1
|
Gao C, Yang Q, Kim ME, Khairi NM, Cai LY, Newlin NR, Kanakaraj P, Remedios LW, Krishnan AR, Yu X, Yao T, Zhang P, Schilling KG, Moyer D, Archer DB, Resnick SM, Landman BA. Characterizing patterns of diffusion tensor imaging variance in aging brains. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.08.22.23294381. [PMID: 37662348 PMCID: PMC10473788 DOI: 10.1101/2023.08.22.23294381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Purpose As large analyses merge data across sites, a deeper understanding of variance in statistical assessment across the sources of data becomes critical for valid analyses. Diffusion tensor imaging (DTI) exhibits spatially varying and correlated noise, so care must be taken with distributional assumptions. Here we characterize the role of physiology, subject compliance, and the interaction of subject with the scanner in the understanding of DTI variability, as modeled in spatial variance of derived metrics in homogeneous regions. Approach We analyze DTI data from 1035 subjects in the Baltimore Longitudinal Study of Aging (BLSA), with ages ranging from 22.4 to 103 years old. For each subject, up to 12 longitudinal sessions were conducted. We assess variance of DTI scalars within regions of interest (ROIs) defined by four segmentation methods and investigate the relationships between the variance and covariates, including baseline age, time from the baseline (referred to as "interval"), motion, sex, and whether it is the first scan or the second scan in the session. Results Covariate effects are heterogeneous and bilaterally symmetric across ROIs. Inter-session interval is positively related ( p ≪ 0.001 ) to FA variance in the cuneus and occipital gyrus, but negatively ( p ≪ 0.001 ) in the caudate nucleus. Males show significantly ( p ≪ 0.001 ) higher FA variance in the right putamen, thalamus, body of the corpus callosum, and cingulate gyrus. In 62 out of 176 ROIs defined by the Eve type-1 atlas, an increase in motion is associated ( p < 0.05 ) with a decrease in FA variance. Head motion increases during the rescan of DTI ( Δ μ = 0.045 millimeters per volume). Conclusions The effects of each covariate on DTI variance, and their relationships across ROIs are complex. Ultimately, we encourage researchers to include estimates of variance when sharing data and consider models of heteroscedasticity in analysis. This work provides a foundation for study planning to account for regional variations in metric variance.
Collapse
Affiliation(s)
- Chenyu Gao
- Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, United States
| | - Qi Yang
- Vanderbilt University, Department of Computer Science, Nashville, United States
| | - Michael E. Kim
- Vanderbilt University, Department of Computer Science, Nashville, United States
| | - Nazirah Mohd Khairi
- Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, United States
| | - Leon Y. Cai
- Vanderbilt University, Department of Biomedical Engineering, Nashville, United States
| | - Nancy R. Newlin
- Vanderbilt University, Department of Computer Science, Nashville, United States
| | | | - Lucas W. Remedios
- Vanderbilt University, Department of Computer Science, Nashville, United States
| | - Aravind R. Krishnan
- Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, United States
| | - Xin Yu
- Vanderbilt University, Department of Computer Science, Nashville, United States
| | - Tianyuan Yao
- Vanderbilt University, Department of Computer Science, Nashville, United States
| | - Panpan Zhang
- Vanderbilt University Medical Center, Department of Biostatistics, Nashville, United States
| | - Kurt G. Schilling
- Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, USA
- Vanderbilt University, Vanderbilt University Institute of Imaging Science, Nashville, USA
| | - Daniel Moyer
- Vanderbilt University, Department of Computer Science, Nashville, United States
| | - Derek B. Archer
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University School of Medicine, Nashville, USA
- Vanderbilt University Medical Center, Vanderbilt Genetics Institute, Nashville, USA
| | - Susan M. Resnick
- National Institute on Aging, Laboratory of Behavioral Neuroscience, Baltimore, United States
| | - Bennett A. Landman
- Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, United States
- Vanderbilt University, Department of Computer Science, Nashville, United States
- Vanderbilt University, Department of Biomedical Engineering, Nashville, United States
- Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, USA
- Vanderbilt University, Vanderbilt University Institute of Imaging Science, Nashville, USA
| | | | | |
Collapse
|
2
|
Faulkner ME, Gong Z, Guo A, Laporte JP, Bae J, Bouhrara M. Harnessing myelin water fraction as an imaging biomarker of human cerebral aging, neurodegenerative diseases, and risk factors influencing myelination: A review. J Neurochem 2024; 168:2243-2263. [PMID: 38973579 DOI: 10.1111/jnc.16170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Myelin water fraction (MWF) imaging has emerged as a promising magnetic resonance imaging (MRI) biomarker for investigating brain function and composition. This comprehensive review synthesizes the current state of knowledge on MWF as a biomarker of human cerebral aging, neurodegenerative diseases, and risk factors influencing myelination. The databases used include Web of Science, Scopus, Science Direct, and PubMed. We begin with a brief discussion of the theoretical foundations of MWF imaging, including its basis in MR physics and the mathematical modeling underlying its calculation, with an overview of the most adopted MRI methods of MWF imaging. Next, we delve into the clinical and research applications that have been explored to date, highlighting its advantages and limitations. Finally, we explore the potential of MWF to serve as a predictive biomarker for neurological disorders and identify future research directions for optimizing MWF imaging protocols and interpreting MWF in various contexts. By harnessing the power of MWF imaging, we may gain new insights into brain health and disease across the human lifespan, ultimately informing novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mary E Faulkner
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Alex Guo
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - John P Laporte
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Jonghyun Bae
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Kirby ED, Andrushko JW, Boyd LA, Koschutnig K, D'Arcy RCN. Sex differences in patterns of white matter neuroplasticity after balance training in young adults. Front Hum Neurosci 2024; 18:1432830. [PMID: 39257696 PMCID: PMC11383771 DOI: 10.3389/fnhum.2024.1432830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction In past work we demonstrated different patterns of white matter (WM) plasticity in females versus males associated with learning a lab-based unilateral motor skill. However, this work was completed in neurologically intact older adults. The current manuscript sought to replicate and expand upon these WM findings in two ways: (1) we investigated biological sex differences in neurologically intact young adults, and (2) participants learned a dynamic full-body balance task. Methods 24 participants (14 female, 10 male) participated in the balance training intervention, and 28 were matched controls (16 female, 12 male). Correlational tractography was used to analyze changes in WM from pre- to post-training. Results Both females and males demonstrated skill acquisition, yet there were significant differences in measures of WM between females and males. These data support a growing body of evidence suggesting that females exhibit increased WM neuroplasticity changes relative to males despite comparable changes in motor behavior (e.g., balance). Discussion The biological sex differences reported here may represent an important factor to consider in both basic research (e.g., collapsing across females and males) as well as future clinical studies of neuroplasticity associated with motor function (e.g., tailored rehabilitation approaches).
Collapse
Affiliation(s)
- Eric D Kirby
- BrainNet, Health and Technology District, Surrey, BC, Canada
- Faculty of Individualized Interdisciplinary Studies, Simon Fraser University, Burnaby, BC, Canada
- Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Justin W Andrushko
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
- Brain Behavior Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lara A Boyd
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Brain Behavior Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karl Koschutnig
- Institute of Psychology, BioTechMed Graz, University of Graz, Graz, Austria
| | - Ryan C N D'Arcy
- BrainNet, Health and Technology District, Surrey, BC, Canada
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
4
|
Kirby ED, Andrushko JW, Rinat S, D'Arcy RCN, Boyd LA. Investigating female versus male differences in white matter neuroplasticity associated with complex visuo-motor learning. Sci Rep 2024; 14:5951. [PMID: 38467763 PMCID: PMC10928090 DOI: 10.1038/s41598-024-56453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 03/06/2024] [Indexed: 03/13/2024] Open
Abstract
Magnetic resonance imaging (MRI) has increasingly been used to characterize structure-function relationships during white matter neuroplasticity. Biological sex differences may be an important factor that affects patterns of neuroplasticity, and therefore impacts learning and rehabilitation. The current study examined a participant cohort before and after visuo-motor training to characterize sex differences in microstructural measures. The participants (N = 27) completed a 10-session (4 week) complex visuo-motor training task with their non-dominant hand. All participants significantly improved movement speed and their movement speed variability over the training period. White matter neuroplasticity in females and males was examined using fractional anisotropy (FA) and myelin water fraction (MWF) along the cortico-spinal tract (CST) and the corpus callosum (CC). FA values showed significant differences in the middle portion of the CST tract (nodes 38-51) across the training period. MWF showed a similar cluster in the inferior portion of the tract (nodes 18-29) but did not reach significance. Additionally, at baseline, males showed significantly higher levels of MWF measures in the middle body of the CC. Combining data from females and males would have resulted in reduced sensitivity, making it harder to detect differences in neuroplasticity. These findings offer initial insights into possible female versus male differences in white matter neuroplasticity during motor learning. This warrants investigations into specific patterns of white matter neuroplasticity for females versus males across the lifespan. Understanding biological sex-specific differences in white matter neuroplasticity may have significant implications for the interpretation of change associated with learning or rehabilitation.
Collapse
Affiliation(s)
- Eric D Kirby
- BrainNet, Health and Technology District, Vancouver, BC, Canada
- Faculty of Individualized Interdisciplinary Studies, Simon Fraser University, Burnaby, BC, Canada
- Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Justin W Andrushko
- DM Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Shie Rinat
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Ryan C N D'Arcy
- BrainNet, Health and Technology District, Vancouver, BC, Canada.
- DM Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | - Lara A Boyd
- DM Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
5
|
Bakhit M, Fujii M. Gender Differences in the Cortical Distribution of Corpus Callosum Fibers. Cureus 2024; 16:e55918. [PMID: 38601409 PMCID: PMC11004854 DOI: 10.7759/cureus.55918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Research on gender-based disparities in human brain structure has spanned over a century, yielding conflicting results and ongoing debate. While some studies indicate minimal distinctions, others consistently highlight differences in the corpus callosum (CC), even after accounting for average brain size. Methods Diverging from previous approaches, this study examines the morphology of the entire CC fiber rather than solely focusing on its midsagittal structure. Utilizing advanced neuroimaging techniques and generalized Q-imaging tractography, CC streamlines were constructed to assess gender differences in fractional anisotropy (FA), volume ratio, and cortical distribution. Student's t-test was employed to examine the disparities in FA between gender groups, while gender-based distinctions in the normalized volume of the CC and its segments were assessed using analysis of covariance (ANCOVA), with absolute whole white matter volume serving as a covariate. Results No significant gender-based disparities were found in either FA or normalized CC volume. While females exhibited consistently larger normalized volume CC streamlines than males, these differences lost statistical significance after adjusting for absolute total white matter volume as a covariate. Nonetheless, CC streamlines in females displayed a broader spatial distribution, encompassing various cortical regions, including the bilateral prefrontal cortex (medial and lateral surfaces), as well as medial parietal and temporal regions. Conclusion This study elucidates gender-related variations in the morphology of the brain's white matter pathways, indicating a more widespread cortical distribution of CC fibers in females compared to males. However, the study underscores the need for further investigations into connectivity patterns to fully elucidate these gender-based disparities.
