1
|
Josselsohn A, Zhao Y, Espinoza D, Hollander E. Oxytocin in neurodevelopmental disorders: Autism spectrum disorder and Prader-Willi syndrome. Pharmacol Ther 2024; 264:108734. [PMID: 39455012 DOI: 10.1016/j.pharmthera.2024.108734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
This manuscript reviews recent work on oxytocin and its use in neurodevelopmental disorders including spectrum disorder (ASD) and Prader-Willi syndrome (PWS). Oxytocin is involved in social recognition, bonding, maternal behaviors, anxiety, food motivation, and hyperphagia. While the pathophysiology of ASD and PWS involve abnormalities in the oxytocin system, clinical trials have shown discrepant results in the effectiveness of oxytocin as a treatment for core symptoms associated with these disorders. In this review, we outline oxytocin's clinical pharmacology, safety considerations, and results in recent clinical trials. We propose that oxytocin may be most beneficial in these populations if dosed in a dynamic regimen (PRN) and paired with social interventions.
Collapse
Affiliation(s)
- Alyssa Josselsohn
- Albert Einstein College of Medicine, Montefiore Medical Center, 1225 Morris Park Avenue Bronx, NY 10461, USA; Temple University, College of Education and Human Development, 1301 Cecil B. Moore Ave, Philadelphia, PA 19122, USA
| | - Yin Zhao
- Albert Einstein College of Medicine, Montefiore Medical Center, 1225 Morris Park Avenue Bronx, NY 10461, USA
| | - Danielle Espinoza
- Albert Einstein College of Medicine, Montefiore Medical Center, 1225 Morris Park Avenue Bronx, NY 10461, USA; SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA
| | - Eric Hollander
- Albert Einstein College of Medicine, Montefiore Medical Center, 1225 Morris Park Avenue Bronx, NY 10461, USA.
| |
Collapse
|
2
|
Başer Ö, Yavuz Y, Özen DÖ, Özgün HB, Ağuş S, Civaş CC, Atasoy D, Yılmaz B. Effects of chronic high fat diet on mediobasal hypothalamic satiety neuron function in POMC-Cre mice. Mol Metab 2024; 82:101904. [PMID: 38395148 PMCID: PMC10910127 DOI: 10.1016/j.molmet.2024.101904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024] Open
Abstract
OBJECTIVE The prevalence of obesity has increased over the past three decades. Proopiomelanocortin (POMC) neurons in the hypothalamic arcuate nucleus (ARC) play a vital role in induction of satiety. Chronic consumption of high-fat diet is known to reduce hypothalamic neuronal sensitivity to hormones like leptin, thus contributing to the development and persistence of obesity. The functional and morphological effects of a high-calorie diet on POMC neurons and how these effects contribute to the development and maintenance of the obese phenotype are not fully understood. For this purpose, POMC-Cre transgenic mice model was exposed to high-fat diet (HFD) and at the end of a 3- and 6-month period, electrophysiological and morphological changes, and the role of POMC neurons in homeostatic nutrition and their response to leptin were thoroughly investigated. METHODS Effects of HFD on POMC-satiety neurons in transgenic mice models exposed to chronic high-fat diet were investigated using electrophysiological (patch-clamp), chemogenetic and Cre recombinase advanced technological methods. Leptin, glucose and lipid profiles were determined and analyzed. RESULTS In mice exposed to a high-fat diet for 6 months, no significant changes in POMC dendritic spine number or projection density from POMC neurons to the paraventricular hypothalamus (PVN), lateral hypothalamus (LH), and bed nucleus stria terminalis (BNST) were observed. It was revealed that leptin hormone did not change the electrophysiological activities of POMC neurons in mice fed with HFD for 6 months. In addition, chemogenetic stimulation of POMC neurons increased HFD consumption. In the 3-month HFD-fed group, POMC activation induced an orexigenic response in mice, whereas switching to a standard diet was found to abolish orexigenic behavior in POMC mice. CONCLUSIONS Chronic high fat consumption disrupts the regulation of POMC neuron activation by leptin. Altered POMC neuron activation abolished the neuron's characteristic behavioral anorexigenic response. Change in nutritional content contributes to the reorganization of developing maladaptations.
Collapse
Affiliation(s)
- Özge Başer
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Yavuz Yavuz
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Deniz Öykü Özen
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Hüseyin Buğra Özgün
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Sami Ağuş
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Cihan Civan Civaş
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Deniz Atasoy
- University of Iowa, Carver College of Medicine, Department of Neuroscience and Pharmacology, Iowa City, USA
| | - Bayram Yılmaz
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye; Izmir Biomedicine and Genome Center, Izmir, Türkiye.
| |
Collapse
|
3
|
Günalan E, Karagöz ME, Cıvaş CC, Bilgin VA, Erdogan CS, Güven A, Yılmaz B, Gemici B. The effect of maternal period nutritional status on oro-sensorial fat perception and taste preference in rats. Mol Cell Biochem 2023; 478:2861-2873. [PMID: 36943662 DOI: 10.1007/s11010-023-04703-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023]
Abstract
CD36 and GPR120 play an important role in the perception and preference for fat-rich food consumption. We aimed to investigate the relationship between oro-gustatory perception of lipids, fatty taste preference, and maternal (Gestation + Lactation)-maturation period nutrition status in offspring Sprague-Dawley rats. In our study, mother rats were fed with control (C) or high-fat diets (HFD) during gestation (21 days) and lactation (21 days) periods. After weaning, the offspring were fed with control (C) or high-fat diets (HFD) during the maturation (120 days) period. Daily calorie intake and weekly body weight measurements were monitored. Two-bottle preference (TBPT) and licking tests measured the fat perceptions and preferences. Plasma levels of insulin, leptin, glucose, and triglyceride were measured. The protein and mRNA expressions of CD36 and GPR120 in the circumvallate papillae (CVP) were determined. The 48 h TBPT results revealed that maternal HFD-exposed offspring rats significantly preferred 2% rapeseed oil solution regardless of the type of maturation diet. According to the licking test, C/C group (C diet exposed group in maternal and maturation periods) offspring licked 0.1% oleic acid-containing water more than C/HFD (C diet exposed in maternal period and HFD exposed group in maturation period) and HFD/HFD group. (HFD exposed group in maternal and maturation periods) groups. Plasma insulin and leptin concentrations significantly increased in HFD/HFD groups compared to C/C group. CD36 protein expressions were significantly lower in HFD/HFD than C/HFD and HFD/C groups. GPR120 and GNAT3 mRNA expressions in HFD/C group were significantly higher than in C/HFD group. Our results suggest that HFD exposure during maternal and maturation period may play a role in fat perception/preference through oral lipid sensors.
