic response to traumatic brain injury as revealed by (13)C NMR spectroscopy. FRONTIERS IN NEUROENERGETICS 2013; 5:8. [PMID: 24109452 PMCID: PMC3790078 DOI: 10.3389/fnene.2013.00008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/12/2013] [Indexed: 12/11/2022]
Abstract
The present review highlights critical issues related to cerebral metabolism following traumatic brain injury (TBI) and the use of (13)C labeled substrates and nuclear magnetic resonance (NMR) spectroscopy to study these changes. First we address some pathophysiologic factors contributing to metabolic dysfunction following TBI. We then examine how (13)C NMR spectroscopy strategies have been used to investigate energy metabolism, neurotransmission, the intracellular redox state, and neuroglial compartmentation following injury. (13)C NMR spectroscopy studies of brain extracts from animal models of TBI have revealed enhanced glycolytic production of lactate, evidence of pentose phosphate pathway (PPP) activation, and alterations in neuronal and astrocyte oxidative metabolism that are dependent on injury severity. Differential incorporation of label into glutamate and glutamine from (13)C labeled glucose or acetate also suggest TBI-induced adaptations to the glutamate-glutamine cycle.
Collapse
|
11
|
Selwyn R, Hockenbury N, Jaiswal S, Mathur S, Armstrong RC, Byrnes KR. Mild traumatic brain injury results in depressed cerebral glucose uptake: An (18)FDG PET study. J Neurotrauma 2013; 30:1943-53. [PMID: 23829400 DOI: 10.1089/neu.2013.2928] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Moderate to severe traumatic brain injury (TBI) in humans and rats induces measurable metabolic changes, including a sustained depression in cerebral glucose uptake. However, the effect of a mild TBI on brain glucose uptake is unclear, particularly in rodent models. This study aimed to determine the glucose uptake pattern in the brain after a mild lateral fluid percussion (LFP) TBI. Briefly, adult male rats were subjected to a mild LFP and positron emission tomography (PET) imaging with (18)F-fluorodeoxyglucose ((18)FDG), which was performed prior to injury and at 3 and 24 h and 5, 9, and 16 days post-injury. Locomotor function was assessed prior to injury and at 1, 3, 7, 14, and 21 days after injury using modified beam walk tasks to confirm injury severity. Histology was performed at either 10 or 21 days post-injury. Analysis of function revealed a transient impairment in locomotor ability, which corresponds to a mild TBI. Using reference region normalization, PET imaging revealed that mild LFP-induced TBI depresses glucose uptake in both the ipsilateral and contralateral hemispheres in comparison with sham-injured and naïve controls from 3 h to 5 days post-injury. Further, areas of depressed glucose uptake were associated with regions of glial activation and axonal damage, but no measurable change in neuronal loss or gross tissue damage was observed. In conclusion, we show that mild TBI, which is characterized by transient impairments in function, axonal damage, and glial activation, results in an observable depression in overall brain glucose uptake using (18)FDG-PET.