Collapse
Affiliation(s)
| | - Masazumi Fujii
- Neurosurgery, Fukushima Medical University, Fukushima, JPN
| |
Collapse
|
6
|
Brenner EK, Bangen KJ, Clark AL, Delano-Wood L, Evangelista ND, Edwards L, Sorg SF, Jak AJ, Bondi MW, Deoni SCL, Lamar M. Sex moderates the association between age and myelin water fraction in the cingulum and fornix among older adults without dementia. Front Aging Neurosci 2023; 15:1267061. [PMID: 38161592 PMCID: PMC10757372 DOI: 10.3389/fnagi.2023.1267061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Background Decreasing white matter integrity in limbic pathways including the fornix and cingulum have been reported in Alzheimer's disease (AD), although underlying mechanisms and potential sex differences remain understudied. We therefore sought to explore sex as a moderator of the effect of age on myelin water fraction (MWF), a measure of myelin content, in older adults without dementia (N = 52). Methods Participants underwent neuropsychological evaluation and 3 T MRI at two research sites. Multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) quantified MWF in 3 a priori regions including the fornix, hippocampal cingulum (CgH), and cingulate cingulum (CgC). The California Verbal Learning Test-Second Edition assessed learning and delayed recall. Multiple linear regressions assessed for (1) interactions between age and sex on regional MWF and (2) associations of regional MWF and memory. Results (1) There was a significant age by sex interaction on MWF of the fornix (p = 0.002) and CgC (p = 0.005), but not the CgH (p = 0.192); as age increased, MWF decreased in women but not men. (2) Fornix MWF was associated with both learning and recall (ps < 0.01), but MWF of the two cingulum regions were not (p > 0.05). Results were unchanged when adjusting for hippocampal volume. Conclusion The current work adds to the literature by illuminating sex differences in age-related myelin decline using a measure sensitive to myelin and may help facilitate detection of AD risk for women.
Collapse
Affiliation(s)
- Einat K. Brenner
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Katherine J. Bangen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | - Alexandra L. Clark
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Lisa Delano-Wood
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | - Nicole D. Evangelista
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, College of Public Health and Health Professions, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Lauren Edwards
- Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California San Diego, San Diego, CA, United States
| | - Scott F. Sorg
- Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Boston, MA, United States
| | - Amy J. Jak
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | - Mark W. Bondi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | | | - Melissa Lamar
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
7
|
Kheloui S, Jacmin-Park S, Larocque O, Kerr P, Rossi M, Cartier L, Juster RP. Sex/gender differences in cognitive abilities. Neurosci Biobehav Rev 2023; 152:105333. [PMID: 37517542 DOI: 10.1016/j.neubiorev.2023.105333] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Sex/gender differences in cognitive sciences are riddled by conflicting perspectives. At the center of debates are clinical, social, and political perspectives. Front and center, evolutionary and biological perspectives have often focused on 'nature' arguments, while feminist and constructivist views have often focused on 'nurture arguments regarding cognitive sex differences. In the current narrative review, we provide a comprehensive overview regarding the origins and historical advancement of these debates while providing a summary of the results in the field of sexually polymorphic cognition. In so doing, we attempt to highlight the importance of using transdisciplinary perspectives which help bridge disciplines together to provide a refined understanding the specific factors that drive sex differences a gender diversity in cognitive abilities. To summarize, biological sex (e.g., birth-assigned sex, sex hormones), socio-cultural gender (gender identity, gender roles), and sexual orientation each uniquely shape the cognitive abilities reviewed. To date, however, few studies integrate these sex and gender factors together to better understand individual differences in cognitive functioning. This has potential benefits if a broader understanding of sex and gender factors are systematically measured when researching and treating numerous conditions where cognition is altered.
Collapse
Affiliation(s)
- Sarah Kheloui
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Silke Jacmin-Park
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Ophélie Larocque
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Philippe Kerr
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Mathias Rossi
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Louis Cartier
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Robert-Paul Juster
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada.
| |
Collapse
|
8
|
Molina-Gonzalez I, Miron VE, Antel JP. Chronic oligodendrocyte injury in central nervous system pathologies. Commun Biol 2022; 5:1274. [PMID: 36402839 PMCID: PMC9675815 DOI: 10.1038/s42003-022-04248-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
Abstract
Myelin, the membrane surrounding neuronal axons, is critical for central nervous system (CNS) function. Injury to myelin-forming oligodendrocytes (OL) in chronic neurological diseases (e.g. multiple sclerosis) ranges from sublethal to lethal, leading to OL dysfunction and myelin pathology, and consequent deleterious impacts on axonal health that drive clinical impairments. This is regulated by intrinsic factors such as heterogeneity and age, and extrinsic cellular and molecular interactions. Here, we discuss the responses of OLs to injury, and perspectives for therapeutic targeting. We put forward that targeting mature OL health in neurological disease is a promising therapeutic strategy to support CNS function.
Collapse
Affiliation(s)
- Irene Molina-Gonzalez
- grid.4305.20000 0004 1936 7988United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Medical Research Council Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland UK
| | - Veronique E. Miron
- grid.4305.20000 0004 1936 7988United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, Scotland UK ,grid.4305.20000 0004 1936 7988Medical Research Council Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland UK ,grid.415502.7Barlo Multiple Sclerosis Centre and Keenan Research Centre for Biomedical Science, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Immunology, University of Toronto, Toronto, Canada
| | - Jack P. Antel
- grid.14709.3b0000 0004 1936 8649Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC Canada
| |
Collapse
|
9
|
Johnson P, Chan JK, Vavasour IM, Abel S, Lee LE, Yong H, Laule C, Li DKB, Tam R, Traboulsee A, Carruthers RL, Kolind SH. Quantitative MRI findings indicate diffuse white matter damage in Susac Syndrome. Mult Scler J Exp Transl Clin 2022; 8:20552173221078834. [PMID: 35186315 PMCID: PMC8851927 DOI: 10.1177/20552173221078834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/21/2022] [Indexed: 11/15/2022] Open
Abstract
Background Susac Syndrome (SuS) is an autoimmune endotheliopathy impacting the brain, retina and cochlea that can clinically mimic multiple sclerosis (MS). Objective To evaluate non-lesional white matter demyelination changes in SuS compared to MS and healthy controls (HC) using quantitative MRI. Methods 3T MRI including myelin water imaging and diffusion basis spectrum imaging were acquired for 7 SuS, 10 MS and 10 HC participants. Non-lesional white matter was analyzed in the corpus callosum (CC) and normal appearing white matter (NAWM). Groups were compared using ANCOVA with Tukey correction. Results SuS CC myelin water fraction (mean 0.092) was lower than MS(0.11, p = 0.01) and HC(0.11, p = 0.04). Another myelin marker, radial diffusivity, was increased in SuS CC(0.27μm2/ms) compared to HC(0.21μm2/ms, p = 0.008) and MS(0.23μm2/ms, p = 0.05). Fractional anisotropy was lower in SuS CC(0.82) than HC(0.86, p = 0.04). Fiber fraction (reflecting axons) did not differ from HC or MS. In NAWM, radial diffusivity and apparent diffusion coefficient were significantly increased in SuS compared to HC(p < 0.001 for both measures) and MS(p = 0.003, p < 0.001 respectively). Conclusions Our results provided evidence of myelin damage in SuS, particularly in the CC, and more extensive microstructural injury in NAWM, supporting the hypothesis that there are widespread microstructural changes in SuS syndrome including diffuse demyelination.
Collapse
Affiliation(s)
| | - JK Chan
- Department of Medicine (Neurology), University of British Columbia, Canada
| | - IM Vavasour
- Department of Radiology, University of British Columbia, Canada
- International Collaboration on Repair Discoveries (ICORD)
| | | | | | - H Yong
- Department of Medicine (Neurology), University of British Columbia, Canada
| | - C Laule
- Department of Radiology, University of British Columbia, Canada
- International Collaboration on Repair Discoveries (ICORD)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Canada
| | - DKB Li
- Department of Medicine (Neurology), University of British Columbia, Canada
- Department of Radiology, University of British Columbia, Canada
| | - R Tam
- Department of Radiology, University of British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Canada
| | | | - RL Carruthers
- Department of Medicine (Neurology), University of British Columbia, Canada
| | - SH Kolind
- Department of Medicine (Neurology), University of British Columbia, Canada
- Department of Radiology, University of British Columbia, Canada
- International Collaboration on Repair Discoveries (ICORD)
- Department of Physics and Astronomy, University of British Columbia, Canada
| |
Collapse
|
10
|
Yik JT, Becquart P, Gill J, Petkau J, Traboulsee A, Carruthers R, Kolind SH, Devonshire V, Sayao AL, Schabas A, Tam R, Moore GRW, Li DKB, Stukas S, Wellington C, Quandt JA, Vavasour IM, Laule C. Serum neurofilament light chain correlates with myelin and axonal magnetic resonance imaging markers in multiple sclerosis. Mult Scler Relat Disord 2022; 57:103366. [PMID: 35158472 DOI: 10.1016/j.msard.2021.103366] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/08/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neurofilaments are cytoskeletal proteins that are detectable in the blood after neuroaxonal injury. Multiple sclerosis (MS) disease progression, greater lesion volume, and brain atrophy are associated with higher levels of serum neurofilament light chain (NfL), but few studies have examined the relationship between NfL and advanced magnetic resonance imaging (MRI) measures related to myelin and axons. We assessed the relationship between serum NfL and brain MRI measures in a diverse group of MS participants. METHODS AND MATERIALS 103 participants (20 clinically isolated syndrome, 33 relapsing-remitting, 30 secondary progressive, 20 primary progressive) underwent 3T MRI to obtain myelin water fraction (MWF), geometric mean T2 (GMT2), water content, T1; high angular resolution diffusion imaging (HARDI)-derived axial diffusivity (AD), radial diffusivity (RD), fractional anisotropy (FA); diffusion basis spectrum imaging (DBSI)-derived AD, RD, FA; restricted, hindered, water and fiber fractions; and volume measurements of normalized brain, lesion, thalamic, deep gray matter (GM), and cortical thickness. Multiple linear regressions assessed the strength of association between serum NfL (dependent variable) and each MRI measure in whole brain (WB), normal appearing white matter (NAWM) and T2 lesions (independent variables), while controlling for age, expanded disability status scale, and disease duration. RESULTS Serum NfL levels were significantly associated with metrics of axonal damage (FA: R2WB-HARDI = 0.29, R2NAWM-HARDI = 0.31, R2NAWM-DBSI = 0.30, R2Lesion-DBSI = 0.31; AD: R2WB-HARDI=0.31), myelin damage (MWF: R2WB = 0.29, R2NAWM = 0.30, RD: R2WB-HARDI = 0.32, R2NAWM-HARDI = 0.34, R2Lesion-DBSI = 0.30), edema and inflammation (T1: R2Lesion = 0.32; GMT2: R2WB = 0.31, R2Lesion = 0.31), and cellularity (restricted fraction R2WB = 0.30, R2NAWM = 0.32) across the entire MS cohort. Higher serum NfL levels were associated with significantly higher T2 lesion volume (R2 = 0.35), lower brain structure volumes (thalamus R2 = 0.31; deep GM R2 = 0.33; normalized brain R2 = 0.31), and smaller cortical thickness R2 = 0.31). CONCLUSION The association between NfL and myelin MRI markers suggest that elevated serum NfL is a useful biomarker that reflects not only acute axonal damage, but also damage to myelin and inflammation, likely due to the known synergistic myelin-axon coupling relationship.