Collapse
Affiliation(s)
- Elif Günalan
- Faculty of Medicine, Department of Physiology, Yeditepe University, Ataşehir, 34755, Istanbul, Turkey
- Faculty of Health Science, Department of Nutrition and Dietetics, Istanbul Health and Technology University, Istanbul, Turkey
| | - Meyli Ezgi Karagöz
- Faculty of Medicine, Department of Physiology, Yeditepe University, Ataşehir, 34755, Istanbul, Turkey
| | - Cihan Civan Cıvaş
- Faculty of Medicine, Department of Physiology, Yeditepe University, Ataşehir, 34755, Istanbul, Turkey
| | - Volkan Adem Bilgin
- Faculty of Medicine, Department of Physiology, Yeditepe University, Ataşehir, 34755, Istanbul, Turkey
| | - Cihan Suleyman Erdogan
- Faculty of Medicine, Department of Physiology, Yeditepe University, Ataşehir, 34755, Istanbul, Turkey
| | - Aylin Güven
- Faculty of Medicine, Department of Physiology, Yeditepe University, Ataşehir, 34755, Istanbul, Turkey
| | - Bayram Yılmaz
- Faculty of Medicine, Department of Physiology, Yeditepe University, Ataşehir, 34755, Istanbul, Turkey.
| | - Burcu Gemici
- Faculty of Medicine, Department of Physiology, Yeditepe University, Ataşehir, 34755, Istanbul, Turkey.
| |
Collapse
|
4
|
Gruber T, Lechner F, Murat C, Contreras RE, Sanchez-Quant E, Miok V, Makris K, Le Thuc O, González-García I, García-Clave E, Althammer F, Krabichler Q, DeCamp LM, Jones RG, Lutter D, Williams RH, Pfluger PT, Müller TD, Woods SC, Pospisilik JA, Martinez-Jimenez CP, Tschöp MH, Grinevich V, García-Cáceres C. High-calorie diets uncouple hypothalamic oxytocin neurons from a gut-to-brain satiation pathway via κ-opioid signaling. Cell Rep 2023; 42:113305. [PMID: 37864798 PMCID: PMC10636643 DOI: 10.1016/j.celrep.2023.113305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/21/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023] Open
Abstract
Oxytocin-expressing paraventricular hypothalamic neurons (PVNOT neurons) integrate afferent signals from the gut, including cholecystokinin (CCK), to adjust whole-body energy homeostasis. However, the molecular underpinnings by which PVNOT neurons orchestrate gut-to-brain feeding control remain unclear. Here, we show that mice undergoing selective ablation of PVNOT neurons fail to reduce food intake in response to CCK and develop hyperphagic obesity on a chow diet. Notably, exposing wild-type mice to a high-fat/high-sugar (HFHS) diet recapitulates this insensitivity toward CCK, which is linked to diet-induced transcriptional and electrophysiological aberrations specifically in PVNOT neurons. Restoring OT pathways in diet-induced obese (DIO) mice via chemogenetics or polypharmacology sufficiently re-establishes CCK's anorexigenic effects. Last, by single-cell profiling, we identify a specialized PVNOT neuronal subpopulation with increased κ-opioid signaling under an HFHS diet, which restrains their CCK-evoked activation. In sum, we document a (patho)mechanism by which PVNOT signaling uncouples a gut-brain satiation pathway under obesogenic conditions.
Collapse
Affiliation(s)
- Tim Gruber
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49506, USA; Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49506, USA.
| | - Franziska Lechner
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Cahuê Murat
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Raian E Contreras
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Eva Sanchez-Quant
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, Neuherberg, Germany
| | - Viktorian Miok
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Konstantinos Makris
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ophélia Le Thuc
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ismael González-García
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Elena García-Clave
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | | | - Quirin Krabichler
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lisa M DeCamp
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49506, USA
| | - Russell G Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49506, USA
| | - Dominik Lutter
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Rhiannan H Williams
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute for Neurogenomics, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Paul T Pfluger
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Neurobiology of Diabetes, TUM School of Medicine, Technical University Munich, 80333 Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Department of Pharmacology and Experimental Therapy, Institute for Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls Hospitals and Clinics, Tübingen, Germany
| | - Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - John Andrew Pospisilik
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49506, USA; Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49506, USA
| | - Celia P Martinez-Jimenez
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49506, USA; TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität, Munich, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA.
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336 Munich, Germany.
| |
Collapse
|
5
|
Yavuz Y, Ozen DO, Erol ZY, Goren H, Yilmaz B. Effects of endocrine disruptors on the electrical activity of leptin receptor neurons in the dorsomedial hypothalamus and anxiety-like behavior in male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121366. [PMID: 36858099 DOI: 10.1016/j.envpol.2023.121366] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
There is increasing concern about the effects of endocrine disrupting chemicals (EDCs) on human health. Recently, some EDCs are suggested to affect energy metabolism leading to increased risk of obesity. Obesogenic effects of some EDCs on adipogenesis have been reported, however, there is no study examining their potential actions on the brain circuits controlling feeding and metabolism. We have investigated effects of tributyltin (TBT) and dichlorodiphenyltrichloroethane (p,p'-DDT) on electrical activity on dorsomedial hypothalamic leptin receptor neurons (DMHLepR), morphological adaptations in neuronal anatomy of DMHLepR, locomotion, and anxiety-like behaviors in mice. Twenty-three Lep-Cre transgenic mice were intracranially injected with GFP virus. Control animals received intraperitoneal corn oil alone while group 2 and 3 received TBT (25 μg/kg) and p,p'-DDT (2 mg/kg) for one month. Locomotor activity and anxiety-like behavior of the animals were determined by open field test. Electrophysiological effects of TBT and p,p'-DDT on DMHLepR neurons were determined by patch clamp method. Neuronal anatomy was determined by confocal microscopy. Spontaneous firing frequency of DMHLepR neurons of TBT group of mice was significantly higher than both p,p'-DDT and control groups (p < 0.01). TBT and p,p'-DDT significantly decreased frequency of the spontaneous inhibitory post-synaptic currents to DMHLepR neurons compared to the control group (p < 0.05). The time spent in the center and the number of entrances to the center by the TBT-administered mice were significantly lower than other groups (p < 0.01). The total distance traveled and mean speed of the control group of mice were significantly higher than the p,p'-DDT- and TBT-administered animals (p < 0.0001). c-Fos activity of the p,p'-DDT- and TBT-administered animals were significantly elevated compared to the control group (p < 0.001), while no change in the number of dendritic spines were observed. In conclusion, this study demonstrates that exposure to TBT and p,p'-DDT alters electrical activity in DMHLepR neurons and behavioral state in mice.
