1
|
Mantadaki AE, Linardakis M, Tsakiri M, Baliou S, Fragkiadaki P, Vakonaki E, Tzatzarakis MN, Tsatsakis A, Symvoulakis EK. Benefits of Quercetin on Glycated Hemoglobin, Blood Pressure, PiKo-6 Readings, Night-Time Sleep, Anxiety, and Quality of Life in Patients with Type 2 Diabetes Mellitus: A Randomized Controlled Trial. J Clin Med 2024; 13:3504. [PMID: 38930033 PMCID: PMC11205103 DOI: 10.3390/jcm13123504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Diabetes is a rapidly growing global morbidity issue with high prevalence, and the associated dysglycemia leads to complications. Patients with type 2 diabetes mellitus (T2DM) often experience elevated anxiety levels, affecting their quality of life and diabetes management. This study investigated quercetin, a nutraceutical and potential senolytic with antioxidant activity, to detect its possible positive effect on the bio-clinical measurements and routine health of patients with T2DM. Methods: This prospective randomized controlled trial (RCT) investigated the clinical usefulness of quercetin in patients with T2DM receiving non-insulin medications. One hundred participants were stratified by age and sex (1:1) and randomized to control (n = 50) or intervention (n = 50) groups. The control received standard care only, while the intervention received 500 mg quercetin daily for 12 weeks, followed by an 8-week washout and a final consecutive 12-week supplementation period (total: 32 weeks), as adjunct to their usual care. Comprehensive health assessments, including blood analyses, were conducted at baseline and study termination. Quality of life and anxiety were assessed using the 36-item Short Form Health Survey (SF-36) and Short Anxiety Screening Test (SAST-10). Results: Eighty-eight patients with T2DM concluded the trial. Compared with the control, glycated hemoglobin (HbA1c) levels showed a significant decrease (Δ%-change: -4.0% vs. 0.1%, p = 0.011). Quercetin also significantly improved PiKo-6 readings (FEV1: 5.6% vs. -1.5%, p = 0.002), systolic blood pressure (-5.0% vs. -0.2%, p = 0.029), night-time sleep (11.6% vs. -7.3%, p < 0.001), anxiety levels (SAST-10) (-26.2% vs. 3.3%, p < 0.001), and quality of life (SF-36) (both physical and mental components, p < 0.001). Conclusions: Based on the current open-label study, quercetin appears to be a promising supplement for T2DM, providing lifestyle and care support. Further research is warranted to shift this potential from clinical usefulness and feasibility to multidisciplinary evidence.
Collapse
Affiliation(s)
- Aikaterini E. Mantadaki
- Clinic of Social and Family Medicine, Department of Social Medicine, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.L.); (E.K.S.)
| | - Manolis Linardakis
- Clinic of Social and Family Medicine, Department of Social Medicine, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.L.); (E.K.S.)
| | - Maria Tsakiri
- Iatrica, Local Unit of Lab Analysis and Diagnostics Network, 71303 Heraklion, Greece;
| | - Stella Baliou
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece or (S.B.); (P.F.); (E.V.); (M.N.T.); (A.T.)
| | - Persefoni Fragkiadaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece or (S.B.); (P.F.); (E.V.); (M.N.T.); (A.T.)
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece or (S.B.); (P.F.); (E.V.); (M.N.T.); (A.T.)
| | - Manolis N. Tzatzarakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece or (S.B.); (P.F.); (E.V.); (M.N.T.); (A.T.)
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece or (S.B.); (P.F.); (E.V.); (M.N.T.); (A.T.)
| | - Emmanouil K. Symvoulakis
- Clinic of Social and Family Medicine, Department of Social Medicine, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.L.); (E.K.S.)
| |
Collapse
|
2
|
Xin M, Bi F, Wang C, Huang Y, Xu Y, Liang S, Cai T, Xu X, Dong L, Li T, Wang X, Fang Y, Xu Z, Wang C, Wang M, Song X, Zheng Y, Sun W, Li L. The circadian rhythm: A new target of natural products that can protect against diseases of the metabolic system, cardiovascular system, and nervous system. J Adv Res 2024:S2090-1232(24)00133-4. [PMID: 38631431 DOI: 10.1016/j.jare.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The treatment of metabolic system, cardiovascular system, and nervous system diseases remains to be explored. In the internal environment of organisms, the metabolism of substances such as carbohydrates, lipids and proteins (including biohormones and enzymes) exhibit a certain circadian rhythm to maintain the energy supply and material cycle needed for the normal activities of organisms. As a key factor for the health of organisms, the circadian rhythm can be disrupted by pathological conditions, and this disruption accelerates the progression of diseases and results in a vicious cycle. The current treatments targeting the circadian rhythm for the treatment of metabolic system, cardiovascular system, and nervous system diseases have certain limitations, and the identification of safer and more effective circadian rhythm regulators is needed. AIM OF THE REVIEW To systematically assess the possibility of using the biological clock as a natural product target for disease intervention, this work reviews a range of evidence on the potential effectiveness of natural products targeting the circadian rhythm to protect against diseases of the metabolic system, cardiovascular system, and nervous system. This manuscript focuses on how natural products restore normal function by affecting the amplitude of the expression of circadian factors, sleep/wake cycles and the structure of the gut microbiota. KEY SCIENTIFIC CONCEPTS OF THE REVIEW This work proposes that the circadian rhythm, which is regulated by the amplitude of the expression of circadian rhythm-related factors and the sleep/wake cycle, is crucial for diseases of the metabolic system, cardiovascular system and nervous system and is a new target for slowing the progression of diseases through the use of natural products. This manuscript provides a reference for the molecular modeling of natural products that target the circadian rhythm and provides a new perspective for the time-targeted action of drugs.