Collapse
Affiliation(s)
- Jackie T Yik
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - Pierre Becquart
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jasmine Gill
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - John Petkau
- Department of Statistics, University of British Columbia, Vancouver, BC, Canada
| | - Anthony Traboulsee
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Robert Carruthers
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shannon H Kolind
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Virginia Devonshire
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ana-Luiza Sayao
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alice Schabas
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Roger Tam
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - G R Wayne Moore
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David K B Li
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Sophie Stukas
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl Wellington
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jacqueline A Quandt
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Irene M Vavasour
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Cornelia Laule
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
11
|
Park M, Lee HP, Kim J, Kim DH, Moon Y, Moon WJ. Brain myelin water fraction is associated with APOE4 allele status in patients with cognitive impairment. J Neuroimaging 2021; 32:521-529. [PMID: 34964524 DOI: 10.1111/jon.12960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Apolipoprotein E4 (APOE4) is a major genetic risk factor for Alzheimer's disease. However, the effect of APOE4 status on myelin remains unclear. This study investigated the effect of APOE4 on myelin content in cognitively impaired individuals using T2* gradient echo (GRE)-based myelin water fraction (MWF) imaging. METHODS Between August 2017 and January 2019, we evaluated 39 cognitively impaired patients (median age, 75 years; male:female = 8:31; Alzheimer's disease: mild cognitive impairment = 11:28). We obtained brain MWF values from white matter hyperintensities (WMHs) and normal-appearing white matter (NAWM). Linear regression analysis was performed to investigate the relationship between the APOE4 status and MWF and cognitive function and MWF. RESULTS Among the 39 cognitively impaired patients, nine (23.1%) were APOE4 carriers and 30 (76.9%) were noncarriers. APOE4 carriers had a lower hippocampal volume than noncarriers (p = .045), but other brain volume parameters were not differed. After age adjustment, the APOE4 status was significantly associated with reduced MWF in NAWM (β = -0.310 per allele; p = .049) but not in WMH (β = -0.258 per allele; p = .113). After age adjustment, MWF in NAWM was significantly associated with Mini-Mental State Examination score (β = 0.313, p = .031). CONCLUSIONS T2* GRE-based MWF imaging can reveal myelin loss, particularly in NAWM, in cognitively impaired patients among APOE4 carriers. In vivo MWF in NAWM might be a novel imaging marker of Alzheimer's disease, for clarifying the interactions between the white matter and cognitive dysfunction with respect to the APOE4 status.
Collapse
Affiliation(s)
- Mina Park
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea.,Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hong Pyo Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea
| | - Junghyeob Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea
| | - Dong Hyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea
| | - Yeonsil Moon
- Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Won-Jin Moon
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Ingo C, Kurian S, Higgins J, Mahinrad S, Jenkins L, Gorelick P, Lloyd-Jones D, Sorond F. Vascular health and diffusion properties of normal appearing white matter in midlife. Brain Commun 2021; 3:fcab080. [PMID: 34494002 DOI: 10.1093/braincomms/fcab080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 01/20/2023] Open
Abstract
In this study, we perform a region of interest diffusion tensor imaging and advanced diffusion complexity analysis of normal appearing white matter to determine the impact of vascular health on these diffusivity metrics in midlife adults. 77 participants (26 black, 35 female) at year 30 visit in the Coronary Artery Risk Development in Young Adults longitudinal study were scanned with an advanced diffusion-weighted imaging and fluid-attenuated inversion recovery protocol. Fractional anisotropy and non-linear diffusion complexity measures were estimated. Cumulative measures across 30 years (9 study visits) of systolic blood pressure, body mass index, glucose, smoking and cholesterol were calculated as the area under the curve from baseline up to year 30 examination. Partial correlation analyses assessed the association between cumulative vascular health measures and normal appearing white matter diffusion metrics in these participants. Midlife normal appearing white matter diffusion properties were significantly associated (P < 0.05) with cumulative exposure to vascular risk factors from young adulthood over the 30-year time period. Higher cumulative systolic blood pressure exposure was associated with increased complexity and decreased fractional anisotropy. Higher cumulative body mass index exposure was associated with decreased fractional anisotropy. Additionally, in the normal appearing white matter of black participants (P < 0.05), who exhibited a higher cumulative vascular risk exposure, fractional anisotropy was lower and complexity was higher in comparison to normal appearing white matter in white participants. Higher burden of vascular risk factor exposure from young adulthood to midlife is associated with changes in the diffusion properties of normal appearing white matter in midlife. These changes which may reflect axonal disruption, increased inflammation and/or increased glial proliferation, were primarily observed in both anterior and posterior normal appearing white matter regions of the corpus callosum. These results suggest that microstructural changes in normal appearing white matter are sensitive to vascular health during young adulthood and are possibly therapeutic targets in interventions focused on preserving white matter health across life.
Collapse
Affiliation(s)
- Carson Ingo
- Department of Neurology, Northwestern University, Chicago, IL, USA.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - Shawn Kurian
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - James Higgins
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Simin Mahinrad
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Lisanne Jenkins
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
| | - Philip Gorelick
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Donald Lloyd-Jones
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Farzaneh Sorond
- Department of Neurology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
13
|
Age- and gender-related differences in brain tissue microstructure revealed by multi-component T 2 relaxometry. Neurobiol Aging 2021; 106:68-79. [PMID: 34252873 DOI: 10.1016/j.neurobiolaging.2021.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022]
Abstract
In spite of extensive work, inconsistent findings and lack of specificity in most neuroimaging techniques used to examine age- and gender-related patterns in brain tissue microstructure indicate the need for additional research. Here, we performed the largest Multi-component T2 relaxometry cross-sectional study to date in healthy adults (N = 145, 18-60 years). Five quantitative microstructure parameters derived from various segments of the estimated T2 spectra were evaluated, allowing a more specific interpretation of results in terms of tissue microstructure. We found similar age-related myelin water fraction (MWF) patterns in men and women but we also observed differential male related results including increased MWF content in a few white matter tracts, a faster decline with age of the intra- and extra-cellular water fraction and its T2 relaxation time (i.e. steeper age related negative slopes) and a faster increase in the free and quasi-free water fraction, spanning the whole grey matter. Such results point to a sexual dimorphism in brain tissue microstructure and suggest a lesser vulnerability to age-related changes in women.
Collapse
|
14
|
Campbell KSJ, Williams LJ, Bjornson BH, Weik E, Brain U, Grunau RE, Miller SP, Oberlander TF. Prenatal antidepressant exposure and sex differences in neonatal corpus callosum microstructure. Dev Psychobiol 2021; 63:e22125. [PMID: 33942888 DOI: 10.1002/dev.22125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/09/2022]
Abstract
Prenatal exposure to selective serotonin reuptake inhibitor (SSRI) antidepressants may influence white matter (WM) development, as previous studies report widespread microstructural alterations and reduced interhemispheric connectivity in SSRI-exposed infants. In rodents, perinatal SSRIs had sex-specific disruptions in corpus callosum (CC) axon architecture and connectivity; yet it is unknown whether SSRI-related brain outcomes in humans are sex specific. In this study, the neonate CC was selected as a region-of-interest to investigate whether prenatal SSRI exposure has sex-specific effects on early WM microstructure. On postnatal day 7, diffusion tensor imaging was used to assess WM microstructure in SSRI-exposed (n = 24; 12 male) and nonexposed (n = 48; 28 male) term-born neonates. Fractional anisotropy was extracted from CC voxels and a multivariate discriminant analysis was used to identify latent patterns differing between neonates grouped by SSRI-exposure and sex. Analysis revealed localized variations in CC fractional anisotropy that significantly discriminated neonate groups and correctly predicted group membership with an 82% accuracy. Such effects were identified across three dimensions, representing sex differences in SSRI-exposed neonates (genu, splenium), SSRI-related effects independent of sex (genu-to-rostral body), and sex differences in nonexposed neonates (isthmus-splenium, posterior midbody). Our findings suggest that CC microstructure may have a sex-specific, localized, developmental sensitivity to prenatal SSRI exposure.
Collapse
Affiliation(s)
- Kayleigh S J Campbell
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Obstetrics & Gynaecology, University of British Columbia, Vancouver, Canada
| | | | - Bruce H Bjornson
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Ella Weik
- BC Children's Hospital Research Institute, Vancouver, Canada
| | - Ursula Brain
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Ruth E Grunau
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Steven P Miller
- Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Canada
| | - Tim F Oberlander
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
15
|
Dvorak AV, Swift-LaPointe T, Vavasour IM, Lee LE, Abel S, Russell-Schulz B, Graf C, Wurl A, Liu H, Laule C, Li DKB, Traboulsee A, Tam R, Boyd LA, MacKay AL, Kolind SH. An atlas for human brain myelin content throughout the adult life span. Sci Rep 2021; 11:269. [PMID: 33431990 PMCID: PMC7801525 DOI: 10.1038/s41598-020-79540-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Myelin water imaging is a quantitative neuroimaging technique that provides the myelin water fraction (MWF), a metric highly specific to myelin content, and the intra-/extra-cellular T2 (IET2), which is related to water and iron content. We coupled high-resolution data from 100 adults with gold-standard methodology to create an optimized anatomical brain template and accompanying MWF and IET2 atlases. We then used the MWF atlas to characterize how myelin content relates to demographic factors. In most brain regions, myelin content followed a quadratic pattern of increase during the third decade of life, plateau at a maximum around the fifth decade, then decrease during later decades. The ranking of mean myelin content between brain regions remained consistent across age groups. These openly available normative atlases can facilitate evaluation of myelin imaging results on an individual basis and elucidate the distribution of myelin content between brain regions and in the context of aging.
Collapse
Affiliation(s)
- Adam V Dvorak
- Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada. .,International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.
| | | | - Irene M Vavasour
- Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada.,Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Lisa Eunyoung Lee
- Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
| | - Shawna Abel
- Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
| | | | - Carina Graf
- Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada.,International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Anika Wurl
- Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Hanwen Liu
- Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada.,International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Cornelia Laule
- Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada.,International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,Radiology, University of British Columbia, Vancouver, BC, Canada.,Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David K B Li
- Radiology, University of British Columbia, Vancouver, BC, Canada.,Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
| | - Anthony Traboulsee
- Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
| | - Roger Tam
- Radiology, University of British Columbia, Vancouver, BC, Canada.,Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Lara A Boyd
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| | - Alex L MacKay
- Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada.,Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Shannon H Kolind
- Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada.,International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,Radiology, University of British Columbia, Vancouver, BC, Canada.,Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Werner S, Hasegawa K, Kanosue K, Strüder HK, Göb T, Vogt T. Martial arts training is related to implicit intermanual transfer of visuomotor adaptation. Eur J Neurosci 2020; 53:1107-1123. [PMID: 33140877 DOI: 10.1111/ejn.15034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/09/2020] [Accepted: 10/29/2020] [Indexed: 12/01/2022]
Abstract
Recent work identified an explicit and implicit transfer of sensorimotor adaptation with one limb to the other, untrained limb. Here, we pursue the idea that different individual factors contribute differently to the amount of explicit and implicit intermanual transfer. In particular, we tested a group of judo athletes who show enhanced right-hemispheric involvement in motor control and a group of equally trained athletes. After adaptation to a 60° visual rotation, we estimated awareness of the perturbation and transfer to the untrained, non-dominant left hand in two experiments. We measured the total amount of intermanual transfer (explicit plus implicit) by telling the participants to repeat what was learned during adaptation, and the amount of implicit transfer by instructing the participants to refrain from using what was learned and to perform movements as during baseline instead. We found no difference between the total intermanual transfer of judokas and running experts, with mean absolute transfer values of 42.4° and 47.0°. Implicit intermanual transfer was very limited, but larger in judokas than in general sports athletes, with mean values of 5.2° and 1.6°. A multiple linear regression analysis further revealed that total intermanual transfer, which mainly represents the explicit transfer, is related to awareness of the perturbation, while implicit intermanual transfer can be predicted by judo training, amount of total training, speed of adaptation, and handedness scores. The findings suggest that neuronal mechanisms such as hemispheric interactions and functional specialization underlying intermanual transfer of motor learning may be applied according to individual predisposition.