Collapse
Affiliation(s)
- Yavuz Yavuz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey.
| | - Deniz Oyku Ozen
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Zehra Yagmur Erol
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Habibe Goren
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Bayram Yilmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
6
|
Investigation of effects of transferrin-conjugated gold nanoparticles on hippocampal neuronal activity and anxiety behavior in mice. Mol Cell Biochem 2022. [DOI: 10.1007/s11010-022-04632-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Custers ML, Nestor L, De Bundel D, Van Eeckhaut A, Smolders I. Current Approaches to Monitor Macromolecules Directly from the Cerebral Interstitial Fluid. Pharmaceutics 2022; 14:pharmaceutics14051051. [PMID: 35631637 PMCID: PMC9146401 DOI: 10.3390/pharmaceutics14051051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023] Open
Abstract
Gaining insights into the pharmacokinetic and pharmacodynamic properties of lead compounds is crucial during drug development processes. When it comes to the treatment of brain diseases, collecting information at the site of action is challenging. There are only a few techniques available that allow for the direct sampling from the cerebral interstitial space. This review concerns the applicability of microdialysis and other approaches, such as cerebral open flow microperfusion and electrochemical biosensors, to monitor macromolecules (neuropeptides, proteins, …) in the brain. Microdialysis and cerebral open flow microperfusion can also be used to locally apply molecules at the same time at the site of sampling. Innovations in the field are discussed, together with the pitfalls. Moreover, the ‘nuts and bolts’ of the techniques and the current research gaps are addressed. The implementation of these techniques could help to improve drug development of brain-targeted drugs.
Collapse
|
8
|
Ren Z, Zhang A, Zhang J, Wang R, Xia H. Role of Perinatal Biological Factors in Delayed Lactogenesis II Among Women With Pre-pregnancy Overweight and Obesity. Biol Res Nurs 2022; 24:459-471. [PMID: 35505584 DOI: 10.1177/10998004221097085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Pre-pregnancy overweight and obesity are negatively associated with delayed onset of lactogenesis II (OL), but the mechanisms by which these conditions affect OL are still unclear. OBJECTIVES To identify biological factors related to pre-pregnancy overweight/obesity and determine whether these biological factors were associated with delayed OL in this population. METHODS In this prospective observational study, we assigned 72 primipara to a pre-pregnancy overweight/obese group (n = 36) and a normal-weight group (n = 36). Blood samples were collected at 37 w of gestation and 48 h postpartum and assayed for levels of the following hormones: leptin, insulin, estradiol, prolactin (PRL), progesterone, and oxytocin. The primary outcome was timing of OL, estimated by maternal perception of breast fullness. We used linear-regression analysis to determine associations between hormones and delayed OL. RESULTS Sixty-three participants (87.5%) had complete data. OL occurred later in overweight/obese than in normal-weight women (p < .001). Compared with the normal-weight group, the overweight/obese group showed higher leptin levels at both times of observation and exhibited a slower drop in estrogen concentrations from 37 w of gestation to 48 h postpartum (all p < .05). After adjusting for confounding factors, leptin concentrations in late pregnancy and the magnitudes of decline in estrogen concentrations at 48 h postpartum were correlated with OL. CONCLUSION Women who were overweight/obese before pregnancy had elevated leptin levels in late pregnancy and a delayed decline in estrogen concentrations at 48 h postpartum. Both of these phenomena were related to delayed OL in this population.
Collapse
Affiliation(s)
- Ziqi Ren
- School of Nursing, 12478Fudan University, Shanghai, China
| | - Aixia Zhang
- Department of Nursing, 159379Nanjing Medical University Affiliated Healthcare Hospital for Women and Infants, Nanjing, China
| | - Jingjing Zhang
- Department of Nursing, 159379Nanjing Medical University Affiliated Healthcare Hospital for Women and Infants, Nanjing, China
| | - Rui Wang
- Department of Nursing, 159379Nanjing Medical University Affiliated Healthcare Hospital for Women and Infants, Nanjing, China
| | - Haiou Xia
- School of Nursing, 12478Fudan University, Shanghai, China
| |
Collapse
|
9
|
Pruccoli J, Parmeggiani A, Cordelli DM, Lanari M. The Role of the Noradrenergic System in Eating Disorders: A Systematic Review. Int J Mol Sci 2021; 22:11086. [PMID: 34681746 PMCID: PMC8537146 DOI: 10.3390/ijms222011086] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 01/30/2023] Open
Abstract
Noradrenaline (NE) is a catecholamine acting as both a neurotransmitter and a hormone, with relevant effects in modulating feeding behavior and satiety. Several studies have assessed the relationship between the noradrenergic system and Eating Disorders (EDs). This systematic review aims to report the existing literature on the role of the noradrenergic system in the development and treatment of EDs. A total of 35 studies were included. Preclinical studies demonstrated an involvement of the noradrenergic pathways in binge-like behaviors. Genetic studies on polymorphisms in genes coding for NE transporters and regulating enzymes have shown conflicting evidence. Clinical studies have reported non-unanimous evidence for the existence of absolute alterations in plasma NE values in patients with Anorexia Nervosa (AN) and Bulimia Nervosa (BN). Pharmacological studies have documented the efficacy of noradrenaline-modulating therapies in the treatment of BN and Binge Eating Disorder (BED). Insufficient evidence was found concerning the noradrenergic-mediated genetics of BED and BN, and psychopharmacological treatments targeting the noradrenergic system in AN. According to these data, further studies are required to expand the existing knowledge on the noradrenergic system as a potential target for treatments of EDs.
Collapse
Affiliation(s)
- Jacopo Pruccoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Centro Regionale per i Disturbi della Nutrizione e dell’Alimentazione in età Evolutiva, U.O. Neuropsichiatria dell’età Pediatrica, 40138 Bologna, Italy; (A.P.); (D.M.C.)