Collapse
Affiliation(s)
- Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China
| | - Fangjie Bi
- Heart Center, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yuhong Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yujia Xu
- Department of Echocardiography, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianxing Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xueke Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yini Fang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Basic Medical College, Zhejiang Chinese Medical University, Hangzhou 310053 China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| |
Collapse
|
3
|
Mantadaki AE, Linardakis M, Vafeiadi M, Anastasiou F, Tsatsakis A, Symvoulakis EK. The Impact of Three-Month Quercetin Intake on Quality of Life and Anxiety in Patients With Type II Diabetes Mellitus: An Early Data Analysis From a Randomized Controlled Trial. Cureus 2024; 16:e58219. [PMID: 38745810 PMCID: PMC11091546 DOI: 10.7759/cureus.58219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Diabetes is a high-prevalence, major chronic metabolic disease demanding effective interventions. Quercetin, a phytochemical with potential health benefits, has garnered interest for its therapeutic properties. AIM This study was designed to capture the early efficacy and clinical safety aspects following quercetin administration in patients with type II diabetes mellitus (T2DM). METHODS The main study involved a randomized allocation procedure to assign non-insulin-treated patients attending the 4th Health Unit of Heraklion to intervention and control groups based on age and sex. The intervention group (n=50) received 500 mg of quercetin daily for 12 + (8 free intervals) + 12 weeks, alongside their usual treatment, while the control group (n=50) did not. After randomization, for the intermediary 12-week follow-up, data from 38 patients (intervention: 20; control: 18) were analyzed in this report. All subjects provided informed consent for the collection of anthropometric measurements, vital signs, daily habits data, and PiKo-6 spirometric readings. Additionally, participants responded to the Short Anxiety Screening Test (SAST) and the 36-Item Short Form Health Survey (SF-36) questionnaires. RESULTS Thirty-eight participants were included (60% men and 40% women in the intervention group; 38.9% men and 61.1% women in the control group). In the treatment arm, Forced Expiratory Volume in the first second (FEV1) measured with PiKo-6 showed a Δ%- change for the intervention arm: +6.8%, control: -0.2% (p=0.059), systolic blood pressure; intervention: -7.4%, control: -3.7% (p=0.117), waist circumference; intervention: -1.5% control: -0.7% (p=0.455) and night-time sleep; intervention: +5.3%, control: +1.4% (p=0.926) were favourably influenced. The treatment group exhibited significant enhancements in both anxiety levels assessed by the anxiety symptoms scale (SAST-10, p=0.026) and quality of life evaluated by the SF-36 (p<0.001). CONCLUSIONS Positive evidence is emerging for a pleiotropic effect of quercetin intake in patients with T2DM, specifically in terms of anxiety reduction and amelioration of life quality, in just 12 weeks of administration and without adverse effects, indicating clinical safety and underscoring its potential for integration in T2DM supportive care.
Collapse
Affiliation(s)
| | - Manolis Linardakis
- Department of Social Medicine, Clinic of Social and Family Medicine, University of Crete, School of Medicine, Heraklion, GRC
| | - Marina Vafeiadi
- Department of Social Medicine, University of Crete, School of Medicine, Heraklion, GRC
| | - Foteini Anastasiou
- Department of Social Medicine, Clinic of Social and Family Medicine, University of Crete, School of Medicine, Heraklion, GRC
| | - Aristidis Tsatsakis
- Department of Morphology, Laboratory of Toxicology, University of Crete, School of Medicine, Heraklion, GRC
| | - Emmanouil K Symvoulakis
- Department of Social Medicine, Clinic of Social and Family Medicine, University of Crete, School of Medicine, Heraklion, GRC
| |
Collapse
|
4
|
Tan X, Wang L, Smith WK, Sun H, Long L, Mao L, Huang Q, Huang H, Zhong Z. Aquilaria sinensis leaf tea affects the immune system and increases sleep in zebrafish. Front Pharmacol 2023; 14:1246761. [PMID: 38035004 PMCID: PMC10687561 DOI: 10.3389/fphar.2023.1246761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
The importance of adequate sleep for good health cannot be overstated. Excessive light exposure at night disrupts sleep, therefore, it is important to find more healthy drinks that can promote sleep under sleep-disturbed conditions. The present study investigated the use of A. sinensis (Lour.) Spreng leaf tea, a natural product, to reduce the adverse effects of nighttime light on sleep. Here, Aquilaria sinensis leaf tea at 1.0 and 1.5 g/L significantly increased sleep time in zebrafish larvae (5-7 dpf) with light-induced sleep disturbance. Transcriptome sequencing and qRT-PCR analysis revealed a decrease in the immune-related genes, such as nfkbiab, tnfrsf1a, nfkbiaa, il1b, traf3, and cd40 in the 1.5 g/L Aquilaria sinensis leaf tea treatment group. In addition, a gene associated with sleep, bhlhe41, showed a significant decrease. Moreover, Aquilaria sinensis leaf tea suppressed the increase in neutrophils of Tg(mpo:GFP) zebrafish under sleep-disturbed conditions, indicating its ability to improve the immune response. Widely targeted metabolic profiling of the Aquilaria sinensis tea using ultra-performance liquid chromatography coupled with electrospray tandem mass spectrometry (UPLC-ESI-MS/MS) revealed flavonoids as the predominant component. Network pharmacological and molecular docking analyses suggested that the flavonoids quercetin and eupatilin in Aquilaria sinensis leaf tea improved the sleep of zebrafish by interacting with il1b and cd40 genes under light exposure at night. Therefore, the results of the study provide evidence supporting the notion that Aquilaria sinensis leaf tea has a positive impact on sleep patterns in zebrafish subjected to disrupted sleep due to nighttime light exposure. This suggests that the utilization of Aquilaria sinensis leaf tea as a potential therapeutic intervention for sleep disturbances induced by light may yield advantageous outcomes.