Collapse
Affiliation(s)
- Susen Werner
- Institute of Professional Sport Education and Sport Qualifications, German Sport University, Cologne, Germany.,Institute of Movement and Neurosciences, German Sport University, Cologne, Germany
| | - Koki Hasegawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | | | - Heiko K Strüder
- Institute of Movement and Neurosciences, German Sport University, Cologne, Germany
| | - Tobias Göb
- Institute of Movement and Neurosciences, German Sport University, Cologne, Germany
| | - Tobias Vogt
- Institute of Professional Sport Education and Sport Qualifications, German Sport University, Cologne, Germany.,Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| |
Collapse
|
17
|
Thapaliya K, Vegh V, Bollmann S, Barth M. Influence of 7T GRE-MRI Signal Compartment Model Choice on Tissue Parameters. Front Neurosci 2020; 14:271. [PMID: 32457565 PMCID: PMC7206227 DOI: 10.3389/fnins.2020.00271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Quantitative assessment of tissue microstructure is important in studying human brain diseases and disorders. Ultra-high field magnetic resonance imaging (MRI) data obtained using a multi-echo gradient echo sequence have been shown to contain information on myelin, axonal, and extracellular compartments in tissue. Quantitative assessment of water fraction, relaxation time (T2*), and frequency shift using multi-compartment models has been shown to be useful in studying white matter properties via specific tissue parameters. It remains unclear how tissue parameters vary with model selection based on 7T multiple echo time gradient-recalled echo (GRE) MRI data. We applied existing signal compartment models to the corpus callosum and investigated whether a three-compartment model can be reduced to two compartments and still resolve white matter parameters [i.e., myelin water fraction (MWF) and g-ratio]. We show that MWF should be computed using a three-compartment model in the corpus callosum, and the g-ratios obtained using three compartment models are consistent with previous reports. We provide results for other parameters, such as signal compartment frequency shifts.
Collapse
Affiliation(s)
- Kiran Thapaliya
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Viktor Vegh
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.,ARC Centre for Innovation in Biomedical Imaging Technology, Brisbane, QLD, Australia
| | - Steffen Bollmann
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.,ARC Centre for Innovation in Biomedical Imaging Technology, Brisbane, QLD, Australia
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.,ARC Centre for Innovation in Biomedical Imaging Technology, Brisbane, QLD, Australia.,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
18
|
Greater Sensorimotor Deficits and Abnormally Lower Globus Pallidus Fractional Anisotropy in HIV+ Women than in HIV+ Men. J Neuroimmune Pharmacol 2020; 16:334-345. [PMID: 32323137 DOI: 10.1007/s11481-020-09915-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022]
Abstract
AIMS Cognitive impairment may be greater in HIV-positive (HIV+) women than in HIV+ men. Whether sex-specific differences exist in brain microstructure of HIV+ individuals is unknown and was evaluated. METHOD 39 HIV+ (21 men, 18 women) and 45 seronegative (SN, 20 men, 25 women) participants were assessed with brain diffusion tensor imaging and cognitive assessments (7 neuropsychological domains). Fractional anisotropy (FA) and mean diffusivity (MD) were measured with an automated atlas in selected brain regions. Group comparisons were assessed with linear mixed effects models, with sub-regions and hemisphere (left/right) as repeated factors for each region. RESULTS HIV+ women, but not HIV+ men, were slower than sex-matched SN controls on sensorimotor function (Dominant-hand: interaction-p = 0.007; Non-dominant hand: interaction-p = 0.039). Similarly, only HIV+ women had lower FA in the globus pallidus (GP, interaction-p = 0.011). Additionally, regardless of sex, the HIV+ group had poorer Fluency, Speed, and Attention than SN-controls (p = 0.006-0.008), as well as lower FA and higher MD in multiple brain regions (p = <0.001-0.044). Across all participants, performance on Attention was predicted by uncinate-FA (p < 0.001, r = 0.5) and corpus callosum (CC)-FA (p = 0.038, r = 0.23), while the Speed of Information Processing was predicted by CC-FA (p = 0.009, r = 0.3). Furthermore, faster sensorimotor function correlated with higher CC-FA and uncinate-FA in men but not in women (Sex*DTI-interaction-p = 0.03-0.06). CONCLUSIONS The relatively poorer sensorimotor function and abnormally lower GP_FA, suggesting lesser neuronal integrity, in HIV+ women demonstrate sex-specific effects from HIV-infection on these measures. These findings may be related to the greater immune activation and neuroinflammation in HIV+ women compared to HIV+ men. Graphical Abstract.
Collapse
|
19
|
Diffusion tensor imaging of the corpus callosum in healthy aging: Investigating higher order polynomial regression modelling. Neuroimage 2020; 213:116675. [PMID: 32112960 DOI: 10.1016/j.neuroimage.2020.116675] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022] Open
Abstract
Previous diffusion tensor imaging (DTI) studies confirmed the vulnerability of corpus callosum (CC) fibers to aging. However, most studies employed lower order regressions to study the relationship between age and white matter microstructure. The present study investigated whether higher order polynomial regression modelling can better describe the relationship between age and CC DTI metrics compared to lower order models in 140 healthy participants (ages 18-85). The CC was found to be non-uniformly affected by aging, with accelerated and earlier degradation occurring in anterior portion; callosal volume, fiber count, fiber length, mean fibers per voxel, and FA decreased with age while mean, axial, and radial diffusivities increased. Half of the parameters studied also displayed significant age-sex interaction or intracranial volume effects. Higher order models were chosen as the best fit, based on Bayesian Information Criterion minimization, in 16 out of 23 significant cases when describing the relationship between DTI measurements and age. Higher order model fits provided different estimations of aging trajectory peaks and decline onsets than lower order models; however, a likelihood ratio test found that higher order regressions generally did not fit the data significantly better than lower order polynomial or linear models. The results contrast the modelling approaches and highlight the importance of using higher order polynomial regression modelling when investigating associations between age and CC white matter microstructure.
Collapse
|
20
|
Vemuri P, Lesnick TG, Knopman DS, Przybelski SA, Reid RI, Mielke MM, Graff‐Radford J, Lowe VJ, Machulda MM, Petersen RC, Jack CR. Amyloid, Vascular, and Resilience Pathways Associated with Cognitive Aging. Ann Neurol 2019; 86:866-877. [PMID: 31509621 PMCID: PMC6899909 DOI: 10.1002/ana.25600] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/17/2019] [Accepted: 09/08/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To investigate the multifactorial processes underlying cognitive aging based on the hypothesis that multiple causal pathways and mechanisms (amyloid, vascular, and resilience) influence longitudinal cognitive decline in each individual through worsening brain health. METHODS We identified 1,230 elderly subjects (aged ≥50 years) with an average of 4.9 years of clinical follow-up and with amyloid positron emission tomography, diffusion tensor imaging, and structural magnetic resonance imaging scans from the population-based Mayo Clinic Study of Aging. We examined imaging markers of amyloid and brain health (white matter microstructural integrity and cortical thinning), systemic vascular health preceding the imaging markers, and early to midlife intellectual enrichment to predict longitudinal cognitive trajectories. We used latent growth curve models for modeling longitudinal cognitive decline. RESULTS All the pathways (amyloid, vascular, resilience) converged through their effects on cortical thinning and worsening cognition and together explained patterns in cognitive decline. Resilience and vascular pathways (aging process, sex differences, education/occupation, and systemic vascular health) had significant impact on white matter microstructural integrity. Education/occupation levels contributed to white matter integrity through systemic vascular health. Worsening white matter integrity contributed to significant cortical thinning and subsequently longitudinal cognitive decline. Baseline amyloidosis contributed to a significant proportion of cognitive decline that accelerated with longer follow-up times, and its primary impact was through cortical thinning. INTERPRETATION We developed an integrated framework to help explain the dynamic and complex process of cognitive aging by considering key causal pathways. Such an approach is important for both better comprehension of cognitive aging processes and will aid in the development of successful intervention strategies. ANN NEUROL 2019;86:866-877.
Collapse
Affiliation(s)
| | | | | | | | - Robert I. Reid
- Department of Information TechnologyMayo ClinicRochesterMN
| | - Michelle M. Mielke
- Department of Health Sciences ResearchMayo ClinicRochesterMN
- Department of NeurologyMayo ClinicRochesterMN
| | | | - Val J. Lowe
- Department of RadiologyMayo ClinicRochesterMN
| | | | | | | |
Collapse
|
21
|
Baumeister TR, Kolind SH, MacKay AL, McKeown MJ. Inherent spatial structure in myelin water fraction maps. Magn Reson Imaging 2019; 67:33-42. [PMID: 31677990 DOI: 10.1016/j.mri.2019.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/23/2019] [Accepted: 09/27/2019] [Indexed: 01/05/2023]
Abstract
Myelin water fraction (MWF) images in brain tend to be spatially noisy with unknown or no apparent spatial patterns structure, so values are therefore typically averaged over large white matter (WM) volumes. We investigated the existence of an inherent spatial structure in MWF maps and explored the benefits of examining MWF values along diffusion tensor imaging (DTI)-derived white matter tracts. We compared spatial anisotropy between MWF and the more widely-used fractional anisotropy (FA) measure. Sixteen major white matter fibre bundles were extracted based on DTI data from 41 healthy subjects. MWF coefficients of variation (CoV) were computed in sub-segments along each fibre tract and compared to MWF CoVs from the surrounding "tubes" - i.e. voxels just exterior to the tract - of each segment. We further assessed the consistency of the MWF along fibre bundles across subjects and investigated the benefit of examining MWF values in sections along each fibre bundle rather than integrating over the whole tract. CoVs of MWF and FA were lower in fibre bundles compared to their enclosing tubes in all investigated tracts. Both measures possessed a spatial gradient of CoV that was smaller aligned along, compared to perpendicular to, the fibre bundles. All WM tracts showed MWF profiles along their trajectory that were consistent across subjects and were more accurate than the mean overall fibre MWF value in estimating ages of the subjects. We conclude that, although less obvious visually, the spatial MWF distribution in white matter consistently follows a distinct pattern along underlying fibre bundles across subjects. Assessing MWF in sections along white matter tracts may provide a sensitive and robust way to assess myelin across subjects.
Collapse
Affiliation(s)
- Tobias R Baumeister
- School of Biomedical Engineering, The University of British Columbia, Canada
| | - Shannon H Kolind
- Faculty of Medicine, Division of Neurology, The University of British Columbia, Canada; Department of Radiology, The University of British Columbia, Canada; Department of Physics & Astronomy, The University of British Columbia, Canada
| | - Alex L MacKay
- Department of Radiology, The University of British Columbia, Canada; Department of Physics & Astronomy, The University of British Columbia, Canada
| | - Martin J McKeown
- Faculty of Medicine, Division of Neurology, The University of British Columbia, Canada.
| |
Collapse
|
22
|
Quantitative age-dependent differences in human brainstem myelination assessed using high-resolution magnetic resonance mapping. Neuroimage 2019; 206:116307. [PMID: 31669302 DOI: 10.1016/j.neuroimage.2019.116307] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
Previous in-vivo magnetic resonance imaging (MRI)-based studies of age-related differences in the human brainstem have focused on volumetric morphometry. These investigations have provided pivotal insights into regional brainstem atrophy but have not addressed microstructural age differences. However, growing evidence indicates the sensitivity of quantitative MRI to microstructural tissue changes in the brain. These studies have largely focused on the cerebrum, with very few MR investigations addressing age-dependent differences in the brainstem, in spite of its central role in the regulation of vital functions. Several studies indicate early brainstem alterations in a myriad of neurodegenerative diseases and dementias. The paucity of MR-focused investigations is likely due in part to the challenges imposed by the small structural scale of the brainstem itself as well as of substructures within, requiring accurate high spatial resolution imaging studies. In this work, we applied our recently developed approach to high-resolution myelin water fraction (MWF) mapping, a proxy for myelin content, to investigate myelin differences with normal aging within the brainstem. In this cross-sectional investigation, we studied a large cohort (n = 125) of cognitively unimpaired participants spanning a wide age range (21-94 years) and found a decrease in myelination with age in most brainstem regions studied, with several regions exhibiting a quadratic association between myelin and age. We believe that this study is the first investigation of MWF differences with normative aging in the adult brainstem. Further, our results provide reference MWF values.