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy;
| | - Antonia Parmeggiani
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Centro Regionale per i Disturbi della Nutrizione e dell’Alimentazione in età Evolutiva, U.O. Neuropsichiatria dell’età Pediatrica, 40138 Bologna, Italy; (A.P.); (D.M.C.)
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy;
| | - Duccio Maria Cordelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Centro Regionale per i Disturbi della Nutrizione e dell’Alimentazione in età Evolutiva, U.O. Neuropsichiatria dell’età Pediatrica, 40138 Bologna, Italy; (A.P.); (D.M.C.)
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy;
| | - Marcello Lanari
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, 40138 Bologna, Italy;
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico di S. Orsola, U.O. Pediatria d’urgenza, Pronto Soccorso Pediatrico e OBI, 40138 Bologna, Italy
| |
Collapse
|
10
|
Yildiz C, Öngel ME, Yilmaz B, Özilgen M. Diet-dependent entropic assessment of athletes' lifespan. J Nutr Sci 2021; 10:e83. [PMID: 34733495 PMCID: PMC8532055 DOI: 10.1017/jns.2021.78] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 01/10/2023] Open
Abstract
Life expectancies of the athletes depend on the sports they are doing. The entropic age concept, which was found successful in the previous nutrition studies, will be employed to assess the relation between the athletes' longevity and nutrition. Depending on their caloric needs, diets are designed for each group of athletes based on the most recent guidelines while they are pursuing their careers and for the post-retirement period, and then the metabolic entropy generation was worked out for each group. Their expected lifespans, based on attaining the lifespan entropy limit, were calculated. Thermodynamic assessment appeared to be in agreement with the observations. There may be a significant improvement in the athletes' longevity if they shift to a retirement diet after the age of 50. The expected average longevity for male athletes was 56 years for cyclists, 66 years for weightlifters, 75 years for rugby players and 92 years for golfers. If they should start consuming the retirement diet after 50 years of age, the longevity of the cyclists may increase for 7 years, and those of weightlifters, rugby players and golfers may increase for 22, 30 and 8 years, respectively.
Collapse
Affiliation(s)
- Cennet Yildiz
- Department of Food Engineering, Yeditepe University, Kayısdagi, Atasehir, Istanbul34755, Turkey
| | - Melek Ece Öngel
- Nutrition and Dietetics Department, Yeditepe University, Kayısdagi, Atasehir, Istanbul34755, Turkey
| | - Bayram Yilmaz
- Faculty of Medicine, Department of Physiology, Yeditepe University, Istanbul, Turkey
| | - Mustafa Özilgen
- Department of Food Engineering, Yeditepe University, Kayısdagi, Atasehir, Istanbul34755, Turkey
| |
Collapse
|
11
|
Thermodynamic assessment of allocation of energy and exergy of the nutrients for the life processes during pregnancy. Br J Nutr 2020; 124:742-753. [PMID: 32381134 DOI: 10.1017/s0007114520001646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thermodynamic analyses are performed to quantify allocation of the nutritional energy and exergy to most of the life processes by pregnant mice. In these analyses, 'internal work performance' is calculated for the first time in the literature for metabolism during pregnancy and found substantially higher than the 'external work performance'. Variation of the daily entropy generation rates and the daily internal work performance rates during the course of pregnancy showed a highly similar phasic behaviour. With the progression of the pregnancy, external work performance decreased and second law efficiency increased significantly. On the 13th day of pregnancy, net energy extracted from the food at the cellular energy metabolism subsystem was 15·0 kJ; approximately 3 kJ of it was employed for daily internal work performance, 0·8 kJ was allocated to daily external work performance and 0·8 kJ was stored in the adipose tissue without entering into the cellular energy metabolism subsystem. Heat generation in association with internal and external work performance was 9·1 and 2·2 kJ, respectively. Energy, pertinent to the first law, and exergy (useful energy), pertinent to the second law, balances are described graphically, and comparison of these plots showed that the total exergy of the nutrients allocated to internal and external work performance and heat generation is substantially smaller in magnitude when compared with those of energy balance.
Collapse
|
12
|
Öngel ME, Yıldız C, Akpınaroğlu C, Yilmaz B, Özilgen M. Why women may live longer than men do? A telomere-length regulated and diet-based entropic assessment. Clin Nutr 2020; 40:1186-1191. [PMID: 32807581 DOI: 10.1016/j.clnu.2020.07.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Empirical analyses of the data available around the word concluded that women have longer life span now, when compared to the men. Available literature unfortunately could not offer full answers to this observation. The "entropic age" concept suggests that ageing related changes in the body, such as loss of molecular functions and overwhelming of the maintenance systems, may be explained in terms of entropy generation. METHODS Telomere-length regulated entropic assessment based on metabolic activity with four different diets carried out. RESULTS Estimates of the life expectancy of the women on all of these diets is longer than those of the men. Faster shortening of the telomere lengths in men was the major reason of the shorter life expectancy. The highest and the lowest life expectancy for women were estimated with Mediterranean and the vegetarian diets, respectively; men were estimated to have the longest life span with the vegetarian diet and the shortest life span with the ketogenic diet. CONCLUSIONS A higher rate of metabolism causes higher entropy generation and hints correlations that can be helpful in future ageing research. Faster shortening of the telomere lengths in men was the major reason of the estimation of the shorter life span for men.
