1
|
Aspesi D, Bass N, Kavaliers M, Choleris E. The role of androgens and estrogens in social interactions and social cognition. Neuroscience 2023:S0306-4522(23)00151-3. [PMID: 37080448 DOI: 10.1016/j.neuroscience.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/02/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
Gonadal hormones are becoming increasingly recognized for their effects on cognition. Estrogens, in particular, have received attention for their effects on learning and memory that rely upon the functioning of various brain regions. However, the impacts of androgens on cognition are relatively under investigated. Testosterone, as well as estrogens, have been shown to play a role in the modulation of different aspects of social cognition. This review explores the impact of testosterone and other androgens on various facets of social cognition including social recognition, social learning, social approach/avoidance, and aggression. We highlight the relevance of considering not only the actions of the most commonly studied steroids (i.e., testosterone, 17β-estradiol, and dihydrotestosterone), but also that of their metabolites and precursors, which interact with a plethora of different receptors and signalling molecules, ultimately modulating behaviour. We point out that it is also essential to investigate the effects of androgens, their precursors and metabolites in females, as prior studies have mostly focused on males. Overall, a comprehensive analysis of the impact of steroids such as androgens on behaviour is fundamental for a full understanding of the neural mechanisms underlying social cognition, including that of humans.
Collapse
Affiliation(s)
- Dario Aspesi
- Department of Psychology and Neuroscience Program, University of Guelph
| | - Noah Bass
- Department of Psychology and Neuroscience Program, University of Guelph
| | - Martin Kavaliers
- Department of Psychology and Neuroscience Program, University of Guelph; Department of Psychology, University of Western Ontario, London, Canada; Graduate Program in Neuroscience, University of Western Ontario, London, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph.
| |
Collapse
|
2
|
Donovan A, Källström M, Wood RI. Effort-based decision making in response to high-dose androgens: role of dopamine receptors. Behav Pharmacol 2022; 33:435-441. [PMID: 36148834 PMCID: PMC9512319 DOI: 10.1097/fbp.0000000000000687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Anabolic-androgenic steroids (AAS) are performance-enhancing drugs used by both world-class and rank-and-file athletes. AAS abuse has been linked with risky decision-making, ranging from drunk driving to abusing multiple drugs. Our lab uses operant behavior in rats to test the effects of AAS (testosterone) on decision making. In our previous study, testosterone caused rats to work harder for food reward during an effort discounting (ED) task. ED is sensitive to dopamine in the nucleus accumbens, and AAS alter accumbens dopamine receptor expression. Accordingly, we determined if testosterone increases response to dopamine receptor antagonists during ED. METHODS Rats were treated chronically with high-dose testosterone (7.5 mg/kg; n = 9) or vehicle (n = 9). We measured baseline preference for the large reward in an ED task, where rats choose between a small easy reward (one lever press for one sugar pellet) and a large difficult reward (2, 5, 10, or 15 presses for three pellets). Preference for the large reward was measured after administration of D1-like (SCH23390, 0.01 mg/kg) or D2-like (eticlopride, 0.06 mg/kg) receptor antagonists. RESULTS At baseline, testosterone- and vehicle-treated rats showed similar preference for the large reward lever (FR5, testosterone: 68.6 ± 9.7% and vehicle: 85.7 ± 2.5%). SCH23390 reduced large reward preference significantly in both groups (FR5, testosterone: 41.3 ± 9.2%; vehicle: 49.1 ± 8.2%; F(1,16) = 17.7; P < 0.05). Eticlopride decreased large reward preference in both groups, but more strongly in testosterone-treated rats (FR5: testosterone: 37.0 ± 9.7%; vehicle: 56.3 ± 7.8%; F(1,16) = 35.3; P < 0.05). CONCLUSION Testosterone increases response to dopamine D2-like receptor blockade, and this contributes to previously observed changes in decision-making behaviors.