Collapse
|
23
|
Liu H, Rubino C, Dvorak AV, Jarrett M, Ljungberg E, Vavasour IM, Lee LE, Kolind SH, MacMillan EL, Traboulsee A, Lang DJ, Rauscher A, Li DKB, MacKay AL, Boyd LA, Kramer JLK, Laule C. Myelin Water Atlas: A Template for Myelin Distribution in the Brain. J Neuroimaging 2019; 29:699-706. [PMID: 31347238 DOI: 10.1111/jon.12657] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/28/2019] [Accepted: 07/06/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Myelin water imaging (MWI) is a magnetic resonance imaging technique that quantifies myelin in-vivo. Although MWI has been extensively applied to study myelin-related diseases in groups, clinical use in individual patients is challenging mainly due to population heterogeneity. The purpose of this study was twofold: (1) create a normative brain myelin water atlas depicting the population mean and regional variability of myelin content; and (2) apply the myelin atlas to assess the degree of demyelination in individuals with multiple sclerosis (MS). METHODS 3T MWI was performed on 50 healthy adults (25 M/25 F, mean age 25 years [range 17-42 years]). The myelin water atlas was created by averaging coregistered myelin water fraction (MWF) maps from all healthy individuals. To illustrate the preliminary utility of the atlas, white matter (WM) regional MWF variations were evaluated and voxel-wise z-score maps (z < -1.96) from the MWI of three MS participants were produced to assess individually the degree of demyelination. RESULTS The myelin water atlas demonstrated significant MWF variation across control WM. No significant MWF differences were found between male and female healthy participants. MS z-score maps revealed diffuse regions of demyelination in the two participants with Expanded Disability Status Scale (EDSS) = 2.0 but not in the participant with EDSS = 0. CONCLUSIONS The myelin water atlas can be used as a reference (URL: https://sourceforge.net/projects/myelin-water-atlas/) to demonstrate areas of demyelination in individual MS participants. Future studies will expand the atlas age range, account for education, and other variables that may affect myelination.
Collapse
Affiliation(s)
- Hanwen Liu
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cristina Rubino
- Rehabilitation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam V Dvorak
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Jarrett
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Emil Ljungberg
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Irene M Vavasour
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa Eunyoung Lee
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shannon H Kolind
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erin L MacMillan
- UBC MRI Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.,MR Clinical Science, Philips Healthcare Canada, Markham, Ontario, Canada.,ImageTech Lab, Simon Fraser University, Surrey, British Columbia, Canada
| | - Anthony Traboulsee
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Donna J Lang
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander Rauscher
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David K B Li
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander L MacKay
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lara A Boyd
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - John L K Kramer
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cornelia Laule
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
24
|
Comparisons between multi-component myelin water fraction, T1w/T2w ratio, and diffusion tensor imaging measures in healthy human brain structures. Sci Rep 2019; 9:2500. [PMID: 30792440 PMCID: PMC6384876 DOI: 10.1038/s41598-019-39199-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/18/2019] [Indexed: 01/13/2023] Open
Abstract
Various MRI techniques, including myelin water imaging, T1w/T2w ratio mapping and diffusion-based imaging can be used to characterize tissue microstructure. However, surprisingly few studies have examined the degree to which these MRI measures are related within and between various brain regions. Therefore, whole-brain MRI scans were acquired from 31 neurologically-healthy participants to empirically measure and compare myelin water fraction (MWF), T1w/T2w ratio, fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) in 25 bilateral (10 grey matter; 15 white matter) regions-of-interest (ROIs). Except for RD vs. T1w/T2w, MD vs. T1w/T2w, moderately significant to highly significant correlations (p < 0.001) were found between each of the other measures across all 25 brain structures [T1w/T2w vs. MWF (Pearson r = 0.33, Spearman ρ = 0.31), FA vs. MWF (r = 0.73, ρ = 0.75), FA vs. T1w/T2w (r = 0.25, ρ = 0.22), MD vs. AD (r = 0.57, ρ = 0.58), MD vs. RD (r = 0.64, ρ = 0.61), AD vs. MWF (r = 0.43, ρ = 0.36), RD vs. MWF (r = −0.49, ρ = −0.62), MD vs. MWF (r = −0.22, ρ = −0.29), RD vs. FA (r = −0.62, ρ = −0.75) and MD vs. FA (r = −0.22, ρ = −0.18)]. However, while all six MRI measures were correlated with each other across all structures, there were large intra-ROI and inter-ROI differences (i.e., with no one measure consistently producing the highest or lowest values). This suggests that each quantitative MRI measure provides unique, and potentially complimentary, information about underlying brain tissues – with each metric offering unique sensitivity/specificity tradeoffs to different microstructural properties (e.g., myelin content, tissue density, etc.).
Collapse
|
25
|
Laule C, Moore GW. Myelin water imaging to detect demyelination and remyelination and its validation in pathology. Brain Pathol 2018; 28:750-764. [PMID: 30375119 PMCID: PMC8028667 DOI: 10.1111/bpa.12645] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Damage to myelin is a key feature of multiple sclerosis (MS) pathology. Magnetic resonance imaging (MRI) has revolutionized our ability to detect and monitor MS pathology in vivo. Proton density, T1 and T2 can provide qualitative contrast weightings that yield superb in vivo visualization of central nervous system tissue and have proved invaluable as diagnostic and patient management tools in MS. However, standard clinical MR methods are not specific to the types of tissue damage they visualize, and they cannot detect subtle abnormalities in tissue that appears otherwise normal on conventional MRIs. Myelin water imaging is an MR method that provides in vivo measurement of myelin. Histological validation work in both human brain and spinal cord tissue demonstrates a strong correlation between myelin water and staining for myelin, validating myelin water as a marker for myelin. Myelin water varies throughout the brain and spinal cord in healthy controls, and shows good intra- and inter-site reproducibility. MS plaques show variably decreased myelin water fraction, with older lesions demonstrating the greatest myelin loss. Longitudinal study of myelin water can provide insights into the dynamics of demyelination and remyelination in plaques. Normal appearing brain and spinal cord tissues show reduced myelin water, an abnormality which becomes progressively more evident over a timescale of years. Diffusely abnormal white matter, which is evident in 20%-25% of MS patients, also shows reduced myelin water both in vivo and postmortem, and appears to originate from a primary lipid abnormality with relative preservation of myelin proteins. Active research is ongoing in the quest to refine our ability to image myelin and its perturbations in MS and other disorders of the myelin sheath.
Collapse
Affiliation(s)
- Cornelia Laule
- RadiologyUniversity of British ColumbiaVancouverBCCanada
- Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Physics & AstronomyUniversity of British ColumbiaVancouverBCCanada
- International Collaboration on Repair Discoveries (ICORD)University of British ColumbiaVancouverBCCanada
| | - G.R. Wayne Moore
- Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- International Collaboration on Repair Discoveries (ICORD)University of British ColumbiaVancouverBCCanada
- Medicine (Neurology)University of British ColumbiaVancouverBCCanada
| |
Collapse
|
26
|
White matter microstructural variability mediates the relation between obesity and cognition in healthy adults. Neuroimage 2018; 172:239-249. [DOI: 10.1016/j.neuroimage.2018.01.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/05/2017] [Accepted: 01/12/2018] [Indexed: 01/28/2023] Open
|
27
|
Genc S, Malpas CB, Ball G, Silk TJ, Seal ML. Age, sex, and puberty related development of the corpus callosum: a multi-technique diffusion MRI study. Brain Struct Funct 2018; 223:2753-2765. [DOI: 10.1007/s00429-018-1658-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 03/23/2018] [Indexed: 12/13/2022]
|
28
|
Shahab S, Stefanik L, Foussias G, Lai MC, Anderson KK, Voineskos AN. Sex and Diffusion Tensor Imaging of White Matter in Schizophrenia: A Systematic Review Plus Meta-analysis of the Corpus Callosum. Schizophr Bull 2018; 44:203-221. [PMID: 28449132 PMCID: PMC5767963 DOI: 10.1093/schbul/sbx049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sex is considered an understudied variable in health research. Schizophrenia is a brain disorder with known sex differences in epidemiology and clinical presentation. We systematically reviewed the literature for sex-based differences of diffusion properties of white matter tracts in schizophrenia. We then conducted a meta-analysis examining sex-based differences in the genu and splenium of the corpus callosum in schizophrenia. Medline and Embase were searched to identify relevant papers. Studies fulfilling the following criteria were included: (1) included individuals with a diagnosis of schizophrenia, (2) included a control group of healthy individuals, (3) included both sexes in the patient and the control groups, (4) used diffusion tensor imaging, and (5) involved analyzing metrics of white matter microstructural integrity. Fractional anisotropy (FA) was used as the measure of interest in the meta-analysis. Of 730 studies reviewed, 75 met the inclusion criteria. Most showed no effect of sex, however, those that did found either that females have lower FA than males, or that the effect of disease in females is larger than that in males. The findings of the meta-analysis in the corpus callosum supported this result. There is a recognized need for studies on schizophrenia with a sufficient sample of female patients. Lack of power undermines the ability to detect sex-based differences. Understanding the sex-specific impact of illness on neural circuits may help inform development of new treatments, and improvement of existing interventions.
Collapse
Affiliation(s)
- Saba Shahab
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Centre for Addiction and Mental Health and Slaight Family Centre for Youth in Transition, Toronto, ON, Canada
| | - Laura Stefanik
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Centre for Addiction and Mental Health and Slaight Family Centre for Youth in Transition, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - George Foussias
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Centre for Addiction and Mental Health and Slaight Family Centre for Youth in Transition, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Meng-Chuan Lai
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Centre for Addiction and Mental Health and Slaight Family Centre for Youth in Transition, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK,Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Kelly K Anderson
- Centre for Addiction and Mental Health and Slaight Family Centre for Youth in Transition, Toronto, ON, Canada,Department of Epidemiology & Biostatistics and Psychiatry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Aristotle N Voineskos
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Centre for Addiction and Mental Health and Slaight Family Centre for Youth in Transition, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada,To whom correspondence should be addressed; 250 College Street, Toronto, ON M5T 1R8, Canada; tel: 416-535-8501 ext. 33977, fax: 416-260-4162, e-mail:
| |
Collapse
|
29
|
Thapaliya K, Vegh V, Bollmann S, Barth M. Assessment of microstructural signal compartments across the corpus callosum using multi-echo gradient recalled echo at 7 T. Neuroimage 2017; 182:407-416. [PMID: 29183776 DOI: 10.1016/j.neuroimage.2017.11.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/06/2017] [Accepted: 11/15/2017] [Indexed: 12/18/2022] Open
Abstract
Quantitative assessment of tissue microstructure is important in studying human brain diseases and disorders in which white matter is implicated, as it has been linked to demyelination, re-myelination, and axonal damage in clinical conditions. Ultra-high field magnetic resonance imaging data obtained using a multi-echo gradient echo sequence has been shown to contain information on myelin, axonal and extracellular compartments in white matter. In this study, we aimed to assess the sensitivity of a three-compartment model to estimate the variation of corresponding compartment parameters (water fraction, relaxation time and frequency shift) of the corpus callosum sub-regions, which are known to have different tissue structure. Additionally, we computed the g-ratio using myelin and axonal water fractions and performed a voxel-by-voxel analysis in the corpus callosum. Based on data acquired for ten participants, we show that the myelin compartment water fraction and T2∗ is consistent across the corpus callosum sub-regions, whilst myelin frequency shift varies. The results show that the variation in water fraction, T2∗ and frequency shift for the myelin signal compartment across the corpus callosum is smaller than for the axonal and extracellular signal compartments. The computed g-ratio was comparable to previously published studies in the corpus callosum. Our study suggests that a multi-echo GRE approach in vivo combined with a complex three-compartment model is sensitive to microstructural parameter variations across the human corpus callosum.