Collapse
Affiliation(s)
- Melek Ece Öngel
- Department and Nutrition and Dietetics, Yeditepe University, 34755, Kayısdagi, Atasehir, Istanbul, Turkey
| | - Cennet Yıldız
- Department of Food Engineering, Yeditepe University, 34755, Kayısdagi, Atasehir, Istanbul, Turkey
| | - Can Akpınaroğlu
- Department of Genetics and Bioengineering, Yeditepe University, 34755, Kayısdagi, Atasehir, Istanbul, Turkey
| | - Bayram Yilmaz
- Yeditepe University, Faculty of Medicine, Yeditepe University Hospital, Istanbul, Turkey
| | - Mustafa Özilgen
- Department of Food Engineering, Yeditepe University, 34755, Kayısdagi, Atasehir, Istanbul, Turkey.
| |
Collapse
|
13
|
Hume C, Leng G. Oxytocin neurons: integrators of hypothalamic and brainstem circuits in the regulation of macronutrient-specific satiety. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Lucka A, Wysokiński A. Association between adiposity and fasting serum levels of appetite-regulating peptides: Leptin, neuropeptide Y, desacyl ghrelin, peptide YY(1-36), obestatin, cocaine and amphetamine-regulated transcript, and agouti-related protein in nonobese participants. CHINESE J PHYSIOL 2019; 62:217-225. [PMID: 31670286 DOI: 10.4103/cjp.cjp_29_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The objective of this study was to evaluate the association between adiposity parameters and fasting serum levels of appetite-regulating peptides: leptin, neuropeptide Y (NPY), desacyl ghrelin, peptide YY(1-36), obestatin, cocaine- and amphetamine-regulated transcript (CART), and agouti-related protein in 30 healthy, non-obese subjects. Thirty European Caucasian adult participants were included in the study (17 men and 13 women). Body composition (body fat and lean body mass) was determined using bioelectrical impedance analysis. Concentrations of peptides in serum were assessed using the enzyme-linked immunosorbent assay. Women had higher level of leptin (P < 0.001), with no other differences for analyzed peptides. We have found a significant correlation between serum concentrations of CART and NPY (P < 0.001). Fasting leptin level was associated with age (P = 0.002), waist circumference (P < 0.001), and lean body mass (P < 0.001). Levels of ghrelin were lower in participants with dyslipidemia (P = 0.009). Levels of obestatin (P = 0.008) and leptin (P = 0.02) were higher in participants with insulin resistance. Associations between body fat and appetite-regulating peptides are more complex than simple feedback loops. Leptin is probably the first signal in the pathway that regulates body fat content, as of all analyzed peptides leptin was the only one that was associated with body composition or anthropometric measurements.
Collapse
Affiliation(s)
- Anna Lucka
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, Łódź, Poland
| | - Adam Wysokiński
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
15
|
Responsiveness of hypothalamo-pituitary-adrenal axis to leptin is impaired in diet-induced obese rats. Nutr Diabetes 2019; 9:10. [PMID: 30886140 PMCID: PMC6423225 DOI: 10.1038/s41387-019-0076-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/25/2018] [Accepted: 11/06/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND/OBJECTIVES Diet-induced obese (DIO) rats have altered stress (HPA) axis activity compared to diet-resistant (DR) rats when chronically exposed to a high-fat (HF) diet. Since stress axis is tightly regulated by leptin, an adipocyte-secreted hormone that is important for controlling body weight, we hypothesized that leptin action is impaired in DIO rats leading to alterations in HPA axis activity. SUBJECTS/METHODS We intraperitoneally injected selectively bred DIO and DR rats with either saline or recombinant rat leptin. HPA axis activity was assessed by measuring norepinephrine (NE) in the paraventricular nucleus (PVN), corticotropin-releasing hormone (CRH) in the median eminence, and serum corticosterone (CORT). To test if HF exposure duration and the corresponding increase in leptin differentially affects HPA axis activity, we placed animals on a chow or HF diet for 1 or 6 weeks. RESULTS Leptin injection significantly increased serum leptin levels in both DIO and DR animals. It also reduced PVN NE in both groups, indicating that noradrenergic neurons in both groups remain responsive to leptin. HF diet duration-dependently increased serum leptin only in DIO animals whereas PVN NE increased in both groups. While DR rats responded to HF diet by increasing CRH and CORT at both time-points, responses in DIO rats varied, suggesting that they have altered HPA axis activity that may be dependent on HF-induced leptin levels and/or signaling. To understand the underlying mechanisms, we measured pSTAT-3, a marker of leptin signaling, in brainstem noradrenergic neurons and found reduced pSTAT-3 in A1 region of HF-fed DIO rats. We also found higher serum free fatty acids (FFAs) and a pro-inflammatory cytokine, IL-1β. CONCLUSIONS Collectively, these findings reveal that DIO rats have inherent neuroendocrine impairment in NE-HPA axis circuitry that worsens with the extent of HF diet exposure, possibly due to brainstem leptin resistance and/or elevated circulating FFAs and IL-1β.
Collapse
|
16
|
Jurek B, Neumann ID. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol Rev 2018; 98:1805-1908. [DOI: 10.1152/physrev.00031.2017] [Citation(s) in RCA: 408] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The many facets of the oxytocin (OXT) system of the brain and periphery elicited nearly 25,000 publications since 1930 (see FIGURE 1 , as listed in PubMed), which revealed central roles for OXT and its receptor (OXTR) in reproduction, and social and emotional behaviors in animal and human studies focusing on mental and physical health and disease. In this review, we discuss the mechanisms of OXT expression and release, expression and binding of the OXTR in brain and periphery, OXTR-coupled signaling cascades, and their involvement in behavioral outcomes to assemble a comprehensive picture of the central and peripheral OXT system. Traditionally known for its role in milk let-down and uterine contraction during labor, OXT also has implications in physiological, and also behavioral, aspects of reproduction, such as sexual and maternal behaviors and pair bonding, but also anxiety, trust, sociability, food intake, or even drug abuse. The many facets of OXT are, on a molecular basis, brought about by a single receptor. The OXTR, a 7-transmembrane G protein-coupled receptor capable of binding to either Gαior Gαqproteins, activates a set of signaling cascades, such as the MAPK, PKC, PLC, or CaMK pathways, which converge on transcription factors like CREB or MEF-2. The cellular response to OXT includes regulation of neurite outgrowth, cellular viability, and increased survival. OXTergic projections in the brain represent anxiety and stress-regulating circuits connecting the paraventricular nucleus of the hypothalamus, amygdala, bed nucleus of the stria terminalis, or the medial prefrontal cortex. Which OXT-induced patterns finally alter the behavior of an animal or a human being is still poorly understood, and studying those OXTR-coupled signaling cascades is one initial step toward a better understanding of the molecular background of those behavioral effects.