Collapse
Affiliation(s)
- Alexandra Donovan
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA
| | - Malin Källström
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ruth I. Wood
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| |
Collapse
|
3
|
Simultaneous electrochemical investigation and detection of two glucocorticoids; interactions with human growth hormone, somatropin. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
4
|
Cattelan Souza L, de Brito MLO, Jesse CR, Boeira SP, de Gomes MG, Goes ATR, Fabbro LD, Machado FR, Prigol M, Nogueira CW. Involvement of kynurenine pathway in depressive-like behaviour induced by nandrolone decanoate in mice. Steroids 2020; 164:108727. [PMID: 32891681 DOI: 10.1016/j.steroids.2020.108727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 11/17/2022]
Abstract
Nandrolone decanoate (ND) belongs to the class II of anabolic-androgenic steroids (AAS), which is composed of 19-nor-testosterone-derivatives. AAS represent a group of synthetic testosterone that is used in clinical treatment. However, these drugs are widely abused among individuals as a means of promoting muscle growth or enhancing athletic performance. AAS in general and ND in particular have been associated with several behavioral disturbances, such as anxiety, aggressiveness and depression. A factor that contributes to the development of depression is the brain activation of indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme of kynurenine pathway (KP). In the present study, we examined the involvement of KP in depressive phenotype induced by a ND treatment (10 mg/kg/day/s.c., for 28 days) that mimics human abuse system (e.g. supraphysiological doses) in C57B/6J mice. Our results showed that ND caused depressive like-behavior in the tail suspension test and anhedonic-like state measured in the sucrose preference test. ND administration decreased the levels of brain-derived neurotrophic factor and neurotrophin-3 and reduced Na+,K+-ATPase activity in the hippocampus, striatum and prefrontal cortex. We also found that ND elicited KP activation, as reflected by the increase of IDO activity and kynurenine levels in these brain regions. Moreover, ND decreased serotonin levels and increased 5-hydroxyindoleacetic acid levels in the brain. Treatment with IDO inhibitor 1-methyl-dl-trypthophan (1 mg/kg/i.p.) reversed the behavioral and neurochemical alterations induced by ND. These results indicate for the first time that KP plays a key role in depressive-like behavior and neurotoxicity induced by supraphysiologicaldoses of ND in mice.
Collapse
Affiliation(s)
- Leandro Cattelan Souza
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil; Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil.
| | - Maicon Lenon Otenio de Brito
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Cristiano Ricardo Jesse
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Silvana Peterini Boeira
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Marcelo Gomes de Gomes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - André Tiago Rossito Goes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Lucian Del Fabbro
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Franciele Romero Machado
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Cristina Wayne Nogueira
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| |
Collapse
|
5
|
The Modulatory Role of Vitamin C in Boldenone Undecylenate Induced Testicular Oxidative Damage and Androgen Receptor Dysregulation in Adult Male Rats. Antioxidants (Basel) 2020; 9:antiox9111053. [PMID: 33126548 PMCID: PMC7694087 DOI: 10.3390/antiox9111053] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Background: This study explored the effect of vitamin C (Vit-C) administration on the reproductive function of adult male Wistar rats injected with boldenone undecylenate (BOL). Methods: Rats were randomly assigned into control, vehicle control, Vit-C (120 mg/kg b.wt./day, orally), BOL (received 5 mg/kg b.wt./week, IM) and BOL+Vit-C-treated groups. After eight weeks, hormonal assay, semen evaluation, testicular enzymes, and antioxidants biomarkers were assessed. Besides, the histopathological and immunohistochemical investigations of the androgen receptor (AR) expression were performed. Results: The results revealed that serum testosterone, acid phosphatase, sorbitol dehydrogenase, sperm abnormalities, and testicular malondialdehyde were significantly incremented in the BOL-treated group. Testicular weight, sperm count, and sperm motility together with serum levels of luteinizing hormone, follicle-stimulating hormone, and estradiol, and testicular testosterone, catalase, superoxide dismutase, and reduced glutathione showed a significant decrease following BOL treatment. Besides, the AR immunoreactivity was significantly decreased in testicular tissues. Vit-C co-administration with BOL significantly relieved the BOL-induced sperm abnormalities, reduced sperm motility, testicular enzyme leakage, and oxidative damage. However, Vit-C could rescue neither BOL-induced hormonal disturbances nor AR down-regulation. Conclusions: The results provide further insight into the mechanisms of BOL-induced reproductive dysfunction and its partial recovery by Vit-C.