Collapse
Affiliation(s)
- Reed Selwyn
- 1 Department of Radiology, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | | | | | | | | | | |
Collapse
|
12
|
Moro N, Ghavim S, Harris NG, Hovda DA, Sutton RL. Glucose administration after traumatic brain injury improves cerebral metabolism and reduces secondary neuronal injury. Brain Res 2013; 1535:124-36. [PMID: 23994447 DOI: 10.1016/j.brainres.2013.08.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 01/08/2023]
Abstract
Clinical studies have indicated an association between acute hyperglycemia and poor outcomes in patients with traumatic brain injury (TBI), although optimal blood glucose levels needed to maximize outcomes for these patients' remain under investigation. Previous results from experimental animal models suggest that post-TBI hyperglycemia may be harmful, neutral, or beneficial. The current studies determined the effects of single or multiple episodes of acute hyperglycemia on cerebral glucose metabolism and neuronal injury in a rodent model of unilateral controlled cortical impact (CCI) injury. In Experiment 1, a single episode of hyperglycemia (50% glucose at 2 g/kg, i.p.) initiated immediately after CCI was found to significantly attenuate a TBI-induced depression of glucose metabolism in cerebral cortex (4 of 6 regions) and subcortical regions (2 of 7) as well as to significantly reduce the number of dead/dying neurons in cortex and hippocampus at 24 h post-CCI. Experiment 2 examined effects of more prolonged and intermittent hyperglycemia induced by glucose administrations (2 g/kg, i.p.) at 0, 1, 3 and 6h post-CCI. The latter study also found significantly improved cerebral metabolism (in 3 of 6 cortical and 3 of 7 subcortical regions) and significant neuroprotection in cortex and hippocampus 1 day after CCI and glucose administration. These results indicate that acute episodes of post-TBI hyperglycemia can be beneficial and are consistent with other recent studies showing benefits of providing exogenous energy substrates during periods of increased cerebral metabolic demand.
Collapse
Affiliation(s)
- Nobuhiro Moro
- UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7039, USA; Department of Neurosurgery, David Geffen School of Medicine at UCLA, Box 957039, Los Angeles, CA 90095-7039, USA.
| | | | | | | | | |
Collapse
|
13
|
Feng JF, Gurkoff GG, Van KC, Song M, Lowe DA, Zhou J, Lyeth BG. NAAG peptidase inhibitor reduces cellular damage in a model of TBI with secondary hypoxia. Brain Res 2012; 1469:144-52. [PMID: 22750589 DOI: 10.1016/j.brainres.2012.06.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/11/2012] [Accepted: 06/15/2012] [Indexed: 11/26/2022]
Abstract
Traumatic brain injury (TBI) leads to a rapid and excessive glutamate elevation in the extracellular milieu, resulting in neuronal degeneration and astrocyte damage. Posttraumatic hypoxia is a clinically relevant secondary insult that increases the magnitude and duration of glutamate release following TBI. N-acetyl-aspartyl glutamate (NAAG), a prevalent neuropeptide in the CNS, suppresses presynaptic glutamate release by its action at the mGluR3 (a group II metabotropic glutamate receptor). However, extracellular NAAG is rapidly converted into NAA and glutamate by the catalytic enzyme glutamate carboxypeptidase II (GCPII) reducing presynaptic inhibition. We previously reported that the GCPII inhibitor ZJ-43 and its prodrug di-ester PGI-02776 reduce the deleterious effects of excessive extracellular glutamate when injected systemically within the first 30 min following injury. We now report that PGI-02776 (10mg/kg) is neuroprotective when administered 30 min post-injury in a model of TBI plus 30 min of hypoxia (FiO(2)=11%). 24h following TBI with hypoxia, significant increases in neuronal cell death in the CA1, CA2/3, CA3c, hilus and dentate gyrus were observed in the ipsilateral hippocampus. Additionally, there was a significant reduction in the number of astrocytes in the ipsilateral CA1, CA2/3 and in the CA3c/hilus/dentate gyrus. Administration of PGI-02776 immediately following the cessation of hypoxia significantly reduced neuronal and astrocytic cell death across all regions of the hippocampus. These findings indicate that NAAG peptidase inhibitors administered post-injury can significantly reduce the deleterious effects of TBI combined with a secondary hypoxic insult.