Collapse
Affiliation(s)
- Benjamin Jurek
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
17
|
Cuesto G, Everaerts C, León LG, Acebes A. Molecular bases of anorexia nervosa, bulimia nervosa and binge eating disorder: shedding light on the darkness. J Neurogenet 2017; 31:266-287. [PMID: 28762842 DOI: 10.1080/01677063.2017.1353092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eating-disorders (EDs) consequences to human health are devastating, involving social, mental, emotional, physical and life-threatening aspects, concluding on impairment and death in cases of extreme anorexia nervosa. It also implies that people suffering an ED need to find psychiatric and psychological help as soon as possible to achieve a fully physical and emotional recovery. Unfortunately, to date, there is a crucial lack of efficient clinical treatment to these disorders. In this review, we present an overview concerning the actual pharmacological and psychological treatments, the knowledge of cells, circuits, neuropeptides, neuromodulators and hormones in the human brain- and other organs- underlying these disorders, the studies in animal models and, finally, the genetic approaches devoted to face this challenge. We will also discuss the need for new perspectives, avenues and strategies to be developed in order to pave the way to novel and more efficient therapeutics.
Collapse
Affiliation(s)
- Germán Cuesto
- a Centre for Biomedical Research of the Canary Islands , Institute of Biomedical Technologies, University of La Laguna , Tenerife , Spain
| | - Claude Everaerts
- b Centre des Sciences du Goût et de l'Alimentation , UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne Franche-Comté , Dijon , France
| | - Leticia G León
- c Cancer Pharmacology Lab , AIRC Start Up Unit, University of Pisa , Pisa , Italy
| | - Angel Acebes
- a Centre for Biomedical Research of the Canary Islands , Institute of Biomedical Technologies, University of La Laguna , Tenerife , Spain
| |
Collapse
|
18
|
Ferrante C, Orlando G, Recinella L, Leone S, Chiavaroli A, Di Nisio C, Shohreh R, Manippa F, Ricciuti A, Vacca M, Brunetti L. Central inhibitory effects on feeding induced by the adipo-myokine irisin. Eur J Pharmacol 2016; 791:389-394. [PMID: 27614130 DOI: 10.1016/j.ejphar.2016.09.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 11/30/2022]
Abstract
Irisin, the soluble secreted form of fibronectin type III domain containing 5 (FNDC5)-cleaved product, is a recently identified adipo-myokine that has been indicated as a possible link between physical exercise and energetic homeostasis. The co-localization of irisin with neuropeptide Y in hypothalamic sections of paraventricular nucleus, which receives NPY/AgRP projections from the arcuate nucleus, suggests a possible role of irisin in the central regulation of energy balance. In this context, in the present work we studied the effects of intra-hypothalamic irisin (1μl, 50-200nmol/l) administration on feeding and orexigenic [agouti-related peptide (AgRP), neuropeptide Y (NPY) and orexin-A] and anorexigenic [cocaine and amphetamine-regulated transcript (CART) and proopiomelanocortin (POMC)] peptides in male Sprague-Dawley rats. Furthermore, we evaluated the effects of irisin on hypothalamic dopamine (DA), norepinephrine (NE) and serotonin (5-hydroxytryptamine, 5-HT) concentrations and plasma NE levels. Compared to vehicle, irisin injected rats showed decreased food intake, possibly mediated by stimulated CART and POMC and inhibited DA, NE and orexin-A, in the hypothalamus. We also found increased plasma NE levels, supporting a role for sympathetic nervous system stimulation in mediating increased oxygen consumption by irisin.
Collapse
Affiliation(s)
- Claudio Ferrante
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Giustino Orlando
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Lucia Recinella
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Sheila Leone
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Annalisa Chiavaroli
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Chiara Di Nisio
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Rugia Shohreh
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Fabio Manippa
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Adriana Ricciuti
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Michele Vacca
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| | - Luigi Brunetti
- Department of Pharmacy, "G. d'Annunzio" University, via dei Vestini 31, 66013 Chieti, Italy.
| |
Collapse
|
19
|
Gavello D, Vandael D, Gosso S, Carbone E, Carabelli V. Dual action of leptin on rest-firing and stimulated catecholamine release via phosphoinositide 3-kinase-driven BK channel up-regulation in mouse chromaffin cells. J Physiol 2015; 593:4835-53. [PMID: 26282459 DOI: 10.1113/jp271078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/12/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Leptin is an adipokine produced by the adipose tissue regulating body weight through its appetite-suppressing effect and, as such, exerts a relevant action on the adipo-adrenal axis. Leptin has a dual action on adrenal mouse chromaffin cells both at rest and during stimulation. At rest, the adipokine inhibits the spontaneous firing of most cells by enhancing the probability of BK channel opening through the phosphoinositide 3-kinase signalling cascade. This inhibitory effect is absent in db(-) /db(-) mice deprived of Ob receptors. During sustained stimulation, leptin preserves cell excitability by generating well-adapted action potential (AP) trains of lower frequency and broader width and increases catecholamine secretion by increasing the size of the ready-releasable pool and the rate of vesicle release. In conclusion, leptin dampens AP firing at rest but preserves AP firing and enhances catecholamine release during sustained stimulation, highlighting the importance of the adipo-adrenal axis in the leptin-mediated increase of sympathetic tone and catecholamine release. ABSTRACT Leptin is an adipokine produced by the adipose tissue regulating body weight through its appetite-suppressing effect. Besides being expressed in the hypothalamus and hippocampus, leptin receptors (ObRs) are also present in chromaffin cells of the adrenal medulla. In the present study, we report the effect of leptin on mouse chromaffin cell (MCC) functionality, focusing on cell excitability and catecholamine secretion. Acute application of leptin (1 nm) on spontaneously firing MCCs caused a slowly developing membrane hyperpolarization followed by complete blockade of action potential (AP) firing. This inhibitory effect at rest was abolished by the BK channel blocker paxilline (1 μm), suggesting the involvement of BK potassium channels. Single-channel recordings in 'perforated microvesicles' confirmed that leptin increased BK channel open probability without altering its unitary conductance. BK channel up-regulation was associated with the phosphoinositide 3-kinase (PI3K) signalling cascade because the PI3K specific inhibitor wortmannin (100 nm) fully prevented BK current increase. We also tested the effect of leptin on evoked AP firing and Ca(2+) -driven exocytosis. Although leptin preserves well-adapted AP trains of lower frequency, APs are broader and depolarization-evoked exocytosis is increased as a result of the larger size of the ready-releasable pool and higher frequency of vesicle release. The kinetics and quantal size of single secretory events remained unaltered. Leptin had no effect on firing and secretion in db(-) /db(-) mice lacking the ObR gene, confirming its specificity. In conclusion, leptin exhibits a dual action on MCC activity. It dampens AP firing at rest but preserves AP firing and increases catecholamine secretion during sustained stimulation, highlighting the importance of the adipo-adrenal axis in the leptin-mediated increase of sympathetic tone and catecholamine release.