Collapse
|
6
|
Conceição CQ, Engi SA, Cruz FC, Planeta CS. Behavioral cross-sensitization between testosterone and fenproporex in adolescent and adult rats. ACTA ACUST UNITED AC 2017; 51:e6388. [PMID: 29185593 PMCID: PMC5685059 DOI: 10.1590/1414-431x20176388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/30/2017] [Indexed: 11/22/2022]
Abstract
The abuse of psychoactive drugs is considered a global health problem. During the last years, a relevant number of studies have investigated the relationship between anabolic-androgenic steroids (AAS) and other psychoactive drugs. AAS, such as testosterone, can cause a dependence syndrome that shares many features with the classical dependence to psychoactive substances. Pre-clinical evidence shows that there are interactions between testosterone and psychoactive drugs, such as cocaine. However, few studies have been performed to investigate the effect of repeated testosterone treatment on behavioral effects of amphetamine derivatives, such as fenproporex. The purpose of the present study was to investigate the effects of repeated testosterone administration on fenproporex-induced locomotor activity in adolescent and adult rats. Adolescent male Wistar rats were injected with testosterone (10 mg/kg sc for 10 days). After 3 days, animals received an acute injection of fenproporex (3.0 mg/kg ip) and the locomotor activity was recorded during 40 min. Thirty days later, the same animals received the same treatment with testosterone followed by a fenproporex challenge injection as described above. Our results demonstrated that repeated testosterone induced behavioral sensitization to fenproporex in adolescent but not in adult rats. These findings suggest that repeated AAS treatment might increase the dependence vulnerability to amphetamine and its derivatives in adolescent rats.
Collapse
Affiliation(s)
- C Q Conceição
- Laboratório de Neuropsicofarmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP, Brasil
| | - S A Engi
- Laboratório de Neuropsicofarmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP, Brasil.,Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual Paulista, PIPGCF UFSCar/UNESP, São Carlos, SP, Brasil
| | - F C Cruz
- Laboratório de Neuropsicofarmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP, Brasil
| | - C S Planeta
- Laboratório de Neuropsicofarmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP, Brasil.,Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual Paulista, PIPGCF UFSCar/UNESP, São Carlos, SP, Brasil
| |
Collapse
|
7
|
Busardò FP, Frati P, Sanzo MD, Napoletano S, Pinchi E, Zaami S, Fineschi V. The impact of nandrolone decanoate on the central nervous system. Curr Neuropharmacol 2016; 13:122-31. [PMID: 26074747 PMCID: PMC4462037 DOI: 10.2174/1570159x13666141210225822] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 10/10/2014] [Accepted: 10/25/2014] [Indexed: 01/31/2023] Open
Abstract
Nandrolone is included in the class II of anabolic androgenic steroids (AAS) which is
composed of 19-nor-testosterone-derivates. In general, AAS is a broad and rapidly increasing group
of synthetic androgens used both clinically and illicitly. AAS in general and nandrolone decanoate
(ND) in particular have been associated with several behavioral disorders. The purpose of this review
is to summarize the literature concerning studies dealing with ND exposure on animal models, mostly
rats that mimic human abuse systems (i.e. supraphysiological doses). We have focused in particular
on researches that have investigated how ND alters the function and expression of neuronal signaling molecules that
underlie behavior, anxiety, aggression, learning and memory, reproductive behaviors, locomotion and reward.