Collapse
Affiliation(s)
- Xiaohui Tan
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
- Guangxi Subtropical Crops Research Institute, Nanning, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Nanning, China
| | - Liping Wang
- Guangxi Subtropical Crops Research Institute, Nanning, China
| | - William Kojo Smith
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Huayan Sun
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Lingyun Long
- Guangxi Subtropical Crops Research Institute, Nanning, China
| | - Liyan Mao
- Guangxi Subtropical Crops Research Institute, Nanning, China
| | - Qiuwei Huang
- Guangxi Subtropical Crops Research Institute, Nanning, China
| | - Huifang Huang
- Guangxi Subtropical Crops Research Institute, Nanning, China
| | - Zhaomin Zhong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Effects of Chronic Administration of Green Tea Ethanol Extract on Sleep Architecture in Mice: A Comparative Study with a Representative Stimulant Caffeine. Nutrients 2023; 15:nu15041042. [PMID: 36839400 PMCID: PMC9967785 DOI: 10.3390/nu15041042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Wakefulness is defined as a state in which individuals can react to a change in situations. The number of people staying awake and compensating for lack of sleep has increased in recent years. Caffeine, a representative stimulant, is the most extensively consumed compound globally and is mainly consumed through coffee. Although green tea (Camellia sinensis L.) contains high caffeine content like coffee, its arousal-inducing effects have not yet been studied. In the present study, we aimed to identify the arousal-inducing effect of GT during a chronic administration period (three weeks) using analysis of sleep architecture. Treatment with GT (1500 mg/kg) significantly elevated the sleep latency and wakefulness throughout the treatment period, and chronic administration of GT consistently maintained an increase in wakefulness for up to 3 h. During the treatment period, the arousal-inducing effect of GT (1500 mg/kg) occurred without any change in the tolerance phenomenon or withdrawal symptoms, similar to that observed with caffeine (25 mg/kg). GT (1500 mg/kg) containing 95.6 mg/kg of caffeine did not produce a better arousal-inducing effect than caffeine at 25 mg/kg. These results indicate that the arousal-inducing effect of GT persisted for three weeks without adverse effects and that GT can control the arousal-inducing effects of caffeine due to the hypnotic effects of its other constituents.
Collapse
|
6
|
Neba Ambe GNN, Breda C, Bhambra AS, Arroo RRJ. Effect of the Citrus Flavone Nobiletin on Circadian Rhythms and Metabolic Syndrome. Molecules 2022; 27:molecules27227727. [PMID: 36431828 PMCID: PMC9695244 DOI: 10.3390/molecules27227727] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The importance of the circadian clock in maintaining human health is now widely acknowledged. Dysregulated and dampened clocks may be a common cause of age-related diseases and metabolic syndrome Thus, circadian clocks should be considered as therapeutic targets to mitigate disease symptoms. This review highlights a number of dietary compounds that positively affect the maintenance of the circadian clock. Notably the polymethoxyflavone nobiletin has shown some encouraging results in pre-clinical experiments. Although many more experiments are needed to fully elucidate its exact mechanism of action, it is a promising candidate with potential as a chronotherapeutic agent.
Collapse
Affiliation(s)
- Gael N. N. Neba Ambe
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Carlo Breda
- School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Avninder Singh Bhambra
- School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Randolph R. J. Arroo
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK
- Correspondence:
| |
Collapse
|
7
|
Cao Y, Chen H, Sun Y, Fan Z, Cheng H. Quercetin inhibits fibroblasts proliferation and reduces surgery-induced epidural fibrosis via the autophagy-mediated PI3K/Akt/mTOR pathway. Bioengineered 2022; 13:9973-9986. [PMID: 35412948 PMCID: PMC9161887 DOI: 10.1080/21655979.2022.2062530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epidural fibrosis (EF) is a serious complication when the patients suffer from operations of lumbar laminectomy. It is reported that quercetin plays a positive role in the prevention of various fibrotic diseases. However, the role of quercetin in the prevention of epidural fibrosis (EF) and its possible mechanism are unclear. Fibroblast proliferation is considered to be the main cause of epidural fibrosis.Autophagy is a lysosomal degradation pathway that is essential for survival, differentiation, development, and homeostasis.Although autophagy has been associated with fibrosis of different tissues, the effect of autophagy on epidural fibrosis is still unknown.The aim of this study was to investigate the function and mechanism of autophagy induced by quercetin, a polyphenol derived from plants. In vivo, the effect of quercetin on reducing epidural fibrosis was confirmed via histological staining and immunohistochemical analysis. The results showed that quercetin had significant suppressive effects on epidural fibrosis following laminectomy in rats.In vitro,, cell counting kit-8 (CCK-8), Western blot analysis, immunofluorescence and Edu staining, TUNEL staining and transmission electron microscopy were used to detect the effects of quercetin on the proliferation and apoptosis of fibroblasts and explore the possible signal transduction pathway. Results indicated that quercetin could induce autophagy and inhibit proliferation in fibroblasts. In conclusion, Quercetin could regulate fibroblast proliferation, apoptosis, migration and other biological behaviors through autophagy, thereby preventing epidural fibrosis. The specific corresponding pathway may be the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yile Cao
- Department of Clinical Medicine, School of Medicine, Yangzhou University, Jiangsu, Yangzhou, China