Collapse
Affiliation(s)
- Daniela Gavello
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy
| | - David Vandael
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy.,Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Austria
| | - Sara Gosso
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy
| | - Emilio Carbone
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy
| | - Valentina Carabelli
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy
| |
Collapse
|
20
|
Laque A, Yu S, Qualls-Creekmore E, Gettys S, Schwartzenburg C, Bui K, Rhodes C, Berthoud HR, Morrison CD, Richards BK, Münzberg H. Leptin modulates nutrient reward via inhibitory galanin action on orexin neurons. Mol Metab 2015; 4:706-17. [PMID: 26500842 PMCID: PMC4588437 DOI: 10.1016/j.molmet.2015.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 11/30/2022] Open
Abstract
Objective Leptin modulates food reward via central leptin receptor (LepRb) expressing neurons. Food reward requires stimulation of midbrain dopamine neurons and is modulated by central leptin action, but the exact central mechanisms remain unclear. Stimulatory and inhibitory leptin actions on dopamine neurons have been reported, e.g. by indirect actions on orexin neurons or via direct innervation of dopamine neurons in the ventral tegmental area. Methods We showed earlier that LepRb neurons in the lateral hypothalamus (LHA) co-express the inhibitory acting neuropeptide galanin (GAL-LepRb neurons). We studied the involvement of GAL-LepRb neurons to regulate nutrient reward in mice with selective LepRb deletion from galanin neurons (GAL-LepRbKO mice). Results We found that the rewarding value and preference for sucrose over fat was increased in GAL-LepRbKO mice compared to controls. LHA GAL-LepRb neurons innervate orexin neurons, but not the VTA. Further, expression of galanin and its receptor GalR1 are decreased in the LHA of GAL-LepRbKO mice, resulting in increased activation of orexin neurons. Conclusion We suggest galanin as an important mediator of leptin action to modulate nutrient reward by inhibiting orexin neurons. GAL-LepRbKO shows ↓ galanin and ↓ GalR1 mRNA, ↑ body weight gain. GAL-LepRbKO shows ↑ orexin/hypocretin neuronal activation. GAL-LepRb neurons innervate local orexin/hypocretin and noradrenergic locus coeruleus neurons. Leptin regulates natural reward and body weight via GAL-LepRb neurons.
Collapse
Affiliation(s)
- Amanda Laque
- Central Leptin Signaling Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| | - Sangho Yu
- Central Leptin Signaling Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| | - Emily Qualls-Creekmore
- Central Leptin Signaling Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| | - Sarah Gettys
- Central Leptin Signaling Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| | - Candice Schwartzenburg
- Central Leptin Signaling Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| | - Kelly Bui
- Central Leptin Signaling Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| | | | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| | - Christopher D Morrison
- Neurosignaling Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| | - Brenda K Richards
- Genetics of Eating Behavior Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| | - Heike Münzberg
- Central Leptin Signaling Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| |
Collapse
|
21
|
Abstract
Oxytocin neurons have a physiological role in food intake and energy balance. Central administration of oxytocin is powerfully anorexigenic, reducing food intake and meal duration. The central mechanisms underlying this effect of oxytocin have become better understood in the past few years. Parvocellular neurons of the paraventricular nucleus project to the caudal brainstem to regulate feeding via autonomic functions including the gastrointestinal vago-vagal reflex. In contrast, magnocellular neurons of the supraoptic and paraventricular nuclei release oxytocin from their dendrites to diffuse to distant hypothalamic targets involved in satiety. The ventromedial hypothalamus, for example, expresses a high density of oxytocin receptors but does not contain detectable oxytocin nerve fibers. Magnocellular neurons represent targets for the anorexigenic neuropeptide α-melanocyte stimulating hormone. In addition to homeostatic control, oxytocin may also have a role in reward-related feeding. Evidence suggests that oxytocin can selectively suppress sugar intake and that it may have a role in limiting the intake of palatable food by inhibiting the reward pathway.
Collapse
Affiliation(s)
- Nancy Sabatier
- Centre for Integrative Physiology, School of Biomedical Sciences, The University of EdinburghEdinburgh, UK
| | - Gareth Leng
- Centre for Integrative Physiology, School of Biomedical Sciences, The University of EdinburghEdinburgh, UK
| | - John Menzies
- Centre for Integrative Physiology, School of Biomedical Sciences, The University of EdinburghEdinburgh, UK
- *Correspondence: John Menzies, Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK. e-mail:
| |
Collapse
|
22
|
Onaka T, Takayanagi Y, Yoshida M. Roles of oxytocin neurones in the control of stress, energy metabolism, and social behaviour. J Neuroendocrinol 2012; 24:587-98. [PMID: 22353547 DOI: 10.1111/j.1365-2826.2012.02300.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxytocin neurones are activated by stressful stimuli, food intake and social attachment. Activation of oxytocin neurones in response to stressful stimuli or food intake is mediated, at least in part, by noradrenaline/prolactin-releasing peptide (PrRP) neurones in the nucleus tractus solitarius, whereas oxytocin neurones are activated after social stimuli via medial amygdala neurones. Activation of oxytocin neurones induces the release of oxytocin not only from their axon terminals, but also from their dendrites. Oxytocin acts locally where released or diffuses and acts on remote oxytocin receptors widely distributed within the brain, resulting in anxiolytic, anorexic and pro-social actions. The action sites of oxytocin appear to be multiple. Oxytocin shows anxiolytic actions, at least in part, via serotoninergic neurones in the median raphe nucleus, has anorexic actions via pro-opiomelanocortin neurones in the nucleus tractus solitarius and facilitates social recognition via the medial amygdala. Stress, obesity and social isolation are major risk factors for mortality in humans. Thus, the oxytocin-oxytocin receptor system is a therapeutic target for the promotion of human health.