Collapse
Affiliation(s)
- Francesco P Busardò
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy; ; Neuromed, Istituto Mediterraneo Neurologico (IRCCS), Via Atinense 18, Pozzilli, 86077 Isernia, Italy
| | - Mariantonia Di Sanzo
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
| | - Simona Napoletano
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
| | - Enrica Pinchi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
| |
Collapse
|
8
|
Mhillaj E, Morgese MG, Tucci P, Bove M, Schiavone S, Trabace L. Effects of anabolic-androgens on brain reward function. Front Neurosci 2015; 9:295. [PMID: 26379484 PMCID: PMC4549565 DOI: 10.3389/fnins.2015.00295] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/06/2015] [Indexed: 12/02/2022] Open
Abstract
Androgens are mainly prescribed to treat several diseases caused by testosterone deficiency. However, athletes try to promote muscle growth by manipulating testosterone levels or assuming androgen anabolic steroids (AAS). These substances were originally synthesized to obtain anabolic effects greater than testosterone. Although AAS are rarely prescribed compared to testosterone, their off-label utilization is very wide. Furthermore, combinations of different steroids and doses generally higher than those used in therapy are common. Symptoms of the chronic use of supra-therapeutic doses of AAS include anxiety, depression, aggression, paranoia, distractibility, confusion, amnesia. Interestingly, some studies have shown that AAS elicited electroencephalographic changes similar to those observed with amphetamine abuse. The frequency of side effects is higher among AAS abusers, with psychiatric complications such as labile mood, lack of impulse control and high violence. On the other hand, AAS addiction studies are complex because data collection is very difficult due to the subjects' reticence and can be biased by many variables, including physical exercise, that alter the reward system. Moreover, it has been reported that AAS may imbalance neurotransmitter systems involved in the reward process, leading to increased sensitivity toward opioid narcotics and central stimulants. The goal of this article is to review the literature on steroid abuse and changes to the reward system in preclinical and clinical studies.
Collapse
Affiliation(s)
- Emanuela Mhillaj
- Department of Physiology and Pharmacology, Sapienza University of Rome Rome, Italy
| | - Maria G Morgese
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Maria Bove
- Department of Physiology and Pharmacology, Sapienza University of Rome Rome, Italy
| | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| |
Collapse
|
9
|
Ahmed MAE, El-Awdan SA. Lipoic acid and pentoxifylline mitigate nandrolone decanoate-induced neurobehavioral perturbations in rats via re-balance of brain neurotransmitters, up-regulation of Nrf2/HO-1 pathway, and down-regulation of TNFR1 expression. Horm Behav 2015; 73:186-99. [PMID: 26187709 DOI: 10.1016/j.yhbeh.2015.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/23/2015] [Accepted: 07/09/2015] [Indexed: 12/29/2022]
Abstract
Behavioral perturbations associated with nandrolone decanoate abuse by athletes and adolescents may be attributed to oxidative stress and inflammation. However, the underlying mechanisms are not yet fully explored. On the other hand, the natural antioxidant lipoic acid can pass the blood brain barrier and enhance Nrf2/HO-1 (nuclear factor erythroid-2 related factor 2/heme oxygenase-1) pathway. In addition, the phosphodiesterase-IV inhibitor xanthine derivative pentoxifylline has a remarkable inhibitory effect on tumor necrosis factor-alpha (TNF-α). Therefore, this study aimed at investigation of the possible protective effects of lipoic acid and/or pentoxifylline against nandrolone-induced neurobehavioral alterations in rats. Accordingly, male albino rats were randomly distributed into seven groups and treated with either vehicle, nandrolone (15mg/kg, every third day, s.c.), lipoic acid (100mg/kg/day, p.o.), pentoxifylline (200mg/kg/day, i.p.), or nandrolone with lipoic acid and/or pentoxifylline. Rats were challenged in the open field, rewarded T-maze, Morris water maze, and resident-intruder aggression behavioral tests. The present findings showed that nandrolone induced hyperlocomotion, anxiety, memory impairment, and aggression in rats. These behavioral abnormalities were accompanied by several biochemical changes, including altered levels of brain monoamines, GABA, and acetylcholine, enhanced levels of malondialdehyde and TNF-α, elevated activity of acetylcholinesterase, and up-regulated expression of TNF-α receptor-1 (TNFR1). In addition, inhibited catalase activity, down-regulated Nrf2/HO-1 pathway, and suppressed acetylcholine receptor expression were observed. Lipoic acid and pentoxifylline combination significantly mitigated all the previously mentioned deleterious effects mainly via up-regulation of Nrf2/HO-1 pathway, inhibition of TNF-α and down-regulation of TNFR1 expression. In conclusion, the biochemical and histopathological findings of this study revealed the protective mechanisms of lipoic acid and pentoxifylline against nandrolone-induced behavioral changes and neurotoxicity in rats.