| | - Hui Chen
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Yu Sun
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhehao Fan
- School of Medicine, Yangzhou University, Jiangsu, Yangzhou, China
| | - Hong Cheng
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, China Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China
| |
Collapse
|
8
|
Chen F, Sun J, Chen C, Zhang Y, Zou L, Zhang Z, Chen M, Wu H, Tian W, Liu Y, Xu Y, Luo H, Zhu M, Yu J, Wang Q, Wang K. Quercetin Mitigates Methamphetamine-Induced Anxiety-Like Behavior Through Ameliorating Mitochondrial Dysfunction and Neuroinflammation. Front Mol Neurosci 2022; 15:829886. [PMID: 35295707 PMCID: PMC8919775 DOI: 10.3389/fnmol.2022.829886] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Methamphetamine (MA) abuse results in neurotoxic outcomes, including increased anxiety and depression. Studies have reported an association between MA exposure and anxiety, nonetheless, the underlying mechanism remains elusive. In the present study, we developed a mouse model of anxiety-like behavior induced by MA administration. RNA-seq was then performed to profile the gene expression patterns of hippocampus (HIPP), and the differentially expressed genes (DEGs) were significantly enriched in signaling pathways related to psychiatric disorders and mitochondrial function. Based on these, mitochondria was hypothesized to be involved in MA-induced anxiety. Quercetin, as a mitochondrial protector, was used to investigate whether to be a potential treatment for MA-induced anxiety; accordingly, it alleviated anxiety-like behavior and improved mitochondrial impairment in vivo. Further experiments in vitro suggested that quercetin alleviated the dysfunction and morphological abnormalities of mitochondria induced by MA, via decreasing the levels of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and increasing the oxygen consumption rate (OCR) and ATP production. Moreover, the study examined the effect of quercetin on astrocytes activation and neuroinflammation, and the results indicated that it significantly attenuated the activation of astrocytes and reduced the levels of IL-1β, TNFα but not IL-6. In light of these findings, quantitative evidence is presented in the study supporting the view that MA can evoke anxiety-like behavior via the induction of mitochondrial dysfunction. Quercetin exerted antipsychotic activity through modulation of mitochondrial function and neuroinflammation, suggesting its potential for further therapeutic development in MA-induced anxiety.
Collapse
Affiliation(s)
- Fengrong Chen
- School of Medicine, Kunming University of Science and Technology, Kunming, China
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Jiaxue Sun
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Cheng Chen
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yongjin Zhang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- Center for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lei Zou
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- Department of Organ Transplant, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zunyue Zhang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- Yunnan University, Kunming, China
| | - Minghui Chen
- School of Medicine, Kunming University of Science and Technology, Kunming, China
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Hongjin Wu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Weiwei Tian
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Yu Liu
- The School of Foreign Languages, University of Shanghai for Science and Technology, Shanghai, China
| | - Yu Xu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Huayou Luo
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mei Zhu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Juehua Yu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- Center for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qian Wang
- Tianhua College, Shanghai Normal University, Shanghai, China
| | - Kunhua Wang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- Yunnan University, Kunming, China
| |
Collapse
|
9
|
Yunusoğlu O. Evaluation of the effects of quercetin on the rewarding property of ethanol in mice. Neurosci Lett 2022; 768:136383. [PMID: 34864087 DOI: 10.1016/j.neulet.2021.136383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND The flavonoid quercetin has several pharmacological effects on the nervous system. Previous research showed that quercetin has useful influences on some mechanisms that are relevant in drug and substance addiction. Alcohol addiction, also known as alcoholism, is a disorder that influences the population in all walks of life. The purpose of the current study was to investigate whether quercetin affects the acquisition, extinction, and reinstatement of ethanol-induced conditioned place preference (ethanol-CPP) in adolescent mice. METHODS CPP was established by administration of intraperitoneal (i.p.) ethanol (2.0 g/kg) in a conditioning trial. The mice were pretreated with quercetin (at doses of 10, 30, and 100 mg/kg, i.p.) 30 minutes before each ethanol injection to test the effects of quercetin on the reward properties of ethanol. Ethanol-CPP was extinguished (13-days) by repeated testing, during which conditioned mice were given different doses of quercetin every day. Lastly, efficacy of quercetin in preventing reinstatement of ethanol-CPP triggers was also assessed by the administration of single dose ethanol (0.4 g/kg, i.p.). RESULTS Quercetin pretreatment attenuated the acquisition and reinstatement. In addition, quercetin administration accelerated the extinction of ethanol-CPP. CONCLUSIONS In conclusion, these results may cast a novel light on quercetin as an agent that could be potentially useful to attenuate different effects of ethanol and as adjuvant pharmacotherapy for ethanol addiction. However, future studies are needed to demonstrate the detailed underlying mechanisms of quercetin on ethanol addiction.