Collapse
Affiliation(s)
- Kiran Thapaliya
- Centre for Advanced Imaging, The University of Queensland, Queensland, Australia
| | - Viktor Vegh
- Centre for Advanced Imaging, The University of Queensland, Queensland, Australia
| | - Steffen Bollmann
- Centre for Advanced Imaging, The University of Queensland, Queensland, Australia
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, Queensland, Australia.
| |
Collapse
|
30
|
Björnholm L, Nikkinen J, Kiviniemi V, Nordström T, Niemelä S, Drakesmith M, Evans JC, Pike GB, Veijola J, Paus T. Structural properties of the human corpus callosum: Multimodal assessment and sex differences. Neuroimage 2017; 152:108-118. [DOI: 10.1016/j.neuroimage.2017.02.056] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 11/17/2022] Open
|
31
|
Sex-related difference in human white matter volumes studied: Inspection of the corpus callosum and other white matter by VBM. Sci Rep 2017; 7:39818. [PMID: 28045130 PMCID: PMC5206615 DOI: 10.1038/srep39818] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 11/28/2016] [Indexed: 11/09/2022] Open
Abstract
It has been contended that any observed difference of the corpus callosum (CC) size between men and women is not sex-related but brain-size-related. A recent report, however, showed that the midsagittal CC area was significantly larger in women in 37 brain-size-matched pairs of normal young adults. Since this constituted strong evidence of sexual dimorphism and was obtained from publicly available data in OASIS, we examined volume differences within the CC and in other white matter using voxel-based morphometry (VBM). We created a three-dimensional region of interest of the CC and measured its volume. The VBM statistics were analyzed by permutation test and threshold-free cluster enhancement (TFCE) with the significance levels at FWER < 0.05. The CC volume was significantly larger in women in the same 37 brain-size-matched pairs. We found that the CC genu was the subregion showing the most significant sex-related difference. We also found that white matter in the bilateral anterior frontal regions and the left lateral white matter near to Broca's area were larger in women, whereas there were no significant larger regions in men. Since we used brain-size-matched subjects, our results gave strong volumetric evidence of localized sexual dimorphism of white matter.
Collapse
|
32
|
Abstract
Myelin is critical for healthy brain function. An accurate in vivo measure of myelin content has important implications for understanding brain plasticity and neurodegenerative diseases. Myelin water imaging is a magnetic resonance imaging method which can be used to visualize myelination in the brain and spinal cord in vivo. This review presents an overview of myelin water imaging data acquisition and analysis, post-mortem validation work, findings in both animal and human studies and a brief discussion about other MR techniques purported to provide in vivo myelin content. Multi-echo T2 relaxation approaches continue to undergo development and whole-brain imaging time now takes less than 10 minutes; the standard analysis method for this type of data acquisition is a non-negative least squares approach. Alternate methods including the multi-flip angle gradient echo mcDESPOT are also being used for myelin water imaging. Histological validation studies in animal and human brain and spinal cord tissue demonstrate high specificity of myelin water imaging for myelin. Potential confounding factors for in vivo myelin water fraction measurement include the presence of myelin debris and magnetization exchange processes. Myelin water imaging has successfully been used to study animal models of injury, applied in healthy human controls and can be used to assess damage and injury in conditions such as multiple sclerosis, neuromyelitis optica, schizophrenia, phenylketonuria, neurofibromatosis, niemann pick’s disease, stroke and concussion. Other quantitative magnetic resonance approaches that are sensitive to, but not specific for, myelin exist including magnetization transfer, diffusion tensor imaging and T1 weighted imaging.
Collapse
Affiliation(s)
- Alex L MacKay
- Department of Radiology, University of British Columbia, Vancouver, Canada.,Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
| | - Cornelia Laule
- Department of Radiology, University of British Columbia, Vancouver, Canada.,Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| |
Collapse
|
33
|
Makki MI, Hagmann C. Regional differences in interhemispheric structural fibers in healthy, term infants. J Neurosci Res 2016; 95:876-884. [DOI: 10.1002/jnr.23834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 06/03/2016] [Accepted: 06/21/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Malek I. Makki
- MRI Research; University Children Hospital Zurich; Zurich Switzerland
| | - Cornelia Hagmann
- Department of Neonatology; University Hospital Zurich; Zurich Switzerland
| |
Collapse
|
34
|
Coplan JD, Kolavennu V, Abdallah CG, Mathew SJ, Perera TD, Pantol G, Carpenter D, Tang C. Patterns of anterior versus posterior white matter fractional anistotropy concordance in adult nonhuman primates: Effects of early life stress. J Affect Disord 2016; 192:167-75. [PMID: 26735328 PMCID: PMC6129259 DOI: 10.1016/j.jad.2015.11.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/29/2015] [Accepted: 11/30/2015] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Functional neuroimaging studies report global prefrontal dysconnectivity in mood disorders, supporting the notion of widespread disruptions in brain networks. Microscopic alterations in white matter (WM) tracts - which possess neuroplastic properties and play a central role in brain connectivity - are interrogated herein in the context of brain dysconnectivity. Early life stress (ELS), an antecedent to human mood disorders, induces WM alterations in volumetrics and integrity. We hypothesized that nonhuman primate infants exposed to ELS would exhibit persistent impairments in both frontal and posterior concordance of WM integrity, therefore contributing to global brain dysconnectivity. METHODS Using a 3T MRI, diffusion tensor imaging (DTI) was performed on 21 adult male Bonnet macaques, 12 of whom had been raised under variable foraging demand (VFD) conditions and nine of whom had been raised under normative conditions (Non-VFD). As representative of anterior regions, fractional anisotropy (FA) concordance between anterior corpus callosum (ACorpusC) and anterior limb of the internal capsule (ALIC) was examined. For posterior regions, FA concordance between posterior corpus callosum (PCorpusC) and posterior limb of the internal capsule (PLICA) and between PCorpusC and occipital WM was examined. Examination of posterior FA was explored in the context of frontal markers of neuroplasticity. RESULTS A concordant relationship for FA between left ALIC and ACorpusC was evident in Non-VFD-reared subjects, but significantly absent in VFD-reared subjects. For left posterior regions, FA concordance between PLICA and PCorpusC and occipital WM and PCorpusC was evident in VFD-reared and not Non-VFD-reared subjects. The posterior concordance in VFD was significantly distinguishable from the deficit in anterior concordance FA in VFD. CONCLUSIONS The findings support the view that disrupted emotional integrity of the maternal-infant attachment process affects normative synchronous development of frontal white matter tracts but creates errant posterior concordance and also disrupts an inverse relationship between posterior white matter tracts and markers of neuroplasticity. We provide preliminary evidence that a concordant relationship between capsular-callosal FA may become discordant, providing a putative mechanism for prefrontal functional brain dysconnectivity.
Collapse
Affiliation(s)
- Jeremy D. Coplan
- Department of Psychiatry & Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Venu Kolavennu
- Department of Psychiatry & Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Chadi G. Abdallah
- Department of Psychiatry Yale University School of Medicine, New Haven, CT, USA,Clinical Neuroscience Division, VA National Center for PTSD, West Haven, CT, USA
| | - Sanjay J Mathew
- Mental Health Care Line, Michael E. Debakey VA Medical Center, Houston, Texas; Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Tarique D. Perera
- New York State Psychiatric Institute, Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Gustavo Pantol
- Departments of Psychiatry, Neuroscience, and Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Carpenter
- Departments of Psychiatry, Neuroscience, and Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cheuk Tang
- Departments of Psychiatry, Neuroscience, and Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
35
|
Rees DA, Udiawar M, Berlot R, Jones DK, O'Sullivan MJ. White Matter Microstructure and Cognitive Function in Young Women With Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2016; 101:314-23. [PMID: 26574952 PMCID: PMC4701841 DOI: 10.1210/jc.2015-2318] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 11/06/2015] [Indexed: 12/02/2022]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is a disorder characterized by insulin resistance and hyperandrogenism, which leads to an increased risk of type 2 diabetes in later life. Androgens and insulin signaling affect brain function but little is known about brain structure and function in younger adults with PCOS. OBJECTIVE To establish whether young women with PCOS display altered white matter microstructure and cognitive function. PATIENTS, INTERVENTIONS, AND MAIN OUTCOME MEASURES: Eighteen individuals with PCOS (age, 31 ± 6 y; body mass index [BMI] 30 ± 6 kg/m(2)) and 18 control subjects (age, 31 ± 7 y; BMI, 29 ± 6 kg/m(2)), matched for age, IQ, and BMI, underwent anthropometric and metabolic evaluation, diffusion tensor MRI, a technique especially sensitive to brain white matter structure, and cognitive assessment. Cognitive scores and white matter diffusion metrics were compared between groups. White matter microstructure was evaluated across the whole white matter skeleton using tract-based spatial statistics. Associations with metabolic indices were also evaluated. RESULTS PCOS was associated with a widespread reduction in axial diffusivity (diffusion along the main axis of white matter fibers) and increased tissue volume fraction (the proportion of volume filled by white or grey matter rather than cerebrospinal fluid) in the corpus callosum. Cognitive performance was reduced compared with controls (first principal component, t = 2.9, P = .007), reflecting subtle decrements across a broad range of cognitive tests, despite similar education and premorbid intelligence. In PCOS, there was a reversal of the relationship seen in controls between brain microstructure and both androgens and insulin resistance. CONCLUSIONS White matter microstructure is altered, and cognitive performance is compromised, in young adults with PCOS. These alterations in brain structure and function are independent of age, education and BMI. If reversible, these changes represent a potential target for treatment.