Collapse
Affiliation(s)
- Maha A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), 6th of October City, Giza, Egypt.
| | - Sally A El-Awdan
- Department of Pharmacology, National Research Center, Dokki, Giza, Egypt
| |
Collapse
|
10
|
Piacentino D, Kotzalidis GD, Del Casale A, Aromatario MR, Pomara C, Girardi P, Sani G. Anabolic-androgenic steroid use and psychopathology in athletes. A systematic review. Curr Neuropharmacol 2015; 13:101-21. [PMID: 26074746 PMCID: PMC4462035 DOI: 10.2174/1570159x13666141210222725] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/31/2014] [Accepted: 10/25/2014] [Indexed: 12/19/2022] Open
Abstract
The use of anabolic-androgenic steroids (AASs) by professional and recreational athletes is increasing worldwide. The underlying motivations are mainly performance enhancement and body image improvement. AAS abuse and dependence, which are specifically classified and coded by the DSM-5, are not uncommon. AAS-using athletes are frequently present with psychiatric symptoms and disorders, mainly somatoform and eating, but also mood, and schizophrenia-related disorders. Some psychiatric disorders are typical of athletes, like muscle dysmorphia. This raises the issue of whether AAS use causes these disorders in athletes, by determining neuroadaptive changes in the reward neural circuit or by exacerbating stress vulnerability, or rather these are athletes with premorbid abnormal personalities or a history of psychiatric disorders who are attracted to AAS use, prompted by the desire to improve their appearance and control their weights. This may predispose to eating disorders, but AASs also show mood destabilizing effects, with longterm use inducing depression and short-term hypomania; withdrawal/discontinuation may be accompanied by depression. The effects of AASs on anxiety behavior are unclear and studies are inconsistent. AASs are also linked to psychotic behavior. The psychological characteristics that could prompt athletes to use AASs have not been elucidated.
Collapse
Affiliation(s)
- Daria Piacentino
- NESMOS (Neurosciences, Mental Health, and Sensory Organs) Department, School of Medicine and Psychology, Sapienza University-Rome, Italy; UOC Psychiatry, Sant'Andrea Hospital, Rome, Italy
| | - Georgios D Kotzalidis
- NESMOS (Neurosciences, Mental Health, and Sensory Organs) Department, School of Medicine and Psychology, Sapienza University-Rome, Italy; UOC Psychiatry, Sant'Andrea Hospital, Rome, Italy
| | - Antonio Del Casale
- NESMOS (Neurosciences, Mental Health, and Sensory Organs) Department, School of Medicine and Psychology, Sapienza University-Rome, Italy; UOC Psychiatry, Sant'Andrea Hospital, Rome, Italy; ; Department of Psychiatric Rehabilitation, P. Alberto Mileno Onlus Foundation, San Francesco Institute, Vasto, Italy
| | - Maria Rosaria Aromatario
- Department of Anatomical, Histological, Forensic Medicine, And Orthopedic Sciences. Sapienza University-Rome, Italy
| | - Cristoforo Pomara
- Department of Forensic Pathology, University of Foggia; Ospedale Colonnello D'Avanzo, Foggia, Italy
| | - Paolo Girardi
- NESMOS (Neurosciences, Mental Health, and Sensory Organs) Department, School of Medicine and Psychology, Sapienza University-Rome, Italy; UOC Psychiatry, Sant'Andrea Hospital, Rome, Italy; ; Centro Lucio Bini, Rome, Italy
| | - Gabriele Sani
- NESMOS (Neurosciences, Mental Health, and Sensory Organs) Department, School of Medicine and Psychology, Sapienza University-Rome, Italy; UOC Psychiatry, Sant'Andrea Hospital, Rome, Italy; ; Centro Lucio Bini, Rome, Italy; ; IRCCS Santa Lucia Foundation, Department of Clinical and Behavioral Neurology, Neuropsychiatry Laboratory, Rome, Italy
| |
Collapse
|
11
|
Yadav SK, Chandra P, Goyal RN, Shim YB. A review on determination of steroids in biological samples exploiting nanobio-electroanalytical methods. Anal Chim Acta 2013; 762:14-24. [DOI: 10.1016/j.aca.2012.11.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 11/19/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022]