Collapse
Affiliation(s)
- Oruç Yunusoğlu
- Bolu Abant Izzet Baysal University, Faculty of Medicine, Medical Pharmacology, 14030 Bolu, Turkey.
| |
Collapse
|
10
|
Sadgrove NJ, Padilla-González GF, Leuner O, Melnikovova I, Fernandez-Cusimamani E. Pharmacology of Natural Volatiles and Essential Oils in Food, Therapy, and Disease Prophylaxis. Front Pharmacol 2021; 12:740302. [PMID: 34744723 PMCID: PMC8566702 DOI: 10.3389/fphar.2021.740302] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/04/2021] [Indexed: 12/19/2022] Open
Abstract
This commentary critically examines the modern paradigm of natural volatiles in 'medical aromatherapy', first by explaining the semantics of natural volatiles in health, then by addressing chemophenetic challenges to authenticity or reproducibility, and finally by elaborating on pharmacokinetic and pharmacodynamic processes in food, therapy, and disease prophylaxis. Research over the last 50 years has generated substantial knowledge of the chemical diversity of volatiles, and their strengths and weaknesses as antimicrobial agents. However, due to modest in vitro outcomes, the emphasis has shifted toward the ability to synergise or potentiate non-volatile natural or pharmaceutical drugs, and to modulate gene expression by binding to the lipophilic domain of mammalian cell receptors. Because essential oils and natural volatiles are small and lipophilic, they demonstrate high skin penetrating abilities when suitably encapsulated, or if derived from a dietary item they bioaccumulate in fatty tissues in the body. In the skin or body, they may synergise or drive de novo therapeutic outcomes that range from anti-inflammatory effects through to insulin sensitisation, dermal rejuvenation, keratinocyte migration, upregulation of hair follicle bulb stem cells or complementation of anti-cancer therapies. Taking all this into consideration, volatile organic compounds should be examined as candidates for prophylaxis of cardiovascular disease. Considering the modern understanding of biology, the science of natural volatiles may need to be revisited in the context of health and nutrition.
Collapse
Affiliation(s)
| | | | - Olga Leuner
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ingrid Melnikovova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Eloy Fernandez-Cusimamani
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
11
|
Liang Y, Huang R, Chen Y, Zhong J, Deng J, Wang Z, Wu Z, Li M, Wang H, Sun Y. Study on the Sleep-Improvement Effects of Hemerocallis citrina Baroni in Drosophila melanogaster and Targeted Screening to Identify Its Active Components and Mechanism. Foods 2021; 10:foods10040883. [PMID: 33920660 PMCID: PMC8072781 DOI: 10.3390/foods10040883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Hemerocallis citrina Baroni (HC) is an edible plant in Asia, and it has been traditionally used for sleep-improvement. However, the bioactive components and mechanism of HC in sleep-improvement are still unclear. In this study, the sleep-improvement effect of HC hydroalcoholic extract was investigated based on a caffeine-induced insomnia model in Drosophila melanogaster (D. melanogaster), and the ultrahigh-performance liquid chromatography coupled with electrospray ionization quadrupole Orbitrap high-resolution mass spectrometry (UHPLC-ESI-Orbitrap-MS) and network pharmacology strategy were further combined to screen systematically the active constituents and mechanism of HC in sleep-improvement. The results suggested HC effectively regulated the number of nighttime activities and total sleep time of D. melanogaster in a dose-dependent manner and positively regulated the sleep bouts and sleep duration of D. melanogaster. The target screening suggested that quercetin, luteolin, kaempferol, caffeic acid, and nicotinic acid were the main bioactive components of HC in sleep-improvements. Moreover, the core targets (Akt1, Cat, Ple, and Sod) affected by HC were verified by the expression of the mRNA of D. melanogaster. In summary, this study showed that HC could effectively regulate the sleep of D. melanogaster and further clarifies the multi-component and multi-target features of HC in sleep-improvement, which provides a new insight for the research and utilization of HC.
Collapse
|
12
|
Sumbul O, Aygun H. Chronic effects of different quercetin doses in penicillin-induced focal seizure model. Neurosci Lett 2021; 753:135848. [PMID: 33812925 DOI: 10.1016/j.neulet.2021.135848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/27/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022]
Abstract
AIM The aim of the present study was to examine the effects of different quercetin pretreatment doses on focal epileptiform activity induced by penicillin in adult male rat cortex. METHOD Twenty-eight male Wistar rats weighing 200-235 g were randomly divided into four groups: control (only penicillin-injected group) and penicillin + 25, 50 or 100 mg/kg quercetin doses. All quercetin-treated rats had a daily single dose of 25, 50 or 100 mg/kg intraperitoneally administered quercetin for 21 days, and the last dose was given 30 min before the penicillin injection. Epileptiform activity was induced by a single intracortical (i.c.) microinjection of penicillin (500 units/2.5 μl) into left motor cortex. After penicillin injection ECoG was recorded for the following 180 min. RESULTS Quercetin pretreatments of 25, 50 and 100 mg/kg significantly increased the duration of latency (initial spike activity) and decreased spike frequency of the epileptiform activity compared to the control group (p < 0.05). Duration of latency was significantly longer in 25 mg/kg quercetin pretreatment group compared to 100 mg/kg group (p < 0.05). Spike amplitude of epileptiform activity was not different in the study groups (p > 0.05). CONCLUSION Quercetin had an anticonvulsant activity in penicillin-induced focal seizure model in the present study. In addition, lower quercetin doses had highest anticonvulsant effect in this model.