Collapse
Affiliation(s)
- T Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shinotsuke-shi, Tochigi-ken, Japan.
| | | | | |
Collapse
|
23
|
Tanaka Y, Kadokawa H. Providing a diet containing only maintenance levels of energy and protein during the latter stages of pregnancy resulted in a prolonged delivery time during parturition in rats. Reprod Fertil Dev 2012; 24:317-22. [PMID: 22281077 DOI: 10.1071/rd11049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 06/23/2011] [Indexed: 11/23/2022] Open
Abstract
In mammals, a prolonged delivery time during parturition is dangerous for both mother and fetus, although the mechanisms that prolong delivery are unclear. To investigate whether nutrition affects delivery time, we administered two feeds containing maintenance (L-feed) or higher (H-feed) levels of energy and protein at different points during the latter half of pregnancy and compared the effects of the various treatments on delivery time in rats. After the rats had been maintained on the L-feed and then copulated on pro-oestrus (Day 0), pregnant females were randomly allocated to one of three groups: (1) the no-improvement group, which was fed L-feed throughout gestation; (2) the early group, which was fed L-feed until Day 11 of gestation and then switched to H-feed; and (3) the late group, which was fed L-feed until Day 16 of gestation and then switched to H-feed. There was no significant difference in the number of pups among the three groups. However, delivery time was significantly longer in the no-improvement group (73.7±5.2 min) than the early (46.9±5.6 min) and late (55.4±5.5 min) groups. Consuming a maintenance diet during the latter half of pregnancy resulted in a prolonged delivery time.
Collapse
Affiliation(s)
- Y Tanaka
- Department of Veterinary Medicine, Faculty of Agricultural Science, Yamaguchi University, Yamaguchi 753-8515, Japan
| | | |
Collapse
|
24
|
Panayotis N, Ghata A, Villard L, Roux JC. Biogenic amines and their metabolites are differentially affected in the Mecp2-deficient mouse brain. BMC Neurosci 2011; 12:47. [PMID: 21609470 PMCID: PMC3112112 DOI: 10.1186/1471-2202-12-47] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 05/24/2011] [Indexed: 02/06/2023] Open
Abstract
Background Rett syndrome (RTT, MIM #312750) is a severe neurological disorder caused by mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene. Female patients are affected with an incidence of 1/15000 live births and develop normally from birth to 6-18 months of age before the onset of deficits in autonomic, cognitive, motor functions (stereotypic hand movements, impaired locomotion) and autistic features. Studies on Mecp2 mouse models, and specifically null mice, revealed morphological and functional alterations of neurons. Several functions that are regulated by bioaminergic nuclei or peripheral ganglia are impaired in the absence of Mecp2. Results Using high performance liquid chromatography, combined with electrochemical detection (HPLC/EC) we found that Mecp2-/y mice exhibit an alteration of DA metabolism in the ponto-bulbar region at 5 weeks followed by a more global alteration of monoamines when the disease progresses (8 weeks). Hypothalamic measurements suggest biphasic disturbances of norepinephrine and serotonin at pathology onset (5 weeks) that were found stabilized later on (8 weeks). Interestingly, the postnatal nigrostriatal dopaminergic deficit identified previously does not parallel the reduction of the other neurotransmitters investigated. Finally, dosage in cortical samples do not suggest modification in the monoaminergic content respectively at 5 and 8 weeks of age. Conclusions We have identified that the level of catecholamines and serotonin is differentially affected in Mecp2-/y brain areas in a time-dependent fashion.
Collapse
Affiliation(s)
- Nicolas Panayotis
- INSERM UMR_S 910, Unité de Génétique Médicale et Génomique Fonctionnelle, Equipe de Neurogénétique Humaine, France.
| | | | | | | |
Collapse
|
25
|
Hernández L, Paredes D, Rada P. Feeding behavior as seen through the prism of brain microdialysis. Physiol Behav 2011; 104:47-56. [PMID: 21549733 DOI: 10.1016/j.physbeh.2011.04.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 04/22/2011] [Indexed: 11/28/2022]
Abstract
The knowledge of feeding behavior mechanisms gained through brain microdialysis is reviewed. Most of the chemical changes so far reported concern to the limbic system in rodents. A picture showing increases and decreases of extracellular neurotransmitters correlating to different aspects of feeding behavior is gradually emerging. Depending on the region, the same neurotransmitter may signal opposite aspects of feeding. Dopamine (DA) in the nucleus accumbens (NAC) correlates with food reward, stimulus saliency, and goal directed hyperlocomotion but in the ventromedial hypothalamus DA correlates with satiety and hypolocomotion. The findings accumulated in the last 25 years suggest that the control of a particular function relies on the interaction of several neurotransmitters rather than on a single neurotransmitter. The poor sensitivity of most analytical techniques hinders time and spatial resolution of microdialysis. Therefore, neurochemical correlates of short lasting behaviors are hard to figure out. As new and more sensitive analytical techniques are applied, new neurochemical correlates of feeding show up. Sometimes the proper analytical techniques are simply not available. As a consequence, critical signals such as neuropeptides are not yet completely placed in the puzzle. Despite such limitations, brain microdialysis has yielded a great deal of knowledge on the neurochemical basis of feeding.
Collapse
Affiliation(s)
- Luis Hernández
- Laboratory of Behavioral Physiology, School of Medicine, Universidad de los Andes, Mérida, Venezuela
| | | | | |
Collapse
|
26
|
Neuropeptide exocytosis involving synaptotagmin-4 and oxytocin in hypothalamic programming of body weight and energy balance. Neuron 2011; 69:523-35. [PMID: 21315262 DOI: 10.1016/j.neuron.2010.12.036] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2010] [Indexed: 12/27/2022]
Abstract
Hypothalamic neuropeptides play essential roles in regulating energy and body weight balance. Energy imbalance and obesity have been linked to hypothalamic signaling defects in regulating neuropeptide genes; however, it is unknown whether dysregulation of neuropeptide exocytosis could be critically involved. This study discovered that synaptotagmin-4, an atypical modulator of synaptic exocytosis, is expressed most abundantly in oxytocin neurons of the hypothalamus. Synaptotagmin-4 negatively regulates oxytocin exocytosis, and dietary obesity is associated with increased vesicle binding of synaptotagmin-4 and thus enhanced negative regulation of oxytocin release. Overexpressing synaptotagmin-4 in hypothalamic oxytocin neurons and centrally antagonizing oxytocin in mice are similarly obesogenic. Synaptotagmin-4 inhibition prevents against dietary obesity by normalizing oxytocin release and energy balance under chronic nutritional excess. In conclusion, the negative regulation of synaptotagmin-4 on oxytocin release represents a hypothalamic basis of neuropeptide exocytosis in controlling obesity and related diseases.
Collapse
|