|
12
|
Anterior hypothalamic dopamine D2 receptors modulate adolescent anabolic/androgenic steroid-induced offensive aggression in the Syrian hamster. Behav Pharmacol 2010; 21:314-22. [PMID: 20555255 DOI: 10.1097/fbp.0b013e32833b10f1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the Syrian hamster, treatment with anabolic/androgenic steroids (AAS) throughout adolescence increases dopamine and D2 receptor expression in the anterior hypothalamus (AH), a brain region implicated in the control of aggression. D2 receptor antagonists have reduced aggression in various species and animal models. However, these studies used systemic administration of drugs and reported concomitant changes in mobility. These data complicate the question of whether pharmacology targeting D2 receptors is specific to aggression or whether these drugs exert their antiaggressive effects through nonspecific mechanisms. To resolve this discrepancy, the current studies investigate whether administration of the D2 receptor antagonist eticlopride (0.01-10.0 microg in a final volume of 0.5 microl) into the AH modulates AAS-induced aggression. Antagonism of AH D2 receptors effectively suppressed AAS-induced aggression beginning at the 0.1 microg dose, with higher doses producing a floor effect, when compared with AAS-treated animals injected with saline into the AH. Importantly, these reductions in aggressive responding occurred in the absence of changes in locomotor behavior. Our findings identify a neuroanatomical locus where D2 receptor antagonism suppresses adolescent AAS-induced aggression in the absence of alterations to general mobility.
Collapse
|
13
|
Schwartzer JJ, Melloni RH. Dopamine activity in the lateral anterior hypothalamus modulates AAS-induced aggression through D2 but not D5 receptors. Behav Neurosci 2010; 124:645-55. [PMID: 20939664 PMCID: PMC3131052 DOI: 10.1037/a0020899] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Treatment with anabolic-androgenic steroids (AAS) throughout adolescence facilitates offensive aggression in Syrian hamsters. In the anterior hypothalamus (AH), the dopaminergic neural system undergoes alterations after repeated exposure to AAS, producing elevated aggression. Previously, systemic administration of selective dopamine receptor antagonists has been shown to reduce aggression in various species and animal models. However, these reductions in aggression occur with concomitant alterations in general arousal and mobility. Therefore, to control for these systemic effects, the current studies utilized microinjection techniques to determine the effects of local antagonism of D2 and D5 receptors in the AH on adolescent AAS-induced aggression. Male Syrian hamsters were treated with AAS throughout adolescence and tested for aggression after local infusion of the D2 antagonist eticlopride, or the D5 antagonist SCH-23390, into the AH. Treatment with eticlopride showed dose-dependent suppression of aggressive behavior in the absence of changes in mobility. Conversely, while injection of SCH-23390 suppressed aggressive behavior, these reductions were met with alterations in social interest and locomotor behavior. To elucidate a plausible mechanism for the observed D5 receptor mediation of AAS-induced aggression, brains of AAS and sesame oil-treated animals were processed for double-label immunofluorescence of GAD₆₇ (a marker for GABA production) and D5 receptors in the lateral subdivision of the AH (LAH). Results indicate a sparse distribution of GAD₆₇ neurons colocalized with D5 receptors in the LAH. Together, these results indicate that D5 receptors in the LAH modulate non-GABAergic pathways that indirectly influence aggression control, while D2 receptors have a direct influence on AAS-induced aggression.