Collapse
Affiliation(s)
- Orhan Sumbul
- Department of Neurology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Hatice Aygun
- Department of Physiology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey.
| |
Collapse
|
13
|
Asgharzadeh F, Hosseini M, Bargi R, Beheshti F, Rakhshandeh H, Mansouri S, Aghaei A, Sadeghnia HR, Anaeigoudari A. Effects of Hydro-ethanolic Extract of Tanacetum parthenium and its N-Butanol and Aqueous Fractions on Brain Oxidative Damage in Pentylenetetrazole-Induced Seizures in Mice. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Fereshteh Asgharzadeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahimeh Bargi
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Hassan Rakhshandeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somaye Mansouri
- Department of Anatomy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azita Aghaei
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
14
|
Bjørklund G, Rajib SA, Saffoon N, Pen JJ, Chirumbolo S. Insights on Melatonin as an Active Pharmacological Molecule in Cancer Prevention: What's New? Curr Med Chem 2019; 26:6304-6320. [PMID: 29714136 DOI: 10.2174/0929867325666180501094850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 12/12/2022]
Abstract
Along with playing an important role in circadian rhythm, melatonin is thought to play a significant role in preventing cells from damage, as well as in the inhibition of growth and in triggering apoptosis in malignant cells. Its relationship with circadian rhythms, energetic homeostasis, diet, and metabolism, is fundamental to achieve a better comprehension of how melatonin has been considered a chemopreventive molecule, though very few papers dealing with this issue. In this article, we tried to review the most recent evidence regarding the protective as well as the antitumoral mechanisms of melatonin, as related to diet and metabolic balance. From different studies, it was evident that an intracellular antioxidant defense mechanism is activated by upregulating an antioxidant gene battery in the presence of high-dose melatonin in malignant cells. Like other broad-spectrum antioxidant molecules, melatonin plays a vital role in killing tumor cells, preventing metastasis, and simultaneously keeping normal cells protected from oxidative stress and other types of tissue damage.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | | | - Nadia Saffoon
- Department of Pharmacy and Forensic Science, Faculty of Life Science and Medicine, King's College London, London, United Kingdom
| | - Joeri J Pen
- Diabetes Clinic, Department of Internal Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Department of Nutrition, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
15
|
Quercetin Reduces Cortical GABAergic Transmission and Alleviates MK-801-Induced Hyperactivity. EBioMedicine 2018; 34:201-213. [PMID: 30057312 PMCID: PMC6116474 DOI: 10.1016/j.ebiom.2018.07.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/11/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023] Open
Abstract
An imbalance between neuronal excitation and inhibition represents a core feature in multiple neuropsychiatry disorders, necessitating the development of novel strategies to calibrate the excitatory–inhibitory balance of therapeutics. Here we identify a natural compound quercetin that reduces prefrontal cortical GABAergic transmission and alleviates the hyperactivity induced by glutamatergic N-methyl-d-aspartate receptor antagonist MK-801. Quercetin markedly reduced the GABA-activated currents in a noncompetitive manner in cultured cortical neurons, and moderately inhibited spontaneous and electrically-evoked GABAergic inhibitory postsynaptic current in mouse prefrontal cortical slices. Notably, systemic and prefrontal-specific delivery of quercetin reduced basal locomotor activity in addition to alleviated the MK-801-induced hyperactivity. The effects of quercetin were not exclusively dependent on α5-subunit-containing A type GABA receptors (GABAARs), as viral-mediated, region-specific genetic knockdown of the α5-subunit in prefrontal cortex improved the MK-801-evoked psychotic symptom but reserved the pharmacological responsivity to quercetin. Both interventions together completely normalized the locomotor activity. Together, quercetin as a negative allosteric GABAAR modulator exerted antipsychotic activity, facilitating further therapeutic development for the excitatory–inhibitory imbalance disorders.
Collapse
|
16
|
Oboh G, Ademosun AO, Ogunsuyi OB. Quercetin and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 929:377-387. [PMID: 27771934 DOI: 10.1007/978-3-319-41342-6_17] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Quercetin, a member of the flavonoid class of polyphenol, is one of the most abundantly distributed flavonoids found in various food sources such as fruits, vegetables, nuts, wine and seeds. Quercetin and quercetin-rich foods have been reported to have wide range of health promoting effects, especially in the prevention and management of several diseases; however, the subject of its solubility and bioavailability has limited its use. This section will therefore, consider quercetin as a food-rich flavonoid, the various food sources, the limitations in its use and new approaches at improving its solubility and bioavailability. The therapeutic potentials of quercetin at the prevention/management of some degenerative diseases such as diabetes, hypertension and neurodegenerative diseases, as well as the underlying biochemical mechanisms such as free radical scavenging and enzyme inhibition will also be discussed.
Collapse
Affiliation(s)
- Ganiyu Oboh
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, 340001, Ondo State, Nigeria.