Collapse
Affiliation(s)
- Jun-Feng Feng
- Department of Neurological Surgery, University of California at Davis, One Shields Ave., Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Feng JF, Zhao X, Gurkoff GG, Van KC, Shahlaie K, Lyeth BG. Post-traumatic hypoxia exacerbates neuronal cell death in the hippocampus. J Neurotrauma 2012; 29:1167-79. [PMID: 22191636 DOI: 10.1089/neu.2011.1867] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hypoxia frequently occurs in patients with traumatic brain injury (TBI) and is associated with increased morbidity and mortality. This study examined the effects of immediate or delayed post-traumatic hypoxia (fraction of inspired oxygen [FiO(2)] 11%) on acute neuronal degeneration and long-term neuronal survival in hippocampal fields after moderate fluid percussion injury in rats. In Experiment 1, hypoxia was induced for 15 or 30 min alone or immediately following TBI. In Experiments 2 and 3, 30 min of hypoxia was induced immediately after TBI or delayed until 60 min after TBI. In Experiment 1, acute neurodegeneration was evaluated in the hippocampal fields 24 h after insults using Fluoro-Jade staining and stereological quantification. During hypoxia alone, or in combination with TBI, mean arterial blood pressure was significantly reduced by approximately 30%, followed by a rapid return to normal values upon return to pre-injury FiO(2). Hypoxia alone failed to cause hippocampal neuronal degeneration when measured at 24 h after insult. TBI alone resulted in neuronal degeneration in each ipsilateral hippocampal field, predominantly in CA2-CA3 and the dentate gyrus. Compared to TBI alone, TBI plus immediate hypoxia for either 15 or 30 min significantly increased neuronal loss in most ipsilateral hippocampal fields and in the contralateral hilus and dentate gyrus. In Experiment 2, TBI plus hypoxia delayed 30 min significantly increased degeneration only in ipsilateral CA2-CA3. In Experiment 3, 30 min of immediate hypoxia significantly reduced the numbers of surviving neurons in the CA3 at 14 days after TBI. The greatly increased vulnerability in all hippocampal fields by immediate 30 min post-traumatic hypoxia provides a relevant model of TBI complicated with hypoxia/hypotension. These data underscore the significance of the secondary insult, the necessity to better characterize the range of injuries experienced by the TBI patient, and the importance of strictly avoiding hypoxia in the early management of TBI patients.
Collapse
Affiliation(s)
- Jun-feng Feng
- Department of Neurological Surgery, University of California at Davis, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
15
|
Kurland D, Hong C, Aarabi B, Gerzanich V, Simard JM. Hemorrhagic progression of a contusion after traumatic brain injury: a review. J Neurotrauma 2011; 29:19-31. [PMID: 21988198 DOI: 10.1089/neu.2011.2122] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The magnitude of damage to cerebral tissues following head trauma is determined by the primary injury, caused by the kinetic energy delivered at the time of impact, plus numerous secondary injury responses that almost inevitably worsen the primary injury. When head trauma results in a cerebral contusion, the hemorrhagic lesion often progresses during the first several hours after impact, either expanding or developing new, non-contiguous hemorrhagic lesions, a phenomenon termed hemorrhagic progression of a contusion (HPC). Because a hemorrhagic contusion marks tissues with essentially total unrecoverable loss of function, and because blood is one of the most toxic substances to which the brain can be exposed, HPC is one of the most severe types of secondary injury encountered following traumatic brain injury (TBI). Historically, HPC has been attributed to continued bleeding of microvessels fractured at the time of primary injury. This concept has given rise to the notion that continued bleeding might be due to overt or latent coagulopathy, prompting attempts to normalize coagulation with agents such as recombinant factor VIIa. Recently, a novel mechanism was postulated to account for HPC that involves delayed, progressive microvascular failure initiated by the impact. Here we review the topic of HPC, we examine data relevant to the concept of a coagulopathy, and we detail emerging data elucidating the mechanism of progressive microvascular failure that predisposes to HPC after head trauma.