Collapse
Affiliation(s)
- Jared J. Schwartzer
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| | - Richard H. Melloni
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| |
Collapse
|
14
|
Kanayama G, Hudson JI, Pope HG. Illicit anabolic-androgenic steroid use. Horm Behav 2010; 58:111-21. [PMID: 19769977 PMCID: PMC2883629 DOI: 10.1016/j.yhbeh.2009.09.006] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/07/2009] [Accepted: 09/09/2009] [Indexed: 01/20/2023]
Abstract
The anabolic-androgenic steroids (AAS) are a family of hormones that includes testosterone and its derivatives. These substances have been used by elite athletes since the 1950s, but they did not become widespread drugs of abuse in the general population until the 1980s. Thus, knowledge of the medical and behavioral effects of illicit AAS use is still evolving. Surveys suggest that many millions of boys and men, primarily in Western countries, have abused AAS to enhance athletic performance or personal appearance. AAS use among girls and women is much less common. Taken in supraphysiologic doses, AAS show various long-term adverse medical effects, especially cardiovascular toxicity. Behavioral effects of AAS include hypomanic or manic symptoms, sometimes accompanied by aggression or violence, which usually occur while taking AAS, and depressive symptoms occurring during AAS withdrawal. However, these symptoms are idiosyncratic and afflict only a minority of illicit users; the mechanism of these idiosyncratic responses remains unclear. AAS users may also ingest a range of other illicit drugs, including both "body image" drugs to enhance physical appearance or performance, and classical drugs of abuse. In particular, AAS users appear particularly prone to opioid use. There may well be a biological basis for this association, since both human and animal data suggest that AAS and opioids may share similar brain mechanisms. Finally, AAS may cause a dependence syndrome in a substantial minority of users. AAS dependence may pose a growing public health problem in future years but remains little studied.
Collapse
Affiliation(s)
- Gen Kanayama
- Biological Psychiatry Laboratory, McLean Hospital, Belmont, and Harvard Medical School, Boston, MA 02478, USA
| | | | | |
Collapse
|
15
|
Melloni RH, Ricci LA. Adolescent exposure to anabolic/androgenic steroids and the neurobiology of offensive aggression: a hypothalamic neural model based on findings in pubertal Syrian hamsters. Horm Behav 2010; 58:177-91. [PMID: 19914254 DOI: 10.1016/j.yhbeh.2009.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 01/12/2023]
Abstract
Considerable public attention has been focused on the issue of youth violence, particularly that associated with drug use. It is documented that anabolic steroid use by teenagers is associated with a higher incidence of aggressive behavior and serious violence, yet little is known about how these drugs produce the aggressive phenotype. Here we discuss work from our laboratory on the relationship between the development and activity of select neurotransmitter systems in the anterior hypothalamus and anabolic steroid-induced offensive aggression using pubertal male Syrian hamsters (Mesocricetus auratus) as an adolescent animal model, with the express goal of synthesizing these data into an cogent neural model of the developmental adaptations that may underlie anabolic steroid-induced aggressive behavior. Notably, alterations in each of the neural systems identified as important components of the anabolic steroid-induced aggressive response occurred in a sub-division of the anterior hypothalamic brain region we identified as the hamster equivalent of the latero-anterior hypothalamus, indicating that this sub-region of the hypothalamus is an important site of convergence for anabolic steroid-induced neural adaptations that precipitate offensive aggression. Based on these findings we present in this review a neural model to explain the neurochemical regulation of anabolic steroid-induced offensive aggression showing the hypothetical interaction between the arginine vasopressin, serotonin, dopamine, gamma-aminobutyric acid, and glutamate neural systems in the anterior hypothalamic brain region.