| | - Ayokunle O Ademosun
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, 340001, Ondo State, Nigeria
| | - Opeyemi B Ogunsuyi
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, 340001, Ondo State, Nigeria
| |
Collapse
|
17
|
Multiple Integrated Complementary Healing Approaches: Energetics & Light for bone. Med Hypotheses 2016; 86:18-29. [DOI: 10.1016/j.mehy.2015.10.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/30/2015] [Indexed: 02/08/2023]
|
18
|
Nieoczym D, Socała K, Raszewski G, Wlaź P. Effect of quercetin and rutin in some acute seizure models in mice. Prog Neuropsychopharmacol Biol Psychiatry 2014; 54:50-8. [PMID: 24857758 DOI: 10.1016/j.pnpbp.2014.05.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/12/2014] [Accepted: 05/12/2014] [Indexed: 01/29/2023]
Abstract
Quercetin is one of the most widely occurring flavonoid which is also often present in plants as glycosidic form - rutin. These compounds are ingredients of plant diet and are also present in numerous pharmaceutical preparations and diet supplements which are taken by patients suffering from epilepsy and treating with antiepileptic drugs (AEDs). Influence of these compounds on central nervous system-related effects was proved both in experimental and clinical studies. Their influence on anxiety, depression, memory processes and convulsant activity was reported. The aim of the present study was to investigate the effect of quercetin and rutin in some models of seizures, i.e., in the model of psychomotor seizures induced by 6Hz stimulation, in the maximal electroshock seizure threshold and intravenous pentylenetetrazole tests in mice. We also examined a possible mechanism of anticonvulsant activity of quercetin and its influence on action of two AEDs, i.e., valproic acid and levetiracetam, in the 6Hz seizure test. Our results revealed only a weak anticonvulsant potential of the studied flavonoids because they showed anticonvulsant action at doses from 10 to 200mg/kg only in the 6Hz test and did not change seizure thresholds in the remaining tests. Moreover, anticonvulsant action of the studied flavonoids was short-term, noted only at pretreatment time ranging between 30 and 60min. The highest anticonvulsant activity of quercetin was correlated with its high plasma and brain concentration, which was revealed in a pharmacokinetic study. We did not note changes in the anticonvulsant action of the used AEDs combined with quercetin in the model of psychomotor seizures in mice. Neither quercetin and rutin nor combinations of quercetin with the studied AEDs produced any significant impairments of motor coordination (assessed in the chimney test), muscular strength (investigated in the grip-strength test) and long-term memory (evaluated in the passive avoidance test) in mice. The results of the present study suggest that quercetin and rutin have only weak and short-term anticonvulsant potential. These flavonoids seem to be safe for patients with epilepsy because they neither changed activity of the studied AEDs nor produced any adverse effects.
Collapse
Affiliation(s)
- Dorota Nieoczym
- Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland.
| | - Katarzyna Socała
- Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Grzegorz Raszewski
- Department of Physiopathology, Institute of Agricultural Medicine, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
19
|
Differential effects of quercetin glycosides on GABAC receptor channel activity. Arch Pharm Res 2014; 38:108-14. [DOI: 10.1007/s12272-014-0409-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
|
20
|
Al-Rasheed NM, Faddah LM, Mohamed AM, Abdel Baky NA, Al-Rasheed NM, Mohammad RA. Potential impact of quercetin and idebenone against immuno- inflammatory and oxidative renal damage induced in rats by titanium dioxide nanoparticles toxicity. J Oleo Sci 2014; 62:961-71. [PMID: 24200945 DOI: 10.5650/jos.62.961] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to investigate the toxic impacts of titanium dioxide nanoparticles (TiO₂-NPs) on rat kidneys and the possible prophylactic role of either quercetin or idebenone. TiO₂-NPs were administered orally at either 600 mg or 1 g/kg body weight for 5 consecutive days to evaluate dose-dependent toxicity referred to the OECD guidelines for testing of chemicals. The results showed that administration of either low or high repeated doses of TiO₂-NPs to rats significantly increases serum kideney function biomarkers (urea, creatinine and uric acid) as well as increases in serum glucose and serum immuno- inflammatory biomarkers including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), C-reactive protein (CRP), immunoglobin g (IGg), vascular endothelial growth factor (VEGF, angiogenic factor) and nitric oxide (NO) with a concomitant decrease in renal GSH content versus normal control values. The increase in these biomarkers was more evident in rats intoxicated with high TiO₂-NPs repeated doses. Oral co- administration of either quercetin or idebenone (each 200mg/Kg body weight) daily for three weeks to rats intoxicated by either of the two doses markedly ameliorated TiO₂-NPs induced alteration in the above biomarkers. The prophylactic impacts of both agents on biochemical markers were more pronounced in rats received low TiO₂-NPs repeated doses. The biochemical investigation was supported by histological examination. In conclusion, The data showed the severity in renotoxicity of TiO₂-NPs was dose-dependent and the protective effect of quercetin and idebenone may be related to their antioxidant and anti-inflammatory properties.
Collapse
|
21
|
Kaushik D, Kumar A, Kaushik P, Rana AC. Anticonvulsant activity of alcoholic extract of bark of Pinus roxburghii Sarg. ACTA ACUST UNITED AC 2013; 10:1056-60. [PMID: 22979938 DOI: 10.3736/jcim20120915] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To study the anticonvulsant activity of alcoholic extract of bark of Pinus roxburghii Sarg. (AEPR) used in Indian traditional medicine system in treating convulsion. METHODS Anticonvulsant activity was evaluated by maximal electroshock (MES) and pentylenetetrazole (PTZ)-induced seizures in Wistar albino rats. In the MES model, 150 mA current for 0.2 s was given through ear electrodes to induce convulsions in rats. The duration of tonic extension of hind limb was used as the end point, namely, prevention or decrease in the duration of hind limb extension was considered as a protective action. In the PTZ model, the anticonvulsant property of AEPR was assessed by its ability to delay the onset of myoclonic spasm and clonic convulsions produced by intraperitoneal administration of PTZ. RESULTS In the MES-induced seizure model, AEPR in doses of 300 and 500 mg/kg body weight reduced all the phases of convulsion significantly (P<0.01). Standard drug phenytoin at a dose of 25 mg/kg significantly reduced flexion phase (P<0.01) and abolished all phases of convulsion. In the PTZ-induced seizure model, the administration of the extract at doses of 300 and 500 mg/kg 30 min prior to injection of PTZ significantly delayed the onset of clonic seizure (P<0.01). AEPR at the dose of 100 mg/kg body weight could not exert any significant protective effect on PTZ-induced convulsions. Standard drug diazepam at a dose of 4 mg/kg showed much delayed onset of clonic seizure. CONCLUSION The study suggests that AEPR would be effective against generalized tonic-clonic and partial seizures. Thus AEPR possesses anticonvulsant property against MES- and PTZ-induced seizures in Wistar rats. However, further research is in progress to isolate the compound responsible for its activity.