Collapse
Affiliation(s)
- David Kurland
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201-1595, USA
| | | | | | | | | |
Collapse
|
16
|
Marklund N, Hillered L. Animal modelling of traumatic brain injury in preclinical drug development: where do we go from here? Br J Pharmacol 2011; 164:1207-29. [PMID: 21175576 PMCID: PMC3229758 DOI: 10.1111/j.1476-5381.2010.01163.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/02/2010] [Accepted: 12/06/2010] [Indexed: 11/26/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of death and disability in young adults. Survivors of TBI frequently suffer from long-term personality changes and deficits in cognitive and motor performance, urgently calling for novel pharmacological treatment options. To date, all clinical trials evaluating neuroprotective compounds have failed in demonstrating clinical efficacy in cohorts of severely injured TBI patients. The purpose of the present review is to describe the utility of animal models of TBI for preclinical evaluation of pharmacological compounds. No single animal model can adequately mimic all aspects of human TBI owing to the heterogeneity of clinical TBI. To successfully develop compounds for clinical TBI, a thorough evaluation in several TBI models and injury severities is crucial. Additionally, brain pharmacokinetics and the time window must be carefully evaluated. Although the search for a single-compound, 'silver bullet' therapy is ongoing, a combination of drugs targeting various aspects of neuroprotection, neuroinflammation and regeneration may be needed. In summary, finding drugs and prove clinical efficacy in TBI is a major challenge ahead for the research community and the drug industry. For a successful translation of basic science knowledge to the clinic to occur we believe that a further refinement of animal models and functional outcome methods is important. In the clinical setting, improved patient classification, more homogenous patient cohorts in clinical trials, standardized treatment strategies, improved central nervous system drug delivery systems and monitoring of target drug levels and drug effects is warranted.
Collapse
Affiliation(s)
- Niklas Marklund
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala University Hospital, Uppsala, Sweden.
| | | |
Collapse
|
17
|
Bailes JE, Mills JD. Docosahexaenoic Acid Reduces Traumatic Axonal Injury in a Rodent Head Injury Model. J Neurotrauma 2010; 27:1617-24. [PMID: 20597639 DOI: 10.1089/neu.2009.1239] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Julian E. Bailes
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, West Virginia
| | - James D. Mills
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
18
|
Goudarzi I, Kaffashian M, Shabani M, Haghdoost-Yazdi H, Behzadi G, Janahmadi M. In vivo 4-aminopyridine treatment alters the neurotoxin 3-acetylpyridine-induced plastic changes in intrinsic electrophysiological properties of rat cerebellar Purkinje neurones. Eur J Pharmacol 2010; 642:56-65. [DOI: 10.1016/j.ejphar.2010.05.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/29/2010] [Accepted: 05/25/2010] [Indexed: 12/30/2022]
|
19
|
Lusardi TA. Adenosine neuromodulation and traumatic brain injury. Curr Neuropharmacol 2010; 7:228-37. [PMID: 20190964 PMCID: PMC2769006 DOI: 10.2174/157015909789152137] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 05/18/2009] [Accepted: 05/20/2009] [Indexed: 12/17/2022] Open
Abstract
Adenosine is a ubiquitous signaling molecule, with widespread activity across all organ systems. There is evidence that adenosine regulation is a significant factor in traumatic brain injury (TBI) onset, recovery, and outcome, and a growing body of experimental work examining the therapeutic potential of adenosine neuromodulation in the treatment of TBI. In the central nervous system (CNS), adenosine (dys)regulation has been demonstrated following TBI, and correlated to several TBI pathologies, including impaired cerebral hemodynamics, anaerobic metabolism, and inflammation. In addition to acute pathologies, adenosine function has been implicated in TBI comorbidities, such as cognitive deficits, psychiatric function, and post-traumatic epilepsy. This review presents studies in TBI as well as adenosine-related mechanisms in co-morbidities of and unfavorable outcomes resulting from TBI. While the exact role of the adenosine system following TBI remains unclear, there is increasing evidence that a thorough understanding of adenosine signaling will be critical to the development of diagnostic and therapeutic tools for the treatment of TBI.
Collapse
Affiliation(s)
- T A Lusardi
- R. S. Dow Neurobiology Laboratory, Portland OR, USA.
| |
Collapse
|