Collapse
Affiliation(s)
- Richard H Melloni
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
16
|
Salas-Ramirez KY, Montalto PR, Sisk CL. Anabolic steroids have long-lasting effects on male social behaviors. Behav Brain Res 2009; 208:328-35. [PMID: 20036695 DOI: 10.1016/j.bbr.2009.11.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/21/2009] [Accepted: 11/16/2009] [Indexed: 12/17/2022]
Abstract
Anabolic androgenic steroids (AAS) use by adolescents is steadily increasing. Adolescence involves remodeling of steroid-sensitive neural circuits that mediate social behaviors, and previous studies using animal models document effects of AAS on male social behaviors. The present experiments tested whether AAS have persistent and more pronounced behavioral consequences when drug exposure occurs during adolescence as compared to exposure in adulthood. Male Syrian hamsters were injected daily for 14 days with either vehicle or an AAS cocktail containing testosterone cypionate (2 mg/kg), nandrolone decanoate (2 mg/kg), and boldenone undecylenate (1 mg/kg), either during adolescence (27-41 days of age) or adulthood (63-77 days of age). As adults, subjects were tested two or four weeks after the last injection for either sexual behavior with a receptive female or male-male agonistic behavior in a resident-intruder test. Compared with vehicle-treated males, AAS-treated males, regardless of age of treatment, displayed fewer long intromissions and a significant increase in latency to the first long intromission, indicative of reduced potential to reach sexual satiety. Increased aggression was observed in males exposed to AAS compared with males treated with vehicle, independently of age of AAS treatment. However, unlike hamsters exposed to AAS in adulthood, hamsters exposed to AAS during adolescence did not display any submissive or risk-assessment behaviors up to 4 weeks after discontinuation of AAS treatment. Thus, AAS have long-lasting effects on male sexual and agonistic behaviors, with AAS exposure during adolescence resulting in a more pronounced reduction in submissive behavior compared to AAS exposure in adulthood.
Collapse
|
17
|
Abstract
AIMS Anabolic-androgenic steroids (AAS) are widely used illicitly to gain muscle and lose body fat. Here we review the accumulating human and animal evidence showing that AAS may cause a distinct dependence syndrome, often associated with adverse psychiatric and medical effects. METHOD We present an illustrative case of AAS dependence, followed by a summary of the human and animal literature on this topic, based on publications known to us or obtained by searching the PubMed database. RESULTS About 30% of AAS users appear to develop a dependence syndrome, characterized by chronic AAS use despite adverse effects on physical, psychosocial or occupational functioning. AAS dependence shares many features with classical drug dependence. For example, hamsters will self-administer AAS, even to the point of death, and both humans and animals exhibit a well-documented AAS withdrawal syndrome, mediated by neuroendocrine and cortical neurotransmitter systems. AAS dependence may particularly involve opioidergic mechanisms. However, AAS differ from classical drugs in that they produce little immediate reward of acute intoxication, but instead a delayed effect of muscle gains. Thus standard diagnostic criteria for substance dependence, usually crafted for acutely intoxicating drugs, must be adapted slightly for cumulatively acting drugs such as AAS. CONCLUSIONS AAS dependence is a valid diagnostic entity, and probably a growing public health problem. AAS dependence may share brain mechanisms with other forms of substance dependence, especially opioid dependence. Future studies are needed to characterize AAS dependence more clearly, identify risk factors for this syndrome and develop treatment strategies.
Collapse
Affiliation(s)
- Gen Kanayama
- Biological Psychiatry Laboratory, McLean Hospital, Belmont, Massachusetts, and Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
18
|
Effect of substrate and embedded metallic impurities of fullerene in the determination of nandrolone. Anal Chim Acta 2009; 643:95-9. [DOI: 10.1016/j.aca.2009.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 04/02/2009] [Accepted: 04/02/2009] [Indexed: 11/19/2022]
|