Collapse
Affiliation(s)
- D Aled Rees
- Institute of Molecular and Experimental Medicine (D.A.R., M.U.), School of Medicine and Cardiff University Brain Research Imaging Centre (M.U., D.K.J., M.J.O.), School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom; Department of Basic and Clinical Neuroscience (R.B., M.J.O.), Institute of Psychiatry Psychology and Neuroscience, King's College London, London SE5 9RX, United Kingdom; and Department of Neurology (R.B.), University Medical Centre Ljubljana, Zaloska cesta 2, 1000 Ljubljana, Slovenia
| | - Maneesh Udiawar
- Institute of Molecular and Experimental Medicine (D.A.R., M.U.), School of Medicine and Cardiff University Brain Research Imaging Centre (M.U., D.K.J., M.J.O.), School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom; Department of Basic and Clinical Neuroscience (R.B., M.J.O.), Institute of Psychiatry Psychology and Neuroscience, King's College London, London SE5 9RX, United Kingdom; and Department of Neurology (R.B.), University Medical Centre Ljubljana, Zaloska cesta 2, 1000 Ljubljana, Slovenia
| | - Rok Berlot
- Institute of Molecular and Experimental Medicine (D.A.R., M.U.), School of Medicine and Cardiff University Brain Research Imaging Centre (M.U., D.K.J., M.J.O.), School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom; Department of Basic and Clinical Neuroscience (R.B., M.J.O.), Institute of Psychiatry Psychology and Neuroscience, King's College London, London SE5 9RX, United Kingdom; and Department of Neurology (R.B.), University Medical Centre Ljubljana, Zaloska cesta 2, 1000 Ljubljana, Slovenia
| | - Derek K Jones
- Institute of Molecular and Experimental Medicine (D.A.R., M.U.), School of Medicine and Cardiff University Brain Research Imaging Centre (M.U., D.K.J., M.J.O.), School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom; Department of Basic and Clinical Neuroscience (R.B., M.J.O.), Institute of Psychiatry Psychology and Neuroscience, King's College London, London SE5 9RX, United Kingdom; and Department of Neurology (R.B.), University Medical Centre Ljubljana, Zaloska cesta 2, 1000 Ljubljana, Slovenia
| | - Michael J O'Sullivan
- Institute of Molecular and Experimental Medicine (D.A.R., M.U.), School of Medicine and Cardiff University Brain Research Imaging Centre (M.U., D.K.J., M.J.O.), School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom; Department of Basic and Clinical Neuroscience (R.B., M.J.O.), Institute of Psychiatry Psychology and Neuroscience, King's College London, London SE5 9RX, United Kingdom; and Department of Neurology (R.B.), University Medical Centre Ljubljana, Zaloska cesta 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
36
|
Case SS, Oetama-Paul AJ. Brain Biology and Gendered Discourse. APPLIED PSYCHOLOGY-AN INTERNATIONAL REVIEW-PSYCHOLOGIE APPLIQUEE-REVUE INTERNATIONALE 2014. [DOI: 10.1111/apps.12040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Susan S. Case
- Weatherhead School of Management; Case Western Reserve University; USA
| | | |
Collapse
|
37
|
Autism spectrum disorder as early neurodevelopmental disorder: evidence from the brain imaging abnormalities in 2-3 years old toddlers. J Autism Dev Disord 2014; 44:1633-40. [PMID: 24419870 PMCID: PMC4057630 DOI: 10.1007/s10803-014-2033-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that occurs within the first 3 years of life, which is marked by social skills and communication deficits along with stereotyped repetitive behavior. Although great efforts have been made to clarify the underlying neuroanatomical abnormalities and brain-behavior relationships in adolescents and adults with ASD, literature is still limited in information about the neurobiology of ASD in the early age of life. Brain images of 50 toddlers with ASD and 28 age, gender, and developmental quotient matched toddlers with developmental delay (DD) (control group) between ages 2 and 3 years were captured using combined magnetic resonance-based structural imaging and diffusion tensor imaging (DTI). Structural magnetic resonance imaging was applied to assess overall gray matter (GM) and white matter (WM) volumes, and regional alterations were assessed by voxel-based morphometry. DTI was used to investigate the white matter tract integrity. Compared with DD, significant increases were observed in ASD, primarily in global GM and WM volumes and in right superior temporal gyrus regional GM and WM volumes. Higher fractional anisotropy value was also observed in the corpus callosum, posterior cingulate cortex, and limbic lobes of ASD. The converging findings of structural and white matter abnormalities in ASD suggest that alterations in neural-anatomy of different brain regions may be involved in behavioral and cognitive deficits associated with ASD, especially in an early age of 2-3 years old toddlers.
Collapse
|
38
|
Moreno MB, Concha L, González-Santos L, Ortiz JJ, Barrios FA. Correlation between corpus callosum sub-segmental area and cognitive processes in school-age children. PLoS One 2014; 9:e104549. [PMID: 25170897 PMCID: PMC4149349 DOI: 10.1371/journal.pone.0104549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/15/2014] [Indexed: 12/13/2022] Open
Abstract
We assessed the relationship between structural characteristics (area) and microstructure (apparent diffusion coefficient; ADC) of the corpus callosum (CC) in 57 healthy children aged 7.0 to 9.1 years, with diverse cognitive and academic abilities as well as executive functions evaluated with a neuropsychological battery for children. The CC was manually delineated and sub-segmented into six regions, and their ADC and area were measured. There were no significant differences between genders in the callosal region area or in ADC. The CC area and ADC, mainly of anterior regions, correlated with different cognitive abilities for each gender. Our results suggest that the relationship between cognitive abilities and CC characteristics is different between girls and boys and between the anterior and posterior regions of the CC. Furthermore, these findings strenghten the idea that regardless of the different interhemispheric connectivity schemes per gender, the results of cognitive tasks are very similar for girls and boys throughout childhood.
Collapse
Affiliation(s)
- Martha Beatriz Moreno
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Querétaro, México
| | - Luis Concha
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Querétaro, México
| | | | - Juan Jose Ortiz
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Querétaro, México
| | | |
Collapse
|
39
|
Domin M, Langner S, Hosten N, Lotze M. Comparison of parameter threshold combinations for diffusion tensor tractography in chronic stroke patients and healthy subjects. PLoS One 2014; 9:e98211. [PMID: 24853163 PMCID: PMC4031143 DOI: 10.1371/journal.pone.0098211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/30/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Although quantitative evaluation of diffusion tensor imaging (DTI) data seemed to be extremely important for clinical research its application is under debate. Besides fractional anisotropy (FA) the quantitative comparison between hemispheres of the number of fibers reconstructed by means of diffusion tensor tractography (DTT) is commonly used. However, the tractography-related parameters FA, minimum tract length (LENGTH) and the angle between two contiguous tracking steps (ANGLE) are inconsistently applied. Using 18 combinations we tested for the influence of parameter thresholds on the amount of reconstructed fibers for the posterior pyramidal tract in both hemispheres in order to obtain meaningful thresholds for DTT. RESULTS In 14 chronic stroke patients with unilateral lesions of the pyramidal tract around the height of the internal capsule and considerable motor deficits a 3-way repeated-measures ANOVA showed a significant interaction between the effects of FA and ANGLE level on reconstructed fiber lateralization, F (2.9, 37.67) = 3.01, p = 0.044, and a significant main effect FA, F (1.4, 18.1) = 11.58, p = 0.001. Post-hoc pairwise comparisons showed that this interaction was completely driven by FA. In 22 right-handed healthy subjects no significant interactions or main effects could be found. CONCLUSION The parameter threshold combinations with highest FA showed highest effect. ANGLE and LENGTH insofar influenced the lateralization effect when selected as liberal as possible, short LENGTH and large ANGLE thresholds. The DTT approach should be used with great care since results are highly dependent on the thresholds applied.
Collapse
Affiliation(s)
- Martin Domin
- Functional Imaging Unit, Center for Diagnostic Radiology and Neuroradiology, University Medicine, Greifswald, M/V, Germany
| | - Sönke Langner
- Center for Diagnostic Radiology and Neuroradiology, University Medicine, Greifswald, M/V, Germany
| | - Norbert Hosten
- Center for Diagnostic Radiology and Neuroradiology, University Medicine, Greifswald, M/V, Germany
| | - Martin Lotze
- Functional Imaging Unit, Center for Diagnostic Radiology and Neuroradiology, University Medicine, Greifswald, M/V, Germany
| |
Collapse
|
40
|
Hu Y, Xu Q, Li K, Zhu H, Qi R, Zhang Z, Lu G. Gender differences of brain glucose metabolic networks revealed by FDG-PET: evidence from a large cohort of 400 young adults. PLoS One 2013; 8:e83821. [PMID: 24358312 PMCID: PMC3866135 DOI: 10.1371/journal.pone.0083821] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 11/09/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Gender differences of the human brain are an important issue in neuroscience research. In recent years, an increasing amount of evidence has been gathered from noninvasive neuroimaging studies supporting a sexual dimorphism of the human brain. However, there is a lack of imaging studies on gender differences of brain metabolic networks based on a large population sample. MATERIALS AND METHODS FDG PET data of 400 right-handed, healthy subjects, including 200 females (age: 25:45 years, mean age ± SD: 40.9 ± 3.9 years) and 200 age-matched males were obtained and analyzed in the present study. We first investigated the regional differences of brain glucose metabolism between genders using a voxel-based two-sample t-test analysis. Subsequently, we investigated the gender differences of the metabolic networks. Sixteen metabolic covariance networks using seed-based correlation were analyzed. Seven regions showing significant regional metabolic differences between genders, and nine regions conventionally used in the resting-state network studies were selected as regions-of-interest. Permutation tests were used for comparing within- and between-network connectivity between genders. RESULTS Compared with the males, females showed higher metabolism in the posterior part and lower metabolism in the anterior part of the brain. Moreover, there were widely distributed patterns of the metabolic networks in the human brain. In addition, significant gender differences within and between brain glucose metabolic networks were revealed in the present study. CONCLUSION This study provides solid data that reveal gender differences in regional brain glucose metabolism and brain glucose metabolic networks. These observations might contribute to the better understanding of the gender differences in human brain functions, and suggest that gender should be included as a covariate when designing experiments and explaining results of brain glucose metabolic networks in the control and experimental individuals or patients.
Collapse
Affiliation(s)
- Yuxiao Hu
- Department of Nuclear Medicine, Jinling Hospital, Clinical school of Medical College, Nanjing University, Nanjing, China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Clinical school of Medical College, Nanjing University, Nanjing, China
| | - Kai Li
- Department of Pharmacology, Soochow University, Suzhou, China
| | - Hong Zhu
- Department of Nuclear Medicine, Jinling Hospital, Clinical school of Medical College, Nanjing University, Nanjing, China
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Clinical school of Medical College, Nanjing University, Nanjing, China
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Clinical school of Medical College, Nanjing University, Nanjing, China
- * E-mail: (GL); (ZZ)
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Clinical school of Medical College, Nanjing University, Nanjing, China
- * E-mail: (GL); (ZZ)
| |
Collapse
|
41
|
Phillips OR, Clark KA, Luders E, Azhir R, Joshi SH, Woods RP, Mazziotta JC, Toga AW, Narr KL. Superficial white matter: effects of age, sex, and hemisphere. Brain Connect 2013; 3:146-59. [PMID: 23461767 DOI: 10.1089/brain.2012.0111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Structural and diffusion imaging studies demonstrate effects of age, sex, and asymmetry in many brain structures. However, few studies have addressed how individual differences might influence the structural integrity of the superficial white matter (SWM), comprised of short-range association (U-fibers), and intracortical axons. This study thus applied a sophisticated computational analysis approach to structural and diffusion imaging data obtained from healthy individuals selected from the International Consortium for Brain Mapping (ICBM) database across a wide adult age range (n=65, age: 18-74 years, all Caucasian). Fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) were sampled and compared at thousands of spatially matched SWM locations and within regions-of-interest to examine global and local variations in SWM integrity across age, sex, and hemisphere. Results showed age-related reductions in FA that were more pronounced in the frontal SWM than in the posterior and ventral brain regions, whereas increases in RD and AD were observed across large areas of the SWM. FA was significantly greater in left temporoparietal regions in men and in the posterior callosum in women. Prominent leftward FA and rightward AD and RD asymmetries were observed in the temporal, parietal, and frontal regions. Results extend previous findings restricted to the deep white matter pathways to demonstrate regional changes in the SWM microstructure relating to processes of demyelination and/or to the number, coherence, or integrity of axons with increasing age. SWM fiber organization/coherence appears greater in the left hemisphere regions spanning language and other networks, while more localized sex effects could possibly reflect sex-specific advantages in information strategies.