Collapse
Affiliation(s)
- Dhirender Kaushik
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, India.
| | | | | | | |
Collapse
|
22
|
Kosari-Nasab M, Babri S, Fatehi-Gharehlar L, Doosti MH, Pakzad S. Involvement of GABAergic system in regulation of the anxiolytic- and antidepressant-like effects of Scrophularia striata extract in rats. PHARMACEUTICAL BIOLOGY 2013; 51:581-588. [PMID: 23373710 DOI: 10.3109/13880209.2012.749924] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT Neuropsychiatric disorders, like anxiety and depression, are global problems for clinical researchers in neurology. Recently, some authors have shown neuroprotective and anti-inflammatory effects of Scrophularia striata Boiss (Scrophulariaceae) extract in rodents. OBJECTIVE The purpose of the current study was to investigate the effects of S. striata extract on anxiety and depressant-like behaviors and find a possible mechanism for these impacts. MATERIALS AND METHODS In this study, the elevated plus-maze (EPM) and forced swimming test (FST), which are useful models for selective identification of anxiolytic and antidepressant drug effects in rodents, were used. We investigated the effects of S. striata ethanol extract at different doses (20, 50, 100, 160 and 220 mg/kg) on anxiety and depression behaviors in the EPM and FST, and then we assessed the role of γ-aminobutyric acid (GABA)A receptor in modulation of the effects of S. striata extract in the brain. RESULTS Our results showed that effective doses of S. striata (100 and 160 mg/kg) increased the percentages of open arm time and entries in the EPM and decreased immobility time in the FST in comparison with control group, indicating anxiolytic and antidepressant effects, respectively. Moreover, intracerebroventricular administration of GABAA receptor agonist (muscimol; 1 µg/rat) enhanced the impact of S. striata, and GABAA receptor antagonist (bicuculline; 1 µg/rat) blocked these effects in rats, indicating that significant interactions existed between S. striata and the GABAergic system in the brain. DISCUSSION AND CONCLUSION Findings of this study suggest that anxiolytic and antidepressant effects of S. striata may be modulated via the GABAergic system.
Collapse
Affiliation(s)
- Morteza Kosari-Nasab
- Laboratory of Plant Biotechnology, Hayyan Research Institute, University of Tabriz, Tabriz, Iran
| | | | | | | | | |
Collapse
|
23
|
RETRACTED ARTICLE: Involvement of the GABA-Ergic System in Anxiolytic and Antidepressive Effects of the Scrophularia striata Extract in Rats. NEUROPHYSIOLOGY+ 2013. [DOI: 10.1007/s11062-013-9333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Faddah LM, Baky NAA, Al-Rasheed NM, Al-Rasheed NM, Fatani AJ, Atteya M. Role of quercetin and arginine in ameliorating nano zinc oxide-induced nephrotoxicity in rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:60. [PMID: 22551254 PMCID: PMC3437213 DOI: 10.1186/1472-6882-12-60] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 04/02/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND Nanoparticles are small-scale substances (<100 nm) with unique properties. Therefore, nanoparticles pose complex health risk implications. The objective of this study was to detect whether treatment with quercetin (Qur) and/or arginine (Arg) ameliorated nephrotoxicity induced by two different doses of nano zinc oxide (n-ZnO) particles. METHOD ZnO nanoparticles were administered orally in two doses (either 600 mg or 1 g/Kg body weight/day for 5 conscutive days) to Wister albino rats. In order to detect the protective effects of the studied antioxidants against n-ZnO induced nepherotoxicity, different biochemical parameters were investigated. Moreover, histopathological examination of kidney tissue was performed. RESULTS Nano zinc oxide-induced nephrotoxicity was confirmed by the elevation in serum inflammatory markers including: tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6); and C-reactive protein (CRP). Moreover, immunoglobulin (IGg), vascular endothelium growth factor (VEGF), and nitric oxide (NO) were significantly increased in rat serum. Serum urea and creatinine levels were also significantly increased in rats intoxicated with n-ZnO particles compared with the control group. Additionally, a significant decrease in the non-enzymatic antioxidant reduced glutathione (GSH) was shown in kidney tissues and serum glucose levels were increased. These biochemical findings were supported by a histopathological examination of kidney tissues, which showed that in the animals that received a high dose of n-ZnO, numerous kidney glomeruli underwent atrophy and fragmentation. Moreover, the renal tubules showed epithelial desquamation, degeneration and necrosis. Some renal tubules showed casts in their lumina. Severe congestion was also observed in renal interstitium. These effects were dose dependent. Cotreatment of rats with Qur and/or Arg along with n-ZnO significantly improved most of the deviated tested parameters. CONCLUSIONS The data show that Qur has a beneficial effect against n-ZnO oxidative stress and related vascular complications. Also, its combination with Arg proved to be even more effective in ameliorating nano zinc oxide nephrotoxicity.
Collapse
Affiliation(s)
- Laila M Faddah
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nayira A Abdel Baky
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacology, Faculty of Pharmacy, King Saud University, P.O. Box. 22452, Riyadh, 11495, Saudi Arabia
| | - Nouf M Al-Rasheed
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nawal M Al-Rasheed
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amal J Fatani
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Atteya
- Anatomy Department and Stem Cell Unit, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|