Collapse
Affiliation(s)
- Owen R Phillips
- Laboratory of Neuro Imaging, Department of Neurology, Geffen School of Medicine at UCLA, Los Angeles, California 90095-7334, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kaller CP, Reisert M, Katzev M, Umarova R, Mader I, Hennig J, Weiller C, Köstering L. Predicting planning performance from structural connectivity between left and right mid-dorsolateral prefrontal cortex: moderating effects of age during postadolescence and midadulthood. Cereb Cortex 2013; 25:869-83. [PMID: 24108808 DOI: 10.1093/cercor/bht276] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Complex cognitive abilities such as planning are known to critically rely on activity of bilateral mid-dorsolateral prefrontal cortex (mid-dlPFC). However, the functional relevance of the structural connectivity between left and right mid-dlPFC is yet unknown. Here, we applied global tractography to derive streamline counts as estimates of the structural connectivity between mid-dlPFC homologs and related it to planning performance in the Tower of London task across early to midadulthood, assuming a moderating effect of age. Multiple regression analyses with interaction effects revealed that streamline counts between left and right mid-dlPFC were negatively associated with planning performance specifically in early postadolescence. From the fourth life decade on, there was a trend for a reversed, positive association. These differential findings were corroborated by converging results from fractional anisotropy and white-matter density estimates in the genu of the corpus callosum where fibers connecting mid-dlPFC homologs traversed. Moreover, the results for streamline counts were regionally specific, marking the strength of mid-dlPFC connectivity as critical in predicting interindividual differences in planning performance across different stages of adulthood. Taken together, present findings provide first evidence for nonadditive effects of age on the relation between complex cognitive abilities and the structural connectivity of mid-dlPFC homologs.
Collapse
Affiliation(s)
- Christoph P Kaller
- Department of Neurology, University Medical Center Freiburg Brain Imaging Center BrainLinks-BrainTools Cluster of Excellence
| | - Marco Reisert
- Freiburg Brain Imaging Center Medical Physics, Department of Radiology, University Medical Center Freiburg
| | - Michael Katzev
- Department of Neurology, University Medical Center Freiburg Brain Imaging Center
| | - Roza Umarova
- Department of Neurology, University Medical Center Freiburg Brain Imaging Center
| | - Irina Mader
- Freiburg Brain Imaging Center Department of Neuroradiology, University Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Jürgen Hennig
- Freiburg Brain Imaging Center BrainLinks-BrainTools Cluster of Excellence Medical Physics, Department of Radiology, University Medical Center Freiburg
| | - Cornelius Weiller
- Department of Neurology, University Medical Center Freiburg Brain Imaging Center BrainLinks-BrainTools Cluster of Excellence
| | - Lena Köstering
- Department of Neurology, University Medical Center Freiburg Brain Imaging Center
| |
Collapse
|
43
|
Takao H, Hayashi N, Ohtomo K. Sex dimorphism in the white matter: Fractional anisotropy and brain size. J Magn Reson Imaging 2013; 39:917-23. [DOI: 10.1002/jmri.24225] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 04/18/2013] [Indexed: 11/08/2022] Open
Affiliation(s)
- Hidemasa Takao
- Department of Radiology; Graduate School of Medicine, University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Naoto Hayashi
- Department of Computational Diagnostic Radiology and Preventive Medicine; Graduate School of Medicine; University of Tokyo Tokyo Japan
| | - Kuni Ohtomo
- Department of Radiology; Graduate School of Medicine, University of Tokyo; Bunkyo-ku Tokyo Japan
| |
Collapse
|
44
|
Luders E, Toga AW, Thompson PM. Why size matters: differences in brain volume account for apparent sex differences in callosal anatomy: the sexual dimorphism of the corpus callosum. Neuroimage 2013; 84:820-4. [PMID: 24064068 DOI: 10.1016/j.neuroimage.2013.09.040] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/06/2013] [Accepted: 09/17/2013] [Indexed: 10/26/2022] Open
Abstract
Numerous studies have demonstrated a sexual dimorphism of the human corpus callosum. However, the question remains if sex differences in brain size, which typically is larger in men than in women, or biological sex per se account for the apparent sex differences in callosal morphology. Comparing callosal dimensions between men and women matched for overall brain size may clarify the true contribution of biological sex, as any observed group difference should indicate pure sex effects. We thus examined callosal morphology in 24 male and 24 female brains carefully matched for overall size. In addition, we selected 24 extremely large male brains and 24 extremely small female brains to explore if observed sex effects might vary depending on the degree to which male and female groups differed in brain size. Using the individual T1-weighted brain images (n=96), we delineated the corpus callosum at midline and applied a well-validated surface-based mesh-modeling approach to compare callosal thickness at 100 equidistant points between groups determined by brain size and sex. The corpus callosum was always thicker in men than in women. However, this callosal sex difference was strongly determined by the cerebral sex difference overall. That is, the larger the discrepancy in brain size between men and women, the more pronounced the sex difference in callosal thickness, with hardly any callosal differences remaining between brain-size matched men and women. Altogether, these findings suggest that individual differences in brain size account for apparent sex differences in the anatomy of the corpus callosum.
Collapse
Affiliation(s)
- Eileen Luders
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, USA.
| | | | | |
Collapse
|
45
|
Sacher J, Neumann J, Okon-Singer H, Gotowiec S, Villringer A. Sexual dimorphism in the human brain: evidence from neuroimaging. Magn Reson Imaging 2013; 31:366-75. [PMID: 22921939 DOI: 10.1016/j.mri.2012.06.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 06/13/2012] [Indexed: 12/22/2022]
Affiliation(s)
- Julia Sacher
- Max-Planck-Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1A, Leipzig, Germany.
| | | | | | | | | |
Collapse
|
46
|
Motor control and neural plasticity through interhemispheric interactions. Neural Plast 2012; 2012:823285. [PMID: 23326685 PMCID: PMC3541646 DOI: 10.1155/2012/823285] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/16/2012] [Accepted: 12/03/2012] [Indexed: 11/18/2022] Open
Abstract
The corpus callosum, which is the largest white matter structure in the human brain, connects the 2 cerebral hemispheres. It plays a crucial role in maintaining the independent processing of the hemispheres and in integrating information between both hemispheres. The functional integrity of interhemispheric interactions can be tested electrophysiologically in humans by using transcranial magnetic stimulation, electroencephalography, and functional magnetic resonance imaging. As a brain structural imaging, diffusion tensor imaging has revealed the microstructural connectivity underlying interhemispheric interactions. Sex, age, and motor training in addition to the size of the corpus callosum influence interhemispheric interactions. Several neurological disorders change hemispheric asymmetry directly by impairing the corpus callosum. Moreover, stroke lesions and unilateral peripheral impairments such as amputation alter interhemispheric interactions indirectly. Noninvasive brain stimulation changes the interhemispheric interactions between both motor cortices. Recently, these brain stimulation techniques were applied in the clinical rehabilitation of patients with stroke by ameliorating the deteriorated modulation of interhemispheric interactions. Here, we review the interhemispheric interactions and mechanisms underlying the pathogenesis of these interactions and propose rehabilitative approaches for appropriate cortical reorganization.
Collapse
|
47
|
O'Dwyer L, Lamberton F, Bokde ALW, Ewers M, Faluyi YO, Tanner C, Mazoyer B, O'Neill D, Bartley M, Collins R, Coughlan T, Prvulovic D, Hampel H. Sexual dimorphism in healthy aging and mild cognitive impairment: a DTI study. PLoS One 2012; 7:e37021. [PMID: 22768288 PMCID: PMC3388101 DOI: 10.1371/journal.pone.0037021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/12/2012] [Indexed: 11/18/2022] Open
Abstract
Previous PET and MRI studies have indicated that the degree to which pathology translates into clinical symptoms is strongly dependent on sex with women more likely to express pathology as a diagnosis of AD, whereas men are more resistant to clinical symptoms in the face of the same degree of pathology. Here we use DTI to investigate the difference between male and female white matter tracts in healthy older participants (24 women, 16 men) and participants with mild cognitive impairment (21 women, 12 men). Differences between control and MCI participants were found in fractional anisotropy (FA), radial diffusion (DR), axial diffusion (DA) and mean diffusion (MD). A significant main effect of sex was also reported for FA, MD and DR indices, with male control and male MCI participants having significantly more microstructural damage than their female counterparts. There was no sex by diagnosis interaction. Male MCIs also had significantly less normalised grey matter (GM) volume than female MCIs. However, in terms of absolute brain volume, male controls had significantly more brain volume than female controls. Normalised GM and WM volumes were found to decrease significantly with age with no age by sex interaction. Overall, these data suggest that the same degree of cognitive impairment is associated with greater structural damage in men compared with women.
Collapse
Affiliation(s)
- Laurence O'Dwyer
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Alexander AL, Hurley SA, Samsonov AA, Adluru N, Hosseinbor AP, Mossahebi P, Tromp DPM, Zakszewski E, Field AS. Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains. Brain Connect 2012; 1:423-46. [PMID: 22432902 DOI: 10.1089/brain.2011.0071] [Citation(s) in RCA: 342] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The image contrast in magnetic resonance imaging (MRI) is highly sensitive to several mechanisms that are modulated by the properties of the tissue environment. The degree and type of contrast weighting may be viewed as image filters that accentuate specific tissue properties. Maps of quantitative measures of these mechanisms, akin to microstructural/environmental-specific tissue stains, may be generated to characterize the MRI and physiological properties of biological tissues. In this article, three quantitative MRI (qMRI) methods for characterizing white matter (WM) microstructural properties are reviewed. All of these measures measure complementary aspects of how water interacts with the tissue environment. Diffusion MRI, including diffusion tensor imaging, characterizes the diffusion of water in the tissues and is sensitive to the microstructural density, spacing, and orientational organization of tissue membranes, including myelin. Magnetization transfer imaging characterizes the amount and degree of magnetization exchange between free water and macromolecules like proteins found in the myelin bilayers. Relaxometry measures the MRI relaxation constants T1 and T2, which in WM have a component associated with the water trapped in the myelin bilayers. The conduction of signals between distant brain regions occurs primarily through myelinated WM tracts; thus, these methods are potential indicators of pathology and structural connectivity in the brain. This article provides an overview of the qMRI stain mechanisms, acquisition and analysis strategies, and applications for these qMRI stains.
Collapse
Affiliation(s)
- Andrew L Alexander
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Westerhausen R, Kompus K, Dramsdahl M, Falkenberg LE, Grüner R, Hjelmervik H, Specht K, Plessen K, Hugdahl K. A critical re-examination of sexual dimorphism in the corpus callosum microstructure. Neuroimage 2011; 56:874-80. [DOI: 10.1016/j.neuroimage.2011.03.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/03/2011] [Accepted: 03/04/2011] [Indexed: 11/24/2022] Open
|
50
|
Abstract
It has been well known that gender plays a critical role in the anatomy and function of the human brain, as well as human behaviors. Recent neuroimaging studies have demonstrated gender effects on not only focal brain areas but also the connectivity between areas. Specifically, structural MRI and diffusion MRI data have revealed substantial gender differences in white matter–based anatomical connectivity. Structural MRI data further demonstrated gender differences in the connectivity revealed by morphometric correlation among brain areas. Functional connectivity derived from functional neuroimaging (e.g., functional MRI and PET) data is also modulated by gender. Moreover, male and female human brains display differences in the network topology that represents the organizational patterns of brain connectivity across the entire brain. In this review, the authors summarize recent findings in the multimodal brain connectivity/network research with gender, focusing on large-scale data sets derived from modern neuroimaging techniques. The literature provides convergent evidence for a substantial gender difference in brain connectivity within the human brain that possibly underlies gender-related cognitive differences. Therefore, it should be mandatory to take gender into account when designing experiments or interpreting results of brain connectivity/network in health and disease. Future studies will likely be conducted to explore the interdependence between gender-related brain connectivity/network and the gender-specific nature of brain diseases as well as to investigate gender-related characteristics of multimodal brain connectivity/network in the normal brain.
Collapse
Affiliation(s)
- Gaolang Gong
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Alan C. Evans
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| |
Collapse
|